自动控制系统重要知识点
自动控制原理知识点总结
自动控制原理知识点总结1. 控制系统基本概念:自动控制系统是通过对被控对象进行测量、比较和纠正等操作,使其输出保持在期望值附近的技术体系。
控制系统由传感器、控制器和执行器组成。
2. 反馈控制原理:反馈是指对被控对象输出进行测量,并将测量结果与期望值进行比较,通过纠正控制信号来消除误差。
反馈控制系统具有稳定性好、抗干扰能力强的特点。
3. 控制回路的结构:控制回路通常包括输入端、输出端、传感器、控制器和执行器等组成。
传感器用于将被测量的物理量转换为电信号;控制器根据测量结果和期望值进行计算,并输出控制信号;执行器根据控制信号,对被控对象进行操作。
4. 控制器的分类:控制器按照控制操作的方式可以分为比例控制器、积分控制器和微分控制器。
比例控制器根据误差的大小与一定的系数成比例地输出控制信号;积分控制器根据误差的累积值输出控制信号;微分控制器根据误差变化率的大小输出控制信号。
5. 稳定性分析:稳定性是指控制系统在无限时间内,输出能够在期望值附近波动。
常用的稳定性分析方法有判据法、频域法和根轨迹法等。
6. 控制系统的频域分析:频域分析是一种通过研究系统对不同频率的输入信号的响应特性,来分析控制系统的方法。
常用的频域分析方法有频率响应曲线、伯德图和封闭环传递函数等。
7. 根轨迹法:根轨迹法是一种用于分析和设计控制系统稳定性和性能的图形方法。
根轨迹是指系统极点随参数变化而形成的轨迹,通过分析根轨迹的形状,可以得到系统的稳定性和性能信息。
8. 灵敏度分析:灵敏度是指输出响应对于某个参数的变化的敏感程度。
灵敏度分析可以用于确定系统设计中的参数范围,以保证系统的稳定性和性能。
9. 鲁棒性分析:鲁棒性是指控制系统对于模型参数变化和外部干扰的抵抗能力。
鲁棒性分析可以用于设计具有稳定性好和抗干扰能力强的控制系统。
10. 自适应控制:自适应控制是指控制系统能够根据被控对象的变化自动调整控制策略和参数。
自适应控制通常使用系统辨识技术来识别被控对象的模型,并根据模型参数进行自动调整。
自动控制原理知识点汇总
自动控制原理知识点汇总自动控制原理是现代工程中的重要学科,它研究如何利用自动化技术实现对各种工业过程和系统进行控制和调节。
本文将对自动控制原理的相关知识点进行汇总,并进行详细说明。
1. 自动控制系统的基本组成自动控制系统主要由控制对象、感知器、执行器和控制器四个部分组成。
控制对象是需要被控制和调节的物理系统或工艺过程,感知器用于感知控制对象的运行状态,执行器负责根据控制器的指令执行相应的动作,而控制器则是整个系统的核心,根据感知器采集到的信号进行处理,并通过执行器对控制对象进行控制。
2. 控制系统的闭环与开环控制控制系统可以分为闭环控制和开环控制两类。
闭环控制是通过对控制对象的输出进行实时测量,并与预设的目标值进行比较,从而实现对系统状态的反馈控制。
开环控制则是不考虑控制对象的实际输出,仅根据预设的输入信号进行控制,无法实时调节系统状态。
3. 控制系统的稳定性控制系统的稳定性是指系统在受到外界扰动或控制指令变化时,能够恢复到稳定状态的能力。
稳定性分为绝对稳定和相对稳定两种。
绝对稳定是指系统在任何初始条件下都能恢复到稳定状态,相对稳定则是指系统在一定初始条件下能恢复到稳定状态。
稳定性分析常用的方法有根轨迹法、Nyquist稳定判据和Bode稳定判据等。
4. 控制系统的系统响应控制系统的系统响应描述了系统对输入信号的响应速度和质量。
常用的系统响应指标有超调量、调整时间、稳态误差和频率响应等。
超调量是指系统响应超过目标值的最大偏差,调整时间是系统从开始响应到稳定所需的时间,稳态误差是系统在稳定状态下与目标值之间的偏差,频率响应是系统对不同频率信号的响应特性。
5. PID控制器PID控制器是自动控制系统中最常用的控制器之一,它由比例项(P 项)、积分项(I项)和微分项(D项)组成。
比例项用于根据误差大小调节控制量,积分项用于对误差进行积分,以解决稳态误差问题,微分项用于预测误差的未来变化趋势,以减小超调和提高系统响应速度。
自动控制理论知识点总结
自动控制理论知识点总结1.控制系统的基本结构:一个典型的控制系统由被控对象、传感器、执行器、控制器和连接它们的信号线组成。
传感器将被控对象的状态转化为电信号,控制器根据目标和实际状态的差异来产生控制信号,执行器根据控制信号来调整被控对象的状态。
2.控制系统的稳定性:稳定性是控制系统最重要的性能之一、控制系统稳定即表示系统输出能够在有界的范围内保持在稳定值附近,不会出现无限增长或无限衰减的情况。
稳定性的分析基于控制系统的传递函数,通过判断系统的特征根位置来确定系统稳定性。
3.控制系统的性能指标:控制系统除了要求稳定外,还需要满足一定的性能指标。
常见的性能指标包括超调量、调节时间、稳态误差、抗干扰能力等。
这些指标通常与控制系统的设计需求有关,不同应用领域的控制系统对性能指标的要求也有所不同。
4.PID控制器:PID控制器是自动控制中最常见的一种控制器。
PID控制器根据比例、积分和微分三个部分对误差进行调节,从而实现系统状态的稳定控制。
PID控制器结构简单、调节方便,并且在很多领域都有广泛应用。
5.系统辨识:系统辨识是指通过对已有数据进行分析和处理,确定出系统的数学模型。
系统辨识可以基于频域分析、时域分析等方法进行。
通过系统辨识,可以为控制系统的设计、分析和优化提供重要的基础。
6.线性系统与非线性系统:控制系统可以分为线性系统和非线性系统。
线性系统的特点是可以通过叠加原理进行分析,传递函数和状态空间模型可以直接应用于控制系统。
而非线性系统则需要利用非线性控制的方法进行分析和设计。
7.鲁棒控制:鲁棒控制是一种能够保证控制系统在不确定性和干扰的情况下依然能保持稳定性和性能的控制方法。
鲁棒控制通常使用基于频域设计的方法,能够有效地抑制外界不确定性和不良影响。
8.自适应控制:自适应控制是指能够根据系统动态特性和外界环境变化,自动调整控制器参数和结构的控制方法。
自适应控制可以有效地应对系统参数不确定性和变化的情况,有助于提高系统的稳定性和性能。
(完整版)自动控制原理知识点总结
@~@自动控制原理知识点总结第一章1.什么是自动控制?(填空)自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。
2.自动控制系统的两种常用控制方式是什么?(填空)开环控制和闭环控制3.开环控制和闭环控制的概念?开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。
闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。
