高考数学填空选择题复习专练及答案

合集下载

2020届高考数学选择题填空题专项练习(文理通用)15 比较大小(含解析)

2020届高考数学选择题填空题专项练习(文理通用)15 比较大小(含解析)

2020届高考数学选择题填空题专项练习(文理通用)15比较大小第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2020·福建高三(理))设12a e-=,24b e -=,12c e -=,323d e -=,则a b c d ,,,的大小关系为( ) A .c b d a >>>B .c d a b >>> C .c b a d >>>D .c d b a >>>.【答案】B 【解析】【分析】利用指数幂的运算性质化成同分母,再求出分子的近似值即可判断大小.【详解】3241e a e e ==,2416b e =,222444e c e e==,249e d e =,由于 2.7e ≈,27.39e ≈,320.09e ≈,所以c d a b >>>,故选:B .【点睛】本题主要考查比较幂的大小,属于基础题.2.(2020·湖南高三学业考试)10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a ,中位数为b ,众数为c ,则有( ).A .a b c >>B .c b a >>C .c a b >>D .b c a >>【答案】B 【解析】【分析】根据所给数据,分别求出平均数为a ,中位数为b ,众数为c ,然后进行比较可得选项. 【详解】1(15171410151717161412)14.710a =+++++++++=,中位数为1(1515)152b =+=,众数为=17c .故选:B.【点睛】本题主要考查统计量的求解,明确平均数、中位数、众数的求解方法是求解的关键,侧重考查数学运算的核心素养.3.(2020·四川省泸县第二中学高三月考(文))已知3log 6p =,5log 10q =,7log 14r =,则p ,q ,r 的大小关系为( )A .q p r >>B .p r q >>C .p q r >>D .r q p >>【答案】C 【解析】【分析】利用对数运算的公式化简,,p q r 为形式相同的表达式,由此判断出,,p q r 的大小关系.【详解】依题意得31+log 2p =,51log 2q =+,71log 2r =+,而357log 2log 2log 2>>,所以p q r >>.【点睛】本小题主要考查对数的运算公式,考查化归与转化的数学思想方法,属于基础题.4. (2020·四川省泸县第四中学高三月考(理))设{a n }是等比数列,则“a 1<a 2<a 3”是数列{a n }是递增数列的A .充分而不必要条件B .必要而不充分条件、C .充分必要条件D .既不充分也不必要条件【答案】C【解析】1212311101a a a a a a q a q q >⎧<<⇒<<⇒⎨>⎩或1001a q <⎧⎨<<⎩,所以数列{a n }是递增数列,若数列{a n }是递增数列,则“a 1<a 2<a 3”,因此“a 1<a 2<a 3”是数列{a n }是递增数列的充分必要条件,选C5.(2020·四川棠湖中学高三月考(文))设log a =log b =,120192018c =,则a ,b ,c 的大小关系是( ).A .a b c >>B .a c b >>C .c a b >>D .c b a >>【答案】C 【解析】【分析】根据所给的对数式和指数式的特征可以采用中间值比较法,进行比较大小.【详解】因为20182018201811log 2018log log ,2a =>=>=201920191log log ,2b ==102019201820181c =>=,故本题选C.【点睛】本题考查了利用对数函数、指数函数的单调性比较指数式、对数式大小的问题.6.(2020·北京八十中高三开学考试)设0.10.134,log 0.1,0.5a b c ===,则 ( )A .a b c >>B .b a c >>C .a c b >>D .b c a >>【答案】C 【解析】0.10.1341,log 0.10,00.51a b c =>=<<=<,a c b ∴>>,故选C 。

高考数学选择填空压轴题45道(附答案)

高考数学选择填空压轴题45道(附答案)

,
D.
1,
27 e4
21.已知方程
e x 1
x
e2 x1 x aex1
有三个不同的根,则实数
a

取值范围为( )
A. 1,e
B.
e,
1 2
C. 1,1
D.
1,
1 2
22.函数 f (x) ex1 ex1 a sin (x x R ,e 是自然对数的底数,
a 0 )存在唯一的零点,则实数 a 的取值范围为( )
38.若不等式 x e2x a x ln x 1恒成立,则实数 a 的取值范
围是__________.
39.已知函数 f x ln x e a x b ,其中 e 为自然对数的底
数.若不等式
f
x
0
恒成立,则
b a
的最小值为_______.
40.已知函数
f
(x)
x
2 cos
x
,在区间上
0,
4
A.
0,
2
B.
0,
2
C. (0,2]
D. (0,2)
23.已知 a 0 ,b R ,且 ex a(x 1) b 对 x R 恒成立,则 a2b 的 最大值为( )
A. 1 e5
2
B. 1 e5
3
C. 1 e3
2
D. 1 e3
3
k
24.若关于
x
的不等式
1 x
x
1 27
有正整数解,则实数
16 12
7
4
x
x
3y 6 y
的最小值为________.
8
参考答案,仅供参考

高考数学客观题训练【6套】选择、填空题

高考数学客观题训练【6套】选择、填空题

数学PA高考数学客观题训练【6套】选择、填空题专题练习(一)1.已知全集U=R ,集合)(},021|{},1|{N M C x x x N x x M U则≥-+=≥=( )A .{x |x <2}B .{x |x ≤2}C .{x |-1<x ≤2}D .{x |-1≤x <2}2.设,0,0<>b a 已知),(a b m ∈且0≠m ,则m1的取值范围是: ( )A .)1,1(a b B.)1,1(b a C.)1,0()0,1(a b ⋃ D.),1()1,(+∞⋃-∞ab 3.设)(x f '是函数)(x f 的导函数,)(x f y '=的图象如图所示,则)(x f y =的图象最有可能的是4.直线052)3(057)3()1(2=-+-=-+-++yx m m y m x m 与直线垂直的充要条件是( )A .2-=mB .3=mC .31=-=m m 或D .23-==m m 或5.命题“042,2≤+-∈∀x x R x ”的否定为 ( )(A) 042,2≥+-∈∀x x R x (B) 042,2>+-∈∃x x R x (C)042,2≤+-∉∀x x R x (D) 042,2>+-∉∃x x R x6. 若平面四边形ABCD 满足0AB CD +=,()0AB AD AC -⋅=,则该四边形一定是A .直角梯形B .矩形C .菱形D .正方形7.有一棱长为a 的正方体框架,其内放置一气球,是其充气且尽可能地膨胀(仍保持为球的形状),则气球表面积的最大值为 A .2a πB .22a πC .32a πD .42a π8.若22πβαπ<<<-,则βα-一定不属于的区间是 ( )A .()ππ,- B .⎪⎭⎫⎝⎛-2,2ππ C .()π,0 D . ()0,π-9.等差数列{a n } 中,a 3 =2,则该数列的前5项的和为( ) A .10 B .16C . 20D .3210.不等式10x x->成立的充分不必要条件是 A .10x -<<或1x > B .1x <-或01x << C .1x >-D .1x >二、填空题 (每题5分,满分20分,请将答案填写在题中横线上) 11. 线性回归方程ˆybx a =+必过的定点坐标是________. 12. .在如下程序框图中,已知:x xe x f =)(0,则输出的是__________.13. 如图,一个粒子在第一象限运动,在第一秒末,它从原点运 动到(0,1),接着它按如图所示的x 轴、y 轴的平行方向来 回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→ (2,0)→…),且每秒移动一个单位,那么第2008秒末这 个粒子所处的位置的坐标为______。

高考数学复习选填题专项练习22---比较大小(解析版)

高考数学复习选填题专项练习22---比较大小(解析版)

高考数学复习选填题专项练习22---比较大小第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2020·福建高三期末)若0,a b c R >>∈,则( )A .ac bc >B .32a bC .2233a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D .22log log a b >【答案】D 【解析】【分析】取特殊值排除AB 选项,根据指数函数以及对数函数的单调性判断CD 选项. 【详解】当1c =-时,a b ac bc >⇒<,故A 错误;当3,1a b ==时,3212a b=<=,故B 错误; 由于函数23xy ⎛⎫= ⎪⎝⎭在R 上单调递减,a b >,则2233ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故C 错误;由于函数2log yx =在0,上单调递增,0a b >>则22log log a b >,故D 正确;故选:D【点睛】本题主要考查了根据所给条件判断不等式是否成立以及利用函数单调性比较大小,属于基础题.2.(2020·江西省南城一中高三期末)三个数0.20.40.44,3,log 0.5的大小顺序是 ( )A .0.40.20.43<4log 0.5<B .0.40.20.43<log 0.5<4C .0.40.20.4log 0.534<<D .0.20.40.4log 0.543<<【答案】D【解析】由题意得,120.20.4550.40log0.514433<<<==<== D.3.(2020·重庆高三)己知命题:0p x ∀>,lg ln x x <,:0q x ∃>,2x <则下列命题中真命题是( ) A .p q ∧ B .()p q ∧⌝C .p q ∨D .()p q ∨⌝【答案】C 【解析】【分析】分别判断命题,p q 的真假再利用或且非的关系逐个选项判断即可. 【详解】易得当1x =时, lg ln x x =,故p 为假命题.当14x =时, 2x <.故q 为真命题.故p q ∨为真命题.故选:C【点睛】本题主要考查了命题真假的判断,属于基础题型. 4.(2020·钦州市第三中学高三月考)设sin6a π=,2log 3b =,2314c ⎛⎫= ⎪⎝⎭,则( )A .a c b <<B .c a b <<C .b a c <<D .c b a <<【答案】B 【解析】 【分析】利用相关知识分析各值的范围,即可比较大小.【详解】1sin 62a π==,21log 32b <=<,12343111421202c ⎛⎫=<= ⎛⎫⎛⎫<= ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭,c a b ∴<<,故选:B 【点睛】本题主要考查了指数函数的单调性,对数函数的单调性,属于中档题. 5.(2020·福建高三)已知log e a π=,lneb π=,2e lnc π=,则( )A .a b c <<B .b c a <<C .b a c <<D .c b a <<【答案】B 【解析】【分析】因为1b c +=,分别与中间量12做比较,作差法得到12b c <<,再由211log e log e 22a ππ==>,最后利用作差法比较a 、c 的大小即可.【详解】因为1b c +=,分别与中间量12做比较,2223111ln ln e ln 022e 2e b ππ⎛⎫-=-=< ⎪⎝⎭,432211e 1e ln ln e ln 0222c ππ⎛⎫-=-=> ⎪⎝⎭,则12b c <<,211log e log e 22a ππ==>,()112ln ln 20ln ln a c ππππ-=--=+->,所以b c a <<,故选:B . 【点睛】本题考查作差法比较大小,对数的运算及对数的性质的应用,属于中档题.6.(2020·天津二十五中高三月考)已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】D 【解析】 【详解】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a ,b ,c 的大小关系.详解:由题意可知:3337392log log log <<,即12a <<,13111044⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭=,即01b <<, 133317552log log log =>,即c a >,综上可得:c a b >>.本题选择D 选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.7.(2020·榆林市第二中学高三月考)已知函数()f x 是定义在R 上的偶函数,当0x ≥,3()3f x x x =+,则32(2)a f =,31(log )27b f =,c f =的大小关系为( ) A .a b c >> B .a c b >>C .b a c >>D .b c a >>【答案】C 【解析】 【分析】利用导数判断3()3f x x x =+在[0,)+∞上单调递增,再根据自变量的大小得到函数值的大小.【详解】函数()f x 是定义在R 上的偶函数,31(log )(3)(3)27b f f f ∴==-=,320223<<=,当0x ≥,'2()330f x x =+>恒成立,∴3()3f x x x =+在[0,)+∞上单调递增,3231(log )(2)27f f f ∴>>,即b a c >>.故选:C.【点睛】本题考查利用函数的性质比较数的大小,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意将自变量化到同一个单调区间中.8.(2020·内蒙古高三期末)已知π为圆周率,e 为自然对数的底数,则A .e π<3eB .π23e -<32e π-C .log e π>3log eD .π3log e >3log e π【答案】D 【解析】【分析】利用指数函数与对数函数的单调性、不等式的性质即可得出.【详解】对于A :函数y=x e 是(0,+∞)上的增函数,A 错;对于B :π3e ﹣2<3πe ﹣2⇔3e ﹣3<πe ﹣3,而函数 y=x e ﹣3是(0,+∞)上的减函数,B 错;对于C :31133e e e e log e log e log log log log πππ⇔⇔>><,而函数y=log e x 是(0,+∞)上的增函数,C 错,对于D :33333333e e e e log e log e log log log log ππππππππ⇔⇔⇔>>>>,D 正确;故答案为:D .【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题. 9.(2020·天津静海一中高三学业考试)已知()f x 是定义在R 上的偶函数,且在(],0-∞上是增函数.设()8log 0.2a f =,()0.3log 4b f =,()1.12c f =,则a ,b ,c 的大小关系是( )A .c b a <<B .a b c <<C .a c b <<D .c a b <<【答案】A 【解析】 【分析】利用偶函数的对称性分析函数的单调性,利用指数函数、对数函数的单调性比较出 1.180.3log 0.2log 42、、的大小关系从而比较函数值的大小关系.【详解】由题意可知()f x 在(],0-∞上是增函数,在0,上是减函数.因为0.30.30.3100102log log 4log 193-=<<=-,3881log 0.125log 0.2log 10-=<<=, 1.122>, 所以 1.180.3log 0.2log 42<<,故c b a <<.故选:A【点睛】本题考查函数的性质,利用函数的奇偶性及对称性判断函数值的大小关系,涉及指数函数、对数函数的单调性,属于基础题.10.(2020·湖南高三期末)已知 3x >,且357log log log ==x y z ,则下列不等式关系中正确的是( )A .357<<x y zB .753<<z y xC .735<<z x yD .537<<y x z【答案】B 【解析】【分析】令357log log log x y z k ===,求得1313k x -=,1515k y -=,1717k z -=,再根据幂函数的单调性即可得出结论.【详解】令357log log log x y z k ===()1k >,∴3k x =,5ky =,7k z =,∴133133k k x -==,155155k k y -==,177177k k z -==,∵3x >,∴1k >,∴10k ->,∴幂函数1k y x -=在()0,∞+上单调递增,∴1110357k k k ---<<<,∴111111753k k k ---<<,即753<<z y x ,故选:B . 【点睛】本题主要考查指数式与对数式的互化,考查根据幂函数的单调性比较大小,属于中档题.11.(2020·福建高三月考)函数()f x 的定义域为R ,其导函数为()f x ',()01f x x '>+,且(1)=-y f x 为偶函数,则( )A .(2)(1)f f -<B .(2)(1)f f -=C .(2)(1)f f ->D .|(2)||(1)|f f ->【答案】A 【解析】 【分析】根据()01f x x '>+以及(1)=-y f x 为偶函数判断出函数()f x 的单调性和对称性,由此判断出()2f -和()1f 的大小关系.【详解】由于(1)=-y f x 为偶函数,所以函数()f x 关于1x =-对称.由于()01f x x '>+,所以当1,10x x <-+<时()'0f x <,()f x 递减,当1,10x x >-+>时,()'0f x >,()f x 递增.所以(2)(1)f f -<.故选:A【点睛】本小题主要考查利用导数研究函数的单调性,考查函数的奇偶性,考查函数的图像变换,考查函数的对称性,属于中档题.12.(2020·福建高三月考)已知25log 5log 2a =+,25log 5log 2b =⋅,25log 5log 2c =,则( ) A .b a c << B .a b c <<C .b c a <<D . c b a <<【答案】A 【解析】【分析】根据2225552log log 5log 83,0log log 24log 511=<<==<=<,得24a <<,25221log 5log 2log 51log 5b =⋅=⋅=,()()222225log 5log 5log 44log 2c ==>=,再比较. 【详解】因为2225552log log 5log 83,0log log 24log 511=<<==<=<,所以252log 5log 24<+<, 所以24a <<,又因为25221log 5log 2log 51log 5b =⋅=⋅=,()()222225log 5log 5log 44log 2c ==>=, 所以b a c <<.故选:A 【点睛】本题主要考查对数的换底公式和对数比较大小,还考查了运算求解的能力,属于中档题.13.(2020·江西省南城一中高三期末)若23a ⎛= ⎪⎝⎭,log 3b π=,2log ec π=,则a 、b 、c 的大小关系为( )A .c a b >>B .b c a >>C .a b c >>D .b a c >>【答案】D 【解析】 【分析】利用指数函数与对数函数比较a 、b 、c 三个数与0和23的大小关系,进而可得出这三个数的大小关系. 【详解】指数函数23xy ⎛⎫= ⎪⎝⎭为R上的减函数,则22033⎛<<⎪⎝⎭,即023a <<;对数函数log y x π=为()0,∞+上的增函数,()322333ππ⎡⎤=<⎢⎥⎣⎦,233π∴<,所以,232log log 33πππ=<,即23b >;对数函数2log y x =为()0,∞+上的增函数,则22log log 10ec π=<=.因此,b a c >>.故选:D.【点睛】本题考查指数式和对数式的大小比较,一般利用指数函数、对数函数的单调性结合中间值法来得出各数的大小关系,考查推理能力,属于基础题.14.(2020·山西高三月考)若()10,,2nm m n a b e e c >>==+=,则( )A .b a c >>B .a c b >>C .c b a >>D .b c a >>【答案】A 【解析】 【分析】由基本不等式得出2m nm n ++>>,再根据函数的单调性即可比较大小.【详解】当0m n >>时,2m n m n ++>>,且xy e =是定义域R 上的单调增函数,2m n a e+==,所以2m ne+>a c >;又22m n m n e e e++>=,所以21()2m nm ne e e ++>,即b a >;所以b a c >>.故选:A .【点睛】本题主要考查了根据基本不等式和函数的单调性比较大小的问题,意在考查学生对这些知识的理解掌握水平.15.(2020·广西师大附属外国语学校高三)已知函数()1y f x =+是偶函数,且函数()y f x =在区间[)1,∞+上是增函数,则下列大小关系中正确的是( )A .()211log 323f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()211log 323f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭ C .()211log 332f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()211log 332f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】 【分析】根据函数()1y f x =+是偶函数,关于x =0对称,则()y f x =的图象关于直线x =1对称,结合单调性比较大小.【详解】函数()1y f x =+是偶函数,关于x =0对称,()y f x =的图象关于直线x =1对称,且在区间[)1,∞+上是增函数,则在(0,1)上为减函数,1123>,2211322303327log log --=>, ()22119230228log log --=>, 所以()2211112332323log f f log f ⎛⎫⎛⎫>-><< ⎪ ⎪⎝⎭⎝⎭.故选:D 【点睛】此题考查函数奇偶性的辨析,根据对称性和单调性比较函数值的大小关系,关键在于准确识别函数的单调区间.16.(2020·山西高三月考)已知()f x 是定义在(0,)+∞上的可导函数,满足(1)1f =,2()()xf x f x x '-<,则不等式①(2)2f <,②(2)4f <,③1122⎛⎫> ⎪⎝⎭f ,④1124f ⎛⎫< ⎪⎝⎭中一定成立的个数为( ) A .1 B .2C .3D .4【答案】A 【解析】【分析】根据题意构造函数()()f x g x x=-x ,并判断其在(0,+∞)上单调递减,然后分别算出g (1)、g (2)和g (12),并利用单调性比较大小,即可判断每个选项. 【详解】令()()f x g x x=-x ,则()()()2''xf x f x g x x -=-1()()22'xf x f x x x --=,∵xf '(x )﹣f (x )<x 2,∴g '(x )<0在(0,+∞)上恒成立,即g (x )在(0,+∞)上单调递减, ∵f (1)=1,∴()()1111101f g =-=-=,对于()()()222102f g g =-=<,即f (2)<4,∴①错误,②正确;对于()1112101222f g g ⎛⎫ ⎪⎛⎫⎝⎭=-= ⎪⎝⎭>,即1124f ⎛⎫ ⎪⎝⎭>,∴③和④均错误;因此一定成立的只有②,故选:A .【点睛】本题主要考查导数的综合应用,构造新函数是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.。

高考数学选择、填空题专项训练(共40套)[附答案]

高考数学选择、填空题专项训练(共40套)[附答案]

三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( )A.6556B.-6556C.-6516D. 65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒) 12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒)1212.412.81312.212.812.312.5根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________. 答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.D 9.A 10.C 11.B 12.B二、13.(21,1) 14.6 15. 21三基小题训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点 A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不 同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( ) A.(3,0) B.(2,0) C.(1,0) D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( ) A.(a ,-b ) B.(-a ,b ) C.(b ,-a ) D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m β.给出四个命题:(1)若α∥β,则l ⊥m ; (2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.2EF DOC BA10.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132-二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________.14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。

高考数学复习题型及答案

高考数学复习题型及答案

高考数学复习题型及答案一、选择题1. 函数f(x)=x^2+2x+1的图像是:A. 一条直线B. 一个开口向上的抛物线C. 一个开口向下的抛物线D. 一个圆答案:B2. 已知等差数列{an}的首项a1=2,公差d=3,则其第10项a10的值为:A. 29B. 32C. 35D. 41答案:A二、填空题3. 若复数z=1+i,则|z|=________。

