内部温度传感器串口显示完整程序
STM32-内部温度传感器-串口显示-完整程序
STM32F103 内部温度传感器用串口传递到PC上显示程序如下:#include "stm32f10x.h"#include "stm32_eval.h"#include "stm32f10x_conf.h"#include <stdio.h>#define DR_ADDRESS ((uint32_t)0x4001244C) //ADC1 DR寄存器基地址USART_InitTypeDef USART_InitStructure; //串口初始化结构体声明ADC_InitTypeDef ADC_InitStructure; //ADC初始化结构体声明DMA_InitTypeDef DMA_InitStructure; //DMA初始化结构体声明__IO uint16_t ADCConvertedValue; // 在内存中声明一个可读可写变量用来存放AD的转换结果,低12 位有效void ADC_GPIO_Configuration(void);static void Delay_ARMJISHU(__IO uint32_t nCount){ for (; nCount != 0; nCount--);}int main(void){u16 ADCConvertedValueLocal;USART_ART_BaudRate = 115200;USART_ART_WordLength = USART_WordLength_8b;USART_ART_StopBits = USART_StopBits_1;USART_ART_Parity = USART_Parity_No;USART_ART_HardwareFlowControl = USART_HardwareFlowControl_None;USART_ART_Mode = USART_Mode_Rx | USART_Mode_Tx;STM_EVAL_COMInit(COM1, &USART_InitStructure);/* Enable DMA1 clock */RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);DMA_DeInit(DMA1_Channel1); //开启DMA1的第一通道DMA_InitStructure.DMA_PeripheralBaseAddr = DR_ADDRESS; DMA_InitStructure.DMA_MemoryBaseAddr=(uint32_t)&ADCConver tedValue;DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; //DMA 的转换模式为SRC模式,由外设搬移到内存DMA_InitStructure.DMA_BufferSize = 1; //DMA缓存大小,1个 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //接收一次数据后,设备地址禁止后移DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable;//关闭接收一次数据后,目标内存地址后移DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; //定义外设数据宽度为16位 DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; //DMA搬移数据尺寸,HalfWord就是为16位DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; //转换模式,循环缓存模式。
DS18B20测温流程图
主程序流程图:
DS18B20程序流程图:
程序按数据手册的时序图编写子函数模块:
1、DS18B20复位函数:resetDS18B20(void)
2、写一位的函数:WriteBit (unsigned char wb)
3、读一位的函数:unsigned char ReadBit (void)
4、读一个字节的函数:unsigned char readByteDS18B20(void)
即将位读取的时序循环8次。
5、写一个字节的函数:void writeByteDS18B20(unsigned char Data)。
即将位写入的时序循环8次。
6、first和next函数流程图:
1、端口初始化子函数;
2、串口初始化;
3、串口发送一个字符函数:void USART_Putchar(unsigned char
send_char)
4、串口发送数组函数:void UsartTransmit(unsigned char *data,
unsigned char len)
5、串口发送字符串函数:void USART1_Putstr(char *s)
即通过字符串长度控制USART_Putchar函数的循环次数。
6、串口发送字符串子程序(带有换行符):
void USART1_Puts(char *s)
7、串口接收字符串函数:unsigned char getchar1(void)
8、串口接收中断子程序:void USART_RXT(void)流程图
1、 数据打包子函数:void Packet_Data(void)
2、。
ez430rf2500适合初学者参考的笔记
梦之旅同学EZ430系列学习笔记和智能家居系统项目之内部温度采集和串口显示收到板子有几天了,一直没时间弄,昨天弄了一下,就有以下方面的结果,以前没有接触过msp430,呵呵,本来说是昨天出测评的,但因为有其他事情,只好今天早上一大早跑过来写测评,上午都有课,希望中午回来时候能够看到惊喜。
首先,来个项目介绍:项目:智能家居系统无线温湿度传感器DHT11传感节点介绍:利用本EZ430系统完成一个温湿度传感节点功能,在从节点采集DHT11的数据,通过无线把他发到AP节点,然后通过上位机在电脑上面显示。
上位机界面:准备在FXW451的燃气系统的上位机上面进行修改,把从节点采集到的温度,湿度显示在上位机端。
时间安排:尽量在本星期内完成所有的工作和日记的更新,希望各位帮顶。
下面接着来下msp430的简介MSP430可以说是系出名门~~~是TI的拳头产品。
TI很多在中国举办的电子设计之类的比赛都指定只能用430单片机,半导体芯片制造行业~~~TI应该算是大名鼎鼎了~~~~~他的DSP也是很牛的。
选用大公司的东西最好的好处就是有强大的技术支持(当然,这可能更要建立在你E文不错的基础上~~)在TI的网站上其实已经有不少模块化的代码参考了,作为TI努力推销的产品,TI对他的支持肯定是少不了的MSP430的开发环境还是有挺多的,不过用的最多的应该是IAR嵌入式工作室平台了,简称IAR EW。
他对430的版本最新为IAR EW FOR MSP430 V5.2。
IAR的开发平台还是很人性化的。
国外曾经做过调查,关于工程师做项目,选用芯片,除了价格,功能是否强大等以外,开发环境的功能和易用性也是首当其冲的原因,这也就解释了keil为何能风靡全球~~~IAR的开发环境对比keil可以说是不相上下~~不过可能就是要花一点时间去熟悉一下~~相信你也会爱上IAR EW一下是摘自网上一些对430的简介~~~其实都差不多~~每一本430的书基本上开头的是这些,大概了解一下就可以了~:1、MSP430 单片机的发展MSP430 系列是一个 16 位的、具有精简指令集的、超低功耗的混合型单片机,在 1996 年问世,由于它具有极低的功耗、丰富的片内外设和方便灵活的开发手段,已成为众多单片机系列中一颗耀眼的新星。
Stm32F407IG内部温度传感器测试(CORTEX-M4+ADC+DMA)
Stm32F407IG内部温度传感器测试(CORTEX-M4+ADC+DMA)刚才发了ADC的一般用法,得知stm32内部内置了一个温度传感器,于是趁热调试了一下内部温度传感器。
