大学物理实验讲义实验液晶电光效应实验

合集下载

液晶电光效应实验报告

液晶电光效应实验报告

显示(PDP),电致发光显示(ELD),发光二极管〔LED〕显示,有机发光
二极管〔OLED〕显示,真空荧光管显示〔VFD〕,场发射显示〔FED〕。

第3页共3页
在未加驱动电压的状况下,来自光源的自然光经过偏振片 P1 后只 剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋 转了 90°。这时光的偏振面与 P2 的透光轴平行,因此有光通过。
在施加足够电压状况下(一般为 1~2 伏),在静电场的作用下,除 了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于 电场方向排列。于是原来的扭曲结构被破坏,成了匀称结构。从 P1 透 射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振 方向到达下电极。这时光的偏振方向与 P2 正交,因此光被关断。
的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。 〔1 埃=10-10 米〕,直径为 4~6 埃,液晶层厚度一般为 5-8 微米。
2.测量驱动电压周期改变时,液晶光开关的时间响应曲线,并由
玻璃板的内外表涂有透亮电极,电极的外表预先作了定向处理〔可用
时间响应曲线得到液晶的上升时间和下降时间。
由于上述光开关在没有电场的状况下让光透过,加上电场的时候光 被关断,因此叫做常通型光开关,又叫做常白模式。若 P1 和 P2 的透光
轴互相平行,则构成常黑模式。 液晶可分为热致液晶与溶致液晶。热致液晶在肯定的温度范围内
呈现液晶的光学各向异性,溶致液晶是溶质溶于溶剂中形成的液晶。 目前用于显示器件的都是热致液晶,它的特性随温度的转变而有肯定 改变。
2.液晶光开关的电光特性 对于常白模式的液晶,其透射率随外加电压的升高而渐渐降低, 在肯定电压下到达最低点,此后略有改变。可以依据此电光特性曲线 图得出液晶的阈值电压和关断电压。 3.液晶光开关的时间响应特性 加上〔或去掉〕驱动电压能使液晶的开关状态发生转变,是因为 液晶的分子排序发生了转变,这种重新排序需要肯定时间,反映在时 间响应曲线上,用上升时间τr 和下降时间τd 描述。给液晶开关加上 一个周期性改变的电压,就可以得到液晶的时间响应曲线,上升时间

液晶电光效应实验报告

液晶电光效应实验报告

液晶电光效应实验报告一、实验目的1.通过实验观察液晶电光效应现象,并了解其基本原理;2.掌握液晶显示屏的工作原理和性能特点;3.了解液晶材料的应用领域。

二、实验仪器与材料1.液晶显示器2.外接电源3.实验电路连接线4.直流电压源三、实验原理四、实验步骤1.将液晶显示器与外接电源连接,确保电源正常工作;2.调节电源输出电压,使液晶显示器正常显示;3.逐渐调节电压,观察液晶显示器的显示变化;4.记录电压与显示效果之间的关系。

五、实验结果与分析根据实验记录,我们可得到以下实验结果:1.在无外电场作用下,液晶显示器显示正常;2.当外加电压逐渐增加时,液晶显示器出现逐渐变暗的现象;3.当外加电压达到一定值时,液晶显示器完全变暗。

根据实验结果,我们可以得出以下分析:1.无外电场作用时,液晶分子自由排列,光线可以正常透过;2.外加电压会改变液晶分子的排列方向,导致光线透过程度变化;3.随着电压的增加,液晶分子排列更趋于垂直方向,使得光线几乎无法透过,导致显示变暗。

六、实验结论通过本次实验,我们得到了以下结论:1.外加电场可以改变液晶分子的排列方向,从而改变液晶显示器的显示效果;2.液晶显示器可以通过改变电压来控制光的透过程度,实现显示效果;3.液晶电光效应在液晶显示器等设备中有广泛的应用。