答案:√24. 已知函数f(x)=x^3-3x^2+2,求f'(x)=________。

答案:3x^2-6x三、解答题5. 求证:对于任意实数x,不等式x^2+x+1>0恒成立。

证明:要证明x^2+x+1>0恒成立,只需证明其判别式Δ<0。

计算判别式Δ=1^2-4×1×1=-3<0,因此原不等式恒成立。

6. 已知数列{an}满足a1=1,an+1=2an+1,求数列{an}的通项公式。

解:由递推关系an+1=2an+1,可得an+1+1=2(an+1),即数列{an+1}是首项为2,公比为2的等比数列。

因此,an+1=2^n,进而得到an=2^(n-1)-1。

四、计算题7. 计算定积分∫₀^₁x^2dx。

解:∫₀^₁x^2dx=(1/3)x^3|₀^₁=1/3。

8. 计算二重积分∬D(x^2+y^2)dσ,其中D是由x^2+y^2≤1所围成的圆盘。

解:∬D(x^2+y^2)dσ=∫₀^π∫₀^1(r^2cos^2θ+r^2sin^2θ)rdrdθ=∫₀^π∫₀^1r^3 dθ dr=(π/2)∫₀^1r^3dr=(π/2)(1/4)=π/8。

以上题型涵盖了高考数学中常见的选择题、填空题、解答题和计算题,通过这些题型的练习,可以有效地复习和巩固数学知识,为高考做好充分的准备。

2023年高考数学复习压轴题专练(选择+填空)专题02 函数的奇偶性与单调性

2023年高考数学复习压轴题专练(选择+填空)专题02 函数的奇偶性与单调性

专题02 函数的奇偶性与单调性【方法点拨】1. 若函数f (x )为偶函数,则f (x )=f (|x |),其作用是将“变量化正”,从而避免分类讨论.2. 以具体的函数为依托,而将奇偶性、单调性内隐于函数解析式去求解参数的取值范围,是函数的奇偶性、单调性的综合题的一种重要命题方式,考查学生运用知识解决问题的能力,综合性强,体现能力立意,具有一定难度.【典型题示例】例1 (2022·江苏新高考基地高三第一次联考·19改编)已知函数f (x )=1-a5x +1为奇函数,且存在m ∈[-1,1],使得不等式f (x 2)+f (mx -2)≤2-x 2-mx 成立,则x 的取值范围是 . 【答案】[-2,2]【解析】求得a =2,且f (x )为R 上的增函数,f (x 2)+f (mx -2)≤2-x 2-mx 可化为f (x 2)+x 2≤2-mx -f (mx -2) 由f (x )为奇函数,得2-mx -f (mx -2)= 2-mx +f (2-mx )令F (x )=f (x )+x ,则F (x 2)≤F (2-mx ),故有x 2≤2-mx ,即x 2+mx -2≤0 令G (x )= x 2+mx -2因为存在m ∈[-1,1],使G (x )= x 2+mx -2≤0 故G (-1)= x 2-x -2≤0或G (1)= x 2+x -2≤0 解之得-2≤x ≤2.例2 已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,在f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________. 【答案】1[1,]2-【分析】直接发现函数的单调性、奇偶性,将2(1)(2)0f a f a -+≤移项,运用奇偶性再将负号移入函数内,逆用单调性脱“f ”.【解析】 ∵f (-x )=(-x )3+2x +e -x -e x =-f (x )且x ∈R , ∴f (x )是奇函数∵函数f (x )=x 3-2x +e x -1ex ,∴f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex ≥0(当且仅当x =0时取等号),∴f (x )在R 上单调递增.,由f (a -1)+f (2a 2)≤0,得f (2a 2)≤f (1-a ). 所以2a 2≤1-a ,解之得-1≤a ≤12.所以实数a 的取值范围是⎣⎡⎦⎤-1,12. 例3 已知函数()e +1e x x f x -=-(e 为自然对数的底数),若2(21)42)(f x f x +->-,则实数x 的取值范围为 . 【答案】()1,3-【分析】本题是例2的进一步的延拓,其要点是需对已知函数适当变形,构造出一个具有奇偶性、单调性的函数,其思维能力要求的更高,难度更大.【解析】令()()1e e x xx F x f -=-=-,易知()F x 是奇函数且在R 上单调递增由2(21)42)(f x f x +->-得[]2(4)11(21)(21)1f x f x f x -->--=--- 即2(4)(21)F x F x ->--由()F x 是奇函数得(21)(12)F x F x ---=,故2(4)(12)F x F x ->-由()F x 在R 上单调递增,得2412x x ->-,即2302x x -<-,解得13x -<<, 故实数x 的取值范围为()1,3-.例4 已知函数()222131x x f x x =-++.若存在()1,4m ∈使得不等式()()2432f ma f m m -++>成立,则实数a 的取值范围是________.【答案】(),8-∞【分析】令()()1F x f x =-,判断函数()F x 的奇偶性与单调性,从而将不等式转化为234m m ma +>-,分离参数可得43a m m<++,令4()3g m m m =++,(1,4)m ∈,利用对勾函数的单调性可得()8g m <,结合题意即可求解a 的取值范围. 【解析】函数222()()131xx f x f x x ==-++,若存在(1,4)m ∈使得不等式2(4)(3)2f ma f m m -++>成立,令2222()()1(31)3131xx x x x F x f x x =-=-=-++,22(31)(13)()()3113x x xxx x F x F x -----===-++, 所以,()F x 为奇函数.不等式2(4)(3)2f ma f m m -++>,即2(4)1(3)10f ma f m m --++->, 即2(4)(3)0F ma F m m -++>,所以2(3)(4)(4)F m m F ma F ma +>--=-, 因为20y x=>在(0,)+∞上为增函数,21031x y =->+在(0,)+∞上为增函数,所以22()(1)31x F x x =-+在(0,)+∞上为增函数, 由奇函数的性质可得()F x 在R 上为增函数,所以不等式等价于234m m ma +>-,分离参数可得43a m m<++, 令4()3g m m m=++,(1,4)m ∈, 由对勾函数的性质可知()g m 在(1,2)上单调递减,在(2,4)上单调递增,g (1)8=,g (4)8=,所以,()8g m <,所以由题意可得8a <, 即实数a 的取值范围是(,8)-∞. 故答案为:(,8)-∞.例5 已知函数112,1()2,1x x x f x x --⎧≥=⎨<⎩,若()2(22)2f x f x x -≥-+,则实数x 的取值范围是( ) A .[2,1]-- B .[1,)+∞C .RD .(,2][1,)-∞-+∞【答案】D【解析】函数1112,1()22,1x x x x f x x ----⎧==⎨<⎩,故()f x 关于直线1x =对称,且在[1,)+∞上单减,函数()f x 的图象如下: 2(22)(2)x f x x --+,且f22172()124x x x -+=-+>恒成立,2|221|21x x x ∴---+-,即2|23|1x x x --+,当32x时,不等式化为:2231x x x --+,即2340x x -+,解得x ∈R ,即32x ;当32x <时,不等式化为:2321x x x --+,即220x x +-,解得2x -或1x ,即2x -或312x <;综上,2(22)(2)f x f x x --+时,实数x 的取值范围是(-∞,2][1-,)+∞. 故选:D .例6 已知函数,,则t 的取值范围是 . 【答案】[1,)+∞【分析】将已知按照“左右形式相当,一边一个变量”的原则,移项变形为3133(3log 1)log (12log )f t t f t -≥--,易知是奇函数,故进一步变为3333(3log 1)(3log 1)(2log 1)(2log 1)f t t f t t -+-≥-+-(#),故下一步需构造函数()()F x f x x =+,转化为研究()()F x f x x =+的单调性,而()()F x f x x =+单增,故(#)可化为3log 0t ≥,即333log 12log 1t t -≥-,解之得1t ≥.例7 (2022·江苏南通期末·8)已知函数()422xf x x =-+,()3log 2a f =,()4log 3b f =,43c f ⎛⎫= ⎪⎝⎭,则( )A. a b c <<B. b c a <<C. c a b <<D.c b a <<【答案】B【分析】分析可知函数()f x 在()1,+∞上为增函数,推导出函数()f x 的图象关于直线1x =对称,则函数()f x 在(),1-∞上为减函数,可得出23c f ⎛⎫= ⎪⎝⎭,利用函数()f x 在(),1-∞上()33x xf x -=-3313(12log )(3log 1)log f t f t t -+-≥3313(12log )(3log 1)log f t f t t -+-≥()33x xf x -=-的单调性可得出a 、b 、c 的大小关系.【解析】令()422xg x x =-+,其中x ∈R ,则()10g =, 因为函数y x =、422x y =-+均为R 上的增函数,故函数()g x 也为R 上的增函数,当1x >时,()()10g x g >=,此时()442222x x f x x x =-=-++,故函数()f x 在()1,+∞上为增函数,因为()()2322222244222222222x xxx x f x x x x -----+--=--=-=-+++ ()()3222442222222xxx x x x x x x f x --⋅=-=-=-=+++故函数()f x 的图象关于直线1x =对称,则函数()f x 在(),1-∞上为减函数, 所以,4233c f f ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭, 3223<,则3lg 22lg3<,即3lg 22log 2lg 33=<, 2343<,则2lg 43lg3<,则4lg 32log 3lg 43=>,即342log 2log 313<<<, 因此,b c a <<. 故选:B.【巩固训练】1.若函数(()=ln f x x x +为偶函数,则实数a = 2.设函数()()21ln 11f x x x=+-+,则使得()()1f x f >成立的x 的取值范围是( ). A .()1,+∞ B .()(),11,-∞-+∞ C .()1,1- D .()()1,00,1-3.已知函数1()22x x f x =-,则满足2(5)(6)0f x x f -+>的实数x 的取值范围是 .4. 已知函数()||31f x x x x =⋅++,若()2()22f a f a +-<,则实数a 的取值范围__________.5.已知函数222,0()2,0x x x f x x x x ⎧+≥=⎨-<⎩,若()()22f a f a ->,则实数a 的取值范围是__________.6.已知函数()x xg x e e -=-,()()f x xg x =,若1ln 3a f ⎛⎫= ⎪⎝⎭,140.2b f ⎛⎫= ⎪⎝⎭,()1.25c f =,则a 、b 、c 的大小关系为( )A .b a c <<B .c b a <<C .b c a <<D .a b c <<7. (多选题)关于函数12()11xf x x e ⎛⎫=+ ⎪-⎝⎭下列结论正确的是( ) A .图像关于y 轴对称 B .图像关于原点对称 C .在(),0-∞上单调递增D .()f x 恒大于08.已知函数())20202020log 20201xx f x x -=+-+,则关于x 的不等式()()21120f x f x +++->的解集为( ).A .1,2020⎛⎫-+∞ ⎪⎝⎭B .()2020,-+∞C .2,3⎛⎫-+∞ ⎪⎝⎭D .2,3⎛⎫-∞-⎪⎝⎭9.已知函数222()131x x f x x =-++.若存在m ∈(1,4)使得不等式(4)f ma -+2(3)2f m m +>成立,则实数a 的取值范围是A . (),7-∞B . (],7-∞C . (),8-∞D . (],8-∞ 10. 已知函数()e e 2sin xxf x x -=--,则关于x不等式()()2320f x f x -+<的解集为( ) A. ()3,1-B. ()1,3-C. ()(),31,-∞-⋃+∞D. []1,3-11. 已知()sin xxf x e e x x -=-+-,若2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭恒成立,则实数a 的取值范围___.12.已知()sin xxf x e ex x -=-+-,若2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭恒成立,则实数a 的取值范围_ __. 13. 已知函数()1e e 21x x xf x -=+-+,若不等式()()2121f ax f ax +-≥对x ∀∈R 恒成立,则实数a 的取值范围是( ) A .(]0,eB .[]0,eC .(]0,1D .[]0,114.已知函数()())2+1sin lnf x x x x =++,若不等式()()39334x x xf f m -+⋅-<对任意x ∈R 均成立,则m 的取值范围为( )A .(),1-∞B .(),1-∞-C .()1-D .()1,-+∞【答案或提示】1.【答案】1【解析】(g()=ln x x +奇函数,g(0)=0=,1a =.2. 【答案】B【解析】()f x 偶函数,且在(0,)+∞单增,()()1f x f >转化为1x >,解得1x >或1x <-. 3.【答案】(2,3)【解析】()f x 奇函数,且单减,2(5)(6)0f x x f -+>转化为2560x x -+<,解得23x <<.4. 【答案】(2,1)-【解析】设()||3g x x x x =⋅+,则()g x 奇函数,且单增,而()()1f x g x =+,由()2()22f a f a +-<得()2211()f a f a --<-即()22()()g a g a g a -<-=-,故22a a -<-,解之得21a -<<.5.【答案】(2,1)-【解析】22y x x =+在[0,)+∞上单调递增,22y x x =-在(,0)-∞上单调递增,且220+20=200⨯⨯-,()f x ∴在R 上单调递增,因此由()()22f a f a ->得2221aa a ->∴-<<,,故答案为:()2,1-6. 【答案】A 【解析】()()()x x f x xg x x e e -==-,该函数的定义域为R ,()()()x x x x f x x e e x e e ---=--=-,所以,函数()y f x =为偶函数,当0x >时,()0xxg x e e-=->,任取120x x >>,12x x -<-,则12x xe e >,12x x e e --<,所以,1122x x x x e e e e --->-,()()120g x g x ∴>>,()()1122x g x x g x ∴>,即()()12f x f x >,所以,函数()y f x =在()0,∞+上单调递增,()11ln lnln333a f f f ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 10 1.2400.20.21ln355<<=<<<,则()()1 1.240.2ln 35f f f ⎛⎫<< ⎪⎝⎭,即b a c <<.故选:A. 7.【答案】ACD 8. 【答案】C【解析】构造函数()())202012020log 2020xx F x fx x -=-=+-,x>=0x>,所以()F x 的定义域为R .())20202020log 2020x xF x x --=+-20202020log 2020x x xx -⎡⎤=+-20202020log 2020x x-⎡⎤=+-)()20202020log 2020x x x F x -=--=-,所以()F x 为奇函数, ()00F =.当0x >时,)20202020,2020,log x xy y y x -==-=都为增函数,所以当0x >时,()F x 递增,所以()F x 在R 上为增函数.由()()21120f x f x +++->,得()()211110f x f x +-++->, 即()()2110F x F x +++>,所以2110x x +++>,解得23x >-. 所以不等式的解集为2,3⎛⎫-+∞ ⎪⎝⎭.故选:C 9. 【答案】C【解析】22222231()1111313131xx x x x f x x x x -⎛⎫=-+=-+=⋅+ ⎪+++⎝⎭设231()()131x x g x f x x -=-=⋅+,则()g x 为定义在R 的奇函数所以()f x 关于点()0,1对称又2223131312ln 33()231313131x x x xx x x x x g x x x x '⎡⎤---⋅⋅''⎡⎤=⋅+⋅=⋅+⎢⎥⎣⎦++++⎣⎦所以当0x >时,()0g x '>,()g x 在()0,+∞上单增 故()g x 在(),-∞+∞上也单增因为2(4)(3)2f ma f m m -++>可化为2(4)1(3)1f ma f m m -->-++所以2(4)(3)g ma g m m ->-+因为()g x 为R 的奇函数,22(4)(3)(3)g ma g m m g m m ->-+=--所以243ma m m ->--又因为存在m ∈(1,4)使得不等式243ma m m ->--成立,分参得43a m m<++ 易得[)437,8m m++∈,所以8a <,故选C . 10.【答案】A【分析】根据题意可判断函数()e e 2sin xxf x x -=--为奇函数且在R 上单调递增,进而根据奇偶性与单调性解不等式即可.【解析】函数()e e 2sin xxf x x -=--的定义域为R ,()()()e e 2sin e e 2sin x x x x f x x x f x ---=---=-+=-,所以函数()e e 2sin xxf x x -=--为奇函数,因为()'e e 2cos 22cos 0xxf x x x -=+-≥-≥,所以函数()e e 2sin xxf x x -=--在R 上单调递增,所以()()()()()22320322f x f x f x f x f x -+<⇔-<-=-,所以232x x -<-,即2230x x +-<,解得31x -<< 所以不等式()()2320f x f x -+<的解集为()3,1-故选:A11.【答案】12ln 2,2⎡⎫-+∞⎪⎢⎣⎭【分析】先分析()f x 的奇偶性和单调性,则2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭等价于2(2ln(1))2x f a x f ⎛⎫-+≥- ⎪⎝⎭,所以22ln(1)2x a x -+≥-,可转化为2()2ln(1)2x a g x x ≥=-++,即max ()a g x ≥,求max ()g x 即得解【解析】因为()()sin xx f x ee x xf x --=--+=-,所以()f x 是R 上的奇函数,()cos 1x xf x e e x -'=++-,()cos 1cos 11cos 0x x f x e e x x x -'=++-≥-=+≥,所以()f x 是R 上的增函数,2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭等价于22(2ln(1))22x x f a x f f ⎛⎫⎛⎫-+≥-=- ⎪ ⎪⎝⎭⎝⎭,所以22ln(1)2x a x -+≥-,所以22ln(1)2x a x ≥-++,令2()2ln(1)2x g x x =-++,则max ()a g x ≥, 因为()()g x g x -=且定义域为R ,所以()g x =22ln(1)2x x -++是R 上的偶函数, 所以只需求()g x 在()0,∞+上的最大值即可.当[)0,x ∈+∞时,2()2ln(1)2x g x x =-++,()()22122()111x x x x g x x x x x +---+'=-+==-+++, 则当[)0,1x ∈时,()0g x '>;当[)1,x ∈+∞时,()0g x '<;所以()g x 在[)0,1上单调递增,在[)1,+∞上单调递减, 可得:max 1()(1)2ln 22g x g ==-,即12ln 22a ≥-. 故答案为:12ln 2,2⎡⎫-+∞⎪⎢⎣⎭. 12.【答案】12ln 2,2⎡⎫-+∞⎪⎢⎣⎭【分析】先分析()f x 的奇偶性和单调性,则2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭等价于2(2ln(1))2x f a x f ⎛⎫-+≥- ⎪⎝⎭,所以22ln(1)2x a x -+≥-,可转化为2()2ln(1)2x a g x x ≥=-++,即max ()a g x ≥,求max ()g x 即得解 【解析】因为()()sin x x f x e e x x f x --=--+=-,所以()f x 是R 上的奇函数,()cos 1x x f x e e x -'=++-,()cos 1cos 11cos 0x x f x e e x x x -'=++-≥-=+≥,所以()f x 是R 上的增函数,2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭等价于22(2ln(1))22x x f a x ff ⎛⎫⎛⎫-+≥-=- ⎪ ⎪⎝⎭⎝⎭, 所以22ln(1)2x a x -+≥-,所以22ln(1)2x a x ≥-++, 令2()2ln(1)2x g x x =-++,则max ()a g x ≥,因为()()g x g x -=且定义域为R ,所以()g x =22ln(1)2x x -++是R 上的偶函数,所以只需求()g x 在()0,∞+上的最大值即可.当[)0,x ∈+∞时,2()2ln(1)2x g x x =-++,()()22122()111x x x x g x x x x x +---+'=-+==-+++,则当[)0,1x ∈时,()0g x '>;当[)1,x ∈+∞时,()0g x '<;所以()g x 在[)0,1上单调递增,在[)1,+∞上单调递减, 可得:max 1()(1)2ln 22g x g ==-,即12ln 22a ≥-. 故答案为:12ln 2,2⎡⎫-+∞⎪⎢⎣⎭. 13.【答案】D【分析】构造函数()()12g x f x =-,判断函数的奇偶性与单调性,将所求不等式转化为()()2111222f ax f ax ⎡⎤-≥---⎢⎥⎣⎦,即()()221g ax g ax ≥-,再利用函数单调性解不等式即可. 【解析】()1e e 21x x x f x -=+-+, ()()1111e e e e 121212121x x x x x x x x f x f x ----∴+-=+-+-+=++=+++令()()12g x f x =-,则()()0g x g x +-=,可得()g x 是奇函数,又()()()2121e e e e e 21e 21ln 2ln 2++2122x x x x x x x x x x x g x --'⎛⎫''=+-== ⎪+⎝++--+⎭, 又利用基本不等式知e 2+1e x x ≥当且仅当1e ex x =,即0x =时等号成立; ln 2ln 214222x x ≤++当且仅当122x x =,即0x =时等号成立; 故()0g x '>,可得()g x 是单调增函数,由()()2121f ax f ax +-≥得()()()21111212222f ax f ax f ax ⎡⎤-≥--+=---⎢⎥⎣⎦, 即()()()21221g ax g ax g ax ≥--=-,即2210ax ax -+≥对x ∀∈R 恒成立. 当0a =时显然成立;当0a ≠时,需20440a a a >⎧⎨∆=-≤⎩,得01a <≤, 综上可得01a ≤≤,故选:D.14.【答案】A【分析】由题设,构造()()2g x f x =-,易证()g x 为奇函数,利用导数可证()g x 为增函数,结合题设不等式可得(39)(33)x x x g g m -<-⋅,即3313x x m <+-对任意x ∈R 均成立,即可求m 的范围.【解析】由题设,令()()22sin )g x f x x x x =-=++,∴()2sin())2sin )()g x x x x x x x g x -=-+-+=---=-,∴()g x 为奇函数,又()2cos 0g x x '=++>,即()g x 为增函数,∴()()39334x x x f f m -+⋅-<,即(39)2[(33)2]x x x f f m --<-⋅--, ∴(39)(33)(33)x x x x g g m g m -<-⋅-=-⋅,则3933x x x m -<-⋅,∴3313x x m <+-对任意x ∈R 均成立,又331113x x +-≥=,当且仅当12x =时等号成立,∴1m <,即m ∈(),1-∞.故选:A。

