货车驱动桥的设计

合集下载

货车驱动桥设计毕业设计

货车驱动桥设计毕业设计

第1章绪论1.1概述驱动桥是汽车总成中的重要承载件之一,其性能直接影响整车的性能和有效使用寿命。

本文是对昌河货车驱动桥总成的结构设计。

汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。

所以本文对驱动桥及其主要零部件的结构型式与设计计算作一一介绍。

驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求,详细地分析了驱动桥总成的结构型式及布置方法;全面介绍了驱动桥车轮的传动装置和桥壳的各种结构型式与设计计算方法。

汽车驱动桥由桥壳、主减速器、差速器、半轴和壳体等元件组成,转向驱动桥还包括各种等速联轴节,结构更复杂,它承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。

汽车驱动桥在汽车的各种总成中也是涵盖机械零件、部件、总成等品种最多的大总成。

例如,驱动桥包含主减速器、差速器、驱动车轮的传动装置(半轴及轮边减速器)、桥壳和各种齿轮。

可见,汽车驱动桥设计涉及的机械零部件及元件的品种极为广泛,对这些零部件、元件及总成的制造也几乎要涉及到所有的现代机械制造工艺。

因此,通过对汽车驱动桥的学习和设计实践,可以更好的学习并掌握现代汽车设计与机械设计的全面知识和技能。

传统设计是以生产经验为基础,以运用力学、数学和回归方法形成的公式、图表、手册等为依据进行的。

现代设计是传统设计的深入、丰富和发展,而非独立于传统设计的全新设计。

以计算机技术为核心,以设计理论为指导,是现代设计的主要特征。

利用这种方法指导设计可以减小经验设计的盲目性和随意性,提高设计的主动性、科学性和准确性。

电子计算机的出现和在工程设计中的推广应用,使汽车设计技术飞跃发展,设计过程完全改观。

它有以下两大难题,一是将发动机输出扭矩通过万向传动轴将动力传递到驱动轮上,达到更好的车轮牵引力与转向力的有效发挥,从而提高汽车的行驶能力。

某型重卡驱动桥设计

某型重卡驱动桥设计

某型重卡驱动桥设计摘要驱动桥是构成汽车的四大总成之一,一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成,它位于传动系末端,其基本作用是增矩、降速,承受作用于路面和车架或车身之间的力。

它的性能好坏直接影响整车性能,而对于载重汽车显得尤为重要,采用传动效率高的单级减速驱动桥已经成为未来载重汽车的发展方向。

本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计本次设计首先对驱动桥的特点进行了说明,根据给定的数据确定汽车总体参数,再确定主减速器、差速器、半轴和桥壳的结构类型及参数,并对其强度进行校核。

数据确定后,利用AUTOCAD建立二维图,再用CATIA软件建立三维模型,最后用CAITA中的分析模块对驱动桥壳进行有限元分析。

关键词:驱动桥;CAD;CATIA;有限元分析AbstractDrivie axle is one of the four parts of a car, it is generally constituted by the main gear box, the differential device, the wheel transmission device and the driving axle shell and so on it is at the end of the powertrain.Its basic function is increasing the torque and reducing speed and bearing the force between the road and the frame or body.Its performance will have a direct impact on automobile performance,and it is particularly important for the truck. Using single stage and high transmission efficiency of the drive axle has become the development direction of the future trucks.This article referred to the traditional driving axle's design method to carry on the truck driving axle's design.In this design,first part is the introduction of the characteristics of the drive axle,according to the given date to calculate the parameters of the automobile,then confirm the structure types and parameters of the Main reducer, differential mechanism,half shaft and axle housing,then check the strength and life of them.After confirming the parameters, using AUTOCAD to establish 2 dimensional model,then using CATIA establish 3 dimensional model. Finally using the analysis module in CATIA to finite element analysis for the axle housing.Key words: drive axle;CAD;CATIA;finite element analysis目录1 绪论 (1)1.1 驱动桥简介 (1)1.2 国内外研究现状 (1)1.3 驱动桥设计要求 (1)2 驱动桥设计 (3)2.1 主减速器设计 (3)2.1.1 主减速器的结构形式 (3)2.1.2 主减速器的减速形式 (4)2.1.3 主减速器主,从动锥齿轮的支撑方案 (4)2.1.4 主减速器基本参数选择与计算载荷的确定 (6)2.2 差速器设计 (17)2.2.1 对称锥齿轮式差速器工作原理 (17)2.2.2 对称式圆锥行星齿轮差速器的结构 (17)2.2.3 对称式圆锥行星齿轮差速器的设计 (18)2.3 驱动半轴的设计 (23)2.3.1 结构形式分析 (23)2.3.2 全浮式半轴的结构设计 (24)2.3.3 全浮式半轴的强度计算 (24)2.3.4 半轴的结构设计及材料与热处理 (25)2.3.5 半轴花键的强度计算 (25)2.4 驱动桥壳的设计 (26)2.4.1 整体式桥壳的结构 (27)2.4.2 桥壳的受力分析与强度计算 (27)3 CATIA三维建模........................................ 错误!未定义书签。

轻型卡车驱动桥设计解读

轻型卡车驱动桥设计解读

目录1.绪论 02.总体方案 (1)3.主减速器设计 (2)3.1 主减速器结构形式的布置 (2)3.1.1主减速器的齿轮类型 (2)3.1.2主减速器的减速形式 (2)3.1.3主减速器主、从动锥齿轮的支承方案 (3)3.2 主减速器基本参数选择与计算载荷的确定 (4)3.2.1锥齿轮主要参数的选择 (4)3.2.2主减速器齿轮计算载荷的确定 (5)3.3 主减速器锥齿轮强度计算及校核 (8)3.4 主减速器锥齿轮轴承的载荷计算 (10)3.5 主减速器锥齿轮的材料 (14)4.差速器设计 (14)4.1 差速器结构形式选择 (14)4.2 普通锥齿轮式差速器齿轮设计 (15)4.2.1差速器齿轮主要参数选择 (15)4.2.2差速器齿轮强度计算及校核 (16)4.3 差速器齿轮的材料 (16)5.车轮传动装置设计 (16)5.1 结构形式分析 (16)5.2 半轴计算 (17)5.3 半轴可靠性设计 (18)5.4 半轴的结构设计 (19)6.驱动桥壳设计 (19)6.1 驱动桥壳结构方案分析 (20)6.2 驱动桥壳强度计算及校核 (20)7.花键设计与计算 (22)7.1 花键结构的形式及参数选择 (22)7.2 花键校核 (22)8.驱动桥的结构元件 (23)8.1支撑轴承的预紧 (23)8.2锥齿轮啮合调整 (23)8.3润滑 (24)结论 (25)参考文献 (25)摘要翻译..................................................... 错误!未定义书签。

轻型卡车驱动桥设计摘要:驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。

当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率、高效益的需要时,必须要搭配一个高效、可靠的驱动桥。