主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。
掌握典型闭环控制系统的结构。
开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。
)4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断)(1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力(2)、快速性:通过动态过程时间长短来表征的e来表征的(3)、准确性:有输入给定值与输入响应的终值之间的差值ss第二章1.控制系统的数学模型有什么?(填空)微分方程、传递函数、动态结构图、频率特性2.了解微分方程的建立?(1)、确定系统的输入变量和输入变量(2)、建立初始微分方程组。
即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组(3)、消除中间变量,将式子标准化。
将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边3.传递函数定义和性质?认真理解。
(填空或选择)传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比5.动态结构图的等效变换与化简。
三种基本形式,尤其是式2-61。
主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。
(化简)等效变换,是指被变换部分的输入量和输出量之间的数学关系,在变换前后保持不变。
自动控制原理知识点总结
自动控制原理知识点总结自动控制原理是一门研究自动控制系统的分析与设计的学科,它对于理解和实现各种工程系统的自动化控制具有重要意义。
以下是对自动控制原理中一些关键知识点的总结。
一、控制系统的基本概念控制系统由控制对象、控制器和反馈通路组成。
控制的目的是使系统的输出按照期望的方式变化。
开环控制系统没有反馈环节,输出不受控制,精度较低;闭环控制系统通过反馈将输出与期望的输入进行比较,从而实现更精确的控制。
二、控制系统的数学模型数学模型是描述系统动态特性的工具,常见的有微分方程、传递函数和状态空间表达式。
微分方程是最直接的描述方式,但求解较为复杂。
传递函数适用于线性定常系统,将输入与输出的关系以代数形式表示,便于分析系统的稳定性和性能。
状态空间表达式则能更全面地反映系统内部状态的变化。
三、时域分析在时域中,系统的性能可以通过单位阶跃响应来评估。
重要的性能指标包括上升时间、峰值时间、调节时间和超调量。
一阶系统的响应具有简单的形式,其时间常数决定了系统的响应速度。
二阶系统的性能与阻尼比和无阻尼自然频率有关,不同的阻尼比会导致不同的响应曲线。
四、根轨迹法根轨迹是指系统开环增益变化时,闭环极点在复平面上的轨迹。
通过绘制根轨迹,可以直观地分析系统的稳定性和动态性能。
根轨迹的绘制遵循一定的规则,如根轨迹的起点和终点、实轴上的根轨迹段等。
根据根轨迹,可以确定使系统稳定的开环增益范围。
五、频域分析频域分析使用频率特性来描述系统的性能。
波特图是常用的工具,包括幅频特性和相频特性。
通过波特图,可以评估系统的稳定性、带宽和相位裕度等。
奈奎斯特稳定判据是频域中判断系统稳定性的重要方法。
六、控制系统的校正为了改善系统的性能,需要进行校正。
校正装置可以是串联校正、反馈校正或前馈校正。
常见的校正方法有超前校正、滞后校正和滞后超前校正。
校正装置的设计需要根据系统的性能要求和原系统的特性来确定。
七、采样控制系统在数字控制系统中,涉及到采样和保持、Z 变换等概念。
自动控制原理知识点复习资料整理
自动控制原理知识点总结第一章1、自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。
2、被控制量:在控制系统中.按规定的任务需要加以控制的物理量。
3、控制量:作为被控制量的控制指令而加给系统的输入星.也称控制输入。
4、扰动量:干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入。
5、反馈:通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较。
反送到输入端的信号称为反馈信号。
6、负反馈:反馈信号与输人信号相减,其差为偏差信号。
7、负反馈控制原理:检测偏差用以消除偏差。
将系统的输出信号引回插入端,与输入信号相减,形成偏差信号。
然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。
8、自动控制系统的两种常用控制方式是开环控制和闭环控制。
9、开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。
10、闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。
主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。
11、控制系统的性能指标主要表现在:(1)、稳定性:系统的工作基础。
(2)、快速性:动态过程时间要短,振荡要轻。
(3)、准确性:稳态精度要高,误差要小。
12、实现自动控制的主要原则有:主反馈原则、补偿原则、复合控制原则。
第二章1、控制系统的数学模型有:微分方程、传递函数、动态结构图、频率特性。
2、传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比3、求传递函数通常有两种方法:对系统的微分方程取拉氏变换,或化简系统的动态方框图。
对于由电阻、电感、电容元件组成的电气网络,一般采用运算阻抗的方法求传递函数。
4、结构图的变换与化简化简方框图是求传递函数的常用方法。
自动控制理论关键知识点
关键知识点1、自动控制就是应用控制装置自动的、有目的地控制或调节机器设备或产生过程,使之按照人们规定的或者是希望的性能指标运行。
在无人直接参与下,利用控制装置操作受控对象,使受控对象的被控量按给定信号变化规律去变化。
2、一个自动控制系统至少包括测量、变送元件,控制器等组成的自动控制装置和受控对象。
反馈:当控制系统的被控量通过检测后作为控制量变化依据,则这个被控量称为控制系统反馈。
3、按自动控制系统是否形成闭合回路分类:1,开环控制系统;2,闭环控制系统。
4、自动控制系统:按照预定要求,无需人工干预,用于完成一定任务的一些部件的组合为自动控制系统。