2023年高考数学复习压轴题专练(选择+填空)专题12 双变量不等式类能成立、恒成立问题

2023年高考数学复习压轴题专练(选择+填空)专题12 双变量不等式类能成立、恒成立问题

专题12 双变量不等式类能成立、恒成立问题【方法点拨】1.∀x 1∈D , ∀x 2∈E,均有f (x 1) >g (x 2)恒成立,则f (x )min > g (x )ma x ; ∀x 1∈D , ∃x 2∈E, 使得f (x 1) >g (x 2)成立,则f (x )m in > g (x ) m in ; ∃x 1∈D , ∃x 2∈E , 使得f (x 1) >g (x 2)成立,则f (x ) ma x > g (x ) min .记忆方法:都任意,大小小大(即对于两个变量都是“任意”的,不等式中较大者的最小值大于不等式中较小者的最大值),存在换任意,大小应互换.2.双元型不等式恒成立、能成立问题一般应遵循“双元化一元,逐一处理”的策略,即选择主次元的方法,一般应”先独立后分参”,即先处置独立变量(所谓”独立变量”是指与所求参数无关的变量),再处置另一变量,而解题过程中往往采取分参方法.【典型题示例】例1 已知0a >,b R ∈,若()3242||2ax bx ax bx a b x b -+≤+++对任意122x ⎡⎤∈⎢⎥⎣⎦,都成立,则ba的取值范围是______. 【答案】2,5⎡⎫+∞⎪⎢⎣⎭【分析】不等式化为221121b b b b x x a x a a a x -+≤+⋅+⋅+,令1t x x =+,52,2t ⎡⎤∈⎢⎥⎣⎦,可得21b b t t a a +≥-,分别讨论0b a =,0b a <,和0ba>时,求最值可得出. 【解析】不等式两边同时除以2ax 得221121b b b bx x a x a a ax -+≤+⋅+⋅+, 整理得2111b b x x a x x a⎛⎫++≥+- ⎪⎝⎭,令1t x x =+,122x ⎡⎤∈⎢⎥⎣⎦,,则52,2t ⎡⎤∈⎢⎥⎣⎦,则21b b t t a a +≥-, 由于对任意122x ⎡⎤∈⎢⎥⎣⎦,都成立,则有21b b t t a a +≥-对任意52,2t ⎡⎤∈⎢⎥⎣⎦恒成立, (1)当0ba=时,1t ≥不成立,不符合题意; (2)当0b a <时,则当52t =时,不等式左边取到最小,右边取到最大,满足题意, 则255142b b a a ⋅+≥-,解得629b a ≥,与0ba<矛盾,不符合; (3)当0b a >时,①当52b a ≥时,则当2t =时,不等式左边取到最小,右边取到最大,满足题意, 则412b b a a ⋅+≥-,解得1b a ≥-,∴52b a ≥; ②当02b a <≤时,有21b bt t a a⋅+≥-,即2111b t a t t t ≥=++,则当2t =时,11t t +取得最大值为25,则25b a ≥,225ba ∴≤≤; ③当522b a <<时,211b b t t a a ⋅+>>-恒成立,满足题意,综上所述,b a 的取值范围是2,5⎡⎫+∞⎪⎢⎣⎭. 故答案为:2,5⎡⎫+∞⎪⎢⎣⎭. 例 2 已知函数)10)((log )(2≠-=a a x ax x f a ,且>,若对]3,2[1∈∀x ,总]4,3[2∈∃x ,使得)8(log )(21x x f a ->,则实数a 的取值范围是 .【答案】183,,292⎛⎫⎛⎫⋃+∞ ⎪ ⎪⎝⎭⎝⎭【分析】即[]min min ()log (8)a f x x >-.当1a >时,[]min log (8)log 4a a x -=,故只需()log 4a f x >,所以()2min4ax x ->即24ax x ->对[2,3]x ∀∈恒成立,分参得214a x x >+,令111()32t t x =≤≤,24a t t >+,()()221max23442t a t tt t=>+=+=,故32a >; 当01a <<时,[]min log (8)log 5a a x -=,故只需()log 5a f x >,所以()2max4ax x-<,且()2min0axx->,即205ax x <-<对[2,3]x ∀∈恒成立,分参得2115a x x x<<+,令111()32t t x =≤≤,25t a t t <<+,()()22max 1min3185529t t a t tt t==<<+=+=,故1829a <<; 综上,实数a 的取值范围183,,292⎛⎫⎛⎫⋃+∞ ⎪ ⎪⎝⎭⎝⎭.例3 已知函数xx x f 214)(-=,若对任意]21[1,∈x ,都存在]21[2,∈x 使)(22121x f bx x ≥-成立,则实数b 的取值范围是 .【解析】由条件可知min min 2)()2(x f bx x ≥-因为()22x xf x -=-,且2x y =、2x y -=-在[1,2]上单调递增所以函数)(x f 在[1,2]上单调递增,23)1()(min ==f x f , 所以23)2(min 2≥-bx x ,即2322≥-bx x 在]21[,∈x 恒成立, 即x x b 232-≤在]21[,∈x 恒成立,记]2,1[,23)(∈-=x xx x h , 易证)(x h 在[1,2]上单调递增,所以,21)1()(min -==h x h ,从而只需212-≤b ,即41-≤b . 点评:为避免求函数22y x bx =-最小值时的含参讨论,逆向转化为2322x bx -≥在]21[,∈x 上恒成立,再利用分离参数求解.此种处理手段太重要,意味深长!! 例4 已知函数()2xf x =,()()()g x f x f x =+,若1x ∀∈(0,+∞),2x ∃∈[﹣1,0],使得112(2)()2()0g x ag x g x ++>成立,则实数a 的取值范围是 .【解析】双变量问题,逐一突破,这里先处理不含参部分当[1,0]x ∈-时,,,则,即在所以,所以又,当且仅当时取等号,所以实数点评:存在性和恒成立混合问题注意理解题意,不等关系转化为最值的关系.例5 若对任意Rx∈1,存在2(1,2]x∈,使不等式3221222121++≥++mxxxxxx成立,则实数m的取值范围是 .【答案】]21,(-∞【解析一】先视为以“1x”为主元的二次不等式的恒成立,即不等式03)2(2221221≥--+-+mxxxxx在Rx∈1上恒成立,所以0)3(4)2(22222≤----=∆mxxx,即016)44(3222≥---xmx,存在2(1,2]x∈,使不等式016)44(3222≥---xmx成立,再视为以“2x”为元的二次不等式的存在性问题,即能成立,设16)44(3)(2222---=xmxxh,则只需(1)0h>或0)2(≥h,即94m<-或21≤m,所以实数m的取值范围为]21,(-∞.【解析二】先视为以“1x”为主元的二次不等式的恒成立,即不等式03)2(2221221≥--+-+mxxxxx在Rx∈1上恒成立,所以0)3(4)2(22222≤----=∆mxxx,即016)44(3222≥---xmx,存在2(1,2]x∈,使不等式016)44(3222≥---xmx成立,再视为以“2x”为元的二次不等式的存在性问题,即能成立,即016)44(3222≥---xmx在2(1,2]x∈能成立分离变量得2216443m xx-≤-设16()3g x xx=-,则16()3g x xx=-在区间(1,2]上单增,所以max()(2)2g x g==-,故442m-≤-,即12m≤所以实数m的取值范围为]21,(-∞.1.点评:二元存在性、恒成立问题应考虑“主次元”思想;2.解法二用到了“分离参数”构造函数的方法,一般来说,求参变量范围问题,应尽量做到“能分则分”,以避免参数参与运算带来的分类讨论等不必要的麻烦.例6 设a >0,函数f (x )=x +a 2x,g (x )=x -ln x +4,若对任意的x 1∈[1,e],存在x 2∈[1,e],都有f (x 1)≥g (x 2)成立,则实数a 的取值范围为___________. 【答案】⎣⎡⎭⎫52,+∞ 【分析】问题可转化为f (x )min ≥g (x )min ,函数g (x )不含参,易求得g (x )min =g (1)=5,接下来的思路有二,一是直接分类讨论求f (x )min ,二是将f (x )min ≥g (x )mi 转化为f (x )=x +a 2x ≥5恒成立,通过分离参数再解决 【解析】 问题可转化为f (x )min ≥g (x )min .当x ∈[1,e]时,g ′(x )=1-1x ≥0,故g (x )在[1,e]上单调递增,则g (x )min =g (1)=5.思路一:又f ′(x )=1-a 2x 2=x 2-a 2x 2,令f ′(x )=0,易知x =a 是函数f (x )的极小值.当a ≤1时,f (x )min =1+a 2,则1+a 2≥5,不成立; 当1<a ≤e 时,f (x )min =f (a )=2a ,则2a ≥5,得52≤a ≤e ;当a >e 时,f (x )min =f (e)=e +a 2e ≥5显然成立,得a 2>5e -e 2,所以a >e.综上所述,实数a 的取值范围为⎣⎡⎭⎫52,+∞. 思路二:故有f (x )min ≥5,即f (x )=x +a 2x ≥5恒成立,分离参数得a 2≥x (5- x ),易得[x (5- x )]max =254,又a >0,故a ≥52所以实数a 的取值范围为⎣⎡⎭⎫52,+∞.例7 已知函数f (x )=x 2-2ax +1,g (x )=ax,其中a >0,x ≠0.(1) 对任意的x ∈[1,2],都有f (x )>g (x )恒成立,求实数a 的取值范围;【解析】由题意知,f (x )-g (x )>0对x ∈[1,2]恒成立,即x 2-2ax +1-ax >0对x ∈[1,2]恒成立,即a <x 3+x 2x 2+1对x ∈[1,2]恒成立,令φ(x )=x 3+x2x 2+1,只需a <φ(x )min (x ∈[1,2]).由于φ′(x )=2x 4+x 2+12x 2+12>0,故φ(x )在x ∈[1,2]上是增函数,φ(x )min =φ(1)=23,所以a 的取值范围是⎝⎛⎭⎫0,23. (2) 对任意的x 1∈[1,2],存在x 2∈[1,2],使得f (x 1)>g (x 2)恒成立,求实数a 的取值范围. 【解析】 由题意知x 2-2ax +1>⎝⎛⎭⎫a x min =a 2,即a <2(x 2+1)4x +1对x ∈[1,2]恒成立.令φ(x )=2(x 2+1)4x +1,则φ′(x )=8(x 2-1)+4x(4x +1)2>0对x ∈[1,2]恒成立,则φ(x )在[1,2]上是增函数,φ(x )min =φ(1)=45,所以a 的取值范围是⎝⎛⎭⎫0,45. 点评:防止误将∀x ∈D ,均有f (x ) >g (x )恒成立,转化为f (x )min > g (x )ma x ,一般应作差构造函数F (x )=f (x )-g (x ),转化为F (x ) min >0恒成立.例8 已知函数()2ln x f x a x x a =+-(0a >且1a ≠),若对任意的12,x x [1,2]∈,不等式122()()1f f a x x a ≤--+恒成立,则实数a 的取值范围为________.【答案】)2e ,⎡+∞⎣【分析】求导()()1ln 2'=-+xf x a a x ,分01a <<,1a >,求得()()12max -⎡⎤⎣⎦f x f x ,再根据对任意的1x ,2x [1,2]∈,不等式122()()1f f a x x a ≤--+恒成立求解.【解析】因为函数()2ln xf x a x x a =+-(0a >且1a ≠),所以()()1ln 2'=-+xf x a a x ,当01a <<,[]1,2x ∈时,10,ln 0x a a -<<, 则()0f x '>在[]1,2上成立, 所以()f x []1,2上递增,所以()()()()2max min 242ln ,11ln ==+-==+-f x f a a f x f a a ,所以()()212max 3ln -=-+-⎡⎤⎣⎦f x f x a a a ,因为任意的1x ,2x [1,2]∈,不等式122()()1f f a x x a ≤--+恒成立,所以2213ln -+≥-+-a a a a a ,即ln 2a ≥, 解得2e a ≥,当1a >,[]1,2x ∈时,10,ln 0xa a ->>,则()0f x '>在[]1,2上成立,所以()f x 在[]1,2上递增,所以()()()()2max min 242ln ,11ln ==+-==+-f x f a a f x f a a ,所以()()212max 3ln -=-+-⎡⎤⎣⎦f x f x a a a ,因为任意的1x ,2x [1,2]∈,不等式122()()1f f a x x a ≤--+恒成立,所以2213ln -+≥-+-a a a a a ,即ln 2a ≥, 解得2e a ≥,综上:实数a 的取值范围为)2e ,⎡+∞⎣, 故答案为:)2e ,⎡+∞⎣【巩固训练】1.已知函数f (x )=x 2-2x +3,g (x )=log 2x +m ,对任意的x 1,x 2∈[1,4]有f (x 1)>g (x 2)恒成立,则实数m 的取值范围是________.2.已知函数f (x )=ln(x 2+1),g (x )=⎝⎛⎭⎫12x -m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________.3. 已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈⎣⎡⎦⎤12,1,∃x 2∈[2,3],使得f (x 1)≥g (x 2),则实数a 的取值范围是________.4.函数f (x )=x 3-12x +3,g (x )=3x -m ,若对∀x 1∈[-1,5],∃x 2∈[0,2],f (x 1)≥g (x 2),则实数m 的最小值是________.5.已知函数f (x )=x 2-2x +3a ,g (x )=2x -1 .若对任意的x 1∈[0,3],总存在x 2∈[2,3],使得|f (x 1)|≤g (x 2)成立,则实数a 的值为________.6.已知函数f (x )=12x 2+x ,g (x )=ln(x +1)-a ,若存在x 1,x 2∈[0,2],使得f (x 1)>g (x 2) ,则实数a 的取值范围是 .7. 已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈⎣⎡⎦⎤12,1,∃x 2∈[2,3],使得f (x 1)≤g (x 2),则实数a 的取值范围是________.8.若对于[]1,1a ∀∈-,不等式2(4)420x a x a +-+->都成立,则x 的取值范围是_________.9. 若关于x 的不等式2320x mx m -+-≥在区间[]1,2上有解,则实数m 的取值范围是_________.10.关于x 的一元二次方程21+(+1)0()2x m x m Z +=∈有两个根12x x 、,且满足12013x x <<<<,则实数m 的值是( ).A .-2;B .-3;C .-4;D .-5.11.设函数24()x f x x +=,()x g x xe =,若对任意12,(0,]x x e ∈,不等式()()121g x f x k k≤+恒成立,则正数k 的取值范围为( )A .141,e ee +⎛⎤⎥⎝⎦B .(],4eC .10,4e e e +⎛⎤⎥-⎝⎦D .140,4e e +⎛⎤⎥-⎝⎦12.已知大于1的正数a ,b 满足22ln a nb b e a ⎛⎫< ⎪⎝⎭,则正整数n 的最大值为( )A .7B .8C .9D .11【答案或提示】1.【答案】(-∞,0)【解析】f (x )=x 2-2x +3=(x -1)2+2,当x ∈[1,4]时,f (x )min =f (1)=2,g (x )max =g (4)=2+m ,则f (x )min >g (x )max ,即2>2+m ,解得m <0,故实数m 的取值范围是(-∞,0). 2.【答案】⎣⎡⎭⎫14,+∞ 【解析】当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )min =g (2)=14-m ,由f (x )min≥g (x )min ,得0≥14-m ,所以m ≥14.3.【答案】 (-∞,1]【解析】由题意知,f (x )min ⎝⎛⎭⎫x ∈⎣⎡⎦⎤12,1≥g (x )min (x ∈[2,3]),因为f (x )=x +4x ,所以f ′(x )=1-4x 2,所以f (x )在⎣⎡⎦⎤12,1上单调递减,所以f (x )min =f (1)=5,又因为g (x )在[2,3]上的最小值为g (2)=4+a ,所以5≥4+a ,即a ≤1. 4.【答案】14【解析】由f ′(x )=3x 2-12,可得f (x )在区间[-1,2]上单调递减,在区间[2,5]上单调递增,∴f (x )min =f (2)=-13,∵g (x )=3x -m 是增函数,∴g (x )min =1-m , 要满足题意,只需f (x )min ≥g (x )min 即可,解得m ≥14, 故实数m 的最小值是14.5.【答案】13-6.【答案】 ⎣⎡⎭⎫12,+∞ 【解析】 依题意知f (x )max ≤g (x )max .∵f (x )=x +4x 在⎣⎡⎦⎤12,1上是减函数,∴f (x )max =f ⎝⎛⎭⎫12=172. 又g (x )=2x +a 在[2,3]上是增函数,∴g (x )max =8+a , 因此172≤8+a ,则a ≥12.7.【答案】a >-4【分析】问题可转化为f (x )max >g (x )min ,易得f (x )max =4,g (x )min =-a ,由f (x ) ma x > g (x ) min 得:4>-a ,故a >-4即为所求. 点评:理解量词的含义,将原不等式转化为[f (x )]max ≤[g (x )]max ;利用函数的单调性,求f (x )与g (x )的最大值,得关于a 的不等式求得a 的取值范围. 8.【答案】()(),13,-∞⋃+∞ 9.【答案】[)2,-+∞【解析】对不等式2320x mx m -+-≥分离参数得:223x m x -≥- 设22()3x g x x -=-([]1,2x ∈),则min ()m g x ≥令3(12)x t t -=≤≤,则2(3)27()()6t g t t t t--==-++-函数7t t+在区间[]1,2t ∈单减,故max 78t t ⎛⎫+= ⎪⎝⎭,min ()(1)2g t g ==-所以2m ≥-,即实数m 的取值范围是[)2,-+∞. 10.【答案】BC【解析】将方程21+(+1)02x m x +=分离参数得:1(+1)+2m x x-= 设1()+2f x x x =,如图,则319(+1)26m <-<,所以25562m -<<- 选BC.2所以当22x =时,2()f x 取得最小值(2)4f =,因为111()xg x x e =,所以111111()(1)xxxg x e x e x e '=+=+,当1(0,]x e ∈时,1()0g x '>,所以111()xg x x e =在(0,]e 上单调递增,所以1()g x 的最大值为()·eg e e e =, 因为对任意12,(0,]x x e ∈,不等式()()121g x f x k k≤+恒成立, 所以12max min ()()1g x f x k k ⎛⎫⎛⎫≤ ⎪ ⎪+⎝⎭⎝⎭,因为0k >,所以·41ee e k k≤+,解得1404e k e +<≤-.故选:D12.【答案】C【分析】22ln n a n b b e a <等价于22ln a n n b e b a <,令()2ln n x f x x =,()2xn e g x x=,分别求()f x ,()g x 的导数,判断函数的单调性,可求得()f x 有最大值2222n n f e e ⎛⎫⎪⎛⎫⎝⎭= ⎪⎝⎭,()g x 有最小值22n n n e g n ⎛⎫= ⎪⎝⎭⎛⎫ ⎪⎝⎭,根据题意,即求()()max min f x g x ≤,代入为2222n n e n e n ⎛⎫ ⎪⎝⎭≤⎛⎫ ⎪⎝⎭,等价于2ln 22n n n +≥-,令()2ln 22x x x x ϕ+=--,即求()0x ϕ>的最大的正整数.对()x ϕ求导求单调性,可知()x ϕ单调递减,代入数值计算即可求出结果. 【解析】由题干条件可知:22ln n a n b b e a <等价于22ln an n b e b a<, 令()2ln n x f x x =,()1x >,则()121ln (2ln )ln (2ln )'n n n x x n x x n x f x x x-+⋅--== ()'0f x =,2n x e = ,当()'0f x >时,21,n x e ⎛⎫∈ ⎪⎝⎭,当()'0f x <时,2,n x e ⎛⎫∈+∞ ⎪⎝⎭所以()f x 在21,n e ⎛⎫ ⎪⎝⎭上单调递增,在2,n e ⎛⎫+∞ ⎪⎝⎭上单调递减,则()f x 有最大值 2222n n f e e ⎛⎫⎪⎛⎫⎝⎭= ⎪⎝⎭. 令()2xn e g x x =,()1x >,则()()222'x ne x n g x x -=,当12n ≤时,此题无解,所以12n >, 则()'0,2n g x x ==,当()'0,2n g x x >>,当()'0,12n g x x <<<,所以()g x 在1,2n ⎛⎫ ⎪⎝⎭上单调递减,在,2n ⎛⎫+∞ ⎪⎝⎭上单调递增,则()g x 有最小值22n n n e g n ⎛⎫= ⎪⎝⎭⎛⎫ ⎪⎝⎭. 若22ln a n n b e b a <成立,只需22n n f e g ⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭,即2222n n e n e n ⎛⎫⎪⎝⎭≤⎛⎫ ⎪⎝⎭,即222n n n e -+⎛⎫≥ ⎪⎝⎭, 两边取对数可得:22)ln 2(n n n +≥-.2n =时,等式成立,当3n ≥时,有2ln 22n n n +≥-,令()2ln 22x x x x ϕ+=--,本题即求()0x ϕ>的最大的正整数. ()241'0(2)x x xϕ-=-<-恒成立,则()x ϕ在[)3,+∞上单调递减, ()58ln 403ϕ=->,()1199ln 1.5714 1.51072ϕ=-≈->,()310ln 502ϕ=-<, 所以()0x ϕ>的最大正整数为9.故选:C.。