所以采用传动效率高的单级减速驱动桥已成为未来重载汽车的发展方向。

毕业设计(论文)-某重型卡车驱动桥的设计模板

毕业设计(论文)-某重型卡车驱动桥的设计模板

目录中文摘要 1 英文摘要 21 绪论 32 汽车驱动桥结构方案分析 43 主减速器总成设计 53.1 主减速器的结构形式选择 63.2 主减速器基本参数的计算与载荷的确定 123.3 主减速器锥齿轮强度计算 143.4 主减速器轴承的计算 173.5 主减速器齿轮材料热处理 214 差速器总成设计 234.1 差速器结构形式选择 234.2 差速器齿轮主要参数选择 244.3 差速器齿轮的强度计算 275 半轴的设计 295.1 半轴的形式选择 295.2 半轴的结构设计和校核、材料选择 30 6驱动桥壳设计 326.1桥壳的结构型式选择 326.2桥壳的受力分析及强度计算 337 制动器的校核计算 367.1 制动器的基本参数 377.2 制动器效能因素计算 387.3 衬片磨损特性计算 397.4 检查蹄有无自锁的可能性 40 结论 42 谢辞 43 参考文献 44某重型卡车驱动桥的设计摘要:汽车后桥是汽车的主要部件之一,其基本的功用是增大由传动轴或直接由变速器传来的转矩,再将转矩分配给左右驱动车轮,并使左右驱动车轮具有汽车行驶运动所要求的差速功能:同时,驱动桥还要承受作用于路面和车架或承载车身之间的铅垂力、纵向力,横向力及其力矩。

其质量,性能的好坏直接影响整车的安全性,经济性、舒适性、可靠性。

本文认真地分析参考了江淮HF15015卡车驱动桥以及韩国现代468号驱动桥,在论述汽车驱动桥运行机理的基础上,提练出了在驱动桥设计中应掌握的满足汽车行驶的平顺性和通过性、降噪技术的应用及零件的标准化、部件的通用化、产品的系列化等三大关键技术;阐述了汽车驱动桥的基本原理并进行了系统分析;根据经济、适用、舒适、安全可靠的设计原则和分析比较,确定了重型卡车驱动桥结构形式、布置方法、主减速器总成、差速器总成、桥壳及半轴的结构型式;并对制动器以及主要零部件进行了强度校核,完善了驱动桥的整体设计。

通过本课题的研究,开发设计出适用于装置大马力发动机重型货车的单级驱动桥产品,确保设计的重型卡车驱动桥经济、实用、安全、可靠。

4吨轻型载货汽车驱动桥的设计

4吨轻型载货汽车驱动桥的设计

任务书学生姓名系部专业、班级指导教师姓名职称从事专业是否外聘□是√否题目名称4吨轻型载货汽车驱动桥设计一、设计(论文)目的、意义汽车驱动桥是汽车的主要部件之一,其基本功用是增大由传动轴或变速器传来的转矩,再将转矩分配给左右驱动车轮,并使左右驱动车轮具有汽车行驶运动所要求的差速功能;同时驱动桥还要承受作用于路面和车架或承载车身之间的铅垂力、纵向力、横向力及其力矩。

驱动桥质量、性能的好坏直接影响整车的安全性、经济性、舒适性、可靠性。

要求所设计的驱动桥结构合理,绘制的图纸格式规范,图面质量好,撰写的设计说明书内容完整,格式规范。

设计能使学生综合运用所学专业知识,熟练CAD绘图技能。

二、设计(论文)内容、技术要求(研究方法)设计内容:1.选题的背景、目的及意义;2.4吨轻型载货汽车后驱动桥的总体结构设计;3.主减速器总成的设计;4.差速器的设计;5.半轴的设计;6.桥壳的设计。

技术要求:驱动形式:4×2;总质量:4195kg;装载质量:2500kg;发动机最大功率:74kw;发动机最大转矩:184N*m;最高车速:115km//h;变速器传动比:6;最小转弯半径:12.5;要求:单级主减速器;生产纲领:成批生产。

三、设计(论文)完成后应提交的成果CAD绘制驱动桥装配图、零件图折合0号图纸3张以上,设计说明书15000字以上。

四、设计(论文)进度安排(1)知识准备、调研、收集资料、完成开题报告第1~2周(2.28~3.11)(2)整理资料、提出问题、撰写设计说明书草稿、绘制装配草图第3~5周(3.14~4.1)(3)理论联系实际分析问题、解决问题,进行驱动桥的总体结构设计,主减速器总成的设计,差速器的设计,半轴的设计,桥壳的设计,CAD绘制部分图纸等内容,中期检查第6~8周(4.4~4.22)(4)改进完成设计,改进完成设计说明书,指导教师审核,学生修改第9~12周(4.25~5.20) (5)评阅教师评阅、学生修改第13周(5.23~5.27)(6)毕业设计预答辩第14周(5.30~6.3)(7)毕业设计修改第15~16周(6.6~6.17)(8)毕业设计答辩第17周(6.20~6.24)五、主要参考资料1.徐灏主编.《新编机械设计师手册》.机械工业出版社2.陈立德主编.《机械设计基础》.高等教育出版社3.王宝玺主编.《汽车制造工艺学》(3).机械工业出版社,2007.54.陈秀宁,施高义编.《机械设计课程设计》.浙江大学出版社5.刘惟信主编.《汽车设计》.清华大学出版社,6.李硕根,杨兴骏编.《互换性与技术测量》.中国计量出版社7.汽车构造、汽车理论、汽车设计书籍8.轻型载货汽车驱动桥资料9.网络资源,超星数字图书馆10.近几年相关专业CNKI网络期刊等六、备注指导教师签字:年月日教研室主任签字:年月日开题报告学生姓名系部专业、班级指导教师姓名职称从事专业是否外聘□是■否题目名称4吨轻型载货汽车驱动桥设计一﹑课题研究现状、选题目的和意义1、研究现状国外发达国家如美国、德国等,载货汽车中轻型货车占有较大比重,一般在70%~80%,轻型汽车大多为私人用车,用于短途小件物品的运营。

