电网输电线路风偏跳闸机理分析及治理策略分析

合集下载

一次330kV输电线路风偏故障原因分析与整改措施

一次330kV输电线路风偏故障原因分析与整改措施

一次330kV输电线路风偏故障原因分析与整改措施某单位运维的330kV某线位于戈壁大风区,线路长度为22.893km,全线共有60基杆塔,线路设计组合气象条件为甘Ⅱ气象区,沿线海拔1185m-1250m 之间,采用双地线,按c级污秽区设计,导线采用LGJ-300/40钢芯铝绞线,子导线布置方式为水平双分裂形式,悬垂串采用100kN合成绝缘子成单串,重要交叉跨越采用100kN合成绝缘子成双串;跳线采用单串100kN配重式合成绝缘子,大于45°转角外角跳线采用双串独立挂点100kN配重式合成绝缘子,耐张绝缘子串采用22片120kN防污型玻璃绝缘子成双串。

2012年7月22日20时51分,线路B相开关跳闸,故障时保护装置电流差动保护、接地距离Ⅰ段动作、分相差动保护动作,开关跳闸,重合闸动作不成功。

根据保护测距数据推算,对应的线路重点故障区段铁塔号为18号—31号,该线路区段位于沿线地貌为山前冲洪积平原,线路走径基本为戈壁荒滩,地形平坦开阔相对高差较少,地势北高南低。

故障时为短时强风伴有沙尘和小雨天气,风向西风,短时强风的风速达26.2m/s(气象局提供),温度约26℃,湿度20%。

接到调度通知后,公司紧急召集故障巡视人员赶往现场,对18—31号的耐张塔中相引流,大档距杆塔线路中相(B相)导线及避雷线上巡查,由于夜间巡视使用应急灯照明,能见度差、可视范围受限,未发现故障点,故障人员在巡查时路遇风电场工作人员,反映故障时天气为大风,测量风速为34m/s。

第二天,又组织运行人员赶往现场进行故障巡查工作,对故障区段进行了登塔检查,发现:28号塔右地线放电极板与极棒、右地线挂点处均有明显的放电烧伤痕迹;28号中相大号侧右子线第一个防震锤、右上曲臂辅材及主材存在大面积放电烧伤痕迹。

故障杆塔28号设备资料:塔型为ZM134型自立式角钢直线塔,呼高24m,位于戈壁摊上,地势平坦,海拔为1185m;地形为戈壁滩,地质为砾石土,线路处在C级污区,塔基周边及廊道沿线均空旷平坦。

关于风偏引起线路跳闸的故障分析及对策措施

关于风偏引起线路跳闸的故障分析及对策措施

关于风偏引起线路跳闸的故障分析及对策措施摘要:输电线路的风偏闪络一直是影响线路安全运行的因素之一,与雷击等其他原因引起的跳闸相比,风偏跳闸的重合成功率较低,一旦发生风偏跳闸,造成线路停运的几率较大。

本文对110kV线路一起风偏造成的跳闸事故进行了原因分析,并提出了相应的对策措施,对于降低输电线路风偏闪络故障率,提高输电线路的安全运行水平有所帮助。

关键字:风偏;闪络;跳闸;对策措施0 引言对输电线路风偏闪络引起的故障及事故分析原因,进行调查统计,研究并制订相关防治措施,对降低输电线路风偏闪络故障及事故率,提高输电线路的安全运行水平很有意义。

经统计,输电线路风偏跳闸按放电形式分,对杆塔放电的比例最大;按塔型分,耐张的比例最大。

本文将对此类故障试作分析。

1 故障情况2006年7月1日11:45分盘钢#1线751保护Z01、I01动作,重合不成(B 相,测距4.8kM),南钢一总降110kV备自投成功。

随即组织线路班进行带电查线,查到盘城变附近时,当地居民告知暴风雷雨时前方铁塔有冒火声响。

15:54分发现盘钢#1线751 #4塔B相搭头引流线遭雷击弧闪痕迹,并发现盘钢#1线#4塔有放电痕迹,暂不影响运行,向调度汇报要求试送一次。

16:20送电线路运行正常。

2 现场情况检查经现场调查,该塔为耐张塔,杆塔周边为平地,#4塔B相搭头引流线对塔身放电,塔身主材和引流线上均有放电痕迹,未安装跳线绝缘子串,两侧耐张串等高。

附近居民反映放电故障发生时段有大风、暴雨活动,持续时间较长。

图一引流线有明显放电痕迹图二塔身亦有明显放电痕迹3 原因分析3.1 气候条件发生风偏闪络的本质原因是由于在外界各种不利条件下造成输电线路的空气间隙距离减小,当此间隙距离的电气强度不能耐受系统运行电压时便会发生击穿放电。

输电线路风偏闪络多发生于恶劣气候条件下,发生区域均有强风出现,且大多数情况下还伴随有大暴雨或冰雹。

此次跳闸故障的气象环境就是强风和大暴雨。

输电线路风偏故障分析与防范

输电线路风偏故障分析与防范

输电线路风偏故障分析与防范由于近年来石嘴山地区大风天气较多,该地区110-220kV线路发生多次大风跳闸故障。

针对故障原因,笔者对大风天气与地区线路运行条件进行深入分析,提出了地区电网防风偏治理的方案。

标签:线路;风偏故障;防范1风偏故障类型及特点1.1 风偏故障类型及故障统计风偏故障是输电线路在大风天气下导线(带电体)与杆塔、拉线、树、竹、建筑物等(地电位体)之间或其他相导线的空气间隙小于大气击穿电压而造成的跳闸故障。

风偏故障不能消除或发生相间短路时,会扩大事故范围。

风偏故障主要类型有直线杆塔绝缘子对塔身或拉线放电,耐张杆塔跳线引流对塔身放电,导线对通道两侧建(构)筑物或边坡、树竹木等放电现象。

以石嘴山地区输电线路运行记录为例,2009-2011年输电线路间共发生风偏故障17次,发生风偏故障的线路主要为110-220kV线路,其中220kV线路风偏故障11次,占风偏跳闸故障的64.7%,110kV线路风偏故障6次,占风偏跳闸故障的35.3%。

由于近年来大风天气持续增多、微气候气象条件的不断变化,输电线路风偏故障不断发生,对电网的安全运行也带来了严峻考验,因此对输电线路风偏故障的防治必须引起高度重视。

1.2 输电线路风偏故障特点1.2.1 气象条件发生明显变化。

根据石嘴山地区电网2001年-2011年间110-220kV线路风偏跳闸数据,可以知道2001年-2009年间110-220kV输电线路风偏故障较少,而2010-2011年间该地区风偏故障次数显著增加,调查气象资料,2001年-2009年地区最大风速为21m/s,而2010-2011年间地区瞬时最大风速为30m/s,地区瞬时最大风速有所增强。