闭环控制系统(反馈控制系统)其控制器的输入信号中包含来自受控对象输出端得被控量的反馈信号。
偏差信号。
5、开环控制系统:结构简单、造价低,但控制水平和控制精度也低,抗干扰能力差。
闭环控制系统:结构较复杂、设计难度大,成本高,但控制水平和控制精度较高,系统抗干扰能力较强。
6、按信号的结构特点分类:1,反馈控制系统;2,前馈控制系统;前馈-反馈复合控制系统。
7、按给定值信号的特点分类:1,恒值控制系统;2,随动控制系统;3,程序控制系统。
8、按控制系统元件的特性分类:1,线性控制系统;2,非线性控制系统。
9、按控制系统信号的形式分类:1,连续控制系统(模拟量控制系统);2,离散控制系统(数字量控制系统)。
自动控制系统被控量变化的动态特性:1,单调过程,2衰减震荡过程,3等幅震荡过程,4渐扩震荡过程。
对一个自动控制系统的性能要求可以概括为:稳定性、快速性、准确性。
数学模型:描述自动控制系统输入输出变量及内部各变量之间关系的数学表达式。
例如:微分方程,差分方程,传递函数,状态方程。
传递函数:线性定常系统的传递函数,在零初始条件下,系统输出信号的拉式变换与输入信号的拉式变换的比。
10、典型环节:1,比例环节;2,积分环节;3,微分环节;4,惯性环节;5,振荡环节;6,迟延环节。
自动控制原理知识点汇总
自动控制原理知识点汇总自动控制原理是研究和设计自动控制系统的基础学科。
它研究的是用来实现自动化控制的基本概念、理论、方法和技术,以及这些概念、理论、方法和技术在工程实践中的应用。
下面是自动控制原理的一些重要知识点的汇总。
一、控制系统的基本概念1.控制系统的定义:控制系统是用来使被控对象按照一定要求或期望输出的规律进行运动或改变的系统。
2.控制系统的要素:输入、输出、被控对象、控制器、传感器、执行器等。
3.控制系统的分类:开环控制和闭环控制。
4.控制系统的性能评价指标:稳定性、快速性、准确性、抗干扰性、鲁棒性等。
二、数学建模1.控制对象的数学建模方法:微分方程模型、离散时间模型、差分方程模型等。
2.控制信号的形式化表示:开环信号和闭环信号。
三、传递函数和频率响应1.传递函数:描述了控制系统输入和输出之间的关系。
2.传递函数的性质:稳定性、正定性、因果性等。
3.频率响应:描述了控制系统对不同频率输入信号的响应。
四、稳定性分析和设计1.稳定性的定义:当外部扰动或干扰没有足够大时,系统的输出仍能在一定误差范围内稳定在期望值附近。
2.稳定性分析的方法:根轨迹法、频域方法等。
3.稳定性设计的方法:规定根轨迹范围、引入正反馈等。
五、PID控制器1.PID控制器的定义:是一种用于连续控制的比例-积分-微分控制器,通过调节比例、积分和微分系数来实现对系统的控制。
2.PID控制器的工作原理和特点:比例控制、积分控制、微分控制、参数调节等。
六、根轨迹设计方法1.根轨迹的定义:描述了系统极点随控制输入变化时轨迹的变化规律。
2.根轨迹的特点:实轴特征点、虚轴特征点、极点数量等。
3.根轨迹的设计方法:增益裕量法、相位裕量法等。
七、频域分析与设计1.频率响应的定义:描述了系统对不同频率输入信号的响应。
2.频率响应的评价指标:增益裕量、相位裕量、带宽等。
3.频域设计方法:根据频率响应曲线来调整系统参数。
八、状态空间分析与设计1.状态空间模型:描述了系统状态和输入之间的关系。
自动控制系统知识点总结
1. 拖动系统可以分为直流电力拖动系统和交流电力拖动系统2. 直流电动机有三种调速方式:调节电枢供电电压U 、减弱励磁磁通Φ、改变电枢回路电阻、(变频调速)3. 直流调压调速主要方案有G-M 调速系统,V-M 调速系统,直流 PWM 调速系统4. 令Us Ud /=γ为PWM 电压系数,T Ton /=ρ为占空比,在不可逆的PWM变换器中ργ=;在双极式控制的可逆的PWM 系统中12-=ργ。
5. V-M 调速系统中抑制电流脉动的措施有增加整流电路相数或采用多重化技术、设置平波电抗器6. V-M 系统在电流连续时的机械特性特征为机械特性比较硬,呈线性;电流断续时的机械特性特征为机械特性比较软,呈非线性7. V-M 调速系统存在的问题 1整流器晶闸管的单向导电性导致的电动机的不可逆行性。
2整流器晶闸管对过电压过电流的敏感性导致的电动机的运行不可靠性。
3 整流器晶闸管基于对其门极的移相触发控的可控性导致的低功率因数性8. 直流PWM 调速系统的优越性:1)主电路简单;2)开关频率高;3)低速性能好,稳速精度高,调速范围宽;4)若与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强;5)装置的效率高;6)直流电源采用不控整流时,电网功率因数比相控整流器高。
9. PWM 变换器的作用:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电动机的转速。
10.调速系统的三个要求:调试、稳速、加减速11.稳态性能指标:调速范围、静差率特性越硬s越小12.开闭静特性关系:1闭环系统的静特性比开环系统的机械特性硬的多②闭环系统的静差率比开环系统的小的多③如果要求的静差率一定,则闭环系统可以大大提高调速范围13.比例控制直流调速系统能够减少稳态速降的实质在于它的自动控制作用,在于它能随负载的变化而相应的改变电枢电压,以补偿电枢回路电阻压降的变化14.反馈控制的三个基本规律为:1只用比例放大器的反馈控制系统,其被调量仍是有静差的、2反馈控制系统的作用:抵抗扰动,服从给定、3系统的精度依赖于给定和反馈控制的精度15.在调速单元给定部分设定积分电路的目的是实现无静差调速。
自动控制原理知识点
自动控制原理知识点自动控制原理是研究如何有效地对系统进行控制的一门学科。
以下是一些与自动控制原理相关的知识点:1. 控制系统:自动控制原理研究的对象是各类控制系统。
控制系统通常由输入、输出、执行器和传感器组成。
输入是系统的控制命令,输出是系统的控制结果。
执行器根据输入控制命令来执行相应的动作,传感器用于检测系统的状态并将信息反馈给控制器。
2. 控制器:控制器是控制系统中的关键部分,用于决定执行器的控制命令。
常见的控制器包括比例控制器(P控制器)、积分控制器(I控制器)和微分控制器(D控制器)。
这些控制器可以根据系统的需求进行组合以实现更好的控制效果。
3. 反馈:自动控制原理中的一个重要概念是反馈。
反馈是通过传感器将系统的实际输出信息反馈给控制器,以便控制器可以根据实际输出对控制命令进行调整。
反馈可以帮助控制系统实现更准确、稳定的控制。
4. 控制策略:控制系统可以采用不同的控制策略来实现不同的控制目标。