第二部分 选填题(四)(练习)【金品备课】高考数学复习-冲刺方案-刷题训练及答案详解

第二部分 选填题(四)(练习)【金品备课】高考数学复习-冲刺方案-刷题训练及答案详解

选填题(四)一、选择题(在每小题给出的四个选项中,只有一项符合题目要求)1.(2022·山东省聊城高考模拟一)复数z 满足(1+2i)z =3-i ,则|z |=( )A . 2B . 3C .2D . 5答案 A解析 因为(1+2i)z =3-i ,所以z =3-i 1+2i =(3-i )(1-2i )(1+2i )(1-2i )=15-75i , 所以|z |=⎝ ⎛⎭⎪⎫152+⎝ ⎛⎭⎪⎫-752= 2. 2.(2022·湖北省黄冈市蕲春县实验高级中学高三一模)已知全集U =R ,集合A ={x |y =log 2(x -1)},B ={x ∈Z ||x -1|≤2},则(∁U A )∩B =( )A .{0,1}B .{-1,0,1}C .{0,1,2,3}D .{-1,0,1,2,3}答案 B解析 由题意得,集合A ={x |y =log 2(x -1)}={x |x >1},∴∁U A ={x |x ≤1},又B ={x ∈Z ||x -1|≤2}={-1,0,1,2,3},∴(∁U A )∩B ={-1,0,1}.故选B.3.(2022·全国甲卷(理))某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如图,则( )A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差答案 B解析讲座前问卷答题的正确率的中位数为70%+75%2=72.5%>70%,故A 错误;讲座后问卷答题的正确率只有一个是80%,4个是85%,剩下的全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,故B正确;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,故C错误;讲座后问卷答题的正确率的极差为100%-80%=20%,讲座前问卷答题的正确率的极差为95%-60%=35%>20%,故D错误.故选B.4.(2022·河北石家庄高三质量检测一)函数f(x)=x32x+2-x的部分图象大致是()答案 A解析f(x)=x32x+2-x的定义域为R,f(-x)=-f(x),故为奇函数,图象关于原点对称,排除B,D;易知x→+∞时,f(x)=x32x+2-x>0,2x→+∞,2-x→0,x3→+∞,∵指数函数y=2x比幂函数y=x3的增长速度快,故f(x)→0,即f(x)在x→+∞时,图象向x轴无限靠近且在x轴上方.故选A.5.(2022·河南省郑州市高三第二次质量预测)在△ABC中,AB=2,AC=3,∠BAC =60°,M 是线段AC 上任意一点,则MB →·MC →的最小值是( )A .-12B .-1C .-2D .-4答案 B解析 设MC →=λAC →(λ∈[0,1]),MB →=MA →+AB →=-(1-λ)AC →+AB →,MB →·MC→=[-(1-λ)AC →+AB →]·(λAC →)=-λ(1-λ)AC →2+λAB →·AC→=-9λ(1-λ)+λ×2×3×cos 60°=3λ(3λ-2),当λ=13时,3λ(3λ-2)取最小值-1.故选B.6.(2022·福建省莆田市高三教学质量检测一)已知a =ln 3,b =30.5,c =lg 9,则( )A .a >b >cB .c >a >bC .b >a >cD .b >c >a答案 C解析 因为0=lg 1<c =lg 9<lg 10=1,a =ln 3>ln e =1,所以a >c .又e 3>32,所以e 32>3,则32>ln 3,则b =30.5>32>ln 3=a .故b >a >c . 7.(2022·全国甲卷(理))在长方体ABCD -A 1B 1C 1D 1中,已知B 1D 与平面ABCD 和平面AA 1B 1B 所成的角均为30°,则( )A .AB =2ADB .AB 与平面AB 1C 1D 所成的角为30°C .AC =CB 1D .B 1D 与平面BB 1C 1C 所成的角为45°答案 D解析 如图所示,不妨设AB =a ,AD =b ,AA 1=c ,依题意以及长方体的结构特征可知,B 1D 与平面ABCD 所成的角为∠B 1DB ,B 1D 与平面AA 1B 1B 所成的角为∠DB 1A ,所以sin 30°=c B 1D =b B 1D ,即b =c ,B 1D =2c =a 2+b 2+c 2,解得a =2c .对于A ,AB =a ,AD =b ,AB =2AD ,A 错误;对于B ,过B 作BE ⊥AB 1于E ,易知BE ⊥平面AB 1C 1D ,所以AB 与平面AB 1C 1D 所成的角为∠BAE ,因为tan ∠BAE =c a =22,所以∠BAE ≠30°,B 错误;对于C ,AC = a 2+b 2=3c ,CB 1=b 2+c 2=2c ,AC ≠CB 1,C 错误;对于D ,B 1D 与平面BB 1C 1C 所成的角为∠DB 1C ,sin ∠DB 1C =CD B 1D =a 2c =22,而0°<∠DB 1C <90°,所以∠DB 1C =45°,D 正确.故选D.8.(2022·重庆第八中学高考适应性考试)直线y =kx (k >0)是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线.点P ,Q 是双曲线C 右支上相异的两点,若使得△OPQ (其中O 为坐标原点)为等腰直角三角形的直线PQ 恰有两条,则k 的取值范围为( )A .(1,2]B .(2-1,1]C .(2,2]D .(1,2]答案 B解析 △OPQ (其中O 为坐标原点)为等腰直角三角形.若∠POQ 为直角,则|OP |=|OQ |,由双曲线的对称性可知,这样的直线PQ 不会恰有两条,故O 不可能是直角顶点,即两渐近线之间的夹角不大于90°,所以k ≤1.不妨设∠OPQ 为直角,所以∠POQ =45°,所以两渐近线之间的夹角大于45°.设直线y =kx (k >0)的倾斜角为θ,所以k =tan θ.因为tan 2θ>1,即2tan θ1-tan 2θ>1,解得tan θ>2-1,所以2-1<k ≤1.故选B. 二、选择题(在每小题给出的四个选项中,有多项符合题目要求)9.(2022·福建省莆田二中高三一模)已知{a n }是等差数列,公差d >0,其前n项和为S n ,若a 2,a 5+2,a 17+2成等比数列,S n =(n +1)a n 2,则( ) A.d =1B .a 10=20C .S n =n 2+nD .当n ≥2时,S n ≥32a n 答案 BCD解析 ∵S n =(n +1)a n 2,∴当n =2时,可得2(a 1+a 2)=3a 2,化为2a 1=a 2,即a 1=d ,∵a 2,a 5+2,a 17+2成等比数列,∴(5d +2)2=2d (17d +2),即9d 2-16d -4=0,又d >0,解得d =2,∴a n =2n ,a 10=20,S n =n 2+n ,当n ≥2时,S n -32a n =n 2+n -3n =n 2-2n =n (n -2)≥0.故选BCD.10.(2022·江苏省南通市高三下3月大联考)已知函数f (x )=2sin x cos x +23sin 2x ,则( )A .f (x )的最小正周期为πB .⎝ ⎛⎭⎪⎫π6,0是曲线f (x )的一个对称中心 C .直线x =-π12是曲线f (x )的一条对称轴D .f (x )在区间⎝ ⎛⎭⎪⎫π6,5π12上单调递增 答案 ACD解析 f (x )=sin2x +3(1-cos 2x )=sin 2x -3cos 2x +3=2sin ⎝ ⎛⎭⎪⎫2x -π3+3,T =2π2=π,A 正确;⎝ ⎛⎭⎪⎫π6,3是曲线f (x )的一个对称中心,B 错误;由2x -π3=π2+k π,k ∈Z ,得x =5π12+k π2,k ∈Z ,k =-1时,x =-π12,∴直线x =-π12是曲线f (x )的一条对称轴,C 正确;当x ∈⎝ ⎛⎭⎪⎫π6,5π12时,2x -π3∈⎝ ⎛⎭⎪⎫0,π2,∴f (x )在⎝ ⎛⎭⎪⎫π6,5π12上单调递增,D 正确.故选ACD.11.(2022·广东省梅州市高三二模)一球筐中装有n 个小球,甲、乙两个同学轮流且不放回地抓球,每次最少抓1个球,最多抓2个球,规定:由甲先抓,且谁抓到最后一个球谁赢,则以下推断中正确的有( )A .若n =4,则甲有必赢的策略B .若n =5,则甲有必赢的策略C .若n =6,则乙有必赢的策略D .若n =7,则乙有必赢的策略答案 ABC解析 对于A ,若n =4,只要甲第一次抓1个球,乙抓1个或2个球,剩余的球甲可以抓完,即甲有必赢的策略,A 正确;对于B ,若n =5,只要甲第一次抓2个球,乙抓1个或2个球,剩余的球甲可以抓完,即甲有必赢的策略,B 正确;对于C ,若n =6,若甲第一次抓1个球,则问题转化为剩余5个球,由乙先抓,结合B 项可知,乙有必赢的策略,若甲第一次抓2个球,则问题转化为剩余4个球,由乙先抓,结合A 项可知,乙有必赢的策略.综上,若n =6,则乙有必赢的策略,C 正确;对于D ,若n =7,若甲第一次抓1个球,则问题转化为剩余6个球,由乙先抓,结合C 项可知,甲有必赢的策略,若甲第一次抓2个球,则问题转化为剩余5个球,由乙先抓,结合B 项可知,乙有必赢的策略,D 错误.故选ABC.12.(2022·广东省茂名五校高三第三次联考)设函数f (x )=x -ln |x |x ,则下列说法中正确的是( )A .f (x )为奇函数B .函数y =f (x )-1有两个零点C .函数y =f (x )+f (2x )的图象关于点(0,2)对称D .过原点与函数f (x )的图象相切的直线有且只有一条答案 BCD解析 f (x )=x -ln |x |x =1-ln |x |x (x ≠0),f (-x )=1+ln |x |x ≠-f (x ),故A 错误;令f (x )-1=0,即ln |x |x =0,解得x =±1,故B 正确;y =-ln |x |x 是奇函数,所以f (x )的图象关于点(0,1)对称,又因为f (2x )的图象也关于点(0,1)对称,所以y =f (x )+f (2x )的图象的对称中心为点(0,2),故C 正确;设切点P (x 0,y 0),切线y=kx ,当x >0时,f (x )=1-ln |x |x =1-ln x x ,f ′(x )=-1-ln x x 2,由-1-ln x 0x 20=k ,1-ln x 0x 0=kx 0,消去k 得2ln x 0=x 0+1,令g (x )=x +1-2ln x ,g ′(x )=1-2x =x -2x ,可得g (x )在(0,2)上单调递减,在(2,+∞)上单调递增,所以g (x )≥g (2)=3-2ln2>0,所以方程2ln x 0=x 0+1无解.当x <0时,f (x )=1-ln |x |x =1-ln (-x )x,f ′(x )=-1-ln (-x )x 2,则-1-ln (-x 0)x 20=k ,1-ln (-x 0)x 0=kx 0,消去k 得2ln (-x 0)=x 0+1,可知y =2ln (-x )与y =x +1的图象有唯一交点,所以方程2ln (-x 0)=x 0+1有唯一解.综上,所求切线有且只有一条,故D 正确.故选BCD.三、填空题13.(2022·湖南省长沙市雅礼中学高三下月考七)若tan α=2,则cos ⎝ ⎛⎭⎪⎫π2+2α=________.答案 -45解析 cos ⎝ ⎛⎭⎪⎫π2+2α=-sin 2α=-2sin αcos α=-2sin αcos αsin 2α+cos 2α=-2tan αtan 2α+1=-45.14.(2022·河北石家庄高三质量检测一)设点M 是椭圆C :x 29+y 28=1上的动点,点N 是圆E :(x -1)2+y 2=1上的动点,且直线MN 与圆E 相切,则|MN |的最小值是________.答案 3解析 由题意可知,E (1,0),|NE |=1.设M (x 0,y 0),x 209+y 208=1⇒y 20=8⎝ ⎛⎭⎪⎫1-x 209,-3≤x 0≤3,则|MN |=|ME |2-|NE |2=|ME |2-1=(x 0-1)2+y 20-1=x 20-2x 0+8⎝ ⎛⎭⎪⎫1-x 209=x 209-2x 0+8=x 20-18x 0+723=(x 0-9)2-93,∴当x 0=3时,|MN |min =36-93= 3.15.(2022·新高考Ⅰ卷)若曲线y =(x +a )e x 有两条过坐标原点的切线,则a 的取值范围是________.答案 (-∞,-4)∪(0,+∞)解析 因为y =(x +a )e x ,所以y ′=(x +a +1)e x .设切点为A (x 0,(x 0+a )e x 0),O为坐标原点,依题意得,切线斜率k OA =(x 0+a +1)e x 0=(x 0+a )e x 0x 0,化简,得x 20+ax 0-a =0.因为曲线y =(x +a )e x 有两条过坐标原点的切线,所以关于x 0的方程x 20+ax 0-a =0有两个不同的根,所以Δ=a 2+4a >0,解得a <-4或a >0,所以a 的取值范围是(-∞,-4)∪(0,+∞).16.(2022·福州高三诊断性联考)《缀术》是中国南北朝时期的一部算经,汇集了祖冲之和祖暅父子的数学研究成果.《缀术》中提出的“缘幂势既同,则积不容异”被称为祖暅原理,其意思是:如果两等高的几何体在同高处被截得的两截面面积均相等,那么这两个几何体的体积相等.该原理常应用于计算某些几何体的体积.如图,某个西晋越窑卧足杯的上、下底为互相平行的圆面,侧面为球面的一部分,上底直径为4 6 cm ,下底直径为6 cm ,上、下底面间的距离为3 cm ,则该卧足杯侧面所在的球面的半径是________ cm ;卧足杯的容积是________ cm 3(杯的厚度忽略不计).答案 5 54π解析 设卧足杯侧面所在的球面的半径为R cm ,球心到上底面的距离为d cm ,则⎩⎨⎧R 2=d 2+(26)2,R 2=(d +3)2+32解得d =1,R =5.设卧足杯中与下底面的距离为h cm 的截面半径为r cm ,则球心到此截面的距离为1+3-h =(4-h )cm ,所以r 2=52-(4-h )2,则此截面的面积为S =[π×52-π×(4-h )2](cm 2).构造一个底面半径为5 cm ,高为3 cm 的圆柱,并且在此圆柱中挖去上底半径为1 cm ,下底半径为4 cm ,高为3 cm 的圆台,设距离圆柱下底面的距离为h cm 的截面截圆台的半径为r ′cm ,则r ′-13=3-h 3,则r ′=4-h ,所以截面截几何体所得截面的面积为S ′=[π×52-π×(4-h )2](cm 2).由祖暅原理得卧足杯与此圆柱挖去圆台后的几何体的体积相等,则V =π×52×3-13π(12+42+1×4)×3=54π(cm 3).。

成人高考数学复习题及参考答案

成人高考数学复习题及参考答案

成人高考数学复习题及参考答案(一)一、选择题(17小题,每小题5分共85分) 1、设集合A={0,3},B={0,3,4},C={1,2,3},则(B ∪C)∩A=__________ A 、{0,1,2,3,4} B 、空集 C 、{0,3} D 、{0} 2、非零向量a ∥b 的充要条件___________________A 、 a=bB 、 a=-bC 、 a=±bD 、 存在非零实数k,a=kb 3、二次函数 y=x 2+4x+1的最小值是_________________ A 、 1 B 、 -3 C 、 3 D 、 -44、在等差数列{a n }中,已知a 1=-23,a 6=1 则__________A 、 a 3=0B 、 a 4=0C 、 a 5=0D 、 各项都不为零 5、函数y=x 3+2sinx__________A 、 奇函数B 、 偶函数C 、 既不是奇函数,又不是偶函数D 、 既是奇函数又是偶函数6、已知抛物线y=x 2,在点x=2处的切线的斜率为___________ A 、 2 B 、 3 C 、 1 D 、 47、直线L 与直线3x-2y+1=0垂直,则1的斜率为__________ A 、3/2 B -3/2 C 、 2/3 D 、 -2/38、已知a =(3,2)b =(-4,6),则a b=____________ A 、4 B 、 0 C 、-4 D 、59、双曲线92y -52x =1的焦距是___________A 、4B 、14C 、214D 、810、从13名学生中选出2人担任正副班长,不同的选举结果共有()A 、26B 、78C 、156D 、169 11、若f(x+1)=x 2+2x,则f(x)=_________A 、x 2-1B 、x 2+2x+1C 、x 2+2xD 、 x 2+112、设tanx=43,且cosx<0,则cosx 的值是_______A 、-53B 、53C 、54D 、-5413、已知向量a,b 满足a =4,b =3,<a,b>=300 则ab= A 、3 B 、63 C 、6 D 、12 14、函数y=sin(3x+4)的最小正周期________A 、3πB 、πC 、32π D 、3π 15、直线2x-y+7=0与圆(x-1)2+(y+1)2=20A 、相离B 、相切C 、相交但直线不过圆心D 、相交且直线过圆心 16、已知二次函数y=x 2+ax-2的对称轴方程为x=1,则函数的顶点坐标______A.(1,-3)B.(1,-1)C.(1,0) D (-1,-3) 17、椭圆9x 2+16y 2=144的焦距为_______A 、10B 、5C 、27D 、14 二、填空题(4小题,每题5分,共20分) 1、函数y=㏒2(6-5x-x 2)的定义域____________ 2、不等式53-x <8的解集是_______________3、已知A (-2,1) B 、(2,5),则线段AB 的垂直平分线的方程是____________4、某篮球队参加全国甲级联赛,任选该队参赛的10场比赛,其得分情况如下:99,104,87,88,96,94,100,92,108,110,则该队得分的样本方差为______ 三、解答题1、求函数y=x 4-2x 2+5在区间[-2,2]上最大值和最小值2、设{an}为等差数列,Sn 表示它的前n 项和,已知对任何正整数n 均有Sn=62na+23n, 求数列{an}的公差d 和首项a 13、已知直线在X 轴上的截距为-1,在Y 轴上的截距为1,对抛物线y=x2+bx+c 的顶点坐标(2,-8),求直线和抛物线两个交点横坐标和平方和。

高考数学解三角形选择填空专题练习(含答案)

高考数学解三角形选择填空专题练习(含答案)