没有软件滤波,正如手册里所说的,该温度传感器起到一个检测温度变化的作用,如果你想要精确的温度测量,请你外置测温元件...呵呵,测试结果如图:代码如下:/************************************************************Copyright (C), 2012-2022, yin.FileName: main.cAuthor: 小枣年糕Date: 2012\05\01Description: ADC1 DMA tempersensor printfVersion: V3.0IDE: MDK 4.22aHardWare: stm32F407IG HSE = 25M PLL = 168MHistory: V1.0Function: 利用ADC读取芯片内部温度传感器的值***********************************************************/#include<stm32f4xx.h>#include<stdio.h>/*定义ADC1的数据寄存器地址,DMA功能要用到外设的数据地址*ADC1的数据地址为外设基地址+偏移地址,基地址在RM0090 Reference*manual(参考手册)的地址映射表里,为0x40012000,ADC_DR*偏移地址为0x4C,故实际地址为0x40012000+0x4C = 0x4001204C */#define ADC1_DR_Addr ((uint32_t)0x4001204C)__IO uint16_t ADCoverValue;__IO float Temper;void GPIO_Config(void);void ADC_Config(void);void USART_Config(void);void DMA_Config(void);void NVIC_Config(void);void Delay(uint32_t nCount);/* printf函数重定向*/int fputc(int ch, FILE *f);main(){/*在主函数main之前通过调用启动代码运行了SystemInit函数,而这个函数位于system_stm32f4xx.c”。
单片机DS18B20温度传感器C语言程序含CRC校验
单片机DS18B20温度传感器C语言程序含CRC校验单片机中使用DS18B20温度传感器C语言程序(参考1)/***************************************************** ***************************DS18B20 测温程序硬件:AT89S52(1)单线ds18b20接P2.2(2)七段数码管接P0口(3)使用外部电源给ds18b20供电,没有使用寄生电源软件:Kei uVision 3***************************************************** *****************************/#include "reg52.h"#include "intrins.h"#define uchar unsigned char#define uint unsigned intsbit ds=P2^2;sbit dula=P2^6;sbit wela=P2^7;uchar flag ;uint temp; //参数temp一定要声明为int 型uchar code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71}; //不带小数点数字编码uchar code table1[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef}; //带小数点数字编码/*延时函数*/void TempDelay (uchar us){ while(us--); }void delay(uint count) //延时子函数{ uint i;while(count){ i=200;while(i>0)i--;count--; } }/*串口初始化,波特率9600,方式1 */void init_com(){ TMOD=0x20; //设置定时器1为模式2 TH1=0xfd; //装初值设定波特率TL1=0xfd;TR1=1; //启动定时器SM0=0; //串口通信模式设置SM1=1;// REN=1; //串口允许接收数据PCON=0; //波特率不倍频// SMOD=0; //波特率不倍频// EA=1; //开总中断//ES=1; //开串行中断}/*数码管的显示*/void display(uint temp){ uchar bai,shi,ge;bai=temp/100;shi=temp%100/10;ge=temp%100%10;dula=0;P0=table[bai]; //显示百位dula=1; //从0到1,有个上升沿,解除锁存,显示相应段dula=0; //从1到0再次锁存wela=0;P0=0xfe;wela=1;wela=0;delay(1); //延时约2msP0=table1[shi]; //显示十位dula=1;dula=0;P0=0xfd;wela=1;wela=0;delay(1);P0=table[ge]; //显示个位dula=1;dula=0;P0=0xfb;wela=1;wela=0;delay(1); }/*****************************************时序:初始化时序、读时序、写时序。
51单片机实验手册
51单片机实验手册一、概述51单片机是一种经典的8位微控制器,具有广泛的应用领域。
本实验手册旨在提供详细的实验指导,帮助初学者快速入门,并为进一步的学习提供基础。
二、实验准备在进行51单片机实验之前,我们需要准备以下材料:1. 一块51单片机开发板2. USB数据线或者串口线3. 电脑及编程软件4. 面包板及对应的连接线5. 红、绿、蓝LED以及相应的电阻三、实验一:LED闪烁LED闪烁是最基础的实验之一,通过控制51单片机的I/O口状态,使LED灯交替亮灭。
1. 连接电路将51单片机的VCC引脚连接到正极,GND引脚连接到负极,将LED的长脚连接到P1.0引脚,短脚连接到GND引脚。
2. 编写程序使用C语言编写如下程序:```c#include <reg52.h>void main() {while(1) {P1 = 0x00; // P1置低电平,LED灯熄灭Delay(1000); // 延时1秒P1 = 0xFF; // P1置高电平,LED灯点亮Delay(1000); // 延时1秒}}void Delay(unsigned int t) {while (t--);}```3. 烧录程序将编写好的程序通过编程软件下载到51单片机中。
4. 运行实验将USB数据线或串口线连接到51单片机开发板和电脑,将开发板上的开关打开,观察LED灯的闪烁情况。
四、实验二:数码管显示通过控制51单片机的I/O口状态,驱动数码管显示数字。
1. 连接电路将51单片机的VCC引脚连接到正极,GND引脚连接到负极,将数码管的A、B、C、D、E、F、G引脚分别连接到P1.0、P1.1、P1.2、P1.3、P1.4、P1.5、P1.6引脚。
2. 编写程序使用C语言编写如下程序:```c#include <reg52.h>unsigned char code segment[] = { // 数码管段码表0x3F, // 数字00x06, // 数字10x5B, // 数字20x4F, // 数字30x66, // 数字40x6D, // 数字50x7D, // 数字60x07, // 数字70x7F, // 数字80x6F // 数字9};void main() {unsigned int i;while(1) {for(i = 0; i < 10; i++) {P1 = segment[i]; // 依次在数码管上显示数字0-9 Delay(1000); // 延时1秒}}}void Delay(unsigned int t) {while (t--);}```3. 烧录程序将编写好的程序通过编程软件下载到51单片机中。
单片机汇编语言设计实例详解
单片机汇编语言设计实例详解引言:单片机是嵌入式系统中常见的控制器,它具有体积小、功耗低、成本低等特点,被广泛应用于家电、汽车、工业控制等领域。
而汇编语言作为单片机的底层语言,直接操作硬件资源,具有高效性和灵活性。
本文将以一个实例,详细讲解如何使用单片机汇编语言进行设计。
实例背景:假设我们要设计一个温度检测系统,要求实时监测环境温度,并在温度超过某个阈值时触发报警。
硬件准备:1. 单片机:我们选择一款常用的8051单片机作为例子。
2. 温度传感器:我们选择一款数字温度传感器,它可以通过串行通信与单片机进行数据交互。
3. 显示屏:为了方便实时显示温度信息,我们选用一款数码管显示屏。
软件准备:1. Keil C51:这是一款常用的单片机开发软件,支持汇编语言的编写和调试。
2. 串口调试助手:用于测试串口通信功能。
设计步骤:1. 硬件连接:将单片机与温度传感器、显示屏连接起来。
注意接线的正确性和稳定性。