常见的控制策略包括比例控制、积分控制、微分控制、比例-积分控制、比例-微分控制和模糊控制等。
每种控制策略都有其特定的适用场景和优缺点。
5. 系统建模:在进行自动控制设计之前,需要对要控制的系统进行建模。
系统建模可以分为传递函数模型和状态空间模型两种。
传递函数模型通常用于线性系统,而状态空间模型适用于线性和非线性系统。
6. 频域分析:频域分析是自动控制原理中常用的分析方法之一,用于理解系统的频率响应特性。
常见的频域分析方法包括频率响应曲线、Bode图和Nyquist图等。
7. 闭环控制与开环控制:自动控制系统可以分为闭环控制和开环控制两种。
闭环控制中,系统的输出信息被反馈给控制器,以便对控制命令进行调整,以达到系统要求的性能。
而开环控制中没有反馈,系统的控制命令只基于输入信号来决定。
8. 鲁棒控制:鲁棒控制是自动控制原理中一种可以应对系统参数变化、外界扰动等不确定性因素的控制方法。
鲁棒控制可以提高系统的稳定性和抗干扰能力。
(完整word版)自动控制原理知识点总结
@~@自动控制原理知识点总结第一章1.什么是自动控制?(填空)自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。
2.自动控制系统的两种常用控制方式是什么?(填空)开环控制和闭环控制3.开环控制和闭环控制的概念?开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。
闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。
主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。
掌握典型闭环控制系统的结构。
开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。
)4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断)(1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力(2)、快速性:通过动态过程时间长短来表征的e来表征的(3)、准确性:有输入给定值与输入响应的终值之间的差值ss第二章1.控制系统的数学模型有什么?(填空)微分方程、传递函数、动态结构图、频率特性2.了解微分方程的建立?(1)、确定系统的输入变量和输入变量(2)、建立初始微分方程组。
即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组(3)、消除中间变量,将式子标准化。
将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边3.传递函数定义和性质?认真理解。
(填空或选择)传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比5.动态结构图的等效变换与化简。
三种基本形式,尤其是式2-61。
主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。
(化简)等效变换,是指被变换部分的输入量和输出量之间的数学关系,在变换前后保持不变。
自动控制原理知识点
自动控制原理知识点自动控制原理是探讨如何利用各种力量和手段来控制和调节物体或者系统的运行状态的学科。
它是现代科学技术以及工程实践的重要基础,广泛应用于机械、电气、化工、航空航天等领域。
下面将详细介绍自动控制原理的几个重要知识点。
1.控制系统的组成和基本原理控制系统由输入、处理器、输出和反馈四个基本部分组成。
输入是所要控制的物理量或信号,处理器是处理输入信号的部分,输出是系统输出的目标物理量或信号,反馈将输出信号与输入信号进行比较并反馈给处理器进行调节。
控制系统的基本原理是通过调节输入信号,通过反馈来使系统的输出达到期望值。
2.传递函数和状态空间法传递函数是描述线性系统输入输出关系的函数,它是一个复变量的函数。
通过传递函数可以对系统的动态特性进行分析和设计。
状态空间法是一种描述系统行为的方法,用状态向量和状态方程来描述系统的动态特性和稳定性。
3.PID控制器PID控制器是最常见的一种控制器,它由比例(P)、积分(I)和微分(D)三个部分组成。
比例部分使控制器的输出与误差成正比,积分部分用于处理系统的静差,微分部分用于预测系统未来的状态。
通过调节PID控制器的参数,可以实现系统的稳定性和响应速度的优化。
4.反馈控制反馈控制是将系统的输出信号反馈给系统的输入端进行调节的一种控制方式。
反馈控制可以使系统对扰动具有一定的鲁棒性,能够提高系统的稳定性和减小误差。
5.系统稳定性和瞬态响应系统稳定性是指当系统输入和参数在一定范围内变化时,系统输出是否会有无穷大的增长。
常用的判断系统稳定性的方法有稳定判据和根轨迹法。
瞬态响应是系统在调节过程中输出的变化过程,包括超调量、调节时间、稳态误差等指标。
6.系统优化和自适应控制系统优化是指通过调节系统参数使系统达到最佳性能的过程。
自适应控制是指系统能够根据外部环境和内部参数的变化自主调整控制策略的过程。
优化和自适应控制可以使系统具有更好的鲁棒性和适应能力。
7.数字控制系统数字控制系统是利用数字计算和逻辑运算进行控制的一种控制方式。
自动控制原理知识点归纳
自动控制原理知识点归纳1.控制系统的基本概念:-控制对象:需要被控制的对象,可以是一个物理系统、电子设备或生产工艺等。
-控制器:用于监测和调节控制对象的设备或程序,根据输入信号产生输出信号以实现控制。
-反馈:通过采集控制对象的输出信息,并与给定的参考信号进行比较,形成误差信号,作为控制器的输入信号。
-开环控制和闭环控制:开环控制仅根据输入信号直接控制对象,闭环控制则根据反馈信号和误差信号来调节控制器的输出信号。
2.控制系统的数学模型:-状态空间模型:使用微分方程或差分方程描述控制对象的状态变化及其对输入和输出的影响。
-传递函数模型:通过拉普拉斯变换将控制系统描述为输入和输出之间的传递函数。
传递函数描述了系统对输入信号的响应过程。
3.控制系统的稳定性分析:-稳定性定义:稳定性是指控制系统的输出在无穷远处有一个有限的稳定值或震荡在一些范围内。
-稳定性判据:利用特征方程的根的位置或特征值来判断控制系统的稳定性。
- 稳定性分析方法:Bode图法、Nyquist图法、根轨迹法等。
4.控制系统的性能指标:-响应速度:指控制系统从输入信号发生变化到输出信号稳定在其稳定值所需要的时间。
-精度:指控制系统输出信号与给定信号的误差大小。
-稳定度:指控制系统输出信号在稳定状态下的波动程度。