JX1021TS3轻型货车驱动桥设计

JX1021TS3轻型货车驱动桥设计
市场调研显示,2010年一季度国内轻卡累计销售50万辆,同比增长47.6%,环比09年4季度增长17.4%。2009年轻卡旺销主要是养路费取消和汽车下乡政策共同作用的效果,2010年1季度轻卡市场的持续火爆则主要源于经济刺激政策带动下的各行各业的景气程度的全面复苏。
中国载货车市场,曾经以“中卡”为主导,“缺重少轻”,在这种背景下,一度出现东风与一汽两强对弈的竞争格局。伴随着载货车市场需求结构变化和产品结构的调整,载货车市场竞争,由“中卡”演化成重卡、中卡、轻卡、微卡等领域的多元竞争态势。中国载货车市场竞争,也因此由粗放走向细分,各细分市场的竞争格局异彩纷呈。近年来,轻卡的产销量总体保持稳步增长态势,从市场需求空间看,轻卡销售量远大于重卡、中卡和微卡,在卡车市场占有绝对量的优势。因此,“轻卡”市场绝对不可轻视。从一定意义上讲,轻型车的发展对于拉动商用车市场总量的增长具有举足轻重的影响。目前,纳入行业统计的轻卡生产企业达40多家,就竞争实力而言,销售排名前五位的依次是北汽福田、东风公司、安徽江淮、山东凯马、江西江铃。
我国汽车驱动桥的研究设计与世界先进驱动桥设计技术还有一定的差距,我国车桥制造业虽然有一些成果,但都是在引进国外技术、仿制、再加上自己改进的基础上了取得的。个别比较有实力的企业,虽有自己独立的研发机构但都处于发展的初期。在科技迅速发展的推动下,高新技术在汽车领域的应用和推广,各种国外汽车新技术的引进,研究团队自身研发能力的提高,我国的驱动桥设计和制造会逐渐发展起来,并跟上世界先进的汽车零部件设计制造技术水平。
二、设计的基本内容、拟解决的主要问题
1、研究的基本内容
(1)研究驱动桥组成、结构、原理;
(2) 主减速器的结构设计,基本参数选择及设计计算;
(3) 差速器齿轮的基本参数的选择、尺寸及强度计算;

某型轻型货车驱动桥设计

某型轻型货车驱动桥设计
车辆工程专业课程设计
设计课题某型轻型货车驱动桥设计
毕业设计(论文)原创性声明和使用授权说明
原创性声明
本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
变速器传动比: 7.7 4.1 2.34 1.51 0.81
倒档传动比:mm
1
驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理地分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力力和横向力。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。
2.2主减速器主、从动锥齿轮的支承方案
2.2.1
主动锥齿轮的支承形式可分为悬臂式支承和跨置式支承两种。查阅资料、文献,经方案论证,采用跨置式支承结构(如图3-2示)。齿轮前、后两端的轴颈均以轴承支承,故又称两端支承式。跨置式支承使支承刚度大为增加,使齿轮在载荷作用下的变形大为减小,约减小到悬臂式支承的1/30以下.而主动锥齿轮后轴承的径向负荷比悬臂式的要减小至1/5~1/7。齿轮承载能力较悬臂式可提高10%左右。
整备质量 4310kg
额定载质量: 5000kg
空载时前轴分配轴荷45%,满载时前轴分配轴荷26%
前悬/后悬: 1270/1915mm
最高车速: 110km/h
最大爬坡度: 35%
长宽高: 6985 、2330、 2350
发动机型号: YC4E140—20
最大功率: 99.36kw/3000rmp

载货汽车驱动桥设计方案(DOC 52页)

载货汽车驱动桥设计方案(DOC 52页)

载货汽车驱动桥设计方案(DOC 52页)目录摘要本次设计是以东风牌LZ1090D载货汽车主要性能参数为依据来完成其驱动桥的设计。

汽车驱动桥是汽车传动系中的重要组成部分,它主要由主减速器、差速器、半轴和桥壳等组成。

其主要作用是降低转速、增大转矩,以及实现汽车行驶运动学所要求的差速功能,并且还要承受作用于路面与车架或车身之间的垂直力、纵向力和横向力等。

本设计利用给出的数据对驱动桥各零件的参数进行了计算确定,对驱动桥各主要部件进行了结构设计和校核计算。

利用AutoCAD绘制了驱动桥零件及总成的二维图,利用CATIA软件对驱动桥进行了三维建模,并用CATIA软件中的数字化装配模块,对三维模型进行了直路和弯路两种行驶条件下的运动仿真,最后利用ABAQUS 软件对驱动桥壳的受力进行了有限分析。

关键词:驱动桥;CATIA;运动仿真;ABAQUS;有限元分析AbstractThe design is based on Dongfeng truck LZ1090D based on key performance parameters to complete its drive axle design. Vehicle drive axle automotive driveline important part, It mainly consists of main gear, differential, axle and axle housings and other components. Its main role is to reduce the speed, increase the torque, and achieve the required kinematic cars differential function, and also to withstand the vertical force acting on the frame or body surface between the longitudinal and lateral forces and the like.This design uses the data given in the various parts of the drive axle parameters were calculated to determine, on the drive axle of the major components of the structural design and check calculations. Use AutoCAD to draw the drive axle assembly parts and two-dimensional map. The use of CATIA software for 3D modeling bridge drivers, CATIA software with digital assembly module, the drive movement under the bridge were two straight driving conditions and detours simulation. Finally, the driving axle ABAQUS software were limited by the force analysis.Keywords: Automobile drive axle;CATIA; Motion simulation; ABAQUS; Finite element analysis1绪论1.1本课题研究的目的和意义汽车产业是关系到国计民生的重要产业,国家一直积极投入和支持汽车产业的发展,在政策方面,政府一直积极引导,给予支持和鼓励,促使我国汽车产业日渐成为国民支柱产业;在市场中,目前我国有优良的需求环境,中国对汽车的需求空间并未满足,近几十年来中国的城镇化进程,人民生活水平的提高,使得汽车的需求将会大大增加;从消费者层面来讲,汽车已经是生活中必不可少的交通工具了,特别是安全可靠、性能好、价格实惠、舒适性高的汽车,人们将大为欢迎。

轻型货车驱动桥设计

轻型货车驱动桥设计

第一章序言1.1 设计驱动桥的目的及思路驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理地分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力力和横向力。

1.2驱动桥的参数及设计要求主要参数:总质量:6500 kg ;装载质量:3500 kg ;轴距:4000mm 后轮距:1700 mm 双后胎,轮胎规格:9.00-20 ;前轴荷(满载时):1500 kg ;压缩比:6.75后轴荷(满载时):5000 kg ;最高车速(满载时):90 km/h ;工作容积:5.562 L ;发动机:CA6120型汽油机;最大功率:p emax=99 kW/3000r/min ;最大转距:T emax=372N m/1200-1400r/min ;主传动比:i0=i01 i02=6.25;各档速比:ig1= 7.64;ig2=4.834 ; ig3=2.856; ig4=1.895; ig5=1.337; ig6=1; ig R=7.107;驱动桥设计应当满足如下基本要求:a)所选择的主减速比应能保证汽车具有最佳的动力性和燃料经济性;b)外形尺寸要小,保证有必要的离地间隙;c)齿轮及其它传动件工作平稳,噪声小;d)在各种转速和载荷下具有高的传动效率;e)在保证足够的强度、刚度条件下,应力求质量小,尤其是簧下质量应尽量小,以改善汽车平顺性;f)与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动协调。

2 驱动桥的结构型式与布置在选择驱动桥的结构型式时,应从所设计汽车的类型的使用,生产条件出发,并和所设计汽车的其它部件尤其是与悬挂的结构型式与特性相适应,以共同保证整个汽车的预期使用性能的实现。