1.2.2 风偏跳闸时间具有规律性。

石嘴山地区发生风偏跳闸故障主要集中在每年12月至次年4月,该时间段为西北地区大风季节。

此外,该地区电网110kV 及以上架空输电线路并非每年都会发生。

某些年份的线路风偏故障往往非常严重。

220kv输电线路风偏故障及其防治对策

220kv输电线路风偏故障及其防治对策

220kv输电线路风偏故障及其防治对策摘要:随着经济不断发展,我国电网建设发展迅速,220kv电网建设规模不断扩大。

大部分输电线路建设在地形复杂地区,地形复杂地区的气候差异较大,给输电线路建设带来严峻考验。

在恶劣的自然环境下,输电线路容易出现故障,尤其在强风地区,输电线路在强风的作用下容易出现偏移或位移现象,产生风偏故障,降低输电线路安全性与稳定性。

为保障输电线路的安全,需分析风偏故障的具体情况,并提出相应的治理措施。

关键词:220kv;输电线路;风偏故障;防治对策1、风偏故障的基本情况近年来,我国由于风偏故障造成的安全事故较多。

例如,2018年,福建省遭受强力台风,导致输电线路出现异常,220kv福中Ⅰ线路C相故障跳闸,出现明显的闪络现象;2019年,河南出现风偏跳闸;2020年,福建省厦门市受到强风影响出现风偏跳闸。

风偏故障会影响电网系统的安全运行,对系统带来极大影响,其涉及地区较广,容易造成严重事故。

例如,2015年,某线路出现跳闸后,重合闸失败,与之并列的线路受到高双频影响,杆塔受到强风破坏,因此拉线出现放电问题。

风偏跳闸容易出现在每年的夏季,这时天气变化复杂,容易出现风偏闪络现象。

2、220kv输电线路风偏故障2.1外因目前,我国在对220kv输电线路进行构建的过程中,要求相关部门必须严格遵守相应的设计规范,其中指出,如果220kv输电线路需要在拥有500~1000m海拔高度的地区进行构建,最小空气间隙在工频电压下应高于1.3m;如果220kv输电线路在不高于500m的海拔地区进行建立,那么最小空气间隙在工频电压下应高于1.2m。

220kv输电线路在各种恶劣的天气条件下运行时,位移以及偏转的现象很容易在杆塔中产生,那么将减小空气间隙,其无法满足技术规程相关要求;同时,在恶劣的天气条件下,工频电压在线路、杆塔间隙中将会降低。

2.2空气间隙放电电压降低空气间隙放电电压降低主要受暴雨及冰雹影响,当线路出现放电时,导线风偏角加大,导线与杆塔之间的空气间隙明显缩小,空气间隙放电电压降低。

500kV输电线路风偏故障分析及防范

500kV输电线路风偏故障分析及防范

500kV输电线路风偏故障分析及防范摘要:风偏故障在字面上进行理解,造成原因就是输电线路在比较强的风力面前导线发生位置的变化,从而导致了输电线路放电的间隙变小而产生的电压闪络的故障。

本文章就结合实际工作500KV高压下输电线路产生风偏故障的原因进行剖析,并提出了一些预防措施,希望为从事高压输电线路的工作人员提供一些参考依据。

关键词:输电线路;风偏故障;预防措施首先要意识到输电线路出现风偏故障事故的严重性,因为一旦出现这一现象是不可逆的,线路一旦跳闸后很难重合回去。

已然成为影响高压输电线路运行是否稳定以及线路是否安全的重要因素。

相对比因为雷击鸟而产生的线路跳闸来看很不容易恢复,因此当出现这一故障时对于供电企业来说是很大的损失,而且还会影响正常的用电以及使用等。

所以说对这一故障进行预防措施以及一旦发生后及时进行处理显得尤为重要。

一、对于500kV输电线路产生风偏故障的分析下面我将会以某省500KV的输电线路为例,对出现线路风偏故障的具体原因进行归纳总结,可见故障的主要形成原因以及规律如下:(一)出现风偏故障主要与恶劣的天气环境有关对某省出现风偏故障的情况进行梳理,发现在出现这一故障时往往伴随着的是强风来领,包括台风、强降雨、冰雹等恶劣天气状况。

当出现这些天气时会使得输电线路之间的间隙明显减小,而产生电压闪络的故障。

这也是产生风偏故障最重要的原因。

(二) 输电线路一旦因此跳闸很难重新重合就某省超高压输电线路出现风偏故障时线路跳闸后复合的比例很低,在2012-2018以来该省出现风偏故障总计有7例,这些伴随着的线路跳闸无一是复合的。

这些都是在非计划里的线路停用,发生后对该省的经济损失巨大。

因为风偏故障的产生往往都有强风,所以线路重合需要的动作时间将会变长,所以说输电线路出现这种故障后将很难重新复合。

(三)风偏故障的主要表现形式就某省的7次风偏故障为例,总结一些主要的表现情况是输电的导线对杆塔放电、两个输电导线之间会产生放电、输电导线对输电线路周围存在的一些东西放电,而产生这些现象的均会有塔身以及输电导线烧伤严重的情况发生。

关于风偏引起线路跳闸的故障分析及对策措施

关于风偏引起线路跳闸的故障分析及对策措施

关于风偏引起线路跳闸的故障分析及对策措施第一篇:关于风偏引起线路跳闸的故障分析及对策措施关于风偏引起线路跳闸的故障分析及对策措施摘要:输电线路的风偏闪络一直是影响线路安全运行的因素之一,与雷击等其他原因引起的跳闸相比,风偏跳闸的重合成功率较低,一旦发生风偏跳闸,造成线路停运的几率较大。

本文对110kV线路一起风偏造成的跳闸事故进行了原因分析,并提出了相应的对策措施,对于降低输电线路风偏闪络故障率,提高输电线路的安全运行水平有所帮助。

关键字:风偏;闪络;跳闸;对策措施0 引言对输电线路风偏闪络引起的故障及事故分析原因,进行调查统计,研究并制订相关防治措施,对降低输电线路风偏闪络故障及事故率,提高输电线路的安全运行水平很有意义。

经统计,输电线路风偏跳闸按放电形式分,对杆塔放电的比例最大;按塔型分,耐张的比例最大。

本文将对此类故障试作分析。

故障情况2006年7月1日11:45分盘钢#1线751保护Z01、I01动作,重合不成(B相,测距4.8kM),南钢一总降110kV备自投成功。

随即组织线路班进行带电查线,查到盘城变附近时,当地居民告知暴风雷雨时前方铁塔有冒火声响。

15:54分发现盘钢#1线751 #4塔B相搭头引流线遭雷击弧闪痕迹,并发现盘钢#1线#4塔有放电痕迹,暂不影响运行,向调度汇报要求试送一次。

16:20送电线路运行正常。

现场情况检查经现场调查,该塔为耐张塔,杆塔周边为平地,#4塔B相搭头引流线对塔身放电,塔身主材和引流线上均有放电痕迹,未安装跳线绝缘子串,两侧耐张串等高。

附近居民反映放电故障发生时段有大风、暴雨活动,持续时间较长。

图一引流线有明显放电痕迹图二塔身亦有明显放电痕迹原因分析 3.1 气候条件发生风偏闪络的本质原因是由于在外界各种不利条件下造成输电线路的空气间隙距离减小,当此间隙距离的电气强度不能耐受系统运行电压时便会发生击穿放电。