-鲁棒性:指控制系统对参数变化、外部扰动和测量误差的抗干扰能力。
5.控制器的设计方法:-比例控制器:根据误差信号的大小,直接乘以比例系数后作为控制器的输出信号。
-积分控制器:根据误差信号的积分值,乘以积分系数后作为控制器的输出信号,用于消除系统的稳态误差。
-微分控制器:根据误差信号的变化率,乘以微分系数后作为控制器的输出信号,用于提高系统的快速响应能力。
6.控制系统的频域分析:-频率响应:描述控制系统在不同频率下对输入信号的变化如何进行响应的性能。
-奈奎斯特稳定判据:通过绘制控制系统的奈奎斯特曲线,判断系统的稳定性和相位裕度。
-传递函数:利用拉普拉斯变换将控制系统描述为输入和输出之间的传递函数,从而分析系统的频率特性。
自动控制原理知识点总结
自动控制原理知识点总结自动控制原理是现代工程领域非常重要的一门学科,它关注的是如何利用各种技术手段来实现对系统的自动化控制。
在这篇文章中,我将对自动控制原理的一些关键知识点进行总结,以帮助读者更好地理解和掌握这门学科。
一、基本概念自动控制系统是由被控对象、传感器、执行器和控制器组成的一种系统,其目标是使被控对象按照期望的方式运行。
被控对象可以是各种物理系统,如机械系统、电气系统等。
传感器用于测量被控对象的状态,执行器用于对被控对象施加控制力,而控制器则根据传感器的反馈信号和期望的输出信号来决定执行器的动作。
二、控制系统的基本组成控制系统由三个主要组成部分构成:测量部分、决策部分和执行部分。
测量部分包括传感器和信号调理电路,用于测量被控对象的状态和输出信号。
决策部分包括控制器,其根据测量信号和期望输出信号进行计算,并生成控制命令。
执行部分由执行器组成,负责根据控制命令对被控对象进行控制。
三、控制系统的稳定性控制系统的稳定性是指在一定的工作条件下,系统的输出能够保持在期望范围内,不发生不可接受的偏离。
稳定性是控制系统设计中最重要的要求之一。
常见的稳定性分析方法包括输入-输出稳定性分析和李雅普诺夫稳定性分析。
四、反馈控制系统反馈控制系统是一种常用的自动控制系统,其控制器的输出信号是根据传感器的反馈信号和期望输出信号进行计算的。
反馈控制系统能够根据实际输出来调整控制命令,以实现系统的稳定性和准确性。
常见的反馈控制算法包括比例控制、积分控制和微分控制。
五、开环控制系统与反馈控制系统相对应的是开环控制系统,其控制器的输出信号只是根据期望输出信号进行计算的,没有考虑传感器的反馈信息。
开环控制系统的控制效果受到系统参数变化和外部扰动的影响较大,容易导致系统的稳定性和准确性下降。
六、PID控制器PID控制器是一种常用的控制器类型,其由比例控制、积分控制和微分控制三部分组成。
比例控制部分根据控制误差的大小进行调整;积分控制部分根据控制误差的累积值进行调整;微分控制部分根据控制误差的变化率进行调整。
自控知识点整理
自控1、自动控制:无人直接参与、控制装置(控制器)、控制对象、被控量、预定规律。
2、自动控制理论的研究对象:自动控制系统。
3、自动控制系统组成:控制器(控制装置,又分检测装置、执行装置和校正装置)、被控对象。
(给定装置;比较、放大装置;执行装置;测量与变送装置;校正装置;被控对象)4、发展:经典(二战后),现代(20世纪60年代初)、大系统和智能控制(近年)。
5、自动控制比人工控制:利用控制器代替人完成控制。
6、开环:无被控量反馈,没有闭合,给定信号。
7、闭环:有被控量反馈,有闭合,偏差信号。
8、按给定信号特征,有恒值(给定量一经设定维持不变);随动(又称伺服,给定量变化且变化规律未知);程序(按事先设定规律变化)。
9、按系统中元件特征,有线性(全部,线性微分方程);非线性(一个或多个)。
10、按系统中信号形式,有连续(微分方程);数字(差分方程)。
11、自动控制系统的基本控制要求:稳、快、准。
12、数学模型:描述系统或元件输入量、输出量以及内部各变量之间关系的数学表达式。
动态模型:描述各变量动态关系的数学表达式。
13、微分方程:电阻R ;电容Cs 1;电感Ls ;积分s1;微分s 。
14、拉氏变换:15、传递函数:线性定常系统,输出拉氏变换比输入拉氏变换。
两种表示方法,零极点分布图16、典型环节传函: (1)比例K s G =)( (2)积分Tss G 1)(=(3)微分Ts s G =)( (4)惯性11)(+=Ts s G (5)振荡222222121)(nn n s Ts s T s G ωζωωζ++=++= (6)延迟s e s G τ-=)(17、结构图:信号线、综合点(比较点或运算点)、引出点和方框。
化简:并联;串联;反馈。
18、信号流图、梅逊公式 19、几种常用传递函数: (1)给定量传函:)()(s R s C r r =Φ;干扰量传函:)()(s N s C n n =Φ )()()()()(s N s s R s s C n r Φ+Φ= (2)给定量误差出传函:)()(s R s E r e =Φ;干扰量误差传函:)()(s N s E n en =Φ )()()()()(s N s s R s s E en e Φ+Φ=20、典型输入信号:阶跃(常值信号);斜坡(等速信号);抛物线;单位脉冲;正弦。
自动控制原理知识点
第一章自动控制的一般概念1.1 自动控制的基本原理与方式1、自动控制、系统、自动控制系统◎自动控制:是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器、设备或生产过程(统称被控对象)的某个工作状态或参数(即被控量)自动地按照预定的规律(给定值)运行。
◎系统:是指按照某些规律结合在一起的物体(元部件)的组合,它们相互作用、相互依存,并能完成一定的任务。
◎自动控制系统:能够实现自动控制的系统就可称为自动控制系统,一般由控制装置和被控对象组成。
除被控对象外的其余部分统称为控制装置,它必须具备以下三种职能部件。
•测量元件:用以测量被控量或干扰量。
•比较元件:将被控量与给定值进行比较。
•执行元件:根据比较后的偏差,产生执行作用,去操纵被控对象。
参与控制的信号来自三条通道,即给定值、干扰量、被控量。
2、自动控制原理及其要解决的基本问题◎自动控制原理:是研究自动控制共同规律的技术科学。
而不是对某一过程或对象的具体控制实现(正如微积分是一种数学工具一样)。
◎解决的基本问题:•建模:建立系统数学模型(实际问题抽象,数学描述)•分析:分析控制系统的性能(稳定性、动/稳态性能)•综合:控制系统的综合与校正——控制器设计(方案选择、设计)3、自动控制原理研究的主要内容4、室温控制系统5、控制系统的基本组成◎被控对象:在自动化领域,被控制的装置、物理系统或过程称为被控对象(室内空气)。