驱动桥的结构型式按工作特性分,可以归并为两大类,即非断开式驱动桥和断开式驱动桥。

当驱动车轮采用非独立悬架时,应该选用非断开式驱动桥;当驱动车轮采用独立悬架时,则应该选用断开式驱动桥。

中型货车驱动桥设计-开题报告

中型货车驱动桥设计-开题报告

中型货车驱动桥设计-开题报告项目背景中型货车是一种常见的运输工具,驱动桥是其中重要的组成部分。

驱动桥的设计对于车辆的性能和安全至关重要。

本文将对中型货车驱动桥的设计进行研究和探讨。

研究目的本研究的目的是对中型货车驱动桥的设计进行分析和优化,以提升车辆的性能和安全性。

具体目标包括:1. 研究不同驱动桥结构对车辆性能的影响;2. 分析驱动桥材料选择对车辆性能的影响;3. 探讨驱动桥的传动系统和悬挂系统设计;4. 提出改进和优化方案。

研究内容本研究将主要包括以下内容:1. 调研和文献综述:对现有的中型货车驱动桥设计进行调研和文献综述,了解各种驱动桥结构和设计要点;2. 分析驱动桥结构:比较不同驱动桥结构的优缺点,包括传动轴、差速器、齿轮传动等;3. 材料选择:研究不同材料对驱动桥重量、强度和耐久性的影响;4. 传动系统设计:探讨传动系统的设计原理和方法,考虑驱动力分配和转向特性;5. 悬挂系统设计:分析驱动桥对悬挂系统的影响,研究悬挂系统的设计优化;6. 改进和优化方案:根据研究结果提出改进和优化方案,以提升驱动桥的性能和安全性。

预期成果通过本研究,预期可以达到以下成果:1. 对中型货车驱动桥设计的深入了解和分析;2. 提出可行的改进和优化方案,以提升车辆性能和安全性;3. 为中型货车制造商提供参考和指导。

研究方法本研究将采用文献综述、数值模拟和实验分析相结合的方法。

首先,通过调研和文献综述,收集和整理中型货车驱动桥设计方面的相关信息。

然后,使用数值模拟软件对不同驱动桥结构进行优化和仿真分析。

最后,通过实验验证和测试,对研究结果进行验证和评估。

进度安排本研究的进度计划如下:1. 第一阶段(一个月):调研和文献综述,收集相关信息;2. 第二阶段(两个月):数值模拟分析,优化设计;3. 第三阶段(一个月):实验验证和测试;4. 第四阶段(半个月):数据分析和结果总结;5. 第五阶段(半个月):撰写研究报告。

货车驱动桥设计(2)

货车驱动桥设计(2)

实用第一章课程设计的基本内容及要求1.1 课程设计的基本内容本课程设计是根据给定的设计参数和要求,对某轻型货车整体式单级主减速器及驱动桥进行设计,设计的基本内容包括:1)根据给定的设计参数及要求,对汽车主减速器进行详细的结构设计和参数计算;2)对差速器、半轴、驱动桥壳等进行选型设计;3)绘制出主减速器及驱动桥的装配图。

已知给定的设计参数和要求如下:第二章 整体式单级主减速器设计2.1 主减速器的结构形式 1、主减速器齿轮的类型:现代汽车单级主减速器中多采用螺旋锥齿轮和双曲面齿轮两种。

(a ) 螺旋锥齿轮 (b ) 双曲面齿轮图1 主减速器齿轮类型1)螺旋锥齿轮如图1(a )所示,其主、从动齿轮轴线垂直相交于一点,且两者的螺旋角21ββ和相等,可知螺旋锥齿轮的传动比为:l l ol r r i 12= (2-1) 式中:l r 1、l r 2—螺旋锥齿轮主、从动齿轮的平均分度圆半径。

2)双曲面齿轮如图1(b )所示,主、从动齿轮轴线偏移了一个距离E ,称为偏移距, εββ,两者之差称为偏移角21>(如图2所示)。

根据啮合面上法向力相等,可求出主、从动齿轮圆周力之比为:2121cos cos ββ=F F (2-2) 式中:1F 、2F —双曲面齿轮主、从动齿轮的圆周力;1β、2β—双曲面齿轮主、从动齿轮的螺旋角。

图2 双曲面齿轮啮合时受力分析双曲面齿轮传动比为:11221122cos cos ββs s s s os r r r F r F i ==(2-3) 式中:1F 、2F —双曲面齿轮主、从动齿轮的圆周力;1β、2β—双曲面齿轮主、从动齿轮的螺旋角;s r 1、s r 2—双曲面齿轮主、从动齿轮的平均分度圆半径令12cos /cos ββ=K ,则s s os r Kr i 12/=。

由于21ββ>,所以1>K ,通常为1.25~1.50。

2、主减速器减速形式:主减速器的减速形式主要有单级减速、双级减速、双速、单级贯通式、双级贯通式和轮边减速等形式。

重型货车驱动桥毕业设计

重型货车驱动桥毕业设计

摘要本次设计的题目是重型货车驱动桥设计。

驱动桥一般由主减速器、差速器、半轴及桥壳四部分组成,其基本功用是增大由传动轴或直接由变速器传来的转矩,将转矩分配给左、右车轮,并使左、右驱动车轮具有汽车行驶运动学所要求的差速功能;此外,还要承受作用于路面和车架或车厢之间的铅垂力、纵向力和横向力。

本文首先论述了驱动桥的总体结构,在分析驱动桥各部分结构型式、发展过程,及其以往形式的优缺点的基础上,确定了总体设计方案:采用整体式驱动桥,主减速器的减速型式采用双级减速器,主减速器齿轮采用螺旋锥齿轮,差速器采用普通对称式圆锥行星齿轮差速器,半轴型式采用全浮式,桥壳采用铸造整体式桥壳。

在本次设计中,主要完成了双级减速器、圆锥行星齿轮差速器、全浮式半轴、桥壳的设计工作。

关键词:驱动桥;主减速器;全浮式半轴;桥壳;差速器ABSTRACTT he object of the design is The Design for Driving Axle of Heavy Truck. Driving Axle is consisted of Main Decelerator, Differential Mechanism, Half Shaft and Axle Housing. The basic function of Driving Axle is to increase the torque transmitted by Drive Shaft or directly transmitted by Gearbox, then distributes it to left and right wheel, and make these two wheels have the differential function which is required in Automobile Driving Kinematics; besides, the Driving Axle must also stand the lead hangs down strength, the longitudinal force and the transverse force acted on the road surface, the frame or the compartment lead.The configuration of the Driving Axle is introduced in the thesis at first. On the basis of the analysis of the structure and the developing process of Driving Axle, the design adopted the Integral Driving Axle, Double Reduction Gear for Main Decelerator’s deceleration form, Spiral Bevel Gear for Main Decelerator’s gear, Full Floating for Axle and Casting Integral Axle Housing for Axle Housing. In the design, we accomplished the design for Double Reduction Gear, tapered Planetary Gear Differential Mechanism, Full Floating Axle and Axle Housing.Keywords: Driving Axle; Main Decelerator; Full floating axle; Axle Housing; Differential Mechanism目录摘要 ....................................................................................... 错误!未定义书签。