高考数学解三角形选择填空专题练习一、选择题1.在ABC △中,内角A ,B ,C 所对的边为a ,b ,c ,60B =︒,4a =,其面积S =则c =( )A .15B .16C .20D .2.在ABC △中,1a =,π6A ∠=,π4B ∠=,则c =( )A B C D 3.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若1cos 2b a Cc =+,则角A 为( )A .60︒B .120︒C .45︒D .135︒4.ABC △中A ,B ,C 的对边分别是a ,b ,c 其面积2224a b c S +-=,则中C 的大小是( )A .30︒B .90︒C .45︒D .135︒5.已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若cos C ,cos cos 2b A a B +=,则ABC △的外接圆面积为( ) A .4πB .8πC .9πD .36π6.如图所示,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50m ,45ACB ∠=︒,105CAB ∠=︒后,就可以计算出A ,B 两点的距离为( )A .B .mC .mD .m 27.在ABC △中,a ,b ,c 分别是A ,B ,C 所对的边,若cos 4cos a C c A =-,π3B =,a =,则cosC =( )A .14B C D8.在ABC △中,内角A ,B ,C 所对边的长分别为a ,b ,c ,且满足2cos cos cos b B a C c A =+,若b 则a c +的最大值为( )A .B .3C .32D .99.在ABC △中,若22tan tan A a B b =,则ABC △的形状是( ) A .等腰或直角三角形 B .直角三角形 C .不能确定D .等腰三角形10.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,且4442222a b c c a b++=+,若C 为锐角,则sin B A +的最大值为( )AB 1C D11.已知锐角ABC △的三个内角A ,B ,C 的对边分别为a ,b ,c ,若2B A =,则sin a Ab的取值范围是( )A .⎝⎭B .⎝⎭C .12⎛ ⎝⎭D .12⎫⎪⎪⎝⎭12.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且A 是B 和C 的等差中项,0AB BC ⋅>,a =,则ABC △周长的取值范围是( )A .⎝⎭B .⎭C .⎝⎭D .⎝⎭二、填空题13.在ABC △中,3AB =,4AC =,3BC =,D 为BC 的中点,则AD =__________.14.在ABC △中,三个内角A ∠,B ∠,C ∠所对的边分别是a ,b ,c ,若()2sin cos 2sin cos b C A A C +=-,且a =ABC △面积的最大值是________.15在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,ABC ∠的角平分线交AC 于点D ,且1BD =,则4a c +的最小值为________.16.在锐角ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且A 、B 、C 成等差数列,b ABC △面积的取值范围是__________.参考答案 1.【答案】C【解析】由三角形面积公式可得11sin 4sin 6022ABC S ac B c ==⨯⨯⨯︒=△据此可得20c =.本题选择C 选项. 2.【答案】A【解析】由正弦定理sin sin a bA B =可得π1sinsin 4πsin sin 6a Bb A ⨯===,且()()cos cos cos cos sin sin C A B A B A B =-+=--=由余弦定理可得c =,故选A . 3.【答案】A【解析】1cos 2b a C C =+,1sin sin cos sin 2B A C C ∴=+,()1sin sin cos cos sin sin cos sin 2A C A C A C A C C +=+=+,1cos sin sin 2A C C =,1cos 2A =,60A =︒,故选A .4.【答案】C【解析】∵ABC △中,1sin 2S ab C =,2222cos a b c ab C +=-,且2224a b c S +-=,∴11sin cos 22ab C ab C =,即tan 1C =,则45C =︒.故选C . 5.【答案】D【解析】由cos cos 22sin sin sin b A a B a b cR A B C+====⎧⎪⎨⎪⎩,可得1sin cos sin cos B A A B R +=, 所以()1sin A B R +=,即1sin C R=,又cos C ,所以1sin 3C =,所以3R =,所以ABC △的外接圆面积为24π36πs R ==.故选D . 6.【答案】A【解析】在ABC △中,50m AC =,45ACB ∠=︒,105CAB ∠=︒,即30ABC ∠=︒,则由正弦定理sin sin AB ACACB ABC=∠∠,得50sin 2m 1sin 2AC ACB AB ABC ∠===∠,故选A .【解析】由余弦定理知,222222422b a c b c a a c ab bc +-+-⋅=-⋅,即4b =,由正弦定理知43πsin sin 3A =,解得sin A =,因为a b <,所以π4A =,()cos cos cos cos sin sin C A B A B A B =-+=-+=,故选D . 8.【答案】A【解析】2cos cos cos b B a C c A =+,则2sin cos sin cos sin cos B B A C C A =+, 所以()2sin cos sin sin B B A C B =+=,1cos 2B =,π3B =.又有2222231cos 222a cb ac B ac ac +-+-===,将式子化简得223a c ac +=+,则()()2233334a c a c ac ++=+≤+,所以()2134a c +≤,a c +≤A . 9.【答案】A【解析】由正弦定理有2222tan 4sin tan 4sin A R AB R B=,因sin 0A >,故化简可得 sin cos sin cos A A B B =,即sin2sin2A B =,所以222πA B k =+或者22π2πA B k +=+,k ∈Z .因A ,()0,πB ∈,()0,πA B +∈,故A B =或者π2A B +=,所以ABC △的形状是等腰三角形或直角三角形.故选A . 10.【答案】A 【解析】4442222a b c c a b++=+ 444222222222222a b c a c b c a b a b ∴++--+=,即()2222222a b c a b +-=,由余弦定理2222cos c a b ab C =+-,得2222cos a b c ab C +-=,代入上式,222224cos 2a b C a b ∴=,解得cos C ∴= C 为锐角,πA B C ++=,π4C ∴=,3π4B A =-,3π0,4A ⎛⎫∈ ⎪⎝⎭, ()3πsin sin 4B A A A A ϕ⎛⎫∴=-=+≤ ⎪⎝⎭1tan 3ϕ=,故选A .【解析】∵2B A =,∴sin sin22sin cos B A A A ==, 由正弦定理得2cos b a A =,∴12cos a b A =,∴sin sin 1tan 2cos 2a A A Ab A ==.∵ABC △是锐角三角形,∴π02π022π0π32A B A C A <⎧⎪⎪⎪⎨<<=<<=-<⎪⎪⎪⎩,解得ππ64A <<,tan 1A <<11tan 22A <<.即sin a A b的值范围是12⎫⎪⎪⎝⎭,故选D . 12.【答案】B【解析】∵A 是B 和C 的等差中项,∴2A B C =+,∴π3A =, 又0AB BC ⋅>,则()cos π0B ->,从而π2B >,∴π2π23B <<,∵21sin sin s s 3πin in a b c A B C ====,∴sin b B =,2πsin sin 3c C B ⎛⎫==-⎪⎝⎭, 所以ABC △的周长为2πsin sin 3π6l a b c B B B ⎛⎫⎛⎫=++=++-++ ⎪ ⎪⎝⎭⎝⎭, 又π2π23B <<,π2π5π366B <+<,1sin 26πB ⎛⎫<+< ⎪⎝⎭l <<.故选B . 13.【答案】2【解析】在ABC △中,根据余弦定理,可得2223341cos 2339B +-==⨯⨯,在ABD △中,根据余弦定理,可得222331413232294AD ⎛⎫=+-⨯⨯⨯= ⎪⎝⎭,所以AD =. 14.【解析】()2sin cos 2sin cos b C A A C +=-,()()cos 2sin cos sin cos 2sin 2sin b A C A A C A C B ∴=-+=-+=-, 则2sin cos b B A -=,结合正弦定理得2cos sin a A A -=,即tan A =,2π3A ∠=,由余弦定理得2221cos 22b c a A bc +-==-,化简得22122b c bc bc +=-≥,故4bc ≤,11sin 422ABC S bc A =≤⨯=△15.【答案】9【解析】由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin601sin60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得ac a c =+,111a c+=, 因此()11444559c a a c a c a c a c ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当23c a ==时取等号,则4a c +的最小值为9. 16.【答案】⎝⎦【解析】∵ABC △中A ,B ,C 成等差数列,∴π3B =.由正弦定理得2sin sin sin sin 3a cb A C B ===,∴2sin a A =,2sinc C =,∴12πsin sin sin 23ABC S ac B A C A A ⎛⎫===- ⎪⎝⎭△21331cos2sin sin cos sin22242AA A A A A A A ⎫-=+==+⎪⎪⎝⎭3πsin2246A A A ⎛⎫==-+ ⎪⎝⎭, ∵ABC △为锐角三角形,∴π022ππ032A A <<<-<⎧⎪⎪⎨⎪⎪⎩,解得ππ62A <<.∴ππ5π2666A <-<,∴1πsin 2126A ⎛⎫<-≤ ⎪⎝⎭π26A ⎛⎫-≤ ⎪⎝⎭,故ABC △面积的取值范围是⎝⎦.。

2023年新高考数学选择填空专项练习题(附答案解析)

2023年新高考数学选择填空专项练习题(附答案解析)

则该展开式中 x3 的系数是( )
A.-184
B.-84
C.-40
D.320
A
a+x3 [∵ x
x-2 x
6
的展开式中各项系数和为
3,令
x=1,得(1+a)(1-2)6
=3,解得 a=2.

2+x3 x
x-2 x
6
=2
x-2 x
6
+x3
x-2 x
6

x
x-2 x
6
的展开式中含
x4 的项的系数为
C16(-2)1=-12,常数项为
C36(-2)3
=-160,
2+x3 ∴x
x-2 x
6
的展开式中
x3
项的系数是
2×(-12)+1×(-160)=-184.
故选 A.]
12.(2019·潮州模拟)若 A、B、C、D、E 五位同学站成一排照相,则 A、B
2023 年新高考数学选择填空专项练习题
一、选择题
1.已知集合 A={2,3,4},集合 B={m,m+2},若 A∩B={2},则 m=( )
A.0
B.1
C.2
D.4
A [因为 A∩B={2},所以 m=2 或 m+2=2.当 m=2 时,A∩B={2,4},不
符合题意;当 m+2=2 时,m=0.故选 A.]
M∪∁RN=R.故选 B.]
5.设 a∈R,i 为虚数单位.若复数 z=a-2+(a+1)i 是纯虚数,则复数a-3i 2-i
在复平面上对应的点的坐标为( )
1,-8 A. 5 5
-7,-4 B. 5 5
第1页共6页
-4,7 C. 5 5
7,-4 D. 5 5

历年(2019-2023)高考数学真题专项(概率与统计选择题及填空题)汇编(附答案)

历年(2019-2023)高考数学真题专项(概率与统计选择题及填空题)汇编(附答案)

历年(2019-2023)高考数学真题专项(概率与统计选择题及填空题)汇编考点01:排列组合与二项式定理一选择题:1.(2023年新课标全国Ⅰ卷)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答). 2.(2020年高考课标Ⅱ卷理科)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.二、填空题1.(2023年天津卷)在6312x x ⎛⎫- ⎪⎝⎭的展开式中,2x 项的系数为_________. 2.(2021年高考浙江卷·)已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则1a =___________,234a a a ++=___________3.(2020年高考课标Ⅲ卷理科)262()x x+的展开式中常数项是__________(用数字作答).4.(2020年浙江省高考数学试卷)设()2345125345612 x a a x a x a x a x a x +=+++++,则a 5=________;a 1+a 2 +a 3=________.5.(2022新高考全国I 卷·)81()y x y x ⎛⎫-+ ⎪⎝⎭展开式中26x y 的系数为________________(用数字作答). 6.(2021高考天津)在6312x x ⎛⎫+ ⎪⎝⎭的展开式中,6x 的系数是__________.7.(2021高考北京)在341()x x-的展开式中,常数项为__________.8.(2020天津高考)在522x x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数是_________.9.(2019·浙江·)在二项式9)x +的展开式中,常数项是 ,系数为有理数的项的个数是 .10.(2019·天津·理·)83128x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为 ..的考点02 事件概率1.(2023年天津卷)甲乙丙三个盒子中装有一定数量黑球和白球,其总数之比为5:4:6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为_________;将三个盒子混合后任取一个球,是白球的概率为_________.2.(2022年高考全国甲卷数学(理)·)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.3.(2022年高考全国乙卷数学(理))从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.4.(2021高考天津·)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为56和15,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为____________,3次活动中,甲至少获胜2次的概率为______________.5.(2020天津高考·)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.6.(2020江苏高考·)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.7.(2019·上海·)某三位数密码锁,每位数字在90-数字中选取,其中恰有两位数字相同的概率是_______.8.(2019·江苏·第6题)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 .考点03 随机事件分布列1.(2020年浙江省高考数学试卷)一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为ξ,则(0)P ξ==_______;()E ξ=______.的2.(2022年浙江省高考数学试题)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ==__________,()E ξ=_________.3.(2019·全国Ⅰ·理·)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主” .设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是 .4.(2021年高考浙江卷)袋中有4个红球m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -=___________,()E ξ=___________.5.(2022新高考全国II 卷).已知随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,则( 2.5)P X >=____________.参考答案考点01:排列组合与二项式定理一选择题:1.(2023年新课标全国Ⅰ卷)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答). 【答案】64【答案解析】:(1)当从8门课中选修2门,则不同的选课方案共有144116C C =种; (2)当从8门课中选修3门,①若体育类选修课1门,则不同的选课方案共有1244C C 24=种; ②若体育类选修课2门,则不同的选课方案共有2144C C 24=种; 综上所述:不同的选课方案共有16242464++=种. 故答案为:64.2.(2020年高考课标Ⅱ卷理科)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种. 【答案】36【答案解析】: 4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学∴先取2名同学看作一组,选法有:246C = 现在可看成是3组同学分配到3个小区,分法有:336A = 根据分步乘法原理,可得不同的安排方法6636⨯=种 故答案为:36. 二、填空题1.(2023年天津卷)在6312x x ⎛⎫- ⎪⎝⎭的展开式中,2x 项的系数为_________.【答案】60【答案解析】:展开式的通项公式()()6361841661C 212C kkk kk kk k T x x x ---+⎛⎫=-=-⨯⨯⨯ ⎪⎝⎭, 令1842k -=可得,4k =,则2x 项的系数为()4644612C 41560--⨯⨯=⨯=.故答案为:60.2.(2021年高考浙江卷·)已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则1a =___________,234a a a ++=___________.【答案】(1). 5; (2). 10.【答案解析】:332(1)331x x x x -=-+-, 4432(1)4641x x x x x +=++++,所以12145,363a a =+==-+=,34347,110a a =+==-+=,所以23410a a a ++=故答案为5,10.3.(2020年高考课标Ⅲ卷理科)262()x x+的展开式中常数项是__________(用数字作答).【答案】240【答案解析】: 622x x ⎛⎫+ ⎪⎝⎭其二项式展开通项: ()62612rrrr C xx T -+⎛⎫⋅⋅ ⎪⎝⎭=1226(2)r rr r xC x --⋅=⋅ 1236(2)r r r C x -=⋅当1230r -=,解得4r =∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握()na b +的展开通项公式1C rn rr r n T ab -+=,考查了分析能力和计算能力,属于基础题.4.(2020年浙江省高考数学试卷)设()2345125345612 x a a x a x a x a x a x +=+++++,则a 5=________;a 1+a 2 +a 3=________.【答案】(1).80 (2).122【答案解析】:5(12)x +的通项为155(2)2rr r r r r T C x C x +==,令4r =,则444455280T C x x ==,580a ∴=;113355135555222122a a a C C C ∴++=++=5.(2022新高考全国I 卷·)81()y x y x ⎛⎫-+ ⎪⎝⎭展开式中26x y 的系数为________________(用数字作答). 【答案】‐28【答案解析】:因为()()()8881=y y x y x y x y x x⎛⎫-++-+ ⎪⎝⎭, 所以()81y x y x ⎛⎫-+ ⎪⎝⎭的展开式中含26x y 的项为6265352688C 28y x y C x y x y x-=-, ()81y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为‐28故答案为:‐28 6.(2021高考天津)在6312x x ⎛⎫+ ⎪⎝⎭的展开式中,6x 的系数是__________.【答案】160.的【答案解析】:6312x x ⎛⎫+ ⎪⎝⎭的展开式的通项为()636184166122rrrr r r r T C x C x x ---+⎛⎫=⋅=⋅ ⎪⎝⎭, 令1846r -=,解得3r =, 所以6x 的系数是3362160C =.故答案:160.7.(2021高考北京)在341()x x-的展开式中,常数项为__________.【答案】4- 【答案解析】:的展开式的通项令1240r -=,解得, 故常数项为.8.(2020天津高考)在522x x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数是_________.【答案】10【答案解析】因为522x x ⎛⎫+ ⎪⎝⎭的展开式的通项公式为()5531552220,1,2,3,4,5rr r rr r r T C x C x r x --+⎛⎫==⋅⋅= ⎪⎝⎭,令532r -=,解得1r =.所以2x 的系数为15210C ⨯=.故答案为:10.9.(2019·浙江·)在二项式9)x +的展开式中,常数项是 ,系数为有理数的项的个数是 .【答案】,5【答案解析】9)x展开式的通项为919(0,1,2,,9)r r r r T C x r -+== ,当0r =时,可得二项式9)x +展开式的常数项是0919T C =.若系数为有理数,则(9)r -为偶数即可,故r 可取1,3,4,5,7,9,即246810,,,,T T T T T 共5项.10.(2019·天津·理·)83128x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为 .【答案】28【答案解析】:83128x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为2268311(2)286428864C x x ⎛⎫⋅⋅-=⨯⨯= ⎪⎝⎭. 考点02 事件概率1.(2023年天津卷)甲乙丙三个盒子中装有一定数量黑球和白球,其总数之比为5:4:6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为_________;将三个盒子混合后任取一个球,是白球的概率为_________.为的【答案】①. 0.05 ②.35##0.6 【答案解析】:设甲、乙、丙三个盒子中的球的个数分别为5,4,6n n n ,所以总数为15n , 所以甲盒中黑球个数为40%52n n ⨯=,白球个数为3n ; 甲盒中黑球个数为25%4n n ⨯=,白球个数为3n ; 甲盒中黑球个数为50%63n n ⨯=,白球个数为3n ;记“从三个盒子中各取一个球,取到的球都是黑球”为事件A ,所以,()0.40.250.50.05P A =⨯⨯=;记“将三个盒子混合后取出一个球,是白球”为事件B , 黑球总共有236n n n n ++=个,白球共有9n 个, 所以,()93155n P B n ==.故答案为:0.05;35. 2.(2022年高考全国甲卷数学(理)·)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________. 【答案】635. 【答案解析】从正方体的8个顶点中任取4个,有48C 70n ==个结果,这4个点在同一个平面的有6612m =+=个,故所求概率1267035m P n ===.故答案为:635.3.(2022年高考全国乙卷数学(理))从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310【答案解析】:从5名同学中随机选3名的方法数为35C 10= 甲、乙都入选的方法数为13C 3=,所以甲、乙都入选的概率310P = 故答案为:3104.(2021高考天津·)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为56和15,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为____________,3次活动中,甲至少获胜2次的概率为______________. 【答案】①.23 ②. 2027【答案解析】:由题可得一次活动中,甲获胜的概率为564253⨯=; 则在3次活动中,甲至少获胜2次的概率为23232122033327C ⎛⎫⎛⎫⨯⨯+=⎪ ⎪⎝⎭⎝⎭.故答案为:23;2027.5.(2020天津高考·)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________. 【答案】 (1).16 (2). 23【答案解析】甲、乙两球落入盒子的概率分别为11,23,且两球是否落入盒子互不影响,所以甲、乙都落入盒子概率为111236⨯=,甲、乙两球都不落入盒子的概率为111(1(1)233-⨯-=,所以甲、乙两球至少有一个落入盒子的概率为23.故答案为:16;23.6.(2020江苏高考·)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____. 【答案】19【答案解析】根据题意可得基本事件数总为6636⨯=个. 点数和为5的基本事件有()1,4,()4,1,()2,3,()3,2共4个. ∴出现向上的点数和为5的概率为41369P ==.故答案为:19.7.(2019·上海·)某三位数密码锁,每位数字在90-数字中选取,其中恰有两位数字相同的概率是_______.【答案】27100【答案解析】法一:100271031923110=⋅⋅=C C C P (分子含义:选相同数字×选位置×选第三个数字) 法二:100271013310110=+-=P C P (分子含义:三位数字都相同+三位数字都不同) 8.(2019·江苏·第6题)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 . 【答案】710的【答案解析】从5名学生中抽取2名学生,共有10种方法,其中不含女生的方法有3种,因此所求概率为371=1010-.考点03 随机事件分布列1.(2020年浙江省高考数学试卷)一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为ξ,则(0)P ξ==_______;()E ξ=______. 【答案】(1).13(2). 1 【答案解析】:因为0ξ=对应事件为第一次拿红球或第一次拿绿球,第二次拿红球, 所以1111(0)4433P ξ==+⨯=, 随机变量0,1,2ξ=,212111211(1)434324323P ξ==⨯+⨯⨯+⨯⨯=,111(2)1333P ξ==--=,所以111()0121333E ξ=⨯+⨯+⨯=.2.(2022年浙江省高考数学试题)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ==__________,()E ξ=_________. 【答案】 ①.1635, ②. 127##517【答案解析】:从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有37C 种取法,其中所抽取的卡片上的数字的最小值为2的取法有112424C C C +种,所以11242437C C C 16(2)C 35P ξ+===,由已知可得ξ的取值有1,2,3,4,2637C 15(1)C 35P ξ===,16(2)35P ξ==,,()()233377C 31134C 35C 35P P ξξ======所以15163112()1234353535357E ξ=⨯+⨯+⨯+⨯=,故答案为:1635,127.3.(2019·全国Ⅰ·理·)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主” .设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是 .【答案】0.18 【答案解析】:因为甲队以4:1获胜,故一共进行5场比赛,且第5场为甲胜,前面4场比赛甲输一场,若第1场或第2场输1场,则12120.60.40.50.60.072P C =⨯⨯⨯⨯=, 若第3场或第4场输1场,则21220.60.50.50.60.108P C =⨯⨯⨯⨯=,所以甲以4:1获胜的概率是120.18P P +=.4.(2021年高考浙江卷)袋中有4个红球m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -=___________,()E ξ=___________.【答案】 (1). 1 (2). 89【答案解析】:2244224461(2)366m n m n m n C P C C C ξ++++++====⇒=,所以49m n ++=, ()P 一红一黄114244133693m m n C C m m m C ++⋅====⇒=, 所以2n =, 则1m n -=. 由于11245522991455105(2),(1),(0)63693618C C C P P P C C ξξξ⋅⨯========== 155158()2106918399E ξ∴=⨯+⨯+⨯=+=.故答案为1;89.5.(2022新高考全国II 卷).已知随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,则( 2.5)P X >=____________.【答案】0.14 【答案解析】 因为()22,X N σ ,所以()()220.5P X P X <=>=,因此()()()2.522 2.50.50.360.14P X P X P X >=>-<≤=-=. 故答案为:0.14.。

高考数学三角函数选择填空专题练习(含答案)

高考数学三角函数选择填空专题练习(含答案)