◎控制装置:对控制对象产生控制作用的装置,也称为控制器、控制元件、调节器等(放大器)。
◎执行元件:直接改变被控变量的元件称为执行元件(空调器)。
◎测量元件:能够将一种物理量检测出来并转化成另一种容易处理和使用的物理量的装置称为传感器或测量元件(热敏电阻)。
◎比较元件:将测量元件和给定元件给出的被控量实际值与参据量进行比较并得到偏差的元件。
◎放大元件:放大偏差信号的元件。
◎校正元件(补偿元件):结构参数便于调整的元件,用于改善系统性能。
自动控制原理基本知识点
自动控制原理基本知识点1.控制系统的基本组成和结构:自动控制系统一般由被控对象、传感器、控制器和执行器组成。
被控对象是需要控制的物理系统,传感器用于采集被控对象的参数信息,控制器根据采集到的参数信息进行计算和控制命令的输出,执行器负责根据控制命令对被控对象进行操作。
2.控制器的种类和工作原理:常见的控制器有比例控制器、积分控制器、微分控制器和PID控制器等。
比例控制器的输出与被控对象的参数成比例,用于消除静差;积分控制器的输出与被控对象参数的积分值成正比,用于消除稳态误差;微分控制器的输出与被控对象参数的变化率成正比,用于提高系统的动态响应速度;PID控制器是由比例、积分和微分控制器组成的综合控制器,可以在一定程度上综合利用比例、积分和微分控制器的优点。
3.系统的稳定性和稳定裕度:在自动控制系统中,稳定性是一个重要的性能指标。
系统稳定性的判据是该系统在无限时间内的响应能否在有限范围内振荡或逐渐衰减趋于平衡态。
稳定裕度是指系统实际稳定边界与临界稳定边界之间的差值,用于评估系统稳定性的好坏。
较大的稳定裕度意味着系统对参数变化和负载干扰具有较强的抵抗能力。
4.控制系统的性能指标:自动控制系统的性能指标包括稳态误差、动态响应和抗干扰能力等。
稳态误差是指系统在稳定工作状态下与期望值之间的差别,可以通过选择合适的控制器和调节参数来降低;动态响应是指系统在受到扰动或控制命令改变时,恢复到新的稳定状态所需的时间和过程,可以通过调节控制器的参数来提高;抗干扰能力是指系统对于外部干扰的响应能力,可以通过增加控制器的增益和改进控制策略来改善。
5.开环控制和闭环控制:自动控制系统可以分为开环控制和闭环控制两种模式。
开环控制是指输出量不通过传感器进行反馈,仅根据期望输入和系统模型进行控制。
闭环控制是指输出量通过传感器进行反馈,并与期望输入进行比较后进行控制。
闭环控制可以实现对系统的实时监测和修正,具有较好的稳定性和鲁棒性。
自动控制原理知识点总结
自动控制原理知识点总结一、数学模型与传递函数1.系统的数学模型:数学模型是通过建立系统的数学方程来描述系统的物理特性和行为规律。
2.传递函数:传递函数是描述系统的输入和输出之间关系的函数,它是系统的拉普拉斯变换的比值。
二、系统的稳定性1.稳定性的概念:系统的稳定性是指系统在给定条件下的输出是否能够始终收敛到一个有限的范围内。
2.稳定性判据:稳定性可以通过判断系统的极点位置来确定,例如极点都位于左半平面时系统是稳定的。
3. 稳定性分析方法:常用的稳定性分析方法有根轨迹法、Nyquist稳定判据和Bode稳定判据。
三、系统的时间响应1.系统的单位冲击响应:单位冲击响应是系统对冲激信号的输出响应,它可以通过拉普拉斯变换和反变换求得。
2.系统的单位阶跃响应:单位阶跃响应是系统对阶跃信号的输出响应,它可以通过拉普拉斯变换和反变换求得。
3.响应特性参数:常用的响应特性参数有时间常数、峰值时间、峰值幅值、上升时间、超调量和稳态误差等。
四、控制系统的单一闭环反馈1.开环系统与闭环系统:开环系统是指没有反馈路径的系统,闭环系统是指存在反馈路径的系统。
2.单位负反馈控制系统:单位负反馈控制系统是指闭环系统中反馈信号与输入信号的比例为-1的系统。
3.闭环系统的稳态误差:稳态误差是指系统在达到稳定状态后,输出与期望输出之间的偏差。
4.稳态误差的计算和减小方法:可以通过增大控制增益、引入积分环节或者采用预估控制来减小稳态误差。
五、PID控制器1.PID控制器的结构和原理:PID控制器是由比例环节、积分环节和微分环节组成的控制器。
比例环节根据当前误差来调节输出,积分环节根据累积误差来调节输出,微分环节根据误差变化率来调节输出。
2.PID调节器参数整定方法:常用的整定方法有经验整定法、频域法和模拟优化等。
六、根轨迹法1.根轨迹的概念和性质:根轨迹是描述系统极点运动规律的图形,它是由系统的传递函数特征方程的根随一个参数的改变轨迹而形成的。
(完整版)自动控制原理知识点汇总
自动控制原理总结第一章绪论技术术语1.被控对象 :是指要务实现自动控制的机器、设施或生产过程。
2.被控量:表征被控对象工作状态的物理参量 (或状态参量 ),如转速、压力、温度、电压、位移等。
3.控制器:又称调理器、控制装置,由控制元件构成,它接受指令信号,输出控制作用信号于被控对象。
4.给定值或指令信号 r(t) :要求控制系统按必定规律变化的信号,是系统的输入信号。
5.扰乱信号 n(t) :又称扰动值,是一种对系统的被控量起损坏作用的信号。
6.反应信号 b(t) :是指被控量经丈量元件检测后回馈送到系统输入端的信号。
7.偏差信号 e(t):是指给定值与被控量的差值,或指令信号与反应信号的差值。
闭环控制的主要长处:控制精度高,抗扰乱能力强。
弊端:使用的元件多,线路复杂,系统的剖析和设计都比较麻烦。
对控制系统的性能要求:稳固性迅速性正确性稳固性和迅速性反应了系统的过渡过程的性能。
正确性是权衡系统稳态精度的指标,反应了动向过程后期的性能。
第二章控制系统的数学模型拉氏变换的定义:F ( s) f ( t )e- st d t几种典型函数的拉氏变换1.单位阶跃函数1(t)2.单位斜坡函数3.等加快函数4.指数函数e-at5.正弦函数sin ωt6.余弦函数cos ωt7.单位脉冲函数 (δ函数 )拉氏变换的基本法例1.线性法例2.微分法例3.积分法例Lf ( t )d t1F ( s )s4.终值定理e( ) lim e( t ) lim sE ( s)ts 05.位移定理L f (t)e 0 s F(s)Le atf ( t )F ( s a )传达函数: 线性定常系统在零初始条件下, 输出信号的拉氏变换与输入信号的拉氏变换之比 称为系统 (或元零件 )的传达函数。
动向构造图及其等效变换1.串连变换法例2.并联变换法例3.反应变换法例4.比较点前移“加倒数”;比较点后移“加自己”。