EQ1090载货汽车驱动桥设计说明书

EQ1090载货汽车驱动桥设计说明书

EQ1090载货汽车驱动桥设计专业:机械设计制造及其自动化(车辆工程)班级:2007级2班姓名:张明浩引言 31 EQ1090载货汽车驱动桥结构方案确定72 EQ1090载货汽车主减速器设计92.1 主减速器形式及选择92.2主减速器齿轮的齿型102.3汽车螺旋锥齿轮设计102.4主减速器第二级圆柱齿轮设计162.5主减速器齿轮的支承192.6强度计算202.7齿轮材料253 EQ1090载货汽车差速器设计273.1差速器的差速原理283.2 差速器的结构293.3差速器齿轮设计303.4差速器几何尺寸计算333.5差速器强度计算354 EQ1090载货汽车半轴设计384.1半轴形式384.2半轴的计算394.3半轴的强度计算404.4半轴材料415 EQ1090载货汽车驱动桥壳设计42结论44致谢45参考文献46附录47本次设计为EQ1090载货汽车驱动桥设计。

汽车驱动桥作为汽车传动系中一重要组成部分,它设置在传动系的末端,由主减速器、差速器、半轴和桥壳等组成。

它将经万向传动装置传来的发动机转矩通过主减速器、差速器、半轴等传到驱动车轮。

它通过主减速器的主、从动齿轮之间的配合,改变由传动轴传到主动齿轮上的转速,使之在工作中实现增大转矩、降低转速,改变转矩的传递方向。

并且还要承受作用于路面与车架或车身之间的垂直力、纵向力和横向力等。

本说明书中,根据给定的参数,首先对主减速器进行设计。

主要是对主减速器的结构,以及几何尺寸进行了设计。

主减速器的形式主要有单级主减速器和双级主减速器。

而主减速器的齿轮形式主要有螺旋锥齿轮、双曲面齿轮、圆柱齿轮和蜗轮蜗杆等形式。

本次设计采用的是双级主减速器,第一级采用一对螺旋锥齿轮,第二级采用一对斜齿圆柱齿轮。

其次,对差速器的形式进行选择,并对差速器齿轮的几何尺寸进行了设计和计算。

差速器的形式主要分为普通对称式圆锥行星齿轮差速器和防滑差速器两种。

本次设计采用普通对称式圆锥行星齿轮差速器。

重型货车驱动桥设计

重型货车驱动桥设计
驱动桥的结构型式与驱动车轮的悬挂型式密切相关。当驱动车轮采用非独立悬挂时,例如在绝大多数的载货汽车和部分小轿车上,都是采用非断开式驱动桥;当驱动车轮采用独立悬挂时,则配以断开式驱动桥。
1.3.1
普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种载货汽车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。
本设计首先论述了驱动桥的总体结构,在分析了国内外现状、驱动桥各部分结构形式及其以往形式的优缺点的基础上,确定了总体设计方案:采用整体式驱动桥,主减速器的减速型式采用双级减速器,主减速器齿轮采用螺旋锥齿轮,差速器采用普通对称式圆锥行星齿轮差速器,半轴采用全浮式型式,桥壳采用铸造整体式桥壳。在本次设计中,主要完成了双级减速器、圆锥行星齿轮差速器、全浮式半轴的设计和桥壳的校核材料的选取等工作。
它有以下两大难题,一是将发动机输出扭矩通过万向传动轴将动力传递到驱动轮上,达到更好的车轮牵引力与转向力的有效发挥,从而提高汽车的行驶能力。二是差速器向两边半轴传递动力的同时,允许两边半轴以不同的转速旋转,满足两边车轮尽可能以纯滚动的形式作不等距行驶,减少轮胎与地面的摩擦。
1.
1.2.1
国内驱动桥制造企业的开发模式主要由测绘、引进、自主开发三种组成。主要存在技术含量低,开发模式落后,技术创新力不够,计算机辅助设计应用少等问题。国内的大多数中小企业中,测绘市场销路较好的产品是它们的主要开发模式。特别是一些小型企业或民营企业由于自身的技术含量低,开发资金的不足,专门测绘、仿制市场上销售较旺的汽车的车桥售往我国不健全的配件市场。这种开发模式是无法从根本上提高我国驱动桥产品开发水平的。中国驱动桥产业发展过程中存在许多问题,许多情况不容乐观,如产业结构不合理、产业集中于劳动力密集型产品;技术密集型产品明显落后于发达工业国家;生产要素决定性作用正在削弱;产业能源消耗大、产出率低、环境污染严重、对自然资源破坏力大;企业总体规模偏小、技术创新能力薄弱、管理水平落后等。我国汽车驱动桥的研究设计与世界先进驱动桥设计技术还有一定的差距,我国车桥制造业虽然有一些成果,但都是在引进国外技术、仿制、再加上自己改进的基础上了取得的。个别比较有实力的企业,虽有自己独立的研发机构但都处于发展的初期。我国驱动桥产业正处在发展阶段,在科技迅速发展的推动下,高新技术在汽车领域的应用和推广,各种国外汽车新技术的引进,研究团队自身研发能力的提高,我国的驱动桥设计和制造会逐渐发展起来,并跟上世界先进的汽车零部件设计制造技术水平。

9吨级载货汽车驱动桥设计计算说明书

9吨级载货汽车驱动桥设计计算说明书

毕业设计
目录
第一章 第二章 驱动桥结构方案分析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1 主减速器设计 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3
毕业设计
摘要
驱动桥一般由主减速器、差速器、半轴及桥壳四部分组成,其基本功用是增大由传 动轴或直接由变速器传来的转矩,将转矩分配给左、右车轮,并使左、右驱动车轮具有 汽车行驶运动学所要求的差速功能; 此外, 还要承受作用于路面和车架或车厢之间的铅 垂力、纵向力和横向力。 驱动桥作为汽车四大总成之一, 它的性能的好坏直接影响整车性能, 而对于载重汽 车显得尤为重要。 当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、 重载 的高效率、高效益的需要时,必须要搭配一个高效、可靠的驱动桥。又考虑到要有足够 的离地间隙,驱动桥内部齿轮的尺寸不能太大,所以采用双级主减速器。本文参照传统 驱动桥的设计方法进行了 9 吨级载货汽车驱动桥的设计。 本文首先确定主要部件的结构 型式和主要设计参数;然后参考类似驱动桥的结构,确定出总体设计方案;最后对主, 从动锥齿轮,差速器圆锥行星齿轮,半轴齿轮,全浮式半轴和整体式桥壳的强度进行校 核以及对支承轴承进行了寿命校核。 本文不是采用传统的双曲面锥齿轮作为载重汽车的 主减速器而是采用圆弧锥齿轮。 关键字:载重汽车;驱动桥;双级减速桥;圆弧锥齿轮

YC1090货车驱动桥的结构设计(有cad图)