2. 编写初始化程序:使用汇编语言编写单片机的初始化程序,包括端口初始化、中断向量表设置、定时器初始化等。
3. 串口通信设置:通过串口与温度传感器进行数据交互,需要设置串口通信的波特率、数据位数、停止位等参数。
4. 温度检测程序:编写汇编语言程序,实时读取温度传感器的数据,并将数据送至显示屏进行显示。
5. 温度报警程序:在温度超过设定阈值时,触发报警程序,可以通过蜂鸣器等外设发出警报信号。
6. 调试与测试:使用Keil C51进行程序调试,通过串口调试助手测试串口通信和温度显示、报警功能。
设计思路:1. 初始化程序设计:先设置端口的输入输出方向,再设置中断向量表,最后初始化定时器。
这样可以确保程序的稳定性和可靠性。
2. 串口通信设置:根据温度传感器的通信协议,设置串口的波特率、数据位数、停止位等参数。
注意要与传感器的通信规范保持一致。
3. 温度检测程序设计:通过串口读取温度传感器的数据,并进行相应的处理。
51单片机Ds18b20温度传感器程序
* 实验名 : 18B20温度显示试验* 实验说明 : 数码管显示温度值,并且将温度值通过串口发送到电脑上。
* 连接方式 : 见连接图temp.h#ifndef __TEMP_H_#define __TEMP_H_#include<reg51.h>//---重定义关键词---//#ifndef uchar#define uchar unsigned char#endif#ifndef uint#define uint unsigned int#endif//--定义使用的IO口--//sbit DSPORT=P3^7;//--声明全局函数--//void Delay1ms(uint );uchar Ds18b20Init();void Ds18b20WriteByte(uchar com);uchar Ds18b20ReadByte();void Ds18b20ChangTemp();void Ds18b20ReadTempCom();int Ds18b20ReadTemp();#endiftemp.c#include"temp.h"/******************************************************************************** 函数名: Delay1ms* 函数功能: 延时函数* 输入: 无* 输出: 无*******************************************************************************/void Delay1ms(uint y){uint x;for( ; y>0; y--){for(x=110; x>0; x--);}}/******************************************************************************** 函数名: Ds18b20Init* 函数功能: 初始化* 输入: 无* 输出: 初始化成功返回1,失败返回0*******************************************************************************/ uchar Ds18b20Init(){uchar i;DSPORT = 0;//将总线拉低480us~960usi = 70;while(i--);//延时642usDSPORT = 1;//然后拉高总线,如果DS18B20做出反应会将在15us~60us后总线拉低i = 0;while(DSPORT)//等待DS18B20拉低总线{Delay1ms(1);i++;if(i>5)//等待>5MS{return 0;//初始化失败}}return 1;//初始化成功}/******************************************************************************** 函数名: Ds18b20WriteByte* 函数功能: 向18B20写入一个字节* 输入: com* 输出: 无*******************************************************************************/void Ds18b20WriteByte(uchar dat){uint i, j;for(j=0; j<8; j++){DSPORT = 0;//每写入一位数据之前先把总线拉低1usi++;DSPORT = dat & 0x01; //然后写入一个数据,从最低位开始i=6;while(i--); //延时68us,持续时间最少60usDSPORT = 1;//然后释放总线,至少1us给总线恢复时间才能接着写入第二个数值dat >>= 1;}}/******************************************************************************** 函数名: Ds18b20ReadByte* 函数功能: 读取一个字节* 输入: com* 输出: 无*******************************************************************************/ uchar Ds18b20ReadByte(){uchar byte, bi;uint i, j;for(j=8; j>0; j--){DSPORT = 0;//先将总线拉低1usi++;DSPORT = 1;//然后释放总线i++;i++;//延时6us等待数据稳定bi = DSPORT;//读取数据,从最低位开始读取/*将byte左移一位,然后与上右移7位后的bi,注意移动之后移掉那位补0。
上位机串口通信编程
上位机串⼝通信编程摘要本⽂主要描述了利⽤PC机与AT89C51单⽚机之间的通信程序设计实现温度显⽰。
并详述了在VC6.0环境下,上位机利⽤MSCOMM通信控件与单⽚机之间串⼝通信实现温度显⽰。
由单⽚机采集⼀个温度信号,将采集到的温度信号传送给PC机显⽰,PC机⽤VC6.0编写程序,单⽚机程序⽤C语⾔编写,最后⽤PROTUES软件进⾏仿真实现温度显⽰。
关键词:单⽚机MSCOMM控件VC6.0 AT89C51 温度显⽰⽬录摘要1 引⾔ (1)2 结构设计与⽅案选择 (2)2.1设计任务 (2)2.1.1单⽚机的选择 (2)2.1.2电平转换 (2)2.1.1单⽚机的选择 (2)2.1.3单⽚机与pc机通信原理 (2)2.2软件⽅案选择 (2)2.2.1 上位机编程⽅案选择 (3)2.2.2 单⽚机编程⽅案选择 (3)2.3 总体⽅案选择 (2)3 硬件设计 (8)3.1单⽚机主要特性 (5)3.2 MAX232电平芯⽚介绍10 (10)3.3 硬件电路设计图 (11)3.3.1 PC机与单⽚机通信接⼝电路设计框图 (11)3.3.2整体设计原理图 (11)4软件设计 (12)4.1上位机程序设计 (12)4.2下位机程序设计 (13)5 软硬件调试部分 (21)5.1 PROTEUS软件仿真 (21)5.1.1 Protues简介 (21)5.1.2 Protues仿真电路图 (22)5.2 VC软件仿真 (21)结束语 (27)致谢 (28)参考⽂献 (29)1引⾔随着⼈们⽣活⽔平的不断提⾼,单⽚机控制⽆疑是⼈们追求的⽬标之⼀,它所给⼈带来的⽅便也是不可否定的,要为现代⼈⼯作、科研、⽣活、提供更好的更⽅便的设施就需要从单⽚机技术⼊⼿,⼀切向着数字化控制,智能化控制⽅向发展。
现代化集中管理需要对现场数据进⾏统计、分析、制表、打印、绘图、报警等,同时,⼜要求对现场装置进⾏实时控制,完成各种规定操作,达到集中管理的⽬的。
GD32E230ADC:可调电阻、joystick