5.引出点前移“加自己”;引出点后移“加倒数” 梅森( S. J. Mason )公式求传达函数典型环节的传达函数 1.比率 (放大 )环节 2.积分环节 3.惯性环节 4.一阶微分环节 5.振荡环节G ( s)12 s 22 Ts 1T C ( s ) = 1 n6.二阶微分环节( s )P k kR ( s )k 1第三章时域剖析法二阶系统剖析2nKJF2nJ2 n(完整版)自动控制原理知识点汇总二阶系统的单位阶跃响应1.过阻尼 ξ>1 的状况 :系统闭环特色方程有两个不相等的负实根。
自动控制原理知识点总结
自动控制原理知识点总结自动控制原理是一门研究自动控制系统的分析和设计的学科,它在工程技术、机械制造、航空航天、电力系统等众多领域都有着广泛的应用。
接下来,让我们一起深入了解一下自动控制原理中的一些重要知识点。
一、控制系统的基本概念控制系统是指由控制对象、控制器和反馈环节组成的能够对被控对象的输出进行自动控制的系统。
控制对象是被控制的物理设备或过程,控制器则是根据给定的输入和反馈信号产生控制作用的装置,反馈环节用于将控制对象的输出反馈给控制器,以实现对系统的调节和控制。
控制系统的性能指标通常包括稳定性、准确性和快速性。
稳定性是指系统在受到干扰后能够恢复到平衡状态的能力;准确性是指系统的输出与给定输入之间的偏差大小;快速性则是指系统从一个状态过渡到另一个状态所需的时间。
二、控制系统的数学模型建立控制系统的数学模型是分析和设计控制系统的基础。
常见的数学模型有微分方程、传递函数和状态空间表达式。
微分方程是描述系统动态特性的最基本形式,但求解较为复杂。
传递函数则是在零初始条件下,输出的拉普拉斯变换与输入的拉普拉斯变换之比,它可以方便地分析系统的频率特性和稳定性。
状态空间表达式则是用一组状态变量来描述系统,更适合于多输入多输出系统的分析和设计。
三、控制系统的时域分析时域分析是通过直接求解系统的微分方程或状态方程,来研究系统的性能。
其中,重要的概念包括单位阶跃响应、单位脉冲响应和稳态误差。
单位阶跃响应是指系统在单位阶跃输入信号作用下的输出响应,它可以反映系统的稳定性和快速性。
单位脉冲响应则是系统在单位脉冲输入信号作用下的输出响应,与系统的传递函数是拉普拉斯变换对的关系。
稳态误差是指系统在稳态时输出与输入之间的偏差,它与系统的类型和开环增益有关。
对于给定的输入信号,通过计算稳态误差可以评估系统的准确性。
四、控制系统的根轨迹法根轨迹是指当系统的某个参数(通常是开环增益)从 0 变化到无穷大时,系统特征方程的根在复平面上的变化轨迹。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
异步电动机稳态数学模型包括异步电动机稳态等值电路和机械特性变压变频调速是改变异步电动机同步转速的一种调速方法,同步转速随频率而变化 基频以下应采用电动势频率比为恒值的控制方式。
当电动势值较高时,忽略定子电阻和漏感压降, 低频补偿(低频转矩提升)低频时,定子电阻和漏感压降所占的份量比较显著,不能再忽略。
人为地把定子电压抬高一些,以补偿定子阻抗压降。
负载大小不同,需要补偿的定子电压也不一样。
在基频以上调速时,频率从向上升高,受到电机绝缘耐压和磁路饱和的限制,定子电压不能随之升高,最多只能保持额定电压不变。
这将导致磁通与频率成反比地降低,使得异步电动机工作在弱磁状态。
● 在基频以下,由于磁通恒定,允许输出转矩也恒定,属于“恒转矩调速”方式。
当频率较低时,电动机带载能力减弱,采用低频定子压降补偿,适当地提高电压,可以增强带载能力。
● 在基频以上,转速升高时磁通减小,允许输出转矩也随之降低,由于转速上升,允许输出功率基本恒定,属于“近似的恒功率调速”方式。
恒定子磁通控制:保持定子磁通恒定: 常值 恒气隙磁通控制:保持气隙磁通恒定: 常值 恒转子磁通控制保持转子磁通恒定: 常值● 恒定子磁通、恒气隙磁通和恒转子磁通的控制方式均需要定子电压补偿,控制要复杂一些。
● 恒定子磁通和恒气隙磁通的控制方式虽然改善了低速性能。
但机械特性还是非线性的,仍受到临界转矩的限制。
● 恒转子磁通控制方式可以获得和直流他励电动机一样的线性机械特性,性能最佳。
零矢量集中的实现方法 按照对称原则,将两个基本电压矢量的作用时间平分为二后,安放在开关周期的首端和末端。
零矢量的作用时间放在开关周期的中间,并按开关次数最少的原则选择零矢量。
在一个开关周期内,有一相的状态保持不变,从一个矢量切换到另一个矢量时,只有一相状态发生变化,因而开关次数少,开关损耗小。
g s E U ≈=1/f E s 1/g E ω=1/rE ω=002sin sin()sin 33ddsu ππθθ==-s 01sin()3dT t U πθ=-s 02sin dT t U θ=2100t t T t --=零矢量分散的实现方法将零矢量平均分为4份,在开关周期的首、尾各放1份,在中间放两份。
将两个基本电压矢量的作用时间平分为二后,插在零矢量间。
按开关次数最少的原则选择矢量。
SVPWM 控制的特点8个基本输出矢量,6个有效工作矢量和2个零矢量,在一个旋转周期内,每个有效工作矢量只作用1次的方式,生成正6边形的旋转磁链,谐波分量大,导致转矩脉动。
用相邻的2个有效工作矢量,合成任意的期望输出电压矢量,使磁链轨迹接近于圆。
开关周期越小,旋转磁场越接近于圆,但功率器件的开关频率将提高。
用电压空间矢量直接生成三相PWM 波,计算简便。
与一般的SPWM 相比较,SVPWM 控制方式的输出电压最多可提高15%。
采用不可控整流的交-直-交变频器,能量不能从直流侧回馈至电网,交流电动机工作在发电制动状态时,能量从电动机侧回馈至直流侧,导致直流电压上升,称为泵升电压。
电动机储存的动能较大、制动时间较短或电动机长时间工作在发电制动状态时,泵升电压很高,严重时将损坏变频器。
泵升电压的限制在直流侧并入一个制动电阻,当泵升电压达到一定值时,开通与制动电阻相串联的功率器件,通过制动电阻释放电能,以降低泵升电压。
在直流侧并入一组晶闸管有源逆变器或采用PWM 可控整流,当泵升电压升高时,将能量回馈至电网,以限制泵升电压。
转差频率控制的基本思想 保持气隙磁通不变,在s 值较小的稳态运行范围内,异步电动机的转矩就近似与转差角频率成正比。
在保持气隙磁通不变的前提下,可以通过控制转差角频率来控制转矩.必须采用定子电压补偿控制,以抵消定子电阻和漏抗的压降。
两相绕组,通以两相平衡交流电流,也能产生旋转磁动势。
当三相绕组和两相绕组产生的旋转磁动势大小和转速都相等时,即认为两相绕组与三相绕组等效,这就是3/2变换。