输电线路风偏闪络多发生于恶劣气候条件下,发生区域均有强风出现,且大多数情况下还伴随有大暴雨或冰雹。

电网输电线路风偏跳闸机理分析及治理策略分析

电网输电线路风偏跳闸机理分析及治理策略分析

DOI:10.19392/ki.1671-7341.201820183电网输电线路风偏跳闸机理分析及治理策略分析唐大为国网吉林省电力有限公司白城供电公司㊀吉林白城㊀137000摘㊀要:我国现在的发展已经离不开电力的支持,通过将发电站生产的电力利用由国家电网运输到我国的各个角落是实现我国全面发展的重要方式㊂为此我国除了要革新发电技术以外,还需要对我国的电网运输方式进行相关的探索㊂我国现阶段的国家电力运输网络建设已经逐渐健全,但在恶劣的气候条件中时常出现大量的跳闸现象,严重的影响了我国电力运输的稳定性,为此本文通过对我国大部分地区的电力运输网络进行调查,并结合对封片跳闸发生机理的研究结果,对我国的电网供电安全和供电稳定提出了一些浅显的观点㊂关键词:电网输电线路;风偏跳闸机理;治理策略㊀㊀我国地域广大,气候条件和地理环境复杂多变,在进行电力运输网络体系建立时需要考虑的外界因素非常的繁复㊂在进行大量的总结后发现,影响完成架设的电网中最为重要的外界因素就是风偏作用,在各类的自然环境中因为狂风会直接在电线中产生大量的作用力,使得电网跳闸现象极其严重㊂为此,探索出输电线路在狂风中可以稳定输送电力的能力,可以对我国的电力运输起到划时代的作用㊂一㊁输电线路风偏跳闸的特点从风偏跳闸的名字就可以看出其主要的影响因素就是强风,我国现阶段的电力运输技术已经能够抵抗一定的风力作用,所以出现风偏跳闸的地区大部分都是气候复杂多变且存在强风天气的地区㊂风偏跳闸发生的原理就是因为风力过于强劲使得输电线路杆发生错位从而导致输电设施的间距变小㊂另外在强风天气中往往伴随着降水,此时的空气电阻将会偏低,极大的容易造成电路间发生短路现象,从而出现风偏跳闸现象㊂从中可以看出风偏跳闸的影响因素中有着地形的影响,如果地形平坦,那么输电线间的距离就可以设置成相对安全的距离,使得在强风天也难以发生跳闸现象㊂二㊁风偏跳闸发生的原因(一)线路质量问题严峻我国现阶段的市场政策决定了各行各业中都存在着民营资本,在电线制造业中也没有意外㊂在这种条件下,线路生产的厂家为了增加产品的竞争力会通过减少质量降低成本的方式进行降价处理,所以线路的质量会是电网运输网络中重要的问题,另一方面我国现阶段对电网能够输送电量和电网建设时的情况完全不同,在当今的社会环境中不可能对所有的电网线路进行同意改造,为此在线路老化和历史遗留的设计问题中,只能通过局部改造的方式循环渐进的完成电网线路的改造工作,是一项极其复杂繁琐的任务㊂(二)气候多变我国气候环境多变是一项基本国情,我国的很多电路设计人员因为缺少工作经验和相关的文献资料,在进行电路设计的条件预设时往往将当地设计当天的天气做为设计指标,在进行电路设计时极其缺少对当地基本气候状况的考虑,从而使得设计好的电路运输网络在多变的气候环境中逐渐出现问题,而其中最为活跃的就是风偏跳闸㊂(三)地形原因在地形相对比较复杂的丘陵和山地地区因为难以出现强风天气所以风偏跳闸的现象手又发生,而在我国的平原地区,尤其实在平坦且没有建筑物的稻田中,因为缺少障碍物以及我国电力运输线路的走势和主要风向总是存在一定的夹角,同时在平原中因为气流在经过小起伏的丘陵阻挡后很容易形成强风天,所以地形能够通过影响气候来使得风偏跳闸现象出现的极其频繁㊂三㊁输电线路风偏跳闸治理对策因为风偏跳闸的主要原因是输电线路难以应对复杂的强风天气而引发的跳闸现象,其中的主要原因就是在风力的作用下使得输电导线和杆塔以及导线间的距离被缩减,同时在恶劣的强风天会因为各种诸如降水的原因造成空气的电阻减少,从而使得输电设备间被电压击穿,引起短路,从而引发保护设备而激发其跳闸㊂总结该原因可以发现在保证输电安全的情况下,可以从输电设备进行革新和相关的施工设计和施工方式入手,增加输电网络的抗风能力,增加输电设备间的抗电压能力,总结来说可以从如下的三个方面进行改进㊂(一)线路加装重锤在输电线路上增加重锤能够有效增加线路的在风中受力表现,对减少线路在风中的运动能够起到抑制效果,但是对于输电线路间距离和电阻并没有有效的改善,所以加装重锤并不能一劳永逸的解决问题㊂(二)安装防风固定线对于气候多变的区域可以利用防风固定线对输电线路进行固定,减少线路在强风天气中的位移现象,能够有效的控制输电设备间的电阻,减少电压击穿的现象㊂在进行防风固定安装时最为重要的就是利用直线杆塔防风拉线在悬垂线和地面的夹角处安装的旋转挂板,以增加线路的重,并能够起到很好的复制效果㊂所以在工程建设过程中或者日常的维护中都需要对该设施进行相关的检查,对于因为在强风中被拉坏的线路进行相关检修和替换,保障输电网络的正常运行㊂(三)加强防风偏绝缘子现阶段我国防风偏跳闸的重要手段就是安装绝缘子,该装置在安装过程中需要冲分开旅杆塔的材料和增加的重锤,能够全面促进输电线路工程的全面进行,该装置的使用能够有效减少线路的风偏角度,增加导线和杆塔间的电气间隙㊂在某些恶劣的气候地区还需要配合家中设备和防风拉线,多方面促进输电安全㊂四㊁结语综上所述,我国各个地区的线路建设环境都不相同,全面促进我国的风偏防治工作能够有效的增加我国输电网络的输电安全和输电效率,本文通过对各地风偏现象的终结性研究,希望能够为我国社会经济的发展贡献力量㊂我国电网输电线路在各个地区的建设不同,主要是由于各个地区气象和地理环境不同,而风偏是导致输电线路跳闸的主要原因㊂因此对输电线路风偏跳闸的机理进行研究,同时对其治理对策不断完善,促进供电正常,保证社会经济和人们生活用电㊂参考文献:[1]许勇,姚孟平,秦保国.电网输电线路风偏跳闸机理与治理对策[J ].通信电源技术,2017,3404:210-211.[2]陆佳政,周特军,吴传平,李波,谭艳军,朱远.某省级电网220kV 及以上输电线路故障统计与分析[J ].高电压技术,2016,4201:200-207.602水利电力科技风2018年7月. All Rights Reserved.。