高考数学三角函数选择填空专题练习一、选择题1.为了得到函数sin 2y x =的图象,只需把函数πsin 26y x ⎛⎫=+ ⎪⎝⎭的图象( )A .向左平移π12个单位长度 B .向右平移π12个单位长度 C .向左平移π6个单位长度 D .向右平移π6个单位长度 2.若3tan 4x =,则ππtan tan 2424x x ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭( ) A .2- B .2 C .32 D .32-3.已知函数()2πsin 23f x x ⎛⎫=+ ⎪⎝⎭,则下列结论错误的是( )A .()f x 的最小正周期为πB .()f x 的图象关于直线8π3x =对称 C .()f x 的一个零点为π6 D .()f x 在区间π03⎛⎫⎪⎝⎭,上单调递减4.函数()()π2sin 03f x x ωω⎛⎫=+> ⎪⎝⎭的图象在[]0,1上恰有两个最大值点,则ω的取值范围为( )A .[]2π,4πB .9π2π,2⎡⎫⎪⎢⎣⎭C .13π25π,66⎡⎫⎪⎢⎣⎭ D .25π2π,6⎡⎫⎪⎢⎣⎭5.已知函数()()πsin 0,0,2f x A x A ωϕϕω⎛⎫=+>>< ⎪⎝⎭为π2,且()f x 的图象关于点π,012⎛⎫- ⎪⎝⎭对称,则下列判断正确的是( )A .要得到函数()f x 的图象,只需将2y x =的图象向右平移π6个单位 B .函数()f x 的图象关于直线5π12x =对称C .当ππ,66x ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的最小值为D .函数()f x 在ππ,63⎡⎤⎢⎥⎣⎦上单调递增6.函数()πsin sin 3f x x x ⎛⎫=++ ⎪⎝⎭的最大值为( )A B .2C .D .47.已知函数()cos sin f x x x =-在[],a a -上是减函数,则a 的最大值是( ) A .π4B .π2C .3π4D .π8.已知A 是函数()ππsin 2018cos 201863f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭的最大值,若存在实数1x ,2x 使得对任意实数x总有()()()12f x f x f x ≤≤成立,则12A x x ⋅-的最小值为( ) A .π2018B .π1009C .2π1009D .π40369.如图,己知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图象关于点()2,0M 对称,且()f x 的图象上相邻的最高点与最低点之间的距离为4,将()f x 的图象向右平移13个单位长度,得到函数()g x 的图象;则下列是()g x 的单调递增区间的为( )A .713,33⎡⎤⎢⎥⎣⎦B .410,33⎡⎤⎢⎥⎣⎦C .17,33⎡⎤⎢⎥⎣⎦D .1016,33⎡⎤⎢⎥⎣⎦10.已知函数()2sin 22sin f x x x =-,给出下列四个结论( )①函数()f x 的最小正周期是π;②函数()f x 在区间π5π,88⎡⎤⎢⎥⎣⎦上是减函数;③函数()f x 图像关于π,08⎛⎫- ⎪⎝⎭对称;④函数()f x 的图像可由函数2y x =的图像向右平移π8个单位,再向下平移1个单位得到. 其中正确结论的个数是( ) A .1B .2C .3D .411.已知()()sin f x x ωθ=+(其中0ω>,π0,2θ⎛⎫∈ ⎪⎝⎭)()()12''0f x f x ==,12x x -的最小值为π2,()π3f x f x ⎛⎫=- ⎪⎝⎭,将()f x 的图像向左平移π6个单位得()g x ,则()g x 的单调递减区间是( )A .ππ,π2k k ⎡⎤+⎢⎥⎣⎦,()k ∈ZB .π2πππ63k k ⎡⎤++⎢⎥⎣⎦,,()k ∈ZC .π5ππ,π36k k ⎡⎤++⎢⎥⎣⎦,()k ∈ZD .π7ππ,π1212k k ⎡⎤++⎢⎥⎣⎦,()k ∈Z12.已知函数()sin sin3f x x x =-,[]0,2πx ∈,则()f x 的所有零点之和等于( ) A .8π B .7π C .6π D .5π二、填空题13.已知α为第一象限角,sin cos αα-=,则()cos 2019π2α-=__________. 14.已知tan 2α=,则2cos sin2αα+=__________.15.已知πtan 26α⎛⎫-= ⎪⎝⎭,π7π,66α⎡⎤∈⎢⎥⎣⎦,则2sin cos 222ααα=_____.16.已知函数()()2sin 1f x x ωϕ=+-(0ω>,πϕ<)的一个零点是π3x =,且当π6x =-时,()f x 取得最大值,则当ω取最小值时,下列说法正确的是___________.(填写所有正确说法的序号) ①23ω=;②()01f =-; ③当π5π,63x ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 单调递减;④函数()f x 的图象关于点7π,112⎛⎫- ⎪⎝⎭对称.参考答案 1.【答案】B【解析】ππsin 2sin 2126y x x ⎡⎤⎛⎫==-+⎪⎢⎥⎝⎭⎣⎦,故应向右平移π12个单位长度.故选B . 2.【答案】C【解析】因为2tan1tan 14tanππ3222tan tan 2tan 242421tan 1tan 1tan 222x x xx x x x x x+-⎛⎫⎛⎫++-=+=== ⎪ ⎪⎝⎭⎝⎭-+-, 故选C . 3.【答案】B【解析】函数()2πsin 23f x x ⎛⎫=+ ⎪⎝⎭,周期为2ππ2T ==,故A 正确;函数图像的对称轴为2ππ2π32x k +=+,ππ122k k x ∈⇒=-+Z ,k ∈Z ,8π3x =不是对称轴,故B 不正确; 函数的零点为2π2π3x k +=,ππ32k k x ∈⇒=-+Z ,k ∈Z ,当1k =时,得到一个零点为π6,故C 正确; 函数的单调递减区间为2ππ3π2π,π322x k k ⎛⎫+∈++ ⎪⎝⎭,k ∈Z ,解得x 的范围为ππ5π,π122122k k ⎛⎫-++ ⎪⎝⎭,k ∈Z ,区间π0,3⎛⎫⎪⎝⎭是其中的一个子区间,故D 正确.故答案为B .4.【答案】C 【解析】由题意得π5π32ω+≥,π9π32ω+<,13π25π66ω∴≤<,故选C . 5.【答案】A【解析】因为()f xA =,又图象相邻两条对称轴之间的距离为π2,故π22T =, 即2ω=,所以()()2f x x ϕ=+, 令π12x =-,则ππ6k ϕ-+=即ππ6k ϕ=+,k ∈Z , 因π2ϕ<,故π6ϕ=,()π26f x x ⎛⎫=+ ⎪⎝⎭.πππ22266y x x x ⎡⎤⎛⎫⎛⎫=+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故向右平移π6个单位后可以得到()π26f x x ⎛⎫+ ⎪⎝⎭,故A 正确;5π5ππ01266f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,故函数图像的对称中心为5π,012⎛⎫⎪⎝⎭,故B 错; 当ππ66x -≤≤时,πππ2662x -≤+≤,故()min f x =,故C 错; 当ππ63x ≤≤时,ππ5π2266x ≤+≤,()π26f x x ⎛⎫=+ ⎪⎝⎭在ππ,63⎡⎤⎢⎥⎣⎦为减函数,故D 错. 综上,故选A . 6.【答案】A【解析】函数()π1sin sin sin sin 32f x x x x x x ⎛⎫=++=++ ⎪⎝⎭31πsin cos 226x x x x x ⎫⎛⎫=+=+=+≤⎪ ⎪⎪⎝⎭⎭A . 7.【答案】A【解析】()'sin cos f x x x =--,由题设,有()'0f x ≤在[],a a -上恒成立,π04x ⎛⎫+≥ ⎪⎝⎭,故3ππ2π2π44k x k -≤≤+,k ∈Z .所以3π2π4π2π4k a a k -≤-⎧⎪≤⎨+⎪⎪⎪⎩,因0a >,故0k =即π04a <≤,a 的最大值为π4,故选A .8.【答案】B 【解析】()ππsin 2018cos 201863f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭112018cos2018cos2018201822x x x x =++π2018cos 20182sin 20186x x x ⎛⎫=+=+ ⎪⎝⎭,()max 2A f x ∴==,周期2ππ20181009T ==, 又存在实数1x ,2x ,对任意实数x 总有()()()12f x f x f x ≤≤成立,()()2max 2f x f x ∴==,()()1min 2f x f x ==-,12A x x ⋅-的最小值为1π21009A T ⨯=,故选B .9.【答案】D【解析】由图象可知A =()f x 的图象上相邻的最高点与最低点之间的距离为4, 所以(22242T ⎛⎫+= ⎪⎝⎭,解得4T =,即2π4w =,即π2w =,则()π2f x x ϕ⎛⎫=+ ⎪⎝⎭,因为函数()f x 关于点()2,0M 对称,即()20f =π202ϕϕ⎛⎫⨯+= ⎪⎝⎭,解得0ϕ=,所以()π2f x x ⎛⎫= ⎪⎝⎭,将()f x 的图象向右平移13个单位长度,得到()g x 的图象,即()π1ππ2326g x x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由ππππ2π2π2262k x k -+≤-≤+,k ∈Z ,得244433k x k -+≤≤+,k ∈Z ,当1k =时,101633x ≤≤,即函数的单调增区间为1016,33⎡⎤⎢⎥⎣⎦,故选D . 10.【答案】B【解析】()2πsin 22sin sin 2cos21214f x x x x x x ⎛⎫=-=+-+- ⎪⎝⎭∴函数()f x 的最小正周期2ππ2T ==,故①正确 令ππ3π2π22π242k x k +≤+≤+,解得π5πππ88k x k +≤≤+, 当0k =时,()f x 在区间π5π,88⎡⎤⎢⎥⎣⎦上是减函数,故②正确令π204x +=,解得π8x =-,则()f x 图像关于π,18⎛⎫-- ⎪⎝⎭对称,故③错误 ()π214f x x ⎛⎫+- ⎪⎝⎭,可以由()2f x x =的图象向左平移π8个单位,再向下平移一个单位得到,故④错误,综上,正确的结论有2个,故选B . 11.【答案】A【解析】∵()()sin f x x ωθ=+(其中0ω>,π0,2θ⎛⎫∈ ⎪⎝⎭)由()()12''0f x f x ==可得,1x ,2x 是函数的极值点, ∵12x x -的最小值为π2,∴1ππ22T ω⋅==,2ω∴=,()()sin 2f x x θ∴=+, 又()π3f x f x ⎛⎫=- ⎪⎝⎭,∴()f x 的图象的对称轴为π6x =,ππ2π62k θ∴⨯+=+,k ∈Z ,令0k =可得π6θ=,()πsin 26f x x ⎛⎫∴=+ ⎪⎝⎭,将()f x 的图象向左平移π6个单位得()ππsin 2cos 266g x x x ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭的图象,令2π22ππk x k ≤≤+,πππ2k x k ∴≤≤+, 则()cos 2g x x =的单调递减区间是ππ,π2k k ⎡⎤+⎢⎥⎣⎦,()k ∈Z ,故选A . 12.【答案】B【解析】由已知函数()sin sin3f x x x =-,[]0,2πx ∈,令()0f x =,即sin sin30x x -=,即2sin sin3sin cos2cos sin 2sin cos22sin cos x x x x x x x x x x ==+=+, 即()2sin cos22cos 10x x x +-=,解得sin 0x =或2cos22cos 10x x +-=, 当sin 0x =,[]0,2πx ∈时,0x =或πx =或2πx =;当2cos22cos 10x x +-=时,即222cos 2cos 20x x +-=,解得cos x =, 又由[]0,2πx ∈,解得π4x =或3π4或5π4或7π4, 所以函数()f x 的所有零点之和为π3π5π7π0π2π7π4444++++++=,故选B .13. 【解析】()cos 2019π2cos2αα-=-,因为sin cos αα-=,所以11sin23α-=,2sin23α∴=,因为sin cos 0αα->,α为第一象限角, 所以ππ2π2π42k k α+<<+,k ∈Z ,π4π24ππ2k k α∴+<<+,k ∈Z ,所以cos2α=. 14.【答案】1【解析】tan 2α=,∴原式22222cos 2sin cos 12tan 1221sin cos tan 121ααααααα+++⨯====+++. 故答案为1.15.【解析】原式1ππsin sin cos 236αααα⎛⎫⎛⎫==+=- ⎪ ⎪⎝⎭⎝⎭,因为π7π,66α⎡⎤∈⎢⎥⎣⎦,所以[]π0,π6α-∈,因πtan 26α⎛⎫-= ⎪⎝⎭,所以πcos 6α⎛⎫-= ⎪⎝⎭.16.【答案】①④【解析】函数()()2sin 1f x x ωϕ=+-(0ω>,πϕ<)的一个零点是π3x =, 则ππ2sin 1033f ωϕ⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭,π1sin 32ωϕ⎛⎫+= ⎪⎝⎭,ππ2π36k ωϕ+=+或()5π2π6k k +∈Z ,()ππ2π62n n ωϕ-+=+∈Z , 两式相减得()243k n ω=-±,又0ω>,则min 23ω=, 此时2π5π2π96k ϕ+=+,k n =,11π2π18k ϕ∴=+, 又πϕ<,则11π18ϕ=,()211π2sin 1318f x x ⎛⎫∴=+- ⎪⎝⎭,当π5π,63x ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 先减后增,函数()f x 的图象关于点7π,112⎛⎫- ⎪⎝⎭对称,()11π02sin1118f =-≠-, 故填①④.。

高考数学选择、填空题专项汇编题(共40套)[附答案]

高考数学选择、填空题专项汇编题(共40套)[附答案]

三基小题训练三一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合P={3,4,5},Q={4,5,6,7},定义P ★Q={(},|),Q b P a b a ∈∈则P ★Q 中元素的个数为 ( )A .3B .7C .10D .12 2.函数3221x e y -⋅=π的部分图象大致是( )A B C D3.在765)1()1()1(x x x +++++的展开式中,含4x 项的系数是首项为-2,公差为3的等 差数列的( )A .第13项B .第18项C .第11项D .第20项4.有一块直角三角板ABC ,∠A=30°,∠B=90°,BC 边在桌面上,当三角板所在平面与 桌面成45°角时,AB 边与桌面所成的角等于( )A .46arcsinB .6π C .4π D .410arccos5.若将函数)(x f y =的图象按向量a 平移,使图象上点P 的坐标由(1,0)变为(2,2), 则平移后图象的解析式为( )A .2)1(-+=x f yB .2)1(--=x f yC .2)1(+-=x f yD .2)1(++=x f y6.直线0140sin 140cos =+︒+︒y x 的倾斜角为( )A .40°B .50°C .130°D .140°7.一个容量为20的样本,数据的分组及各组的频数如下:(10,20],2;(20,30],3; (30,40],4;(40,50],5;(50,60],4;(60,70],2. 则样本在区间(10,50]上的频率为( )A .0.5B .0.7C .0.25D .0.058.在抛物线x y 42=上有点M ,它到直线x y =的距离为42,如果点M 的坐标为(n m ,), 且n mR n m 则,,+∈的值为 ( )A .21 B .1C .2D .29.已知双曲线]2,2[),(12222∈∈=-+e R b a by a x 的离心率,在两条渐近线所构成的角中,设以实轴为角平分线的角为θ,则θ的取值范围是 ( )A .]2,6[ππ B .]2,3[ππC .]32,2[ππD .),32[ππ 10.按ABO 血型系统学说,每个人的血型为A ,B ,O ,AB 型四种之一,依血型遗传学, 当且仅当父母中至少有一人的血型是AB 型时,子女的血型一定不是O 型,若某人的血 型的O 型,则父母血型的所有可能情况有 ( )A .12种B .6种C .10种D .9种11.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为 ( ) A .16(12-6π)3 B .18πC .36πD .64(6-4π)212.一机器狗每秒钟前进或后退一步,程序设计师让机器狗以前进3步,然后再后退2步的规律移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P (n )表示第n 秒时机器狗所在位置的坐标,且P (0)=0,则下列结论中错误..的是( )A .P (3)=3B .P (5)=5C .P (101)=21D .P (101)<P(104)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.在等比数列{512,124,}7483-==+a a a a a n 中,且公比q 是整数,则10a 等于 .14.若⎪⎩⎪⎨⎧≤+≥≥622y x y x ,则目标函数y x z 3+=的取值范围是 .15.已知,1sin 1cot 22=++θθ那么=++)cos 2)(sin 1(θθ . 16.取棱长为a 的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,依次进行下去,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体.则此多面体:①有12个顶点;②有24条棱;③有12个面;④表面积为23a ;⑤体积为365a . 以上结论正确的是 .(要求填上的有正确结论的序号) 答案:一、选择题:1.D 2.C 3.D 4.A 5.C 6.B 7.B 8.D 9.C 10.D 11.C 12.C二、填空题:13.-1或512;14.[8,14];15.4;16.①②⑤三基小题训练四一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.满足|x -1|+|y -1|≤1的图形面积为A.1B.2C.2D.4 2.不等式|x +log 3x |<|x |+|log 3x |的解集为A.(0,1)B.(1,+∞)C.(0,+∞)D.(-∞,+∞)3.已知双曲线的焦点到渐近线的距离等于右焦点到右顶点的距离的2倍,则双曲线的离心率e 的值为A.2B.35C.3D.24.一个等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取一项,余下项的平均值是4,则抽取的是A.a 11B.a 10C.a 9D.a 8 5.设函数f (x )=log a x (a >0,且a ≠1)满足f (9)=2,则f -1(log 92)等于A.2B.2C.21 D.±26.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D —ABC 的体积为A.63a B.123a C.3123a D.3122a 7.设O 、A 、B 、C 为平面上四个点,OA =a ,OB =b ,OC =c ,且a +b +c =0, a ·b =b ·c =c ·a =-1,则|a |+|b |+|c |等于A.22B.23C.32D.338.将函数y =f (x )sin x 的图象向右平移4π个单位,再作关于x 轴的对称曲线,得到函数y =1-2sin 2x 的图象,则f (x )是A.cos xB.2cos xC.sin xD.2sin x9.椭圆92522y x +=1上一点P 到两焦点的距离之积为m ,当m 取最大值时,P 点坐标为 A.(5,0),(-5,0) B.(223,52)(223,25-)C.(23,225)(-23,225) D.(0,-3)(0,3)10.已知P 箱中有红球1个,白球9个,Q 箱中有白球7个,(P 、Q 箱中所有的球除颜色外完全相同).现随意从P 箱中取出3个球放入Q 箱,将Q 箱中的球充分搅匀后,再从Q 箱中随意取出3个球放入P 箱,则红球从P 箱移到Q 箱,再从Q 箱返回P 箱中的概率等于A.51B.1009 C.1001 D.5311.一个容量为20的样本数据,分组后,组距与频数如下:(10,20],2;(20,30],3;(30,40],4;(40,50],5;(50,60],4;(60,70),2,则样本在(-∞,50)上的频率为A.201 B.41 C.21 D.10712.如图,正方体ABCD —A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是A .线段B 1CB. 线段BC 1C .BB 1中点与CC 1中点连成的线段D. BC 中点与B 1C 1中点连成的线段二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.已知(p x x -22)6的展开式中,不含x 的项是2720,则p 的值是______.14.点P 在曲线y =x 3-x +32上移动,设过点P 的切线的倾斜角为α,则α的取值范围是______.15.在如图的1×6矩形长条中涂上红、黄、蓝三种颜色,每种颜色限涂两格,且相邻两格不同色,则不同的涂色方案有______种.16.同一个与正方体各面都不平行的平面去截正方体,截得的截面是四边形的图形可能是①矩形;②直角梯形;③菱形;④正方形中的______(写出所有可能图形的序号).答案:一、1.C 2.A 3.B 4.A 5.B 6.D 7.C 8.B 9.D 10.B 11.D 12.A 二、13.3 14.[0,2π)∪[43π,π) 15.30 16.①③④三基小题训练五一、选择题本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.在数列1,1,}{211-==+n n n a a a a 中则此数列的前4项之和为 ( )A .0B .1C .2D .-22.函数)2(log log 2x x y x +=的值域是 ( )A .]1,(--∞B .),3[+∞C .]3,1[-D .),3[]1,(+∞⋃--∞3.对总数为N 的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为41,则N 的值( ) A .120B .200C .150D .1004.若函数)(,)0,4()4sin()(x f P x y x f y 则对称的图象关于点的图象和ππ+==的表达式是( )A .)4cos(π+xB .)4cos(π--xC .)4cos(π+-xD .)4cos(π-x5.设n b a )(-的展开式中,二项式系数的和为256,则此二项展开式中系数最小的项是( ) A .第5项B .第4、5两项C .第5、6两项D .第4、6两项6.已知i , j 为互相垂直的单位向量,b a j i b j i a 与且,,2+=-=的夹角为锐角,则实数λ的取值范围是( )A .),21(+∞B .)21,2()2,(-⋃--∞C .),32()32,2(+∞⋃-D .)21,(-∞7.已知}|{},2|{,,0a x ab x N ba xb x M R U b a <<=+<<==>>集合全集, N M P ab x b x P ,,},|{则≤<=满足的关系是( )A .N M P ⋃=B .N M P ⋂=C .)(N C M P U ⋂=D .N M C P U ⋂=)(8. 从湖中打一网鱼,共M 条,做上记号再放回湖中,数天后再打一网鱼共有n 条,其中有k 条有记号,则能估计湖中有鱼( )A .条k nM ⋅B .条n kM ⋅C .条kM n ⋅D .条Mk n ⋅9.函数a x f x x f ==)(|,|)(如果方程有且只有一个实根,那么实数a 应满足( ) A .a <0B .0<a <1C .a =0D .a >110.设))(5sin3sin,5cos3(cosR x xxxxM ∈++ππππ为坐标平面内一点,O 为坐标原点,记f (x )=|OM|,当x 变化时,函数 f (x )的最小正周期是 ( )A .30πB .15πC .30D .1511.若函数7)(23-++=bx ax x x f 在R 上单调递增,则实数a , b 一定满足的条件是( ) A .032<-b aB .032>-b aC .032=-b aD .132<-b a12.已知函数图象C x y a ax a x y C C '=++=++'且图象对称关于直线与,1)1(:2关于点(2,-3)对称,则a的值为 ( ) A .3B .-2C .2D .-3二、填空题:本大题有4小题,每小题4分,共16分.请将答案填写在题中的横线上. 13.“面积相等的三角形全等”的否命题是 命题(填“真”或者“假”)14.已知βαβαββα+=++⋅+=则为锐角且,,,0tan )tan (tan 3)1(3tan m m 的值为15.某乡镇现有人口1万,经长期贯彻国家计划生育政策,目前每年出生人数与死亡人数分别为年初人口的0.8%和1.2%,则经过2年后,该镇人口数应为 万.(结果精确到0.01)16.“渐升数”是指每个数字比其左边的数字大的正整数(如34689).则五位“渐升数”共有 个,若把这些数按从小到大的顺序排列,则第100个数为 .一、选择题:本大题共12小题,每小题5分,共60分. 题号 123456789101113答案A D AB D BC A CD A C二、填空题:本大题共4小题,每小题4分,共16分. 13.真 14.3π15.0.99 16.126, 24789三基小题训练六一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 给出两个命题:p :|x|=x 的充要条件是x 为正实数;q :存在反函数的函数一定是单调函 数,则下列哪个复合命题是真命题( )A .p 且qB .p 或qC .┐p 且qD .┐p 或q2.给出下列命题:其中正确的判断是( )A.①④B.①②C.②③D.①②④3.抛物线y =ax 2(a <0)的焦点坐标是( )A.(0,4a ) B.(0,a 41) C.(0,-a41) D.(-a41,0) 4.计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数 转换成十进制形式是( )A.217-2B.216-2C.216-1D.215-15.已知f (cos x )=cos3x ,则f (sin30°)的值是( )A.1B.23C.0D.-16.已知y =f (x )是偶函数,当x >0时,f (x )=x +x4,当x ∈[-3,-1]时,记f (x )的最大值为m ,最小值为n ,则m -n 等于( )A.2B.1C.3D.237.某村有旱地与水田若干,现在需要估计平均亩产量,用按5%比例分层抽样的方法抽取了15亩旱地45亩水田进行调查,则这个村的旱地与水田的亩数分别为( )A.150,450B.300,900C.600,600D.75,2258.已知两点A (-1,0),B (0,2),点P 是椭圆24)3(22y x +-=1上的动点,则△P AB 面积的最大值为( ) A.4+332B.4+223 C.2+332 D.2+2239.设向量a =(x 1,y 1),b =(x 2,y 2),则下列为a 与b 共线的充要条件的有( )①存在一个实数λ,使得a =λb 或b =λa ;②|a ·b |=|a |·|b |;③2121y yx x =;④(a +b )∥(a -b ). A.1个B.2个C.3个D.4个10.点P 是球O 的直径AB 上的动点,P A =x ,过点P 且与AB 垂直的截面面积记为y ,则y =21f (x )的大致图象是11.三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍回到甲手中, 则不同的传球方式共有A.6种B.10种C.8种D.16种12.已知点F 1、F 2分别是双曲线2222by a x -=1的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABF 2为锐角三角形,则该双曲线的离心率e 的取值范围是A.(1,+∞)B.(1,3)C.(2-1,1+2)D.(1,1+2)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.方程log 2|x |=x 2-2的实根的个数为______.14.1996年的诺贝尔化学奖授予对发现C 60有重大贡献的三位科学家.C 60是由60个C 原子组成的分子,它结构为简单多面体形状.这个多面体有60个顶点,从每个顶点都引出3条棱,各面的形状分为五边形或六边形两种,则C 60分子中形状为五边形的面有______个,形状为六边形的面有______个.15.在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.16.定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-1,0]上是增函数,给出下列关于f (x )的判断:①f (x )是周期函数;②f (x )关于直线x =1对称;③f (x )在[0,1]上是增函数;④f (x )在 [1,2]上是减函数;⑤f (2)=f (0),其中正确判断的序号为______(写出所有正确判断的序号).答案:一、1.D 2.B 3.B 4.C 5.D 6.B 7.A 8.B 9.C 10.A 11.C 12.D二、13.4 14.12 20 15.13 16.①②⑤三基小题训练七一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.准线方程为3=x 的抛物线的标准方程为( )A .x y 62-=B .x y 122-=C .x y 62=D .x y 122=2.函数x y 2sin =是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数3.函数)0(12≤+=x x y 的反函数是( )A .)1(1≥+-=x x yB .)1(1-≥+-=x x yC .)1(1≥-=x x yD .)1(1≥--=x x y4.已知向量x -+-==2)2,(),1,2(与且平行,则x 等于 ( )A .-6B .6C .-4D .45.1-=a 是直线03301)12(=++=+-+ay x y a ax 和直线垂直的 ( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分又不必要的条件6.已知直线a 、b 与平面α,给出下列四个命题①若a ∥b ,b ⊂α,则a ∥α; ②若a ∥α,b ⊂α,则a ∥b ; ③若a ∥α,b ∥α,则a ∥b; ④a ⊥α,b ∥α,则a ⊥b. 其中正确的命题是( )A .1个B .2个C .3个D .4个7.函数R x x x y ∈+=,cos sin 的单调递增区间是( )A .)](432,42[Z k k k ∈+-ππππB .)](42,432[Z k k k ∈+-ππππC .)](22,22[Z k k k ∈+-ππππ D .)](8,83[Z k k k ∈+-ππππ 8.设集合M=N M R x x y y N R x y y x I 则},,1|{},,2|{2∈+==∈=是 ( )A .φB .有限集C .MD .N9.已知函数)(,||1)1()(2)(x f x x f x f x f 则满足=-的最小值是 ( )A .32B .2C .322 D . 2210.若双曲线122=-y x 的左支上一点P (a ,b )到直线x y =的距离为a 则,2+b 的值为( )A .21-B .21 C .-2 D .211.若一个四面体由长度为1,2,3的三种棱所构成,则这样的四面体的个数是 ( )A .2B .4C .6D .812.某债券市场常年发行三种债券,A 种面值为1000元,一年到期本息和为1040元;B 种贴水债券面值为1000元,但买入价为960元,一年到期本息和为1000元;C 种面值为1000元,半年到期本息和为1020元. 设这三种债券的年收益率分别为a , b, c ,则a , b, c 的大小关系是( )A .b a c a <=且B .c b a <<C .b c a <<D .b a c <<二、填空题:(本大题共4小题,每小题4分,共16分,把答案直接填在题中横线上.)13.某校有初中学生1200人,高中学生900人,老师120人,现用分层抽样方法从所有师生中抽取一个容量为N 的样本进行调查,如果应从高中学生中抽取60人,那么N .14.在经济学中,定义)()(),()1()(x f x Mf x f x f x Mf 为函数称-+=的边际函数,某企业的一种产品的利润函数Nx x x x x P ∈∈++-=且]25,10[(100030)(23*),则它的边际函数MP (x )= .(注:用多项式表示) 15.已知c b a ,,分别为△ABC 的三边,且==+-+C ab c b a tan ,02333222则 .16.已知下列四个函数:①);2(log 21+=x y ②;231+-=x y ③;12x y -=④2)2(3+-=x y .其中图象不经过第一象限的函数有 .(注:把你认为符合条件的函数的序号都填上) 答案: 一、选择题:(每小题5分,共60分)BADCA ABDCA BC 二、填空题:(每小题4分,共16分)13.148; 14.]25,10[(295732∈++-x x x 且)*N x ∈(未标定义域扣1分); 15.22-; 16.①,④(多填少填均不给分)三基小题训练八一、选择题(本大题共12小题,每小题5分,共60分,在每小题所给出的四个选项中,只 有一项是符合题目要求的)1.直线01cos =+-y x α的倾斜角的取值范围是 ( )A. ⎥⎦⎤⎢⎣⎡2,0πB.[)π,0C.⎥⎦⎤⎢⎣⎡43,4ππD.⎪⎭⎫⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡πππ,434,02.设方程3lg =+x x 的根为α,[α]表示不超过α的最大整数,则[α]是 ( )A .1B .2C .3D .43.若“p 且q ”与“p 或q ”均为假命题,则 ( )A.命题“非p ”与“非q ”的真值不同B.命题“非p ”与“非q ”至少有一个是假命题C.命题“非p ”与“q ”的真值相同D.命题“非p ”与“非q ”都是真命题 4.设1!,2!,3!,……,n !的和为S n ,则S n 的个位数是 ( )A .1B .3C .5D .75.有下列命题①++=;②(++)=⋅+⋅;③若=(m ,4),则||=23的充要条件是m =7;④若AB 的起点为)1,2(A ,终点为)4,2(-B ,则BA 与x 轴正向所夹角的余弦值是54,其中正确命题的序号是 ( )A.①②B.②③C.②④D.③④· · ·· ·A 1D 1C 1C N M DPR BAQ6.右图中,阴影部分的面积是 ( )A.16B.18C.20D.227.如图,正四棱柱ABCD –A 1B 1C 1D 1中,AB=3,BB 1=4.长为1的线段PQ 在棱AA 1上移动,长为3的线段MN 在棱CC 1上移动,点R 在棱BB 1上移动,则四棱锥R –PQMN 的体积是( )A.6B.10C.12D.不确定 8.用1,2,3,4这四个数字可排成必须..含有重复数字的四位数有 ( ) A.265个B.232个C.128个D.24个9.已知定点)1,1(A ,)3,3(B ,动点P 在x 轴正半轴上,若APB ∠取得最大值,则P 点的坐标( )A .)0,2( B.)0,3( C.)0,6( D.这样的点P 不存在10.设a 、b 、x 、y 均为正数,且a 、b 为常数,x 、y 为变量.若1=+y x ,则by ax +的最大值为 ( ) A.2b a + B. 21++b a C. b a + D.2)(2b a + 11.如图所示,在一个盛 水的圆柱形容器内的水面以下,有一个用细线吊着的下端开了一个很小的孔的充满水的薄壁小球,当慢慢地匀速地将小球从水下向水 面以上拉动时,圆柱形容器内水面的高度h 与时间t 的函数图像大致是( )12.4个茶杯荷5包茶叶的价格之和小于22元,而6个茶杯和3包茶叶的价格之和大于24,则2个茶杯和3包茶叶的价格比较 ( )A.2个茶杯贵B.2包茶叶贵C.二者相同D.无法确定二、填空题(本大题共4小题,每小题4分,共16分。