七、实验心得通过这次实验,我深入了解了液晶电光效应的原理和应用。

液晶电光效应是现代光电技术中非常重要的一部分,广泛应用在液晶显示器、液晶电视等设备上。

了解和掌握液晶电光效应的基本原理对于学习液晶显示器等设备的工作原理和性能特点非常有帮助。

实验过程中,我学会了正确连接电路和使用电压源,同时也注意到了实验过程中的细节和注意事项。

通过实际操作,我更加深入地理解了液晶电光效应的原理和应用。

通过实验报告的撰写,我进一步加深了对实验结果的理解和分析,提高了实验报告的写作能力。

总的来说,本次实验使我受益匪浅,对液晶电光效应有了更为具体的认识。

液晶的电光效应实验报告

液晶的电光效应实验报告

液晶的电光效应实验报告液晶的电光效应实验报告引言液晶是一种特殊的物质,具有晶体和液体的特性。

它在电场的作用下会发生电光效应,这一现象在现代科技领域中有着广泛的应用。

本实验旨在研究液晶的电光效应,并探究其在液晶显示器等设备中的应用。

实验材料与仪器本实验所需材料包括液晶样品、电源、电极板、电压调节器等。

实验仪器包括显微镜、光源、示波器等。

实验步骤1. 准备工作:将液晶样品放置在显微镜下,调节显微镜的焦距,使样品清晰可见。

2. 搭建电路:将电源与电极板连接,通过电压调节器调节电压大小。

3. 观察现象:逐渐增加电压,观察液晶样品的变化。

记录不同电压下的观察结果。

4. 测量光强:使用光源照射液晶样品,通过示波器测量光强的变化。

记录不同电压下的光强数值。

实验结果与分析在实验过程中,我们观察到了液晶样品的电光效应。

随着电压的增加,液晶样品的透明度发生了明显的变化。

当电压较小时,液晶样品呈现出较高的透明度;而当电压较大时,液晶样品的透明度明显降低。

这种变化是由于电场的作用导致液晶分子的排列发生改变,进而影响了光的传播。

通过测量光强的变化,我们发现随着电压的增加,光强逐渐减小。

这是因为在电场的作用下,液晶分子的排列发生了改变,使得光的传播受到阻碍,从而导致光强减小。

这一现象在液晶显示器中得到了广泛的应用,通过调节电压,可以控制液晶的透明度,从而实现图像的显示和隐藏。

液晶的电光效应是基于液晶分子的特殊排列结构。

液晶分子具有长而细长的形状,可以自由旋转和移动。

在无电场作用下,液晶分子呈现出无序排列的液态状态;而在电场作用下,液晶分子会被电场所约束,呈现出有序排列的晶态状态。

这种有序排列会导致光的传播路径发生改变,从而产生电光效应。

液晶的电光效应在现代科技领域中有着广泛的应用。

最典型的应用就是液晶显示器。

液晶显示器利用液晶的电光效应,通过控制电场的大小和方向,实现图像的显示和隐藏。

液晶显示器具有体积小、能耗低、分辨率高等优点,已经成为了电子产品领域中不可或缺的一部分。

实验4.6液晶电光效应

实验4.6液晶电光效应

液晶电光效应【实验简介】液晶是介于液体与晶体之间的一种物质状态,即具有液体的流动性,又具有晶体各向异性的特性。

当光通过液晶时,会产生像晶体那样的偏振面旋转及双折射等效应。

液晶分子是含有极性基团的棒状极性分子,在外电场作用下,偶极子会按电场方向取向,使分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液晶光学性质的改变称为液晶电光效应。

液晶电光效应的应用很广,利用液晶电光效应可以做成各种液晶显示器件、光导液晶光阀、光调制器、光路转换开关等,尤其是利用液晶电光效应制成的液晶显示器件,由于具有驱动压低(一般为几伏),功耗小,体积小,寿命长,环保无辐射等优点,在当今各种显示器件的竞争中有独领风骚之势,因此,研究液晶电光效应具有很重要的意义。

常用的液晶显示器件类型有:TFT型(有源矩阵液晶显示)、STN型(超扭曲液晶显示)、TN型(扭曲向列相液晶显示),其中TN型液晶显示器件原理比较简单,是TFT型、STN型液晶显示的基础,因此本实验研究TN型液晶材料,希望通过一些基本现象的观察和研究,对液晶有一个基本了解。

【实验目的】1.了解液晶的结构特点和物理性质。

2.了解液晶电光效应、液晶光开关的工作原理及简单液晶显示器件的显示原理。

3.通过液晶电光特性和时间响应特性曲线的观测,测量液晶的一些性能参数。

【预习思考题】1.扭曲向列相液晶具有那些物理特性,如何利用其电光效应制成液晶光开关?如何利用液晶光开关进行数字、图形显示?2.如何在示波器上显示驱动信号波形和时间响应曲线,如何测量响应曲线的上升时间和下降时间?【实验仪器】液晶盒及液晶驱动电源、二维可调半导体激光器、偏振片(两个)、光功率计、光电二极管探头、双踪示波器、白屏、光学实验导轨及元件底座、钢板尺【实验原理】1.液晶分类大多数液晶材料都是由有机化合物构成的。