电网输电线路风偏跳闸机理与治理对策

电网输电线路风偏跳闸机理与治理对策

电网输电线路风偏跳闸机理与治理对策摘要:对于我国的电力运输行业来说,电网输送线路是必不可少的组成部分。

近些年来,我国的经济发展不断加速,这也给我国的电力运输行业更大的压力,因为经济的发展意味着需要更多的电力输送,这对我国整体的电网系统造成了一定的影响。

目前,生态环境的状态不断恶化,这也使得我国的强对流天气状况频发,使得我国的电网输送线路发生风偏跳闸状况的频率不断增加,这对电力系统的整体安全性能造成了极大的影响。

基于此,本文对风偏现象发生的原理进行了研究,以此来实现对电路安全风险的有效防范和治理,促使电网输送系统可以正常运转。

关键词:电网输电线路;风偏跳闸;机理;治理策略引言:其实,我国大部分的电网输电线路所处的地理环境比较复杂,因此对其产生影响的因素很多,同时影响的作用处于不断增强的状态下。

目前对电网输电线路造成威胁的主要原因是当强风来袭时,输电线路会因为强风而出现跳闸的现象,这对整个电网系统的正常运转都造成了负面影响。

所以,本文对风偏跳闸现象的机理进行了研究与分析,在此基础上,寻找针对性的治理策略,这对输电线路的正常工作起着关键性作用。

1.风偏故障的发生如果电网输电线路所处的地理环境比较恶劣,那么受到强风侵袭的概率就会更大,强风可能导致绝缘装置朝着杆塔的方向倾斜,这是竖线线路与杆塔之间存在的间隙就会变小,这种情况的存在可能使得线路因为不满足气压的下限要求而无法进行输电。

近些年来,我国发生风偏跳闸事件的频率不断增加,部分跳闸事件为当地带来了严重的后果。

当风力比较强时,破坏力是十分巨大的,而且常常伴随着雷电以及暴雨,这时候整体的环境状况便会发生变化,空气湿度之间变大,这使得线路的绝缘性变差。

当受到强风侵袭时,线路与杆塔之间的放电电压会随着空隙的变小而不断降低。

所以,当大风来袭时,输电线路很可能发生风偏的现象,这时输送的电量就会增加,超出了原来的设计值,这可能造成严重的后果,所造成的损失也是不可挽回的。

探讨输电线路风偏故障原因与对策

探讨输电线路风偏故障原因与对策

探讨输电线路风偏故障原因与对策输电线路由于处于相对复杂的地理环境空间,很容易遭受来自外界气候因素、地理因素等的影响,其中风力因素就是一大因素。

输电线路在强风影响下出现风偏跳闸问题,会破坏整个输电线路的安全运转,而且一旦出现风偏跳闸,就很难通过重合闸的方式恢复供电,严重时可能导致整个输电线路的停运。

因此必须重视输电线路风偏故障的原因分析,并对应提供科学的解决对策。

1 输电线路概况与故障四周环境1.1 输电线路的风力影响风力、风速的大小将直接影响导线的风偏,而且风偏会随着风速的加大而严重,风速达到5~25米/秒时,输电线路会出现跳跃,阵风会使导线随风摇摆,甚至对周围物体、杆塔等进行放电,遇到微气象、微地区时,如果垂直的导线和风向之间成角在45度以上,则可能形成摆动,造成风偏故障。

根据该220kV输电线路的实际情况,因为其处于山地地形、地势较高,一边山岭遍布,气象容易发生变化,输电线路走向同风向之间夹角近90度,此区域的风速会越发变大。

同时,根据相关部门的监测,以及后期的风速值计算,能够得出故障点的风速势必超出30米/秒,线轴同风向之间的夹角也大于45度。

在强风力作用下,输电线路承受过大的载荷,导致塔头空气间隙逐渐变小,形成对塔身的放电闪络问题,导致故障的出现。

1.2 风速、风向与风偏跳闸的关系输电线路实际工作时,风速与风向会在很大程度上影响风偏放电,特别是当风向和线路方向相垂直时,会加剧导线风偏放电问题。

其中线路风压可以通过以下公式来计算:Wx=1/2αρV2μzμscdLpsin2θ式中:V代表风速,通过观察公式能够得出:导线风压同风速平方之间呈现正相关,这就意味着随着风速的上升与增大,线路更易于出现风偏故障,从而造成巨大的故障问题。

一般来说,线路的风偏故障的发生是由于风向与导线方向垂直时的瞬时风力所导致的,风速急剧上升,对应的风向会不断变化,也不易引发风偏故障。

一旦风向与导线方向垂直,风速已经远远超越杆塔自身的承受力,则会造成杆塔倒塌,引发风偏跳闸。

500千伏输电线路风偏故障分析及对策

500千伏输电线路风偏故障分析及对策

500千伏输电线路风偏故障分析及对策摘要:在新时代发展当中,社会经济的快速发展,人们生活工作当中对于电力资源的需求量也非常的大,其中500千伏的输电线路的建设也在不断的增加,为日常的生活等提供电力保障。

但是在实际工作的过程中输电线路风偏故障问题逐渐的频繁,对输电线路的正常工作开展造成了很严重的影响,本篇文章主要是对风偏故障原因以及以防风偏的策略和方法分析等进行了探讨。

关键词:500千伏;输电线路;风偏故障分析;对策引言:为了更好的满足当下人们的生活工作需求,500千伏的输电线路安装已经非常的广泛,其高效的工作开展对人们的生活工作有很大的帮助,并且取得了非常显著的成就。

但是风偏故障问题在当前非常的重要,所以需要工作人员能够在实际工作开展的过程中进行深入的分析探究,科学的制定故障处理方案,最大程度上解决风偏故障问题对输电线路正常供电带来的影响,使得该项工作效率能够更好的得到提升,进而有效的促进新时代中500千伏输电线路的进步发展。

1、风偏故障原因分析风偏故障简单来说就是线路短路问题,主要是由环境因素所导致的。

当架设高压电线的地方环境恶劣,风速很快就会导致高压电线摇摆不定,线与线之间的距离就会缩短,感应电流就会被放大导致输送电线出现频发的短路,这就是风偏问题的主要原因。

风偏原因也不单单就是风大的原因,有时候也有建筑工程上的问题,比如高压输送塔在架设位置上的选择不合理,遇戈壁滩或者平原地带可能没有多少选择,但在山地或者有沟壑的地形中就可以利用地形优势进行选址,如果遇山地形态的地形可以将高压输送塔架设在背风的地方,减少风力吹动电线所带来的风偏问题。