GD32E230ADC:可调电阻、joystickGD32E230 系列只有 1 路 ADC,有如下特征:,⾼达 2 MSPS⼀共 12 路模拟通道10 路外部通道(AIN0 - AIN9)1 路内部温度传感器(AIN16)1 路内部参考电压(AIN17)可选分辨率:12-bit、10-bit、8-bit or 6-bit⽀持模拟看门狗转换通道选择,有 2 种⽅式:规则组规则组⽀持最多 16 通道,对于所使⽤的通道可以指定转换顺序,触发⽅式可以是硬件、软件,因为规则组数据寄存器只有⼀个,如果使⽤⼤于⼀个通道的话,就必须得配合 DMA,不然从数据寄存器读出来得始终是最后采样的那个通道得数据,注⼊组最多⽀持 4 通道,同样⽀持对所使⽤得通道指定转换顺序,⽀持硬件、软件触发,不过注⼊组有 4 个数据寄存器,注⼊组⾥⾯得每个通道都有对应得数据寄存器,间断模式规则组跟注⼊组都⽀持间断模式(Discontinuous mode),如果使⽤了间断模式,⼀次转换不是转换所使⽤的所有通道,详情如下:规则每次转换所使⽤得通道(ADC_RSQ0~ADC_RSQ2 中配置得通道)中的 n (n<=8 )个通道,n 由DISNUM[2:0] bits 设定,然后继续转换规则组中的接下来的 n 个通道,直到规则组中的所有通道都转换完,如:ADC_RSQ0 的 RL 为 8 ,意思是规则组中有 8 个通道,DISNUM 为 3,表⽰每次转换 3 个通道,没触发⼀次转换 3 通道,直到 8 个通道都完成转换注⼊每次转换注⼊组中的⼀个通道直到所有转换完成模拟看门狗GD32E230的 ADC 还有模拟看门狗的功能,该 ADC 有低阈值和⾼阈值寄存器,当 ADC 采样的值低于低阈值数值或者⾼于⾼阈值数值时,如果相应中断使能的话,会产⽣中断,内部参考电压该 ADC 有个内部参考电压,第 17 通道接到了这个内部参考电压,这电压是多少呢?⼀开始我以为是 VDD,可是我看 ADC 采集到参考电压对于 channal 的值不对,于是我查⼿册,可是,我找遍了 GD32E230 的 datasheet 跟参考⼿册 ADC 部分,都没提到这个值是多少,直到我在 datasheet 中搜关键词 reference ,发现了个线索:然后我在 GD32E230 的参考⼿册 CMP 部分找到了:翻遍⼿册,就发现这⾥有标明,我不知道这个参数重不重要,反正我找了下,找的好⾟苦读取可调电阻这个模块有 3 个接⼝,⼀个接电源正极、⼀个接负极、还有⼀个输出,旋转旋钮时,输出⼝的电压会从电压正极到电源负极改变,如果要知道旋转的时候,输出时多少该怎么做呢?这⾥只需要⼀路 ADC 通道,可是使⽤ ADC 的连续采集功能,也可以使⽤⼀个定时器定时触发 ADC 采集,具体要怎么实现呢?我看了下 SDK 给出的例程,⾥⾯有个Timer_trigger_injected_channel例⼦,从这⾥例⼦名字来看应该时满⾜这个需求:看了下源码,⾥⾯实现了定时器 2 定时触发⼀个有 4 通道的注⼊组,我只要把这个历程改为 1 通道就可以满⾜我的需求了把可变电阻器两端分别接到电源跟地,输出接到 GD32E230 的 PA0,对应 ADC 的 IN0。
基于Matlab的温度传感器数据采集和界面开发
基于Matlab的温度传感器数据采集和界面开发温度传感器数据采集和界面开发一、引言温度传感器数据采集和界面开发是一项基于Matlab的任务,旨在通过温度传感器采集环境温度数据,并通过界面开发将数据可视化展示。
本文将详细介绍如何使用Matlab进行温度传感器数据采集和界面开发的步骤和方法。
二、数据采集1. 硬件准备首先,需要准备温度传感器和与之匹配的硬件设备,如Arduino开发板。
确保传感器和设备之间的连接正确并稳定。
2. 编写采集程序使用Matlab编写数据采集程序,通过串口与Arduino开发板进行通信。
程序中需要设置串口参数,如波特率、数据位和停止位等。
通过读取串口数据,获取温度传感器的实时温度值。
3. 数据存储与处理将采集到的温度数据存储到Matlab的变量中,可以使用数组或表格等数据结构进行存储。
根据需求,可以对数据进行处理,如滤波、平均值计算等。
三、界面开发1. 创建界面使用Matlab的图形用户界面(GUI)工具,创建一个新的界面。
可以选择不同的布局和组件,如按钮、文本框、图表等,来展示温度数据。
2. 组件设置根据需求,对界面中的各个组件进行设置。
可以设置按钮的点击事件,文本框的显示内容,图表的坐标轴范围等。
通过设置,使界面能够实时展示温度数据,并根据数据的变化进行更新。
3. 数据可视化通过界面开发,将采集到的温度数据以图表的形式展示出来。
可以选择折线图、柱状图等不同的图表类型,并设置相应的坐标轴标签、标题和图例等,使数据更加直观和易于理解。
四、测试与优化完成界面开发后,进行测试和优化,确保界面的稳定性和可靠性。
可以模拟不同的温度变化情况,观察界面的响应和数据的准确性。
根据测试结果,对界面进行必要的调整和优化。
五、总结本文详细介绍了基于Matlab的温度传感器数据采集和界面开发的步骤和方法。
通过数据采集和界面开发,可以实时获取温度传感器的数据,并以直观的方式展示出来。
这对于环境监测、温度控制等应用具有重要的意义。
多个18B20测温度1602液晶显示C语言程序
/*-----------------------------------------------名称:DS18b20 温度检测液晶显示论坛:编写:shifang日期:2009.5修改:无内容:------------------------------------------------*/#include<reg52.h> //包含头文件,一般情况不需要改动,头文件包含特殊功能寄存器的定义#include<stdio.h>#include "18b20.h"#include "18b20a.h"#include "1602.h"#include "delay.h"bit ReadTempFlag;//定义读时间标志void Init_Timer0(void);//定时器初始化/*------------------------------------------------串口通讯初始化------------------------------------------------*/void UART_Init(void){SCON = 0x50; // SCON: 模式1, 8-bit UART, 使能接收TMOD |= 0x20; // TMOD: timer 1, mode 2, 8-bit 重装TH1 = 0xFD; // TH1: 重装值9600 波特率晶振11.0592MHzTR1 = 1; // TR1: timer 1 打开//EA = 1; //打开总中断//ES = 1; //打开串口中断TI=1;}/*------------------------------------------------主函数------------------------------------------------*/void main (void){int temp;float temperature;char displaytemp[16];//定义显示区域临时存储数组LCD_Init(); //初始化液晶DelayMs(20); //延时有助于稳定LCD_Clear(); //清屏Init_Timer0();UART_Init();Lcd_User_Chr(); //写入自定义字符LCD_Write_Char(13,0,0x01);//写入温度右上角点LCD_Write_Char(14,0,'C'); //写入字符CLCD_Write_Char(13,1,0x01);//写入温度右上角点LCD_Write_Char(14,1,'C'); //写入字符Cwhile (1) //主循环{if(ReadTempFlag==1){ReadTempFlag=0;temp=ReadTemperature();temperature=(float)temp*0.0625;sprintf(displaytemp,"Temp1 %7.3f",temperature);//打印温度值LCD_Write_String(0,0,displaytemp);//显示第二行temp=ReadTemperature_a();temperature=(float)temp*0.0625;sprintf(displaytemp,"Temp2 %7.3f",temperature);//打印温度值LCD_Write_String(0,1,displaytemp);//显示第二行}}}/*------------------------------------------------定时器初始化子程序------------------------------------------------*/void Init_Timer0(void){TMOD |= 0x01; //使用模式1,16位定时器,使用"|"符号可以在使用多个定时器时不受影响//TH0=0x00; //给定初值//TL0=0x00;EA=1; //总中断打开ET0=1; //定时器中断打开TR0=1; //定时器开关打开}/*------------------------------------------------定时器中断子程序------------------------------------------------*/void Timer0_isr(void) interrupt 