高中数学高考总复习充分必要条件习题及详解

高中数学高考总复习充分必要条件习题及详解

高中数学高考总复习充分必要条件习题及详解一、选择题1.(文)已知a、b都是实数,那么“a2>b2”是“a>b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[答案] D[解析]a2>b2不能推出a>b,例:(-2)2>12,但-2<1;a>b不能推出a2>b2,例:1>-2,但12<(-2)2,故a2>b2是a>b的既不充分也不必要条件.(理)“|x-1|<2成立”是“x(x-3)<0成立”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件[答案] B[解析]由|x-1|<2得-2<x-1<2,∴-1<x<3;由x(x-3)<0得0<x<3.因此“|x-1|<2成立”是“x(x-3)<0成立”的必要不充分条件.2.(2010·福建文)若向量a=(x,3)(x∈R),则“x=4”是“|a|=5”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件[答案] A[解析]当x=4时,|a|=42+32=5当|a|=x2+9=5时,解得x=±4.所以“x=4”是“|a|=5”的充分而不必要条件.3.(文)已知数列{a n},“对任意的n∈N*,点P n(n,a n)都在直线y=3x+2上”是“{a n}为等差数列”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件[答案] A[解析] 点P n (n ,a n )在直线y =3x +2上,即有a n =3n +2,则能推出{a n }是等差数列;但反过来,{a n }是等差数列,a n =3n +2未必成立,所以是充分不必要条件,故选A.(理)(2010·南充市)等比数列{a n }中,“a 1<a 3”是“a 5<a 7”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分与不必要条件[答案] C[解析] 在等比数列中,q ≠0,∴q 4>0,∴a 1<a 3⇔a 1q 4<a 3q 4⇔a 5<a 7.4.(09·陕西)“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[答案] C[解析] 由m >n >0可以得方程mx 2+ny 2=1表示焦点在y 轴上的椭圆,反之亦成立.故选C.5.(文)设集合A ={x |x x -1<0},B ={x |0<x <3},那么“m ∈A ”是“m ∈B ”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 [答案] A[解析] ∵A ={x |0<x <1},∴A B ,故“m ∈A ”是“m ∈B ”的充分不必要条件,选A. (理)(2010·杭州学军中学)已知m ,n ∈R ,则“m ≠0或n ≠0”是“mn ≠0”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件[答案] A[解析] ∵mn ≠0⇔m ≠0且n ≠0,故选A.6.(文)(2010·北京东城区)“x =π4”是“函数y =sin2x 取得最大值”的( ) A .充分不必要条件高考总复习含详解答案B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] x =π4时,y =sin2x 取最大值,但y =sin2x 取最大值时,2x =2k π+π2,k ∈Z ,不一定有x =π4. (理)“θ=2π3”是“tan θ=2cos ⎝⎛⎭⎫π2+θ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] 解法1:∵θ=2π3为方程tan θ=2cos ⎝⎛⎭⎫π2+θ的解, ∴θ=2π3是tan θ=2cos ⎝⎛⎭⎫π2+θ成立的充分条件; 又∵θ=8π3也是方程tan θ=2cos ⎝⎛⎭⎫π2+θ的解, ∴θ=2π3不是tan θ=2cos ⎝⎛⎭⎫π2+θ的必要条件,故选A. 解法2:∵tan θ=2cos ⎝⎛⎭⎫π2+θ,∴sin θ=0或cos θ=-12, ∴方程tan θ=2cos ⎝⎛⎭⎫π2+θ的解集为A =⎩⎨⎧⎭⎬⎫θ⎪⎪θ=k π或θ=2k π±23π,k ∈Z , 显然⎩⎨⎧⎭⎬⎫2π3A ,故选A. 7.“m =12”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[答案] B[解析] 两直线垂直的充要条件是(m +2)(m -2)+3m (m +2)=0即m =12或m =-2,∴m =12是两直线相互垂直的充分而不必要条件. 8.(2010·浙江宁波统考)设m ,n 是平面α内的两条不同直线,l 1,l 2是平面β内两条相交直线,则α⊥β的一个充分不必要条件是( )A .l 1⊥m ,l 1⊥nB .m ⊥l 1,m ⊥l 2C .m ⊥l 1,n ⊥l 2D .m ∥n ,l 1⊥n[答案] B[解析] 当m ⊥l 1,m ⊥l 2时,∵l 1与l 2是β内两条相交直线,∴m ⊥β,∵m ⊂α,∴α⊥β,但α⊥β时,未必有m ⊥l 1,m ⊥l 2.9.(2010·黑龙江哈三中)命题甲:⎝⎛⎭⎫12x,21-x,2x 2成等比数列;命题乙:lg x ,lg(x +1),lg(x+3)成等差数列,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] B[解析] 由条件知甲:(21-x )2=⎝⎛⎭⎫12x ·2x 2, ∴2(1-x )=-x +x 2,解得x =1或-2;命题乙:2lg(x +1)=lg x +lg(x +3), ∴⎩⎪⎨⎪⎧ (x +1)2=x (x +3)x +1>0x >0x +3>0,∴x =1,∴甲是乙的必要不充分条件.10.(2010·辽宁文,4)已知a >0,函数f (x )=ax 2+bx +c ,若x 0满足关于x 的方程2ax +b =0,则下列选项的命题中为假命题的是( )A .∃x ∈R ,f (x )≤f (x 0)B .∃x ∈R ,f (x )≥f (x 0)高考总复习含详解答案C .∀x ∈R ,f (x )≤f (x 0)D .∀x ∈R ,f (x )≥f (x 0)[答案] C[解析] ∵f ′(x )=2ax +b ,又2ax 0+b =0,∴有f ′(x 0)=0故f (x )在点x 0处切线斜率为0∵a >0 f (x )=ax 2+bx +c∴f (x 0)为f (x )的图象顶点的函数值∴f (x )≥f (x 0)恒成立故C 选项为假命题,选C.[点评] 可以用作差法比较.二、填空题11.给出以下四个命题:①若p ∨q 为真命题,则p ∧q 为真命题.②命题“若A ∩B =A ,则A ∪B =B ”的逆命题.③设a 、b 、c 分别是△ABC 三个内角A 、B 、C 所对的边,若a =1,b =3,则A =30°是B =60°的必要不充分条件.④命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题,其中真命题的序号是________.[答案] ②③④[解析] ①∵p ∨q 为真,∴p 真或q 真,故p ∧q 不一定为真命题,故①假.②逆命题:若A ∪B =B ,则A ∩B =A ,∵A ∪B =B ,A ⊆B ,∴A ∩B =A ,故②真.③由条件得,b a =sin B sin A =3,当B =60°时,有sin A =12,注意b >a ,故A =30°;但当A =30°时,有sin B =32,B =60°,或B =120°.故③真; ④否命题:若f (x )不是奇函数,则f (-x )不是奇函数,这是一个真命题,假若f (-x )为奇函数,则f [-(-x )]=-f (-x ),即f (-x )=-f (x ),∴f (x )为奇函数,与条件矛盾.12.(文)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b 、ab 、a b∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域.有下列命题:①数域必含有0,1两个数;②整数集是数域;③若有理数集Q ⊆M ,则数集M 必为数域;④数域必为无限集;其中正确命题的序号是________.(把你认为正确命题的序号都填上)[答案] ①④[解析] 结合题设的定义,逐一判断,可知①④正确.(理)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b 、ab 、a b∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集F ={a +b 2|a ,b ∈Q }也是数域.有下列命题:①整数集是数域;②若有理数集Q ⊆M ,则数集M 必为数域;③数域必为无限集;④存在无穷多个数域.其中正确命题的序号是________.(把你认为正确命题的序号都填上)[答案] ③④[解析] ①整数a =2,b =4,a b不是整数; ②如将有理数集Q ,添上元素2,得到数集M ,则取a =3,b =2,a +b ∉M ;③由数域P 的定义知,若a ∈P ,b ∈P (P 中至少含有两个元素),则有a +b ∈P ,从而a +2b ,a +3b ,…,a +nb ∈P ,∴P 中必含有无穷多个元素,∴③对.④设x 是一个非完全平方正整数(x >1),a ,b ∈Q ,则由数域定义知,F ={a +b x |a 、b ∈Q }必是数域,这样的数域F 有无穷多个.13.(2010·辽宁葫芦岛四校联考)设有两个命题:p :不等式⎝⎛⎭⎫13x +4>m >2x -x 2对一切实数x 恒成立;q :f (x )=-(7-2m )x 是R 上的减函数,如果p 且q 为真命题,则实数m 的取值范围是________.[答案] (1,3)[解析] ∵⎝⎛⎭⎫13x =4>4,2x -x 2=-(x -1)2+1≤1, ∴要使⎝⎛⎭⎫13x +4>m >2x -x 2对一切x ∈R 都成立,应有1<m ≤4;由f (x )=-(7-2m )x 在R上是单调减函数得,7-2m >1,∴m <3,∵p 且q 为真命题,∴p 真且q 真,∴1<m <3.高考总复习含详解答案14.(2010·福建理)已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2-x .给出如下结论:①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k,2k +1).其中所有正确结论的序号是________.[答案] ①②④[解析] 对于①,f (2)=0,又f (2)=2f (1)=0,∴f (1)=0,同理f (4)=2f (2)=0,f (8)=0……f (1)=2f (12)=0, ∴f (12)=0,f (14)=0…… 归纳可得,正确.对于②④当1<x ≤2时,f (2x )=4-2x ,而2<2x ≤4,∴当2<x ≤4时,f (x )=4-x同理,当4<x ≤8时,f (x )=8-x ……∴当2m -1<x ≤2m 时,f (x )=2m -x ,故②正确,④也正确.而③中,若f (2n +1)=9,∵2n <2n +1≤2n +1∴f (x )=2n +1-x ,∴f (2n +1)=2n +1-2n -1=9,∴2n =10,∴n ∉Z ,故错误.三、解答题15.已知c >0.设命题P :函数y =log c x 为减函数.命题Q :当x ∈⎣⎡⎦⎤12,2时,函数f (x )=x +1x >1c恒成立.如果P 或Q 为真命题,P 且Q 为假命题,求c 的取值范围.[解析] 由y =log c x 为减函数得0<c <1当x ∈⎣⎡⎦⎤12,2时,因为f ′(x )=1-1x 2,故函数f (x )在⎣⎡⎦⎤12,1上为减函数,在(1,2]上为增函数.∴f (x )=x +1x在x ∈⎣⎡⎦⎤12,2上的最小值为f (1)=2 当x ∈⎣⎡⎦⎤12,2时,由函数f (x )=x +1x >1c 恒成立.得2>1c ,解得c >12如果P 真,且Q 假,则0<c ≤12如果P 假,且Q 真,则c ≥1所以c 的取值范围为(0,12]∪[1,+∞). 16.给出下列命题:(1)p :x -2=0,q :(x -2)(x -3)=0.(2)p :m <-2;q :方程x 2-x -m =0无实根.(3)已知四边形M ,p :M 是矩形;q :M 的对角线相等.试分别指出p 是q 的什么条件.[解析] (1)∵x -2=0⇒(x -2)(x -3)=0;而(x -2)(x -3)=0⇒/ x -2=0.∴p 是q 的充分不必要条件.(2)∵m <-2⇒方程x 2-x -m =0无实根;方程x 2-x -m =0无实根⇒/ m <-2.∴p 是q 的充分不必要条件.(3)∵矩形的对角线相等,∴p ⇒q ;而对角线相等的四边形不一定是矩形.∴q ⇒/ p .∴p 是q 的充分不必要条件.17.(文)已知数列{a n }的前n 项和S n =p n +q (p ≠0,且q ≠1),求数列{a n }成等比数列的充要条件.[解析] 当n =1时,a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=(p -1)p n -1,由于p ≠0,q ≠1,高考总复习含详解答案∴当n ≥2时,{a n }为公比为p 的等比数列.要使{a n }是等比数列(当n ∈N *时),则a 2a 1=p . 又a 2=(p -1)p ,∴(p -1)p p +q=p ,∴p 2-p =p 2+pq ,∴q =-1,即{a n }是等比数列的必要条件是p ≠0,且p ≠1,且q =-1.再证充分性:当p ≠0,且p ≠1,且q =-1时,S n =p n -1.当n =1时,S 1=a 1=p -1≠0;当n ≥2时,a n =S n -S n -1=(p -1)p n -1.显然当n =1时也满足上式,∴a n =(p -1)p n -1,n ∈N *,∴a n a n -1=p (n ≥2),∴{a n }是等比数列. 综上可知,数列{a n }成等比数列的充要条件是p ≠0,p ≠1,且q =-1.(理)(2010·哈三中模拟)已知函数f (x )=12(x -1)2+ln x -ax +a . (1)若x =2为函数极值点,求a 的值;(2)若x ∈(1,3)时,f (x )>0恒成立,求a 的取值范围.[解析] (1)f ′(x )=(x -1)+1x -a ,由f ′(2)=0得,a =32; (2)当a ≤1时,∵x ∈(1,3),∴f ′(x )=⎝⎛⎭⎫x +1x -(1+a )≥2-2=0成立,所以函数y =f (x )在(1,3)上为增函数,对任意的x ∈(1,3),f (x )>f (1)=0,所以a ≤1时命题成立;当a >1时,令f ′(x )=(x -1)+1x -a =0得,x =(a +1)±(a +1)2-42,则函数在 (0,(a +1)-(a +1)2-42)上为增函数, 在((a +1)-(a +1)2-42,(a +1)+(a +1)2-42)上为减函数,在((a +1)+(a +1)2-42,+∞)上为增函数, 当a ≤73时,1≤(a +1)+(a +1)2-42≤3, 则f (1)>f ((a +1)+(a +1)2-42),不合题意,舍去. 当a >73时,函数在(1,3)上是减函数,f (x )<f (3)<0,不合题意,舍去. 综上,a ≤1.。