如果遇平原沟壑地形可以先监测一年风向,选出一年中风力最大时间最长的方向作为线路架设方向的基础,这样减少风对高压输送线路的阻力,从而也降低了风偏问题的发生。

环境因素越复杂高压输送塔和高压输送电线的安全检修就越困难,近些年来我国的风力在不断的加大,植被的破坏和环境的污染导致全球气候异常,不断地出现巨大台风和恶劣天气使得风偏现象也频频发生,因为维护困难所投入的人力物力也在逐年递增,所以加快建设高压输送线路的优化就变得迫在眉睫。

电网输电线路风偏跳闸机理分析及治理措施研究

电网输电线路风偏跳闸机理分析及治理措施研究

的关 系式 , 由此 可绘 制 出各 直 线塔 型的摇 摆 角 临界 曲线 , 按跳 闸时稀有 风速 3 2 m/ s 、 风 压不 均匀 系数 a
取 0 . 7 5校 核 。 在允 许最 大 摇摆 角 的条 件下 , 对 照每
基 直线 塔绝 缘 配置 和 实 际水平 档 距 , 计 算 出最 大 弧 垂 时 的临界 垂直 档 距 。 如 实 际垂 直 档距 大 于 临界垂 直值( 或 位 于 临界 曲线 上 方 ) , 则满足安全要求 ; 反
5 0 0 k V 线 路 跳 闸均 为直 线悬 垂 串 , 跳 闸塔 型 为 两种塔 型 : 一 种为 Z V2 —1 1 、 Z V2 —1 2 、 Z VD H2等
“ V” 型 拉线 塔 ; 另一 种 为 Z B 1 V、 Z B 2 V、 Z B 4 V、 Z B KV
等直 线猫 头塔 。设 计 时均 按 3 0 0 5 气象区, 基本 风 速 3 0 m/ s ( 对地 2 0 r n基 准高度 ) , 覆 冰厚 度 5 mm, 风 压 不 均匀 系数 a为 0 . 6 1 ; 根 据 直线 塔摇 摆 角 临界 曲线
文献标识码 : A
文章 编 号 : 1 6 7 3 —2 0 0 6 ( 2 0 1 3 ) 0 8 -O O 9 7 —0 3
1 迎 峰 度 夏 期 间 安 徽 电 网 输 电 线 路 风 偏 跳
闸情 况
2 0 1 1年 , 跳 闸 主 要 集 中 在 7月 2 3 日以后 , 毫 州、 淮南 、 滁州、 合肥 、 芜 湖等 地连续 出现罕见 的 雷雨 大 风 强对 流 天 气 , 微气象、 微地 形 天 气 特殊 , 当地 无
5 0 0 k V 线路 跳 闸 6条 次 , 均为单 回直线 塔 悬垂

500kV输电线路风偏故障分析及对策

500kV输电线路风偏故障分析及对策

500kV输电线路风偏故障分析及对策摘要:500kV输电线路所处的地理环境比较复杂,而且经常会受到各种自然环境的影响,这其中风力对500kV输电线路产生的影响很大,会使得500kV输电线路出现风偏故障,会影响当地的电力供应和输送。

因此,本文主要针对造成500kV输电线路发生风偏故障较多的几种因素进行了分析,以及针对影响因素提出了具体的解决对策,以保证500kV输电线路能够安全稳定运行。

关键词:500kV输电线路;风偏故障;分析与对策由于内陆地区经常会出现各种天气状况,例如强风,强暴雨等,这些天气状况都会对500kv输电线路正常供电造成很大的影响。

如何应对各种自然灾害带来的影响,保证500kv输电线路的安全,就必须对500kV输电线路产生的风偏故障现象进行详细的分析,并且提出具体的解决措施,以保证输电线路的平稳运行。

一、500KV输电线路出现风偏故障现象的分析进入二十一世纪以来,国家为了改变东西部能源与经济不平衡的状况,加快能源结构调整和东部地区经济发展,国家制定了“西电东送”的战略。

500kV输电线路具有输送距离远,损耗小的优点,为了完成国家“西电东送”的战略目标,近10多年来,我国新建了大量的500KV输电线路,500KV输电线路输送距离也在不断的延长,通道环境也越来越复杂,在某些地区就很容易出现因强风而引起输电线路发生风偏故障的现象。

最常见的风偏故障现象是出现强风时,绝缘子串发生倾斜,从而使得直线杆塔的导线或耐张杆塔的引流线与杆塔之间、线侧的山体、树竹之间的距离减小。

当导线与杆塔之间、线侧的山体、树竹之间的距离无法满足放电需求时,就会引起500KV输电线路发生接地故障,从而引起线路跳闸停运,极端情况下甚至有可能引发大面积停电事件的发生,严重威胁电网的安全稳定运行。

所以为了防止风偏故障的发生,就需要对500KV输电线路风偏故障现象进行分析,进而找到解决问题的具体对策,降低风偏故障现象的发生几率,保证500KV输电线路安全稳定运行。

输电线路跳闸的原因分析及其防控措施

输电线路跳闸的原因分析及其防控措施

输电线路跳闸的原因分析及其防控措施电力在地区之间的传输和运送都要依靠输电线路来进行,输电线路对电力企业的重要性不言而喻。

鉴于此,作者将在下文中对输电线路跳闸状况出现的原因进行分析,并根据这些原因提出防范输电出现跳闸状况的具体措施,希望对输电线路日后的完善和发展有所帮助。

标签:输电线路;跳闸;措施1 现阶段预防输电线路跳闸存在的主要问题1.1 外力破坏(1)电力系统内部的输电线路防外力破坏组织系统不健全,基本上处于无主管领导、无组织系统、无规章、无分工的“四无”状态。

(2)输电线路的外力隐患主要是输电线路走廊及防护区周围的树木、房屋、各类施工以及人为的蓄意破坏。

(3)输电线路巡视通道被侵占,违章建房、建院、堆物、取土等现场屡禁不止。

(4)新建和在建的输电线路大量跨房、跨树木,给运行巡视和检修工作带来了极大的困难。

由于基建前期协调工作不到位,与当地老百姓的矛盾未得到解决,一些违章建筑和线下树木在线路投入运行前得不到拆除和处理。

1.2 雷击在对记录在案的输电线路雷击跳闸事件进行总结和分析后,可知导致输电线路发生雷击跳闸问题的原因有以下几点:首先,现在使用的输电线路一般是早期投资建设的,那时的输电线路建设因为经费因素往往对雷击问题考虑不周,导致线路在避雷问题上出现问题。

其次,输电线路的安装环境越来越糟糕,许多输电线路塔因为社会环境因素而被迫建在山坡地区,极大的增加了雷击事件的发生率。

其次,因为社会环境的改变,当前输电线路的平均高度高于过去的输电线路,增加了雷击事件的发生概率。

最后,复合绝缘子在输电线路上使用越来越普遍,由于其雷电冲击耐受电压通常比同电压等级的普通盘形绝缘子串要低一些,致使复合绝缘子的输电线路绝缘水平较低,雷击跳闸率较高。

2 输电线路跳闸防范措施2.1 防范线路跳闸的管理措施第一,要重视对输电线路跳闸状况的分析,积极寻找状况出现的原因并进行记录和总结,为下次输电线路维护工作的完成打下坚实的基础。