这些有机化合物分子多为细长的棒状结构,长度为数nm,粗细约为0.1nm量级,并按一定规律排列。

液晶电光效应实验实验报告

液晶电光效应实验实验报告

液晶电光效应实验实验报告【实验目的】1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。

2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。

3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。

4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。

【实验仪器】液晶电光效应实验仪一台,液晶片一块【实验原理】1.液晶光开关的工作原理液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。

TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。

棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。

玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。

上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。

然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。

理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。

取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。

在未加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。

吉林大学大学物理实验 液晶电光效应实验

吉林大学大学物理实验 液晶电光效应实验

液晶电光效应实验液晶是介于液体与晶体之间的一种物质状态。

一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的各向异性。

当光通过液晶时,会产生偏振面旋转,双折射等效应。

液晶分子是含有极性基团的极性分子,在电场作用下,偶极子会按电场方向取向,导致分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液晶光学性质的改变称为液晶的电光效应。

1888年,奥地利植物学家Reinitzer在做有机物溶解实验时,在一定的温度范围内观察到液晶。

1961年美国RCA公司的Heimeier发现了液晶的一系列电光效应,并制成了显示器件。

从70年代开始,日本公司将液晶与集成电路技术结合,制成了一系列的液晶显示器件,并至今在这一领域保持领先地位。

液晶显示器件由于具有驱动电压低(一般为几伏),功耗极小,体积小,寿命长,环保无辐射等优点,在当今各种显示器件的竞争中有独领风骚之势。

实验意义与目的实验意义:液晶作为物质存在的第四态,早在上世纪开始至今已成为由物理学家、化学家、生物学家、工程技术人员和医药工作者共同关心与研究的领域,在物理、化学、电子、生命科学等诸多领域有着广泛应用,如:光导液晶光阀,光调制器,液晶显示器件,各种传感器、微量毒气监测、夜视仿生等,尤其液晶显示器件独占了电子表,手机,笔记本电脑等领域。