1{static unsigned int num;TH0=(65536-2000)/256; //重新赋值2ms TL0=(65536-2000)%256;num++;if(num==600) //{num=0;ReadTempFlag=1; //读标志位置1}}/*------------------------------------------------读取一个字节------------------------------------------------*/unsigned char ReadOneChar(void){unsigned char i=0;unsigned char dat = 0;for (i=8;i>0;i--){DQ = 0; // 给脉冲信号dat>>=1;DQ = 1; // 给脉冲信号if(DQ)dat|=0x80;DelayUs2x(25);}return(dat);}/*------------------------------------------------写入一个字节------------------------------------------------*/void WriteOneChar(unsigned char dat){unsigned char i=0;for (i=8; i>0; i--){DQ = 0;DQ = dat&0x01;DelayUs2x(25);DQ = 1;dat>>=1;}DelayUs2x(25);}/*------------------------------------------------读取温度------------------------------------------------*/unsigned int ReadTemperature(void){unsigned char a=0;unsigned int b=0;unsigned int t=0;Init_DS18B20();WriteOneChar(0xCC); // 跳过读序号列号的操作WriteOneChar(0x44); // 启动温度转换DelayMs(10);Init_DS18B20();WriteOneChar(0xCC); //跳过读序号列号的操作WriteOneChar(0xBE); //读取温度寄存器等(共可读9个寄存器)前两个就是温度a=ReadOneChar(); //低位b=ReadOneChar(); //高位b<<=8;t=a+b;return(t);}/*-----------------------------------------------名称:18B20温度传感器网站:编写:shifang日期:2009.5修改:无内容:18B20单线温度检测的应用样例程序------------------------------------------------*/#include"delay.h"#include"18b20a.h"/*------------------------------------------------18b20初始化------------------------------------------------*/bit Init_DS18B20_a(void){bit dat=0;DQ1 = 1; //DQ1复位DelayUs2x(5); //稍做延时DQ1 = 0; //单片机将DQ1拉低DelayUs2x(200); //精确延时大于480us 小于960us DelayUs2x(200);DQ1 = 1; //拉高总线DelayUs2x(50); //15~60us 后接收60-240us的存在脉冲dat=DQ1; //如果x=0则初始化成功, x=1则初始化失败DelayUs2x(25); //稍作延时返回return dat;}/*------------------------------------------------读取一个字节------------------------------------------------*/unsigned char ReadOneChar_a(void){unsigned char i=0;unsigned char dat = 0;for (i=8;i>0;i--){DQ1 = 0; // 给脉冲信号dat>>=1;DQ1 = 1; // 给脉冲信号if(DQ1)dat|=0x80;DelayUs2x(25);}return(dat);}/*------------------------------------------------写入一个字节------------------------------------------------*/void WriteOneChar_a(unsigned char dat){unsigned char i=0;for (i=8; i>0; i--)DQ1 = 0;DQ1 = dat&0x01;DelayUs2x(25);DQ1 = 1;dat>>=1;}DelayUs2x(25);}/*------------------------------------------------读取温度------------------------------------------------*/unsigned int ReadTemperature_a(void){unsigned char a=0;unsigned int b=0;unsigned int t=0;Init_DS18B20_a();WriteOneChar_a(0xCC); // 跳过读序号列号的操作WriteOneChar_a(0x44); // 启动温度转换DelayMs(10);Init_DS18B20_a();WriteOneChar_a(0xCC); //跳过读序号列号的操作WriteOneChar_a(0xBE); //读取温度寄存器等(共可读9个寄存器)前两个就是温度a=ReadOneChar_a(); //低位b=ReadOneChar_a(); //高位b<<=8;t=a+b;return(t);}#include "delay.h"/*------------------------------------------------uS延时函数,含有输入参数unsigned char t,无返回值unsigned char 是定义无符号字符变量,其值的范围是0~255 这里使用晶振12M,精确延时请使用汇编,大致延时长度如下T=tx2+5 uS------------------------------------------------*/void DelayUs2x(unsigned char t)while(--t);}/*------------------------------------------------mS延时函数,含有输入参数unsigned char t,无返回值unsigned char 是定义无符号字符变量,其值的范围是0~255 这里使用晶振12M,精确延时请使用汇编------------------------------------------------*/void DelayMs(unsigned char t){while(t--){//大致延时1mSDelayUs2x(245);DelayUs2x(245);}}#define EN_CLR EN=0#define EN_SET EN=1#define DataPort P0/*------------------------------------------------判忙函数------------------------------------------------*/bit LCD_Check_Busy(void){DataPort= 0xFF;RS_CLR;RW_SET;EN_CLR;_nop_();EN_SET;return (bit)(DataPort & 0x80);}/*------------------------------------------------写入命令函数------------------------------------------------*/void LCD_Write_Com(unsigned char