YC1090货车驱动桥的结构设计(有cad图)

目录1前言 (1)2 总体方案论证 (2)2.1非断开式驱动桥 (2)2.2断开式驱动桥 (3)2.3多桥驱动的布置 (3)3 主减速器设计 (5)3.1主减速器结构方案分析 (5)3.2主减速器主、从动锥齿轮的支承方案 (6)3.3主减速器锥齿轮设计 (7)3.4主减速器锥齿轮的材料 (10)3.5主减速器锥齿轮的强度计算 (10)3.6主减速器锥齿轮轴承的设计计算 (12)4 差速器设计 (17)4.1差速器结构形式选择 (17)4.2普通锥齿轮式差速器齿轮设计 (17)4.3差速器齿轮的材料 (19)4.4普通锥齿轮式差速器齿轮强度计算 (19)5 驱动车轮的传动装置设计 (21)5.1半轴的型式 (21)5.2半轴的设计与计算 (21)5.3半轴的结构设计及材料与热处理 (24)6 驱动桥壳设计 (25)6.1桥壳的结构型式 (25)6.2桥壳的受力分析及强度计算 (25)7 结论 (27)参考文献 (28)致谢 (29)1前言本课题是对YC1090货车驱动桥的结构设计。

故本说明书将以“驱动桥设计”内容对驱动桥及其主要零部件的结构型式与设计计算作一一介绍。

驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求讲起,详细地分析了驱动桥总成的结构型式及布置方法;全面介绍了驱动桥车轮的传动装置和桥壳的各种结构型式与设计计算方法。

汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。

汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。

另外,汽车驱动桥在汽车的各种总成中也是涵盖机械零件、部件、分总成等的品种最多的大总成。

例如,驱动桥包含主减速器、差速器、驱动车轮的传动装置(半轴及轮边减速器)、桥壳和各种齿轮。

轻型货车驱动桥的设计

轻型货车驱动桥的设计

摘要轻型汽车在商用汽车生产中占有很大的比重,而且驱动桥在整车中十分重要。

驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载货汽车显得尤为重要。

为满足目前当前载货汽车的快速、高效率、高效益的需要时,必须要搭配一个高效、可靠的驱动桥。

设计出结构简单、工作可靠、造价低廉的驱动桥,能大大降低整车生产的总成本,推动汽车经济的发展,并且通过对汽车驱动桥的学习和设计实践,可以更好的学习并掌握现代汽车设计与机械设计的全面知识和技能,所以本题设计一款结构优良的轻型货车驱动桥具有一定的实际意义。

本文首先确定主要部件的结构型式和主要设计参数,在分析驱动桥各部分结构形式、发展过程及其以往形式的优缺点的基础上,确定了总体设计方案,采用传统设计方法对驱动桥各部件主减速器、差速器、半轴、桥壳进行设计计算并完成校核。

最后运用AUTOCAD完成装配图和主要零件图的绘制。

关键词:轻型货车;驱动桥;单级主减速器;差速器;半轴;桥壳ABSTRACT. Pickup trucks take a large proportion of commercial vehicles production, and the drive axle is one of the most important structure. Drive axle is the one of automobile four important assemblies, Its performance directly influence on the entire automobile, especially for the truck .Because using the big power engine with the big driving torque satisfied the need of high speed, heavy-loaded, high efficiency, high benefit today` truck, must exploiting the high driven efficiency single reduction final drive axle is becoming the trucks’ developing tendency. Design a simple, reliable, low cost of the drive axle, can greatly reduce the total cost of vehicle production, and promote the economic development of automobile and automotive drive axle of the study and design practice, can better learn and to master modern automotive design and mechanical design of a comprehensive knowledge and skills, so the title of the fine structure of the design of a pickup vehicle drive axle has a certain practical significance.In this paper, first of all determine the structure of major components and the main design parameters, the analysis of the various parts of the structure of the bridge drive type, the form of the development process and its advantages and disadvantages of the past, determined on the basis of the design program, using the traditional design method of various parts of the drive axle Main reducer, differential, axle, axle housing was designed to calculate and complete the check. Finally complete the final assembly drawing by using AUTOCAD and mapping the main components.Keywords: Pickup truck; Drive axle; Single reduction final drive; Differential; Axle; Drive Axle housing目录摘要..................................................................................................... 错误!未定义书签。

CA1091货车驱动桥设计毕业设计

CA1091货车驱动桥设计毕业设计

摘要本次毕业设计的题目是CA1091货车驱动桥设计。

驱动桥是汽车传动系统的重要组成部件 , 其位于传动系的末端,其功用是增大由传动轴或变速器传来的转矩,将其传给驱动轮并使其具有差速功能.所以中型专用汽车驱动桥设计有着实际的意义。

在本次设计中,根据当今驱动桥的发展情况确定了驱动桥各部件的设计方案。

本次设计的车型为解放CA1091汽车主减速器的形式采用单级主减速器;而差速器则采用目前被广泛应用的对称式锥齿轮差速器;其半轴为全浮式支撑。

在本次设计中完成了对主减速器、差速器、半轴、桥壳及轴承的设计计算及校核。

并通过以上计算满足了驱动桥的各项功能。

此外本设计还应用了较为先进的设计手段,如用 MATLAB进行计算编程和用CAXA软件绘图。

本设计保持了驱动桥有足够的强度、刚度和足够的使用寿命,以及足够的其他性能。

并且在本次设计中力求做到零件通用化和标准化。

关键词:驱动桥、主减速器、差速器、半轴、桥壳AbstractThe graduation project is the subject of a medium goods vehicle driver in the design of the bridge. Bridge drive vehicle drive system is an important component parts, its function is increasing drive shaft or transmission came from the torque, andits transmission to a driving wheel differential function. So medium-sized private car driver has a practical bridge design Significance.In the design of the bridge under the current drive the development of the driver identified the components of the bridge design. According to the design of this modelfor the medium-sized cars, so the main reducer in the form of a two-stage main reducer, and the current differential is being widely used symmetric bevel gear differential; its axle for the whole floating - Support. In the completion of the design of the main reducer, differential and axle, bearings and the bridge shell calculation and design verification. Through the above calculation and the drive to meet the various functions of the bridge. In addition the design of a more advanced design tools, such as MATLAB calculated using CAXA software programming and graphics.This design has maintained a drive axle have sufficient strength, stiffnessand sufficient life, and enough other properties. And in this design-to-commonand standardized components.Key words:Drive Bridge, the main reducer, differential and axle, Shell Bridge目录第一章绪论 (1)1.1驱动桥简介 (1)1.2驱动桥设计的基本要求 (1)第二章驱动桥主减速器设计 (3)2.1主减速器简介 (3)2.2主减速器形式的选择 (3)2.3主减速器锥齿轮的选择 (4)2.4主减速器齿轮的支承 (5)2.5主减速器轴承的预紧 (6)2.6锥齿轮啮合的调整 (6)2.7润滑 (7)2.8双曲面锥齿轮的设计 (7)2.8.1主减速比的确定 (7)2.8.2主减速器齿轮计算载荷的确定 (8)2.8.3主减速器齿轮基本参数的选择 (9)2.9主减速齿轮的材料及热处理 (20)第三章驱动桥差速器设计 (21)3.1差速器简介 (21)3.2差速器结构形式的选择 (21)3.3差速器齿轮的基本参数选择 (23)3.4差速器齿轮的几何尺寸计算与强度校核 (25)第四章车轮传动装置的设计 (28)4.1车轮传动装置的功用 (28)4.2半轴支承型式 (28)4.3全浮式半轴计算载荷的确定 (28)4.4半轴的强度计算 (28)4.5全浮式半轴杆部直径的初选 (29)4.6半轴的结构设计及材料与热处理 (29)第五章驱动桥壳设计 (30)5.1驱动桥壳的功用和设计要求 (30)5.2 驱动桥壳结构方案分析 (30)结论 (31)参考文献 (32)致谢 (33)附录 1 (34)第一章绪论1.1 驱动桥简介驱动桥是汽车传动系的重要组成部分,它位于传动系的末端,一般由主减速器、差速器、车轮传动装置和桥壳等组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