其中液晶显示器件、光导液晶光阀、光调制器、光路转换开关等均是利用液晶电光效应的原理制成的,因此,掌握液晶电光效应从实用角度或物理实验教学角度都是很有意义的。

液晶显示器件由于具有驱动电压低(一般为几伏),功耗极小,体积小,寿命长,环保无辐射等优点,在当今已广泛应用于各种显示器件中。

实验目的:(1)掌握液晶光开关的基本工作原理,测量液晶光开关的电光特性曲线。

(2)观察液晶光开关的时间响应曲线,并求出液晶的上升时间和下降时间。

(3)测量液晶显示器的视角特性。

液晶电光效应实验

液晶电光效应实验

因。 3)液晶板与光线的夹角与仪器上所标识的不一定相同,这可能是导致实验数据中出现了透 射率大于 100%的情况。 3. 关于液晶的应用前景的分析: 以液晶作为显示的最大优点正是其耗能少, 从实验中可以看到, 只需加上电压改变液晶的 形态从而改变光的通透, 以达到显示的目的。 而传统显示器是依靠自身表面的发光来实现显 示的目的的。 这确实可以证明在有着日光或是环境光的情况下, 液晶确实是一个显示的绝佳 材料,譬如计算器。然而,在夜晚,由于液晶本身并不发光,显示的作用是达不到的。因此, 绝大部分应用液晶显示的机器为了使其能在夜晚也能实现显示, 显示板下方是配有背景照明 的,譬如电视,计算机,手机中的亮度调节,正是用于调节此背景光的。通过我的观察,显 示器的电能消耗大部分还是消耗于这种背景照明上, 而不是液晶。 另外液晶在强日光下的显 示效果也不是很好。因此,我们应该考虑液晶在夜晚显示的另一种方式,这种方式将比背景 光更加节能。比如,可以将液晶加入某种荧光材料,夜晚通过荧光材料显示,而白天依然通 过普通液晶显示。但是荧光材料的荧光性会慢慢减弱。对于计算器,由于其太阳能所充的能 量远大于其使用的电量,而其余电量正好用于荧光材料的恢复。至于其他机器,则需要考虑 一些其他的办法了。
100 100 100 100 1.5 31.8 31.9 31.9 31.87
100 100 100 100 1.6 20.7 20.6 20.5 20.6
99.9 99.9 99.9 99.9 1.7 12.8 12.7 12.5 12.67
98.4 98.3 98.4 98.37 2 4 4.1 4 4.03
四、实验思考题
1. 如何确定本实验使用的液晶样品是常黑型还是长白型 答:在加上电压时,透射率骤减,说明入射偏振光在没有旋转的情况下未能通过,说明是长 白型。实际应用中可以根据需求选择长白型或是常黑型,若是长期需要光通过,则选择长白 型,反之选择常黑型,以节省电能。 2. 在液晶开关视角特性的测量中,可以发现图像和数据关于 0 并不是十分的对称,分析其 原因如下: 1) 角度的齿轮肯定存在一些误差,因此随着转动角度的增大,角度误差也会越来越大,因 此可能会导致图像的整体偏移,即 0 度角所对应的点并不是真正的 0 度。 2) 实验中注意到,在放置实验仪器而不作任何操作的时候(静态工作) ,透射率会慢慢减 小。这一现象可能与透射率的测量、光源的稳定性、外界光源都有关系,这也可能是一个原

液晶电光效应实验(实验报告)

液晶电光效应实验(实验报告)

液晶电光效应实验(实验报告)
液晶电光效应实验
液晶电光效应是指在液晶分子结构扭曲时,液晶薄膜的透光度发生变化。

实验中,集成了一块液晶屏,将电压施加到液晶屏上,观察液晶屏对应位置的透光度变化,研究该变化规律,以深入加深对液晶电光效应的认识。

实验步骤如下:
1. 首先,将电路连接好,确保液晶屏上各电极连接无误,并检查电源是否已正常供电;
2. 将示波器的波形选择及参数确定好,接入电源,使示波器正常工作;
3. 称取一只仪器,将相应的液晶屏放在支架上,便于观察及调整;
4. 用外加电压试验液晶屏,每次增大一个单位,观察屏幕中每一点的透光度变化;
5.了解液晶屏的电光效应,在变化的电压影响下,调整透光度,并记录实验结果。

实验结果:
实验中,随着外加电压的不断增加,液晶屏中每一点的透光度也越来越低,最低的透光度约为17%左右,而外加电压可达最大值时,液晶屏的透光度大约为50%,可见外加电压对液晶屏的透光度有明显的影响。

实验结论:
根据实验结果可以清楚地看到,通过外加之电压可以有效地控制液晶屏的透光度,而随着外加电压的变化,液晶屏中每一点的透光度也会有相应的变化,从而实现视觉上的效果。

本次实验验证了液晶电光效应的存在,为进一步研究液晶电光效应提供了基础。

实验17液晶电光效应(共15张PPT)

实验17液晶电光效应(共15张PPT)
6
第六页,共十五页。
液晶光开关电光特性(tèxìng)曲线
7
第七页,共十五页。
液晶驱动电压和时间(shíjiān)响应曲线
下降时间
上升时间
8
第八页,共十五页。
液晶(yèjīng)图像显示原理
液晶光开关组成(zǔ chénɡ)的矩阵式图形显示器,工作方 式为扫描方式,显示原理如右图所示。
A B C D E
3.液晶板凸起面必须要朝向激光发射方向,否则实验记录的数据为 错误数据;
4.在调节透过率100%时,如果透过率显示不稳定,则很有可能是光路 没有对准,
5.在校准透过率100%前,必须将液晶供电电压显示调到0.00V或显示大于 “250” ,否则无法校准透过率为100%。在实验中,电压为0.00V时,不 要长时间按住“透过率校准”按钮,否则透过率显示将进入非工作状态, 本组测试的数据为错误数据,需要重新进行本组实验数据记录。
a bc def
9
第九页,共十五页。
10
第十页,共十五页。
实验内容 及步骤 (nèiróng)
1.校准透过率为100%, 2.液晶电光特性的测量
静态模式下使电压从0v到6v记录(jìlù)相应的透射率。 绘制电光曲线图求出阈值电压与关断电压。 3.液晶时间特性曲线测定 静态闪烁状态,透过率为100%,电压为2v,由示 波器观察到驱动电压波形及时间特性曲线,并求 出上升时间与下降时间。
液晶(yèjīng)分子
3
第三页,共十五页。
扭曲(niǔ qǔ)向列型(TN)液晶
TN型液晶,是目前应用最普遍(pǔbiàn)的液晶显示器件。 4
第四页,共十五页。
实验 原理 (shíyàn)
液晶光开关(kāiguān)工作原理示意图