com)while(LCD_Check_Busy()); //忙则等待RS_CLR;RW_CLR;EN_SET;DataPort= com;_nop_();EN_CLR;}/*------------------------------------------------写入数据函数------------------------------------------------*/void LCD_Write_Data(unsigned char Data){while(LCD_Check_Busy()); //忙则等待RS_SET;RW_CLR;EN_SET;DataPort= Data;_nop_();EN_CLR;}/*------------------------------------------------清屏函数------------------------------------------------*/void LCD_Clear(void){LCD_Write_Com(0x01);DelayMs(5);}/*------------------------------------------------写入字符串函数------------------------------------------------*/void LCD_Write_String(unsigned char x,unsigned char y,unsigned char *s) {if (y == 0){LCD_Write_Com(0x80 + x); //表示第一行}else{LCD_Write_Com(0xC0 + x); //表示第二行}while (*s){LCD_Write_Data( *s);s ++;}}/*------------------------------------------------写入字符函数------------------------------------------------*/void LCD_Write_Char(unsigned char x,unsigned char y,unsigned char Data) {if (y == 0){LCD_Write_Com(0x80 + x);}else{LCD_Write_Com(0xC0 + x);}LCD_Write_Data( Data);}/*------------------------------------------------初始化函数------------------------------------------------*/void LCD_Init(void){LCD_Write_Com(0x38); /*显示模式设置*/DelayMs(5);LCD_Write_Com(0x38);DelayMs(5);LCD_Write_Com(0x38);DelayMs(5);LCD_Write_Com(0x38);LCD_Write_Com(0x08); /*显示关闭*/LCD_Write_Com(0x01); /*显示清屏*/LCD_Write_Com(0x06); /*显示光标移动设置*/DelayMs(5);LCD_Write_Com(0x0C); /*显示开及光标设置*/}/*------------------------------------------------设定二个自定义字符,LCD1602中自定义字符的地址为0x00--0x07,即可定义8个字符这里我们设定把一个自定义字符放在0x00位置(000),另一个放在0x01位子(001)------------------------------------------------*/void Lcd_User_Chr(void){ //第一个自定义字符LCD_Write_Com(0x40); //"01 000 000" 第1行地址(D7D6为地址设定命令形式 D5D4D3为字符存放位置(0--7),D2D1D0为字符行地址(0--7))LCD_Write_Data(0x00); //"XXX 11111" 第1行数据(D7D6D5为XXX,表示为任意数(一般用000),D4D3D2D1D0为字符行数据(1-点亮,0-熄灭)LCD_Write_Com(0x41); //"01 000 001" 第2行地址LCD_Write_Data(0x04); //"XXX 10001" 第2行数据LCD_Write_Com(0x42); //"01 000 010" 第3行地址LCD_Write_Data(0x0e); //"XXX 10101" 第3行数据LCD_Write_Com(0x43); //"01 000 011" 第4行地址LCD_Write_Data(0x0e); //"XXX 10001" 第4行数据LCD_Write_Com(0x44); //"01 000 100" 第5行地址LCD_Write_Data(0x0e); //"XXX 11111" 第5行数据LCD_Write_Com(0x45); //"01 000 101" 第6行地址LCD_Write_Data(0x1f); //"XXX 01010" 第6行数据LCD_Write_Com(0x46); //"01 000 110" 第7行地址LCD_Write_Data(0x04); //"XXX 11111" 第7行数据LCD_Write_Com(0x47); //"01 000 111" 第8行地址LCD_Write_Data(0x00); //"XXX 00000" 第8行数据//第二个自定义字符LCD_Write_Com(0x48); //"01 001 000" 第1行地址LCD_Write_Data(0x03); //"XXX 00001" 第1行数据LCD_Write_Com(0x49); //"01 001 001" 第2行地址LCD_Write_Data(0x03); //"XXX 11011" 第2行数据LCD_Write_Com(0x4a); //"01 001 010" 第3行地址LCD_Write_Data(0x00); //"XXX 11101" 第3行数据LCD_Write_Com(0x4b); //"01 001 011" 第4行地址LCD_Write_Data(0x00); //"XXX 11001" 第4行数据LCD_Write_Com(0x4c); //"01 001 100" 第5行地址LCD_Write_Data(0x00); //"XXX 11101" 第5行数据LCD_Write_Com(0x4d); //"01 001 101" 第6行地址LCD_Write_Data(0x00); //"XXX 11011" 第6行数据LCD_Write_Com(0x4e); //"01 001 110" 第7行地址LCD_Write_Data(0x00); //"XXX 00001" 第7行数据LCD_Write_Com(0x4f); //"01 001 111" 第8行地址LCD_Write_Data(0x00); //"XXX 00000" 第8行数据}。
基于51单片机和DS18B20的数字温度计设计说明
基于51单片机和DS18B20的数字温度计设计说明
1.硬件设计:
-51单片机:选择合适的型号,如STC89C52或AT89C52等。
-DS18B20温度传感器:该传感器是一种数字温度传感器,具有单总线接口和高精度测量能力。
-接口电路:将51单片机和DS18B20传感器连接起来,要注意电平转换和信号线的阻抗匹配。
2.软件设计:
-初始化:在主函数中,首先对单片机进行初始化设置,包括时钟设置、串口配置等。
-DS18B20通信协议:使用单总线协议与DS18B20传感器进行通信,包括发送复位信号、读写数据等操作。
-温度测量:通过向DS18B20发送读取温度的命令,从传感器中读取温度值并保存。
-数据传输:将温度值转换为可显示的格式,如摄氏度或华氏度,并通过串口输出或LED显示。
3.程序流程:
-初始化单片机,设置时钟和串口参数。
-进入主循环,循环执行以下操作:
-发送复位信号,启动温度转换。
-等待转换完成,发送读取温度命令。
-读取温度值,并进行数据处理转换。
-输出温度值。
4.其他功能:
-可以添加LCD显示模块,将温度值显示在液晶屏上。
-可以添加按键输入模块,通过按键切换温度单位或进行其他操作。
需要注意的是,该设计只是一个简单的示例,实际应用中可能需要根据具体需求进行扩展和修改。
同时,在程序设计过程中,也要注意低功耗和数据稳定性等方面的考虑。
MSP-EXP430G2入门