输电线路风偏跳闸分析及防范措施

输电线路风偏跳闸分析及防范措施

输电线路风偏跳闸分析及防范措施摘要:近年来,由于气候变暖的影响,导致强对流天气频发,引起电网输电线路发生风偏跳闸,对电网安全供电造成一定的影响。

本文针对这一问题进行了探讨,分析了故障原因和放电机理,并介绍了风偏校核方法,提出了针对性的对策和措施,以降低线路风偏闪络故障。

关键词:风偏;跳闸;原因;防范措施近年来,110~500 kV输电线路风偏闪络事故频繁发生。

据统计,2010年国家电网公司所辖线路共发生风偏跳闸151次,其中220kV电压等级以上(含330kV)线路39次,220 kV线路112次,范围涉及江苏、浙江、安徽、湖北、河南、山东、山西、广东、北京、河北、内蒙古、黑龙江、辽宁等地。

广东电网线路跳闸率在全国一直较高,主要原因有广东面临南部沿海,海洋气候特征明显,每年强对流天气频繁发生,经常发生台风、暴风,220kV架空输电线路上的引流跳线在大风影响下极易发生风偏闪络,造成线路跳闸,给电力系统安全运行带来极大危害。

因此,亟需提出能有效解决跳线风偏闪络问题的技术方案。

本文对电网输电线路风偏跳闸进行分析,并提出相应的防治措施。

风偏跳闸原理1.1风速、风向与风偏跳闸的关系在输电线路运行过程中,对风偏放电起决定作用的是风速和风向,与线路走向垂直或垂直分量大的风易引起导线风偏放电。

导、地线风压计算公式为:W=;其中V为风速,从式中可以看出,风压与风速平方成正比,这也就是风速越大,输电线路越容易发生风偏故障的主要原因。

根据《110~750kV架空输电线路设计规范》(GB50545—2010)规定,110~330kV输电线路的设计风速为23.5m/s。

2011年7~8月份风偏放电故障中,局部风力均达到9级(24.4m/s)以上,高于23.5m/s。

由于输电线路风偏放电是由短时稳定垂直于导线方向的大风引起的。

风速太大,风向往往是紊乱的,不会发生风偏放电。

风速垂直于导线方向分量虽未超过导线设计风速,但风速值超过杆塔承受风荷载的极限,将直接导致倒塔故障。

一起典型的线路风偏跳闸故障分析及防治措施

一起典型的线路风偏跳闸故障分析及防治措施

一起典型的线路风偏跳闸故障分析及防治措施摘要:风偏跳闸是输电线路最常见的风害类型,只要是指导线在风的作用下发生偏摆后由于电气间隙距离不足导致放电跳闸。

风偏跳闸一般是在工作电压下发生的,重合成功率较低,严重影响供电可靠性。

若同一输电通道内多条线路同时发生风偏跳闸,则会破坏系统稳定性,严重时造成电网大面积停电事故。

除跳闸和停运外,导线风偏还会对金具和导线产生损伤,影响线路的安全运行。

文章对一起典型的110千伏线路风偏故障进行分析,通过计算说明故障发生原理,同时提出科学的应对措施,对于降低风偏跳闸率有积极意义。

关键词:风偏、跳闸、电气间隙、供电可靠性0引言从放电路径来看,风偏跳闸的主要类型有:导线对杆塔构件放电、导地线间放电和导线对周围物体放电三中类型。

其共同特点是导线或导线金具烧伤痕迹明显,绝缘子不被烧伤或仅导线侧1-2片绝缘子轻微烧伤;杆塔放电点多有明显电弧烧痕,放电路径清晰。

本文将就第一种类型的风偏跳闸故障进行典型的故障实例分析。

1故障简况2017年03月18日23时19分,国网哈密供电公司110千伏银泽线故障跳闸,选相B相,重合成功。

220千伏银河路变侧:110千伏银泽线1323断路器距离I段、零序I段保护动作跳闸,选相B相,银河路变侧测距10.3千米。

110千伏银泽线线路全长51.308公里,杆塔248基,投运日期为2011年05月24日,导线型号:LGJ-185/30;绝缘子型号:FXBW-110/100。

设计风速30m/s,故障时段天气:大风沙尘暴,风速30.8m/s(通过气象局监测站测算到导线挂点22.8米),能见度不足10米,故障区段位于哈密市伊州区南湖乡。

故障杆塔号54#,塔型7722-21,53#-54#号档距为335米,54#-55#档距为243米。

2原因分析(1)巡视情况及初步分析3月18日23时19分,接到调度通知110千伏银泽线跳闸信息后,国网哈密供电公司立即组织输电运维人员部署故障巡视工作,结合线路跳闸保护信息分析,初步判断故障区段为51-55#。

新疆电网输电线路风偏故障分析报告典藏版

新疆电网输电线路风偏故障分析报告典藏版

新疆电网输电线路风偏故障分析报告典藏版前言输电线路是电力系统中不可或缺的组成部分。

然而,由于自然灾害、人为破坏等原因,输电线路的故障难以避免。

本文将围绕着新疆电网输电线路风偏故障分析报告典藏版展开讨论,分析故障的原因、危害以及解决方案。

故障概述2018年12月7日,新疆电网某电站和城网区间输电线路发生了严重的风偏事故,导致线路倒塌。

经过现场勘查和分析,事故的直接原因是输电线路受到了极大的侧风作用,其中最大侧风速度达到28m/s。

受风偏影响,线路杆塔出现了倾斜和变形,进一步加剧了线路的损毁。

诱因分析输电线路在设计和建设过程中,通常会考虑到各种环境因素的影响,如风、雨、雪、地震等,以保证其安全稳定运行。

然而,在此次风偏故障中,我们发现存在一些诱因,使得输电线路遭遇了毁灭性的打击。

一、设计不合理据了解,该故障线路的设计采用了单边桥架方式,即将两根导线分别悬挂在同一侧的杆塔上。

这种设计方式在减小建设成本的同时,也增加了输电线路受风偏影响的风险。

二、地形复杂事故发生地区地形较为复杂,存在高低差、沟壑等地貌特点,使得风力通过此处时易形成涡旋流,增加了输电线路受侧风影响的难度。

三、人为因素在该故障线路的周围存在多个不同的用电负荷,如电站、工业用电、城市用电等。

有分析认为,周边用电负荷变化可能会导致在输电线路中产生电流不平衡,从而引发振动,增加线路破坏的风险。

危害分析输电线路风偏故障会给电力系统稳定运行带来很大威胁,同时也会给人们的生活和生产造成很大的影响。

1、输电能力下降输电线路倒塌会导致输电线路长度减少,同时会导致系统的供电能力减弱,进而影响到系统的稳定运行。

2、安全隐患输电线路倒塌后,残留的金属材料和电缆易形成感应电流,有可能形成触电和火灾等安全隐患。

3、生产受阻受到输电线路倒塌的影响,当地的用电负荷无法得到满足,会导致生产活动受到阻碍,影响人们的正常生活。

解决方案针对输电线路风偏故障,我们可以从以下几个方面提出应对方案:1、科学设计输电线路应该在设计输电线路时,充分考虑气候和地形条件,以及周围的用电负荷情况,采用双侧桥架型或斜拉型杆塔等结构,以确保输电线路在复杂环境下稳定可靠地运行。