货车驱动桥的设计This model paper was revised by the Standardization Office on December 10, 2020学年论文题 目: 中型货车驱动桥设计学生姓名: 徐文超 学 院:能源与动力工程学院 班 级:车辆工程13-1 指导教师: 刘占峰老师2017年 1 月 11日学校代码:10128摘要:货车驱动桥的设计摘要:汽车后桥作为整车的一个关键部件,其产品的质量和结构形式对整车对整车的安全使用性能影响是非常大的,而且随着我们对汽车安全和使用性能的不断重视,我们必须对驱动桥进行有效地优化设计,本设计参照传统的驱动桥设计方式,进行了轻型货车驱动桥的设计。

关键词:驱动桥;后桥;货车目录6参考文献 (27)1前言课题背景及目的随着汽车工业的发展和汽车技术的提高,驱动桥的设计和制造工艺都在日益完善。

驱动桥和其他汽车总成一样,除了广泛采用新技术外,在结构设计中日益朝着“零件标准化、部件通用化、产品系列化”的方向发展及生产组织专业化目标前进。

应采用能以几种典型的零部件,以不同方案组合的设计方法和生产方式达到驱动桥产品的系列化或变形的目的,或力求做到将某一类型的驱动桥以更多或增减不多的零件,用到不同的性能、不同吨位、不同用途并由单桥驱动到多桥驱动的许多变形汽车上。

本设计要求根据载货汽车在一定的程度上有货车的较好载货性能,行驶范围广的特点,要求驱动桥在保证日常使用基本要求的同时极力强调其对恶劣路况的适应力。

驱动桥是汽车最重要的系统之一,是为汽车传输和分配动力所设计的。

通过本课题设计,使我们对所学过的基础理论和专业知识进行一次全面的,系统的回顾和总结,提高我们独立思考能力和团结协作的工作作风。

研究现状和发展趋势随着汽车向采用大功率发动机和轻量化方向发展以及路面条件的改善,近年来主减速比有减小的趋势,以满足高速行驶的要求。

为减小驱动轮的外廓尺寸,目前主减速器中基本不用直齿圆锥齿轮。

实践和理论分析证明,螺旋锥齿轮不发生根切的最小齿数比直齿齿轮的最小齿数少。

显然采用螺旋锥齿轮在同样传动比下,主减速器的结构就比较紧凑。

此外,它还具有运转平稳、噪声较小等优点。

因而在汽车上曾获得广泛的应用。

近年来,准双曲面齿轮在广泛应用到轿车的基础上,愈来愈多的在中型、重型货车上得到采用。

在现代汽车发展中,对主减速器的要求除了扭矩传输能力、机械效率和重量指标外,它的噪声性能已成为关键性的指标。

噪声源主要来自主、被动齿轮。

噪声的强弱基本上取决于齿轮的加工方法。

区别于常规的加工方法,采用磨齿工艺,采用适当的磨削方法可以消除在热处理中产生的变形。

因此,与常规加工方法相比,磨齿工艺可获得很高的精度和很好的重复性。

汽车在行驶过程中的使用条件是千变万化的。

为了扩大汽车对这些不同使用条件的适应范围,在某些中型车辆上有时将主减速器做成双速的,它既可以得到大的主减速比又可得到所谓多档高速,以提高汽车在不同使用条件下的动力性和燃料经济性。

课题研究方法本设计的驱动桥在结构上比较特殊,所以首先我会通过到汽修厂或者4S店找到自己想要设计的驱动桥结构,其次我会通过上网查阅资料和利用图书馆的图书资源来进行一些数据的计算,在设计过程中有不懂的也会请教指导老师,在老师的指导下完成本次的设计。

论文研究内容研究内容:国内外载货汽车驱动桥的研究资料论述、驱动桥结构方案选择、主减速器设计计算、差速器设计计算。

2驱动桥总体设计设计目标驱动桥是汽车传动系的主要组成部分。

汽车的驱动桥处于传动系的末端,其基本功用是增大由传动轴或直接由变速器传来的转矩,将转矩分配给左、右驱动轮,并使左、右驱动车轮具有汽车行驶运动学所要求的差速功能;同时,驱动桥还要承受作用于路面和车架或车厢的铅垂力、纵向力和横向力。

它要保证当变速器处于最高挡时,在良好的路面上有足够的牵引力以克服行驶阻力和获得汽车最大的速度,这主要取决于驱动桥的传动比。

虽然在汽车的整体设计时,从整车性能出发决定驱动桥的传动比,但是用什么形式的驱动桥、什么结构的主减速器和差速器等在驱动桥设计中要具体考虑。

决大多数的发动机在汽车上是纵置的,为了使扭矩传给车轮,驱动桥必须改变扭矩的方向,同时根据车辆的具体要求解决左右扭矩的分配。

整体式驱动桥一方面需要承担汽车的载荷;另一方面车轮上的作用力以及传递扭矩所产生的作用力矩都要由驱动桥承担,所以驱动桥的零件必须具有足够的强度和刚度,以保证机件的可靠工作。

驱动桥还必须满足通过性和平顺性的要求。

在一般的汽车结构中,驱动桥包括主减速器、差速器、驱动车轮的传动装置和桥壳等组成。

它们应具有足够的强度和寿命、良好的工艺、合适的材料和热处理等。

对零件应进行良好的润滑并减少系统的振动和噪音等[1]。

驱动桥的结构型式虽然可以各不相同,但在使用中对它们的基本要求却是一致的,其基本要求可以归纳为:(1)所选择的主减速比能满足车在给定使用条件下有最佳动力性和燃油经济性。