提纲:一.MSP-EXP430G2套件介绍1.包装清单unchPad简介(430文件夹_用户指南)(一)LaunchPad片上资源(1)开发板硬件简介(2)主要功能模块(二)LaunchPad特性(三)LaunchPad电路图(主要参考【LaunchPad】开发板介绍.pdf)3.MSP430G2553数据资料(技术资料汇总_G2553中文资料.pdf)4.安装MSP-EXP430G2 LaunchPad二.编译部分1.编译工具的选择2.编译工具的安装(根据安装提示便可)3.程序编译、烧录流程4.编程规则(MSP430 编程规则.pdf)三.基础程序部分1.功能模块程序(MSP430G2xx3 Code Examples文件夹)2.基础应用程序(例程代码)四.应用举例——MSP430G2452内置温度传感器温度检测五.LaunchPad扩展部分1.eZ430连接、编程要点2.与卫星板的连接3.与LaunchPad兼容的MSP430器件一.MSP-EXP430G2套件介绍1.包装清单:⏹LaunchPad目标板(附一个烧好测温实验例程的MPS430G2553)⏹MPS4302452一个——具有8通道10位ADC、片上比较器、触控式I/O、通用串行接口、8Kb闪存、256字节SRAM的低功耗16位MSP430微控制器⏹32.768KHz时钟晶振⏹0.5m长的USB-B线缆⏹插座式10引脚印刷板连接线两个⏹LaunchPad贴签两个⏹快速启动指南unchPad简介(一)LaunchPad片上资源(1)开发板硬件介绍:板上材料清单开发板指示图(2)主要功能模块:⏹复位模块⏹时钟模块⏹I/O端口模块;⏹WDT看门狗模块;⏹Timer A定时器模块⏹比较器A模块⏹ADC10数模转换模块⏹USART串行异步通讯模块⏹CPU模块(二)LaunchPad特性⏹实验班成本低、低功耗⏹USB调试与编程接口无需驱动即可安装使用,且具备高达9600波特的UART串行通信速度⏹支持所有采用PDIP14或PDIP20封装的MSP430G2XX和MSP430F20XX器件⏹分别连接至绿光和红光LED的两个通用数字I/O口引脚可提供视觉反馈⏹两个按钮可实现用户反馈和芯片复位⏹器件引脚可通过插座引出,既可以方便的用于调试,也可用来添加定制的扩展板⏹高质量的20引脚DIP插座,可轻松简便地插入目标器件或将其移除(三)LaunchPad电路图LaunchPad原理图见“【LaunchPad】开发板介绍.pdf”。
单片机DS18B20温度传感器C语言程序含CRC校验
单片机中使用DS18B20温度传感器C语言程序(参考1)/******************************************************************************** DS18B20 测温程序硬件:AT89S52(1)单线ds18b20接 P2.2(2)七段数码管接P0口(3)使用外部电源给ds18b20供电,没有使用寄生电源软件:Kei uVision 3**********************************************************************************/ #include "reg52.h"#include "intrins.h"#define uchar unsigned char#define uint unsigned intsbit ds=P2^2;sbit dula=P2^6;sbit wela=P2^7;uchar flag ;uint temp; //参数temp一定要声明为 int 型uchar code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71}; //不带小数点数字编码uchar code table1[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef}; //带小数点数字编码/*延时函数*/void TempDelay (uchar us){ while(us--); }void delay(uint count) //延时子函数{ uint i;while(count){ i=200;while(i>0)i--;count--; } }/*串口初始化,波特率9600,方式1 */void init_com(){ TMOD=0x20; //设置定时器1为模式2TH1=0xfd; //装初值设定波特率TL1=0xfd;TR1=1; //启动定时器SM0=0; //串口通信模式设置SM1=1;// REN=1; //串口允许接收数据PCON=0; //波特率不倍频// SMOD=0; //波特率不倍频// EA=1; //开总中断//ES=1; //开串行中断}/*数码管的显示 */void display(uint temp){ uchar bai,shi,ge;bai=temp/100;shi=temp%100/10;ge=temp%100%10;dula=0;P0=table[bai]; //显示百位dula=1; //从0到1,有个上升沿,解除锁存,显示相应段dula=0; //从1到0再次锁存wela=0;P0=0xfe;wela=1;wela=0;delay(1); //延时约2msP0=table1[shi]; //显示十位dula=1;dula=0;P0=0xfd;wela=1;wela=0;delay(1);P0=table[ge]; //显示个位dula=1;dula=0;P0=0xfb;wela=1;wela=0;delay(1); }/*****************************************时序:初始化时序、读时序、写时序。
单片机 STC89C52 温度传感器论文
单片机数字温度计摘要:本设计单片机采用AT89C52芯片,数字温度传感器采用美国DALASS公司的1–Wire器件DS18B20,即单总线器件DS18B20,与单片机组成一个测温系统,当系统上电时,温度传感器就会读出当前环境的温度,并在三位LED数模显示管上显示出当前的温度,该测温仪的测温范围为0℃~110℃,按此要求设计硬件和软件以实现这一功能。
关键词:单片机STC89C52 温度传感器DS18B20; 温度测量电子线路单片机汇编语言温度1 引言:单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。
概括的讲:一块芯片就成了一台计算机。
它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。
同时,学习使用单片机是了解计算机原理与结构的最佳选择。
目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。
单片机在检测和控制系统中得到广泛的应用, 温度则是系统常需要测量、控制和保持的一个量。
本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,该设计控制器使用单片机STC89C52,测温传感器使用DS18B20,用4位共阳极LED数码管以串口传送数据,实现温度显示,能准确达到以上要求。
2 总体设计方案:2.1 设计思路:(1)本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。
(2)从中考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。
从以上两种方案,很容易看出,采用方案(2),电路比较简单,软件设计也比较简单,故采用了方案(2)。
温度传感器工作原理
温度传感器工作原理-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除温度传感器工作原理(总14页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除温度传感器工作原理1.引脚★●GND接地。
●DQ为数字信号输入\输出端。
●VDD为外接电源输入端(在寄生电源接线方式时接地)2.与单片机的连接方式★单线数字温度传感器DS18B20与单片机连接电路非常简单,引脚1接地(GND),引脚3(VCC)接电源+5V,引脚2(DQ)接单片机输入\输出一个端口,电压+5V和信号线(DQ)之间接有一个4.7k的电阻。
由于每片DS18B20含有唯一的串行数据口,所以在一条总线上可以挂接多个DS18B20芯片。
外部供电方式单点测温电路如图★外部供电方式多点测温电路如图★3.DS18B20的性能特点DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器。
与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。