按照磁动势相等的等效原则,三相合成磁动势与两相合成磁动势相等,故两套绕组磁动势在23333233311cos cos ()3322sinsin()332A B C A B C B C B C N i N i N i N i N i i i N i N i N i N i i αβππππ=--=--=-=-211616211.(0,1)02.(0,2)23.(0,3)2(0,*)4.(0,4)05.(0,5)26.(0,6)27.(0,7)0s s s s s s s s t t t t ∆=⎧⎪⎪∆=⎪⎪∆=⎪⎪⎪∆=∆=⎨⎪⎪∆=⎪⎪∆=⎪⎪∆=⎪⎩ψψψψψψψψu u uuαβ轴上的投影应相等6-5 三相坐标系和两相正交坐标系中的磁动势矢量●写成矩阵形式按照变换前后总功率不变,匝数比● 三相坐标系变换到两相正交坐标系的变换矩阵● 两相正交坐标系变换到三相坐标系(简称2/3变换)的变换矩阵● 也可以写作●电压变换阵和磁链变换阵与电流变换阵相同从静止两相正交坐标系αβ到旋转正交坐标系dq 的变换,称作静止两相-旋转正交变换,简称2s/2r 变换,其中s 表示静止,r 表示旋转,变换的原则同样是产生的磁动势相等 旋转正交变换静止两相正交坐标系到旋转正交坐标系的变换阵 静止两相正交坐标系和旋转正交坐标系中的磁动势矢量6-7 定子、转子坐标系到静止两相正交坐标系的变换 电压方程233332333coscos3311()22sinsin333()2A B C A B C B C B C N i N i N i N i N i i i N i N i N i N i i αβππππ=--=--=-=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡C B Ai i iN N i i 23232121123βα3223=NN 3/2111220C ⎤--⎥=-⎣⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=2321232101323/2C 0=++C B A i i i ⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡B A i ii i 221023βα⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡βαi i i i B A 2161032⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡βαβαϕϕϕϕi iC i i i i r s q d 2/2cos sin sin cos 2/2c o s s in s in c o s s r C ϕϕϕϕ⎡⎤=⎢⎥-⎣⎦⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡''''''βαβαβαβαβαβαψψψψr r s s r r s s r r s sr r s s dt d i i i i R 00R 0000R 0000R u u u u链方程磁转矩方程3/2变换将按三相绕组等效为互相垂直的两相绕组,消除了定子三相绕组、转子三相绕组间的相互耦合。
定子绕组与转子绕组间仍存在相对运动,因而定、转子绕组互感阵仍是非线性的变参数阵。
输出转矩仍是定、转子电流及其定、转子夹角的函数。
对转子坐标系作旋转正交坐标系到静止两相正交坐标系的变换,使其与定子坐标系重合,且保持静止。
用静止的两相转子正交绕组等效代替原先转动的两相绕组。
旋转变换改变了定、转子绕组间的耦合关系,将相对运动的定、转子绕组用相对静止的等效绕组来代替,消除了定、转子绕组间夹角对磁链和转矩的影响。
旋转变换的优点在于将非线性变参数的磁链方程转化为线性定常的方程,但却加剧了电压方程中的非线性耦合程度,将矛盾从磁链方程转移到电压方程中来了,并没有改变对象的非线性耦合性质。
异步电动机按转子磁链定向的矢量控制系统按转子磁链定向矢量控制的基本思想通过坐标变换,在按转子磁链定向同步旋转正交坐标系中,得到等效的直流电动机模型。
仿照直流电动机的控制方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量反变换得到三相坐标系的对应量,以实施控制。
通过按转子磁链定向,将定子电流分解为励磁分量和转矩分量,转子磁链仅由定子电流励磁分量产生,电磁转矩正比于转子磁链和定子电流转矩分量的乘积,实现了定子电流两个分量的解耦。
在按转子磁链定向同步旋转正交坐标系中的异步电动机数学模型与直流电动机动态模型相当。
⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡''''βαβαβαβαθθθθθθθθψψψψr r s s rm m r m m m m s m m s r r s s i i i i L L L L L L L L L L L L 0cos sin 0sin cos cos sin 0sin cos 0]cos )(sin )[(L n T''''m p eθθαββαββααr s r s r s r s i i i i i i i i -++-=2/2cos sin ()sin cos r s C θθθθθ-⎡⎤=⎢⎥⎣⎦s s s ss s s s r r r r r rr r r r r r u i 0R 000u i 00R 00d u i 00R 0dt u i 000R αααβββαααββββαψψψωψψωψ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦L 0000000s s s m s s s m r r mr r r mr i L i L L i L L i L L ααββααββψψψψ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()e p m s r s r T n L i i i i βααβ=-按转子磁链定向矢量控制的基本思想按转子磁链定向仅仅实现了定子电流两个分量的解耦,电流的微分方程中仍存在非线性和交叉耦合。
采用电流闭环控制,可有效抑制这一现象,使实际电流快速跟随给定值按转子磁链定向矢量控制的基本思想在按转子磁链定向坐标系中计算定子电流励磁分量和转矩分量给定值,经过反旋转变换2r/2s和2/3变换得到三相电流。
通过电流闭环的跟随控制,输出异步电动机所需的三相定子电流。
矢量控制系统原理结构图简化后的等效直流调速系统异步电动机按定子磁链控制的直接转矩控制系统直接转矩控制系统的基本思想是根据定子磁链幅值偏差的正负符号和电磁转矩偏差的正负符号,再依据当前定子磁链矢量所在的位置,直接选取合适的电压空间矢量,减小定子磁链幅值的偏差和电磁转矩的偏差,实现电磁转矩与定子磁链的控制。