输电线路风偏故障分析与防治

输电线路风偏故障分析与防治

输电线路风偏故障分析与防治输电线路风偏故障分析与防治输电线路的风偏闪络一直是影响线路安全运行的因素之一,与雷击等其他原因引起的跳闸相比,风偏跳闸的重合成功率低,一旦发生风偏跳闸,造成线路停运的几率较大。

1输电线路风偏跳闸情况统计及特点2004年江苏省发生了10次500kV、2次220kV风偏跳闸事故,在此之前,江苏较少发生风偏事故。

同时国网公司也在2004年对风偏事故较为重视,2004年7月23日国网公司系统内发生过输电线路风偏跳闸有关单位,召开了“输电线路风偏跳闸分析会”,分析情况如下:1.11999-2003年输电线路风偏跳闸统计。

据统计,国家电网公司系统(同口径)在过去的5年间共发生110(66)千伏及以上输电线路风偏跳闸244条次。

按区域划分,华北94条次,华东42条次,西北66条次, 华中25条次,东北17条次。

超过10条次以上的省份有:新疆、陕西、青海、江苏、福建、天津、山西、山东、内蒙等9省(区、市),以新疆为最多,达到了30条次。

统计数据显示,过去5年间输电线路风偏跳闸多发于北方和沿海风力大的地区。

按电压等级分类,500千伏输电线路发生33条次,占13.5%;330千伏输电线路发生8条次,占3.3%;220千伏输电线路发生139条次,占57%;110千伏输电线路发生64条次,占26.2%。

说明过去5年间风偏跳闸主要发生在110-220千伏线路,约占全部风偏跳闸的83.2%。

从风偏放电的类型来看,转角(耐张)塔跳线共发生风偏放电164条次,直线塔导线对杆塔放电80条次,其余是档距中导线对周边障碍物放电。

说明过去5年中发生的风偏放电以耐张塔跳线放电居多,占67.2%。

1.2 2004年500千伏输电线路风偏放电情况统计及特点。

(1)按类别划分。

2004年3-7月,在不到半年的时间内,公司系统500千伏交直流输电线路已发生风偏跳闸21条次,且大多重合不成功。

在21条次风偏放电中,按发生地域划分,分别为河南8条次、山东3条次、江苏3条次、湖北3条次、山西2条次、湖南1条次、北京1条次;按发生时段划分, 7月份7条次、6月份10条次、5月份2条次、4月份1条次、3月份1条次;按交直流线路划分,交流18条次、直流3条次。

电网输电线路风偏跳闸机理和治理措施

电网输电线路风偏跳闸机理和治理措施

电网输电线路风偏跳闸机理和治理措施摘要:电网输电线路是保障我国电力流通的必要条件。

随着时代的进步,科学技术和经济实力的不断发展,逐渐加大了电力运输中的压力,加大了我国输电线路中的工作量。

现阶段下,由于生态环境不断被破坏,加大了强对流天气出现概率,进而致使输电线路中跳闸现象频发,为电网供电安全埋下隐患。

本文对电网输电线路风偏跳闸机理和治理措施做了简单分析,希望对当前现状进行改变,进而保障电网的正常运行。

关键词:电网输电电路;风偏跳闸机理;治理措施一般情况下,我国的输电线路都处于较为复杂的周边环境中,导致影响输电线路作用的外界因素不断增多,其中,导线风偏是直接威胁输电线路是否安全的主要因素之一[1]。

在大风、暴雨等天气情况下,输电线路极易发生风偏跳闸的现象,进而阻碍了输电线路的安全运行。

所以,要想保证输电线路安全运行,就必须对输电线路风偏跳闸机理进行探究分析,并针对不同情况实施不同的治理措施。

1.导致风偏跳闸的因素1.1线路建设不过关在线路建设过程中,由于线路建设过程极为繁杂,如果不加以注意,极易导致出现线路建设不合格现象。

一般情况下,我国大部分电路都是依照国家初期建设时的标准来设计的。

但随着时代、经济的迅速发展传统线路已不能满足当前社会的发展需求。

在发展过程中,我国也逐渐对相关电路进行了改造,但由于改造过于局部化,对当前整体输电线路的质量水平起不到任何积极作用。

且在线路基础设施中,依然按照以往的风速及建设条件进行施工,进而导致现阶段下大多数输电线路对诸多因素的防御程度较低[2]。

由于输电线路过于老旧是导致大部分地区线路出现问题的主要原因。

1.2自然环境在线路建设过程中,自然环境是影响整体设计质量的重要因素。

由于不同地域的自然环境及天气情况有所不同,且部分地区天气变化频率较快,导致有关部门提出的气象有极大可能与实际情况不符。

所以,在输电线路的建设过程中,气象数据已不能作为预测该地区天气的主要标准,导致输电线路的安全运行得不到实际保障。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电网输电线路风偏跳闸机理分析及治理策略分析
摘要:输电线路在运行过程中容易受到自然灾害的侵袭,台风就是其中一个重
要的影响因素,这种现象的存在严重的影响了我国电力运输的稳定性,为此本文通
过对我国大部分地区的输电线路风偏跳闸机理进行分析,并提出相应的治理策略。

关键词:输电线路;风偏跳闸;跳闸机理;治理措施
引言
在电力系统中,输电线路能够将发电站、变电站以及负荷点连接在一起,是电力输送过程中的关键环节。

由于输电线路大部分处于野外环境中,经常会受到恶劣气
候条件的影响,包括雷击、覆冰以及台风等,受到这些自然灾害的影响,输电线路容
易出现故障,影响电力系统的正常运行。

因此,我们必须对输电线路灾害机理进行
深入的研究,并根据这些灾害机理采取有效的防治措施,降低自然灾害对输电线路
的影响,提高电力系统的安全性与可靠性。

1风偏案例分析
某地区110kV线路在一次强风暴雨天气中出现事故,其光纤纵联保护动作跳闸,重合闸的动作失败,而且与其并列的线路收到了双高频保护动作,重合闸动作失败。

光纤和高频零序保护动作先后出现了三相跳闸的问题,重合闸没有任何反应。

运行
人员对两条线路进行了检查,发现塔身出现了放电,引起跳闸的原因为杆塔的导线
受到了强风破坏,导致塔身拉线出现发电。

故障发生地点距离档距500m,杆塔导线
的挂点高为50m。

对输电线路所在区域的气温、湿度、风速等问题进行分析。


照当时的气象数据分析,属于最大风时,大风方向与导线垂直。

此时,导线的位移是19.34m。

在对风偏情况进行分析时,导线与周围物体的距离应该在5m以上,但是,
其安全距离达不到要求。

所以输电线路事故原因是导线与杆塔的距离过近,导致强
风天气时导线和杆塔接触。

2输电线路风偏跳闸的特点
从风偏跳闸的名字就可以看出其主要的影响因素就是强风,我国现阶段的电力
运输技术已经能够抵抗一定的风力作用,所以出现风偏跳闸的地区大部分都是气候
复杂多变且存在强风天气的地区。