高考复习(数学)专项练习:概率、随机变量及其分布【含答案及解析】

高考复习(数学)专项练习:概率、随机变量及其分布【含答案及解析】

专题突破练18 概率、随机变量及其分布一、单项选择题1.(2021·湖南师大附中月考)电视机的使用寿命与显像管开关的次数有关.某品牌的电视机的显像管开关了10 000次还能继续使用的概率是0.8,开关了15 000次后还能继续使用的概率是0.6,则已经开关了10 000次的电视机显像管还能继续使用到15 000次的概率是( )A.0.20B.0.48C.0.60D.0.752.(2021·江苏泰州考前模拟)马林·梅森(Marin Mersenne,1588—1648)是17世纪法国数学家.他在欧几里得、费马等人研究的基础上深入地研究了2p -1型的数.人们为纪念梅森在数论方面的这一贡献,将形如2p -1(其中p 是素数)的素数,称为梅森素数.在不超过20的素数中,随机选取两个不同的数,至少有一个为梅森素数的概率是( )A.37B.512C.1328D.19553.(2021·新高考Ⅰ,8)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立二、填空题4.为研究如何提高大气污染监控预警能力,某学校兴趣小组的成员设计了一套大气污染检测预警系统.该系统设置了三个控制元件,三个元件T 1,T 2,T 3正常工作的概率分别为12,34,34,将T 2,T 3两个元件并联后再和T 1串联接入电路,如图所示,则该预警系统的可靠性是 .5.(2021·河北衡水模拟)已知甲、乙、丙三位选手参加某次射击比赛,比赛规则如下:①每场比赛有两位选手参加,并决出胜负;②每场比赛获胜的选手与未参加此场比赛的选手进行下一场的比赛;③在比赛中,若有一位选手首先获胜两场,则本次比赛结束,该选手获得此次射击比赛第一名.若在每场比赛中,甲胜乙的概率为13,甲胜丙的概率为34,乙胜丙的概率为12,且甲与乙先参加比赛,则甲获得第一名的概率为 . 三、解答题6.(2021·江苏新高考基地学校联考)阳澄湖大闸蟹又名金爪蟹,产于江苏苏州,蟹身青壳白肚,体大膘肥,肉质膏腻,营养丰富,深受消费者喜爱.某水产品超市购进一批重量为100千克的阳澄湖大闸蟹,随机抽取了50只统计其重量,得到的结果如下表所示:(1)试用组中值来估计该批大闸蟹有多少只?(所得结果四舍五入保留整数)(2)某顾客从抽取的10只特大蟹中随机购买了4只,记重量在区间[260,280]内的大闸蟹数量为X,求X 的概率分布列和数学期望.7.(2021·福建漳州模拟)随着5G通信技术的发展成熟,移动互联网短视频变得越来越普及,人们也越来越热衷于通过短视频获取资讯和学习成长.某短视频创作平台,为了鼓励短视频创作者生产出更多高质量的短视频,会对创作者上传的短视频进行审核,通过审核后的短视频,会对用户进行重点的分发推荐.短视频创作者上传一条短视频后,先由短视频创作平台的智能机器人进行第一阶段审核,短视频审核通过的概率为35,通过智能机器人审核后,进入第二阶段的人工审核,人工审核部门会随机分配3名员工对该条短视频进行审核,同一条短视频每名员工审核通过的概率均为12,若该视频获得2名或者2名以上员工审核通过,则该短视频获得重点分发推荐.(1)某创作者上传一条短视频,求该短视频获得重点分发推荐的概率;(2)若某创作者一次性上传3条短视频作品,求其获得重点分发推荐的短视频个数的分布列与数学期望.专题突破练18概率、随机变量及其分布1.D解析记事件A:电视机的显像管开关了10 000次还能继续使用,记事件B:电视机的显像管开关了15 000次后还能继续使用,则P(AB)=0.6,P(A)=0.8,所以,已经开关了10 000次的电视机显像管还能继续使用到15 000次的概率为P(B|A)=P(AB)P(A)=0.60.8=0.75.2.C 解析 可知不超过20的素数有2,3,5,7,11,13,17,19,共8个,其中梅森素数有3,7,共2个,则在不超过20的素数中,随机选取两个不同的数共有C 82=28种,其中至少有一个为梅森素数有C 21C 61+C 22=13种,所以至少有一个为梅森素数的概率是P=1328. 3.B 解析 由已知得P (甲)=16,P (乙)=16,P (丙)=56×6=536,P (丁)=66×6=16,P (甲丙)=0,P (甲丁)=16×6=136,P (乙丙)=16×6=136,P (丙丁)=0.由于P (甲丁)=P (甲)·P (丁)=136,根据相互独立事件的性质,知事件甲与丁相互独立,故选B . 4.1532 解析 T 2,T 3并联电路正常工作概率为1-1-34×(1-34)=1516,故电路不发生故障的概率为12×1516=1532.5.2572 解析 因为每场比赛中,甲胜乙的概率为13,甲胜丙的概率为34,乙胜丙的概率为12,所以甲选手获胜的概率是P (A )=13×34+13×(1-34)×12×13+(1-13)×(1-12)×34×13=2572.6.解 (1)50只大闸蟹的平均重量为150×(170×3+190×2+210×15+230×20+250×7+270×3)=224,所以水产品超市购进的100千克大闸蟹只数约为100 000÷224≈446.(2)X 的可能取值为0,1,2,3,概率分别为:P (X=0)=C 30C 74C 104=16,P (X=1)=C 31C 73C 104=12, P (X=2)=C 32C 72C 104=310,P (X=3)=C 33C 71C 104=130.分布列为:所以E (X )=0×16+1×12+2×310+3×130=65.7.解 (1)设“该短视频获得重点分发推荐”为事件A ,则P (A )=35×C 32×(12)2×(1-12)1+C 33×(12)3×(1-12)0=310. (2)设其获得重点分发推荐的短视频个数为随机变量X ,X 可取0,1,2,3.则X~B (3,310),P (X=0)=C 30×(310)0×(1-310)3=3431 000, P (X=1)=C 31×(310)1×(1-310)2=4411 000, P (X=2)=C 32×(310)2×(1-310)1=1891 000, P (X=3)=C 33×(310)3×(1-310)0=271 000, 随机变量X 的分布列如下:E (X )=0×3431 000+1×4411 000+2×1891 000+3×271 000=910.[或E (X )=3×310=910]。

2023年新高考数学选择填空专项练习题六(附答案解析)

2023年新高考数学选择填空专项练习题六(附答案解析)

∴1= an
1- 1 an an-1

1-1 an-1 an-2
+…+
1-1 a2 a1
+1 a1
第2页共7页
=2n-1+2n-2+…+2+1=2n-1=2n-1. 2-1
∴an=2n-1 1.故选 B.] 8.甲、乙、丙三人中,一人是教师,一人是记者,一人是医生.已知:丙 的年龄比医生大;甲的年龄和记者不同;记者的年龄比乙小.根据以上情况,下 列判断正确的是( ) A.甲是教师,乙是医生,丙是记者 B.甲是医生,乙是记者,丙是教师 C.甲是医生,乙是教师,丙是记者 D.甲是记者,乙是医生,丙是教师 C [由甲的年龄和记者不同与记者的年龄比乙小可以推得丙是记者,再由丙 的年龄比医生大,可知甲是医生,故乙是教师,故选 C.] 9.已知抛物线 C:y2=8x 与直线 y=k(x+2)(k>0)相交于 A,B 两点,F 为 抛物线 C 的焦点,若|FA|=2|FB|,则 AB 的中点的横坐标为( ) A.5 B.3 C.5 D.6
i
i
虚数,则 a-2=0,a+2≠0.
∴“a=2”是“复数 z=a+2i-1+i(a∈R)为纯虚数”的充要条件.故选 i
C.] 3.已知平面向量 a,b 满足|a|=3,|b|=2,且(a+b)(a-2b)=4,则向量 a,
b 的夹角为( )
A.π B.π C.π D.2π 643 3
D [∵(a+b)(a-2b)=4,∴a2-a·b-2b2=4,
2 A [根据题意,设 AB 的中点为 G, 抛物线 C:y2=8x 的准线为 l:x=-2,焦点为 F(2,0), 直线 y=k(x+2)恒过定点 P(-2,0). 如图过 A、B 分别作 AM⊥l 于 M,BN⊥l 于 N, 由|FA|=2|FB|,则|AM|=2|BN|, 即点 B 为 AP 的中点.连接 OB,则|OB|=1|AF|,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学选择填空题复习专练近几年来高考数学试题中选择题填空题稳定在16道题,分值74分,占总分的50%。

高考选择填空题注重多个知识点的小型综合,渗透了各种数学思想和方法,体现基础知识求深度的考基础考能力的导向;使作为中低档题的选择题成为具备较佳区分度的基本题型。

因此能否在选择填空题上获取高分,对高考数学成绩影响重大。

准确是解答选择题的先决条件。

选择题不设中间分,一步失误,造成错选,全题无分。

所以应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。

迅速是赢得时间获取高分的必要条件。

高考中考生不适应能力型的考试,致使“超时失分”是造成低分的一大因素。

对于选择题的答题时间,速度越快越好,高考要求每道选择题在1~3分钟内解完。

填空题是数学高考的三种基本题型之一,其求解方法分为:直接运算推理法、赋值计算法、规律发现法、数形互助法等等. 解题时,要有合理的分析和判断,要求推理、运算的每一步骤都正确无误,还要求将答案表达得准确、完整. 合情推理、优化思路、少算多思将是快速、准确地解答填空题的基本要求.详细见解题的方法见“百团大战”。

与“平型关战役”。

解题的基本原则是:“小题不能大做”。

1、 已知函数()1+=x x f ,则()._______31=-f2、 集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈-<≤-=Nx x M x ,2110log 11的真子集的个数是.______ 3、 若函数()[]b a x x a x y ,,322∈+-+=的图象关于直线1=x 对称,则._____=b4、 如果函数()221x x x f +=,那么()()()()._____4143132121=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++f f f f f f fEX :设()221+=xx f ,利用课本中推导等差数列前n 项和的公式的方法,可求得()()()()().______650f 45=++⋅⋅⋅++⋅⋅⋅+-+-f f f f5、 已知点P ()ααcos ,tan 在第三象限,则角α的终边在第____象限.6、 不等式()120lg cos 2≥x(()π,0∈x )的解集为__________.7、 如果函数x a x y 2cos 2sin +=的图象关于直线8π-=x 对称,那么._____=a8、 设非零复数y x ,满足022=++y xy x ,则代数式20052005⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+y x y y x x 的值是____________.9、 已知{}n a 是公差不为零的等差数列,如果n S 是{}n a 的前n 项和,那么._____lim =∞→nnn S na 10、数列{}n a 中,()⎪⎩⎪⎨⎧-=是偶数),(是奇数,n n a n n n 5251n n a a a S 2212+⋅⋅⋅++=, 则.________2lim =∞→n n S11、有以下四个命题:①();〉3122≥+n n n ②();1226422≥++=+⋅⋅⋅+++n n n n ③凸n 边形内角和为()()();31≥-=n n n f π④凸n 边形对角线的条数是()()().422≥-=n n n n f 其中满足“假设()0,k k N k k n ≥∈=时命题成立,则当n=k+1时命题也成立’’.但不满足“当0n n =(0n 是题中给定的n 的初始值)时命题成立”的命题序号是 .12、 某商场开展促销活动,设计一种对奖券,号码从000000到999999. 若号码的奇位数字是不同的奇数,偶位数字均为偶数时,为中奖号码,则中奖面(即中奖号码占全部号码的百分比)为 . 13、()()7221-+x x 的展开式中3x 的系数是.__________14、 过长方体一个顶点的三条棱长为3、4、5, 且它的八个顶点都在同一球面上,这个球的表面积是________.15、 若四面体各棱的长是1或2,且该四面体不是正四面体,则其体积是 (只需写出一个可能的值). 16、直线1-=x y 被抛物线x y 42=截得线段的中点坐标是___________。

、17、椭圆125922=+y x 上的一点P 到两焦点的距离的乘积为m ,则当m 取最大值时,点P 的坐标是_____________________. 18、一只酒杯的轴截面是抛物线的一部分,它的函数解析式是()20022≤≤=y x y ,在杯内放一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r 的取值范围是___________. 19、若sin 2x>cos 2x,则x 的取值范围是( )A .{x|2k π-34π<x<2k π+π4,k ∈Z}B. {x|2k π+π4<x<2k π+54π,k ∈Z}C. {x|k π-π4<x<k π+π4,k ∈Z}D. {x|k π+π4<x<k π+34π,k ∈Z}20、 设f(x)是(-∞,∞)是的奇函数,f(x +2)=-f(x),当0≤x ≤1时,f(x)=x ,则f(7.5)等于( )A. 0.5B. -0.5C. 1.5D. -1.521、 七人并排站成一行,如果甲、乙两人必需不相邻,那么不同的排法的种数是( )A. 1440B. 3600C. 4320D. 480022、已知()⎪⎪⎩⎪⎪⎨⎧<=>=,(,(,()00)0)02x x x x x f π则()[]{}3-f f f 的值等于( )A. 0B. πC.2πD. 923、如果n 是正偶数,则C n 0+C n 2+…+C n n -2+C n n=( )A. 2nB. 2n -1C. 2n -2D. (n -1)2n -124、已知y =log a (2-ax)在[0,1]上是x 的减函数,则a 的取值范围是( )。

A. [0,1]B. (1,2]C. (0,2)D. [2,+∞)25、过抛物线y 2=4x 的焦点,作直线与此抛物线相交于两点P 和Q ,那么线段PQ 中点的轨迹方程是______。

A. y 2=2x -1 B. y 2=2x -2C. y 2=-2x +1D. y 2=-2x +226、关于直线l b a ,,以及平面N M ,,下面命题中正确的是( )A 、若,//,//M b M a 则;//b aB 、若,,//a b M a ⊥ 则;M b ⊥C 、若,,M b M a ⊂⊂ 且,,b l a l ⊥⊥则;M l ⊥C 、若,//,N a M a ⊥则.N M ⊥27、 函数y=sin(π3-2x)+sin2x 的最小正周期是_____。

A .π2B. πC. 2πD. 4π28、设a>0,f(x)=2ax bx c ++,曲线y=f(x)在点00(,())P x f x 处的倾斜角的取值范围为0,4π⎡⎤⎢⎥⎣⎦,则P 到曲线y=f(x)对称轴的取值范围( )。

A 、10,a ⎡⎤⎢⎥⎣⎦B 、10,2a ⎡⎤⎢⎥⎣⎦C 、0,2ba⎡⎤⎢⎥⎣⎦D 、10,2b a ⎡-⎤⎢⎥⎣⎦29、在圆x 2+y 2=4上与直线4x +3y -12=0距离最小的点的坐标是( )A. (85,65) B. (85,-65) C. (-85,65) D. (-85,-65)30、函数y =(15)-x+1的反函数是( )A. y =log 5x +1 (x>0)B. y =log x 5+1 (x>0且x ≠1)C. y =log 5(x -1) (x>1)D. y =log 5x -1 (x>1)31、一个凸多边形的最小内角为23π,各内角成等差数列,公差为π36,则此多边形的边数为( )A. 9B. 16C. 9或16D. 16或2532、设a、b、c为实数,且cos2x=acos2x+bcosx+c恒成立,则a2+b2+c2=()A. 2B. 3C. 4D. 533、若a、b是任意实数,且a>b,则()。

A. a2>b2B. ba <1 C. lg(a-b)>0 D. (12)a<(12)b34、如果方程x2+ky2=2表示焦点在y轴上椭圆,那么实数k的取值范围是()A. (0,+∞)B. (0,2)C. (1,+∞)D. (0,1)35、中心在原点,准线方程为x=±4,离心率为12的椭圆方程是______。

A. x24+y23=1 B. x23+y24=1 C. x24+y2=1 D. x2+y24=136、等差数列{an }、{bn}前n项和分别是Sn和Tn,若STnn=231nn+,则limn→∞abnn等于______。

A. 1B. 63C. 23D. 49例1讲解 由13+=x ,得()431==-x f,应填4.请思考为什么不必求()x f1-呢?例2讲解 {}{}N x x x x M ∈<≤=∈<≤=,10010N x 2,lgx 1,显然集合M 中有90个元素,其真子集的个数是1290-,应填1290-.快速解答此题需要记住小结论;对于含有n 个元素的有限集合,其真子集的个数是.122- 例3讲解 由已知抛物线的对称轴为22+-=a x ,得 4-=a ,而12=+ba ,有6=b ,故应填6. 例4讲解 容易发现()11=⎪⎭⎫⎝⎛+t f t f ,这就是我们找出的有用的规律,于是原式=()2731=+f ,应填.27 本题是2002年全国高考题,十分有趣的是,2003年上海春考题中也有一道类似题:例5讲解 由已知得 ⎩⎨⎧<>⇒⎩⎨⎧<<,0cos ,0sin ,0cos ,0tan αααα 从而角α的终边在第二象限,故应填二.例6讲解 注意到120lg >,于是原不等式可变形为 .0cos 0cos 2≥⇔≥x x 而π<<x 0,所以20π≤<x ,故应填.20⎭⎬⎫⎩⎨⎧∈≤<R x x x ,π例7讲解 ()ϕ++=2sin 12a y ,其中a =ϕtan .8π-=x 是已知函数的对称轴,282ππϕπ+=+⎪⎭⎫⎝⎛-∴k ,即 Z k k ∈+=,43ππϕ, 于是 .143tan tan -=⎪⎭⎫⎝⎛+==ππϕk a 故应填 1-. 在解题的过程中,我们用到如下小结论:函数()ϕω+=x A y sin 和()ϕω+=x A y cos 的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形.例8讲解 将已知方程变形为 112=+⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛y x y x ,解这个一元二次方程,得.2321ω=±-=i y x 显然有231,1ωωω-=+=, 而166832005+⨯=,于是原式=()()200520052005111ωωω+++=()()20052200521ωωω-+-=.112=-+ωω在上述解法中,“两边同除”的手法达到了集中变量的目的,这是减少变元的一个上策,值得重视.例9讲解 特别取n a n =,有()21+=n n S n ,于是有 ().211212lim lim lim 2=+=+=∞→∞→∞→nn n n S na n n n n n 故应填2.例10讲解 分类求和,得()(),n n n a a a a a a S 24212312+⋅⋅⋅++++⋅⋅⋅++=-∴8151152511512222lim =--+-=∞→nn S ,故应填81.例11讲解 ①当n=3时,13223+⨯>,不等式成立; ② 当n=1时,21122++≠,但假设n=k 时等式成立,则()()()()2111221264222++++=++++=++⋅⋅⋅+++k k k k k k ;③ ()()π133-≠f ,但假设()()π1-=k k f 成立,则 ()()()[];ππ111-+=+=+k k f k f④ ()()22444-≠f ,假设()()22-=k k k f 成立,则()()()()()[].221131-++≠-+=+k k k k f k f故应填②③.例13讲解 中奖号码的排列方法是: 奇位数字上排不同的奇数有35P 种方法,偶位数字上排偶数的方法有35,从而中奖号码共有3355⨯P 种,于是中奖面为%,75.0%10010000005335=⨯⨯P故应填%.75.0 例14讲解 由()()()()772722221-+-=-+x x x x x知,所求系数应为()72-x 的x 项的系数与3x 项的系数的和,即有()(),100822447667=-+-C C故应填1008.例15讲解 长方体的对角线就是外接球的直径R 2, 即有(),505434222222=++==R R从而 ππ5042==R S 球,故应填.50π例16讲解 本题是一道很好的开放题,解题的开窍点是:每个面的三条棱是怎样构造的,依据“三角形中两边之和大于第三边”,就可否定{1,1,2},从而得出{1,1,1},{1,2,2},{2,2,2}三种形态,再由这三类面构造满足题设条件的四面体,最后计算出这三个四面体的体积分别为:611,1211 ,1214,故应填.611、1211 、1214 中的一个即可. 例17讲解 由⎩⎨⎧=-=x y x y 4,12消去y ,化简得 ,0162=+-x x设此方程二根为21x x ,,所截线段的中点坐标为()00y x ,,则.213200210=-==+=x y x x x ,故 应填 ()2,3.例18讲解 记椭圆的二焦点为21F F ,,有,10221==+a PF PF则知 .25222121=⎪⎪⎭⎫⎝⎛+≤⋅=PF PF PF PF m显然当521==PF PF ,即点P 位于椭圆的短轴的顶点处时,m 取得最大值25.故应填()0,3-或().0,3例19讲解 依抛物线的对称性可知,大圆的圆心在y 轴上,并且圆与抛物线切于抛物线的顶点,从而可设大圆的方程为 ().222r r y x =-+由 ()⎪⎩⎪⎨⎧==-+,,22222x y r r y x 消去x ,得 ()0122=-+y r y (*)解出 0=y 或().12r y -= 要使(*)式有且只有一个实数根0=y ,只要且只需要(),012≤-r 即.1≤r再结合半径0>r ,故应填.10≤<r19【解】直接解三角不等式:由sin 2x>cos 2x 得cos 2x -sin 2x<0,即cos2x<0,所以:π2+2k π<2x<32π+2k π,选D ; 【另解】数形结合法:由已知得|sinx|>|cosx|,画出单位圆:利用三角函数线,可知选D 。

相关文档
最新文档