(2)差速器在保证左、右驱动车轮能以汽车运动学所要求的差速滚动外并能将转矩平稳而连续不断(无脉动)地传递给左、右驱动车轮。

(3)当左右驱动车轮与地面的附着系数不同时,应能充分利用汽车的牵引力。

(4)能承受和传递路面和车架式车厢的铅垂力、纵向力和横向力以及驱动时的反作用力矩和制动时的制动力矩。

(5)驱动桥各零部件在保证其强度、刚度、可靠性及寿命的前提下应力求减小簧下质量,以减小不平路面对驱动桥的冲击载荷,从而改善汽车的平顺性。

(6)轮廓尺寸不大以便于汽车的总体布并与所要求的驱动桥离地间隙相适应。

(7)齿轮与其他传动机件工作平稳,无噪声。

(8)驱动桥总成及零部件的设计应能满足零件的标准化,部件的通用化和产品的系列化及汽车变型的要求。

驱动桥的结构方案驱动桥的总成的结构型式,按其总体布置来说有三种:普通的非断开式驱动桥、带有摆动半轴的非断开式驱动桥合和断开式驱动桥[5]。

驱动桥的结构形式与驱动车轮的悬架形式密切相关。

当车轮采用非独立悬架时,驱动桥应为非断开式(或称为整体式),即驱动桥是一根连接左右驱动车轮的刚性空心梁,而主减速器、差速器及车轮传动装置(由左、右半轴组成)都装在它里面。

当采用独立悬架时,为保证运动协调,驱动桥应为断开式。

这种驱动桥无刚性的整体外壳,主减速器及其壳体装在车架或车身上,两侧驱动车轮则与车架或车身作弹性联系,并可彼此独立地分别相对于车架或车身作上下摆动,车轮传动装置采用万向传动机构。

为了防止运动干涉,应采用花键轴或一种允许两轴能有适量轴向移动的万向传动机构。

非断开式驱动桥的桥壳是一跟支承在左右驱动车论上的刚性空心梁,而主减速器、差速器及半轴等传动机件都装在其中。

这时,整个驱动桥和驱动车轮的质量以及传动轴的部分质量都是属于汽车的非悬挂质量,使汽车的非悬挂质量较大,这是普通非断开式驱动桥的一个缺点。

整个驱动桥通过弹性悬架与车架连接。

非断开式驱动桥的整个驱动桥和驱动车轮的质量以及传动轴的部分质量都是属于汽车的非悬挂质量。

因此,在汽车的平顺性、操纵稳定性和通过性等方面不如断开式驱动桥。

但是断开式驱动桥结构简单、制造工艺性好、成本低、工作可靠、维修调整容易,因而广泛用在各种载货汽车、客车及多数的越野汽车和部分轿车上。

1—主减速器 2—套筒 3—差速器 4、7—半轴 5—调整螺母6—调整垫片 8—桥壳图.1 非断开式驱动桥非断开式驱动桥结构简单,考虑到所设计的轻型载货汽车的载重和各种要求,其价格要求要尽量低,故其生产成本应尽可能降低。

另由于轻型载重汽车对驱动桥并无特殊要求,和路面要求并不高,故本设计采用普通非断开式驱动桥。

现代驱动桥主要由主减速器、差速器、车轮传动装置和驱动桥壳等组成。

其结构图如1所示:3主减速器的设计主减速器的结构形式的选择主减速器的减速形式单级主减速器:由于单级主减速器具有结构简单、质量小、尺寸紧凑及制造成本<的各种中、小型汽车上。

根据该轻型载货汽车的低廉的优点,广泛用在主减速比i的载荷小,主传动比〈的特点,采用单级主减速器优势突出。

主减速器的齿轮类型螺旋锥齿轮双曲面齿轮圆柱齿轮传动蜗杆传动图2 主减速器的几种齿轮类型在现代汽车驱动桥上,主减速器采用得最广泛的是螺旋锥齿轮和双曲面齿轮。

双曲面齿轮其主、从动齿轮轴线不相交而呈空间交叉。

其空间交叉角也都是采用90o。

主动齿轮轴相对于从动齿轮轴有向上或向下的偏移,称为上偏置或下偏置。

这个偏移量称为双曲面齿轮的偏移距。

当偏移距大到一定程度时,可使一个齿轮轴从另一个齿轮轴旁通过。

这样就能在每个齿轮的两边布置尺寸紧凄的支承。

这对于增强支承刚度、保证轮齿正确啮合从而提高齿轮寿命大有好处。

双曲面齿轮的偏移距使得其主动齿轮的螺旋角大于从动齿轮的螺旋角。

因此,双曲面传动齿轮副的法向模数或法向周节虽相等,但端面模数或端面周节是不等的。

主动齿轮的端面模数或端面周节大于从动齿轮的。

这一情况就使得双曲面齿轮传动的主动齿轮比相应的螺旋锥齿轮传动的主动齿轮有更大的直径和更好的强度和刚度。

其增大的程度与偏移距的大小有关。

另外,由于双曲面传动的主动齿轮的直径及螺旋角都较大,所以相啮合齿轮的当量曲率半径较相应的螺旋锥齿轮当量曲率半径为大,从而使齿面间的接触应力降低。

随偏移距的不同,双曲面齿轮与接触应力相当的螺旋锥齿轮比较,负荷可提高至175%。

双曲面主动齿轮的螺旋角较大,则不产生根切的最少齿数可减少,所以可选用较少的齿数,这有利于大传动比传动。

当要求传动比大而轮廓尺寸又有限时,采用双曲面齿轮更为合理。

因为如果保持两种传动的主动齿轮直径一样,则双曲面从动齿轮的直径比螺旋锥齿轮的要小,这对于主减速比i≥的传动有其优越性。

当传动比小于2时,双曲面主动齿轮相对于螺旋锥齿轮主动齿轮就显得过大,这时选用螺旋锥齿轮更合理,因为后者具有较大的差速器可利用空间。

由于双曲面主动齿轮螺旋角的增大,还导致其进入啮合的平均齿数要比螺旋锥齿轮相应的齿数多,因而双曲面齿轮传动比螺旋锥齿轮传动工作得更加平稳、无噪声,强度也高。

双曲面齿轮的偏移距还给汽车的总布置带来方便[1]。

中型载货汽车的传动比大于5,且对离地间隙有较高的要求,鉴于上述双曲面齿轮具有的特点,选择双曲面齿轮的主减速器。

这种主减速器由一对圆锥齿轮、一对圆柱齿轮或由蜗轮蜗杆组成,零件结构如3所示.1—螺母; 2—后桥凸缘; 3—油封; 4—前轴承; 5—主动锥齿轮调整垫片;6—隔套; 7—垫片; 8—位置调整垫片; 9—后轴承;10—主动锥齿轮图3 主动锥齿轮及调整装置零件图主减速器锥齿轮的支撑形式及安置方法在壳体结构及轴承型式已定的情况下,主减速器主动齿轮的支承型式及安置方法,对其支承刚度影响很大,这是齿轮能否正确啮合并具有较高使用寿命的重要因素之一。

现在汽车主减速器主动锥齿轮的支承型式有悬臂式、骑马式两种。

相关文档
最新文档