风偏跳闸发生的原理就是因为风力过于强劲使
得输电线路杆发生错位从而导致输电设施的间距变小。

另外在强风天气中往往伴
随着降水,此时的空气电阻将会偏低,极大的容易造成电路间发生短路现象,从而出
现风偏跳闸现象。

从中可以看出风偏跳闸的影响因素中有着地形的影响,如果地形
平坦,那么输电线间的距离就可以设置成相对安全的距离,使得在强风天也难以发
生跳闸现象。

3风偏跳闸机理分析
在台风放生时,输电线路受到强风的影响主要体现在以下几个方面:首先,受到
台风的影响,导线与地线会出现舞动现象,严重时会造成断线或倒塌故障。

其次,在
强风的作用下,输电线路中的导线与铁塔之间,导线与导线之间的空气间隙距离会
减小,如果间隙距离的电气强度无法承受系统最高运行电压,就可能会出现击穿放电,就是风偏闪络故障。

输电线路在发生风偏后,会造成闪络、跳闸、停运等故障,
尤其是500kV及以上电压等级的输电线路,如果线路中出现风偏闪络故障,就会影
响电力系统的正常运行,无法保证电力的正常供应。

输电线路的风偏现象不仅会造
成电气破坏,而且会导致铁塔、绝缘子串、金具、以及横担等设施受到机械破坏,
严重时会引发输电线路中的铁塔倒塌等事故。

与输电线路受到其他自然灾害的影
响而发生跳闸故障相比,风偏现象引起的跳闸复合成功率不高,如果出现风偏跳闸
故障,就会有很大概率造成输电线路无法正常运行,严重影响输电线路的正常运行,需要采取安装阻尼线、防振锤、护线条以及分裂根数等方式来提升输电线路的抗风偏性能。

4输电线路风偏跳闸治理策略
4.1弧垂和风偏角计算
输电线路绝缘配合设计,实际上就是确定输电线路导线(带电体)在工频电压、雷电过电压和操作过电压情况下与邻近接地体间的各种空气间隙。

(1)确定合理的杆塔头部间隙和拉线配置,使导线在各种运行工况下与杆塔构件和拉线保持足够的绝缘裕度。

(2)合理选择线路路径、排定杆塔位置,使导线在各种运行工况下与山体边坡、交叉跨越物、邻近建筑物等保持足够的安全净距。

(3)合理配置杆塔型式、导(地)线型式和运行张力,在各种运行工况下,使相导线、导线与地线之间保持足够的安全净距。

同时,还要计算导线弧垂f和风偏角θ。

当线路气象条件不变时,影响风偏角的主要因素是水平档距和垂直档距。

如果在线路设计中,杆塔垂直档距过小,则风偏角将有可能超出临界值。

4.2对风偏特性进行研究
首先,风偏静态特性研究。

风偏静态特性通常不考虑动态载荷对风偏的瞬时影响,研究时只考虑在静态平衡状态下的风偏状态。

其次,风偏动态特性研究。

风偏
动态特性则需要考虑到载荷对风偏的瞬时影响,这种研究更加贴近输电线路的实际运行状态,但获取相关气象动态数据的难度较大。

4.3安装防风固定线
对于气候多变的区域可以利用防风固定线对输电线路进行固定,减少线路在强风天气中的位移现象,能够有效的控制输电设备间的电阻,减少电压击穿的现象。

在进行防风固定安装时最为重要的就是利用直线杆塔防风拉线在悬垂线和地面的夹角处安装的旋转挂板,以增加线路的重,并能够起到很好的复制效果。

所以在工
程建设过程中或者日常的维护中都需要对该设施进行相关的检查,对于因为在强风中被拉坏的线路进行相关检修和替换,保障输电网络的正常运行。

4.4采用V形串绝缘子组合
架空输电线路发生风偏故障的杆塔塔型以直线塔为主,将直线杆塔悬垂绝缘子串改造成V形串绝缘子串,可增加导线和绝缘子的横向约束,防止导线和绝缘子在强风作用下向杆塔倾斜,降低风偏故障发生的几率。

V形串合成绝缘子在500kV紧凑型输电线路中已得到广泛应用,防风偏效果良好。

但采用V形串绝缘子也有其不足,由于局部地区大风、强对流极端天气频发,风力过大和风向的变换使V形串合成绝缘子受力不合理而损坏,导致V形串绝缘子发生掉串事故。

因此,对V形串绝缘子要加强巡视检查。

4.5落实直线杆塔防风偏要求
(1)正确选用杆塔型式和子导线排列形式。

在风力较大或易出现恶劣气象的地区,应选择空气间隙和摇摆角较大的塔型,优先选用V型串结构杆塔。

边相导线使用V型串不佳时,应采取加长横担和下移挂点等增大风偏间隙的措施。

(2)加强断
面测量工作,合理布置杆塔位置。

一般情况下应控制杆塔垂直档距与水平档距的比值不低于0.8。

(3)设计阶段要重点对不同导线排列方式、不同宽度横担的杆塔绝缘子串风偏角进行验算。

(4)对处于强沙尘暴区域的输电线路,应综合考虑风力和沙尘暴的共同作用,校验杆塔摇摆角。

(5)施工阶段,要严格按照设计图纸、GPS坐标
和现场桩位进行线路复测、基础分坑和施工基面测量工作。

避免施工测量不当引起杆塔位置和施工基面高度变化,导致杆塔水平档距和垂直档距(风偏角)与设计不
符。

4.6线路加装重锤
在输电线路上增加重锤能够有效增加线路的在风中受力表现,对减少线路在风
中的运动能够起到抑制效果,但是对于输电线路间距离和电阻并没有有效的改善,
所以加装重锤并不能一劳永逸的解决问题。

结语
为了解决输电线路风偏问题必须从加强线路设计、施工、监理和运行维护等
基础性工作开始,做好输变电工程项目可研、初设阶段,应将线路防风偏措施做为
技术评审的重点,明确有关防风偏的技术要求和防治措施。

组织研究适合大风、沙
尘暴区域运行的新型杆塔设计工作,为电网规划、设计、建设和运行提供技术支持。

参考文献:
[1]许勇,姚孟平,秦保国.电网输电线路风偏跳闸机理与治理对策[J].通信电源技术,2017,3404:210-211.
[3]胡毅,刘凯,吴田,等.输电线路运行安全影响因素分析及防治措施[J].高电压技术,2014,40(11):3491-3499.
[2]黄新波,刘磊,宋栓军,等.输电线路塔线体系动力学研究[J].机械强
度,2015,179(3):567-571.。

相关文档
最新文档