DS18B20的性能特点如下:●独特的单线接口仅需要一个端口引脚进行通信。
●多个DS18B20可以并联在唯一的三线上,实现多点组网功能。
●不需要外部器件。
●在寄生电源方式下可由数据线供电,电压范围为3.0~5.5V。
●零待机功耗。
●温度以9~12位数字量读出●用户可定义的非易失性温度报警设置。
●报警搜索命令识别并标识超过程序限定温度(温度报警条件)的器件。
●负电压特性,电源极性接反时,温度计不会因发热而烧毁,只是不能正常工作。
4.内部结构.DS18B20采用3脚PR—35封装或8脚SOIC封装,其内部结构框图★64位ROM的位结构如图★◆。
开始8位是产品类型的编号;接着是每个器件的唯一序号,共有48位;最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用单线进行通信的原因。
嵌入式系统课程设计(基于ARM的温度采集系统设计)
嵌入式系统课程设计(基于ARM的温度采集系统设计)1000
字
嵌入式系统是一种基于微处理器或微控制器、专用硬件和软件的计算机系统,具有小型化、低功耗、实时性强等特点。
本次课程设计旨在设计一种基于ARM的温度采集系统,实现对温度值的实时监测与显示。
首先,需要选用一款适合嵌入式系统的ARM处理器。
考虑到性能和功耗的平衡,本次选用STM32F103C8T6处理器。
其主要特点有:基于ARM Cortex-M3内核,时钟频率为72MHz,具有64KB闪存和20KB SRAM。
接下来,需要选择温度传感器。
考虑到成本和精度等因素,本次选用DS18B20数字温度传感器。
DS18B20具有以下特点:数字接口,
精度为±0.5℃,温度响应快速,封装为TO-92。
然后,需要编写嵌入式软件。
本次采用Keil MDK-ARM开发环境,编写C语言程序。
程序主要包括以下部分:
1. 初始化:包括STM32外设的初始化,如时钟、GPIO、USART等。
2. 温度采集:通过OneWire协议与DS18B20通信,读取温度值,计算并保存到指定变量中。
3. 温度显示:使用USART串口通信,把温度值转换为ASCII码,并通过串口发送到上位机。
上位机可以使用串口调试助手等软件进行数据接收和显示。
最后,进行实验测试。
将DS18B20连接到STM32,把程序烧录到处
理器中,通过串口调试助手连接上位机,即可实时显示温度值。
实验测试表明,该系统温度采集准确可靠,响应速度快,可广泛应用于各种实时温度监测场景。
37. DS18B20温度传感器实验
普中STM32开发板带您进入ARM世界
DS18B20 的典型温度读取过程为:复位→发 SKIP ROM 命令( 0XCC )→发开始转换命令( 0X44)→延时→复位→发送 SKIP ROM 命令( 0XCC)→发读存储器命令( 0XBE)→连续读出两个字节数据(即温度)→ 结束。
数据线供电 2、独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线
即可实现微处理器与DS18B20的双向通讯。 3、DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,
实现组网多点测温。 4、DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集
成在形如一 只三极管的集成电路内。 5、温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃。
普中STM32开发板带您进入ARM世界
3.硬件电路
本实验使用到硬件资源如下: (1)D1指示灯 (2)串口1 (3)DS18B20温度传感器
D1指示灯、串口1电路在前面章节都介绍过,这里就不多说,DS18B20 温度传感器模块电路如图。
普中STM32开发板带您进入ARM世界
4.编写DS18B20温度控制程序
普中stm32开发板带您进入arm世界ds18b20外观实物如图普中stm32开发板带您进入arm世界ds18b20内部结构如图ds18b20温度传感器的内部存储器包括一个高速的暂存器ram和一个非易失性的可电擦除的eeprom后者存放高温度和低温度触发器thtl和配置寄存器
普中STM32开发板带您进入ARM世界
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
STM32F103 内部温度传感器用串口传递到PC上显示程序如下:
#include ""
#include ""
#include ""
#include <>
#define DR_ADDRESS ((uint32_t)0x4001244C) n\r", a, b, c, d);
Delay_ARMJISHU(8000000);
}
}
void ADC_GPIO_Configuration(void) //ADC配置函数
{
GPIO_InitTypeDef GPIO_InitStructure;
//PC0 作为模拟通道10输入引脚
= GPIO_Pin_0; //管脚1
= GPIO_Mode_AIN;//输入模式
GPIO_Init(GPIOC, &GPIO_InitStructure); //GPIO组}
超级终端显示如下:
关于一些数据格式的定义解释:
#ifndef __STM32F10x_TYPE_H
#define __STM32F10x_TYPE_H
typedef signed longs32;
typedef signed short s16;
typedef signed chars8;
typedef signed longconst sc32;?
typedef signed short const sc16;?
typedef signed charconst sc8;
typedef volatile signed longvs32;
typedef volatile signed short vs16;
typedef volatile signed charvs8;
typedef volatile signed longconst vsc32;?typedef volatile signed short const vsc16;?typedef volatile signed charconst vsc8; typedef unsigned longu32;
typedef unsigned short u16;
typedef unsigned charu8;
typedef unsigned longconst uc32;?
typedef unsigned short const uc16;?
typedef unsigned charconst uc8;
typedef volatile unsigned longvu32;
typedef volatile unsigned short vu16;
typedef volatile unsigned charvu8;
typedef volatile unsigned longconst vuc32;?
typedef volatile unsigned short const vuc16;?
typedef volatile unsigned charconst vuc8;
typedef enum {FALSE = 0, TRUE = !FALSE} bool;
typedef enum {RESET = 0, SET = !RESET} FlagStatus, ITStatus;
typedef enum {DISABLE = 0, ENABLE = !DISABLE} FunctionalState;
#define IS_FUNCTIONAL_STATE(STATE) (((STATE) == DISABLE) || ((STATE) == ENABLE))
typedef enum {ERROR = 0, SUCCESS = !ERROR} ErrorStatus;
#define U8_MAX((u8)255)
#define S8_MAX((s8)127)
#define S8_MIN((s8)-128)
#define U16_MAX((u16)65535u) #define S16_MAX((s16)32767) #define S16_MIN((s16)-32768) #define U32_MAX((u32)95uL) #define S32_MAX((s32)47)
#define S32_MIN((s32)-48)
#endif。