液晶电光效应实验报告

液晶电光效应实验报告

液晶电光效应实验报告一、实验目的1.了解液晶的基本原理和电光效应。

2.观察和测量液晶显示器在外加电场作用下的光学性质变化。

3.研究液晶显示器的工作原理。

二、实验仪器和材料1.液晶显示器2.外加电源3.直流稳压电源4.数显万用表5.电源线等三、实验原理液晶电光效应是指液晶因外加电场作用下发生的光学性质变化。

液晶的分子结构使其具有双折射效应,即当无电场作用时,液晶分子排列有序,折射率一致,透过的光线为线偏振光。

而当外加电场作用于液晶时,液晶分子排列发生变化,折射率不一致,透过的光线变为圆偏振光。

四、实验步骤1.将液晶显示器连接好外加电源和电源线,并接通电源使其工作。

2.调节电源输出电压,观察到显示器发出的图案。

3.利用数显万用表测量液晶显示器外加电压和电流。

4.记录显示器上显示的图案在不同电压下的变化情况。

五、实验结果与分析通过实验观察和测量,得到了液晶显示器在不同电压下显示的图案变化情况。

随着外加电压的增加,显示器上显示的图案也发生了变化。

在低电压下,显示器上的图案模糊不清,无法辨认;而在适当的电压范围内,图案变得清晰可辨,颜色也更加鲜艳。

但是当电压过高时,图案又变得模糊。

这种变化是由液晶电光效应引起的。

当电场强度较弱时,液晶分子大致保持有序排列,所以透过的光线呈线偏振光,显示的图案模糊。

当电场强度适中时,液晶分子会重新排列,折射率不一致,透过的光线变为圆偏振光,显示的图案变得清晰。

但是当电场强度过强时,液晶分子排列变得混乱,无法正确解码和显示,导致图案模糊。

六、实验结论通过本次实验,我们对液晶的基本原理和电光效应有了更深入的了解。

液晶显示器在外加电场作用下会发生光学性质的变化,从而实现图案的显示。

为了获得清晰可辨的图案,外加电压必须保持在适当的范围内,过高或者过低的电压都会导致图案模糊不清。

因此,在液晶显示器的使用过程中,要注意调节电压以获得最佳显示效果。

七、实验心得通过本次实验,我深入了解了液晶电光效应的原理和液晶显示器的工作原理。

大学物理实验 液晶光电效应综合实验

大学物理实验 液晶光电效应综合实验

液晶光电效应综合实验摘要:本实验主要通过液晶光开关电光特性综合试验仪来进行液晶的电光特性测量实验,测量液晶光开关的电光特性曲线,并由此得到阈值电压和关断电压,并绘制液晶光开关的时间响应曲线得到液晶的上升时间和下降时间,测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。

关键字:液晶光电效应引言:液晶是介于液体与晶体之间的一种物质状态。

一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的各向异性。

当光通过液晶时,会产生偏振面旋转,双折射等效应。

液晶分子是含有极性基团的极性分子,在电场作用下,偶极子会按电场方向取向,导致分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液晶光学性质的改变称为液晶的电光效应。

实验目的:1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。

2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。

3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。

4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。

实验原理:1.液晶光开关的工作原理液晶的种类很多,仅以常用的 TN(扭曲向列)型液晶为例,说明其工作原理。

TN型光开关的结构如图 1 所示。

在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。

棍的长度在十几埃(1 埃= 10-10米),直径为 4~6 埃,液晶层厚度一般为 5-8 微米。

玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。

大学物理实验讲义实验08 液晶电光效应实验

大学物理实验讲义实验08 液晶电光效应实验

实验14 液晶电光效应实验液晶是介于液体与晶体之间的一种物质状态。

一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的特性。

当光通过液晶时,会产生偏振面旋转,双折射等效应。

液晶分子是含有极性基团的极性分子,在电场作用下,偶极子会按电场方向取向,导致分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液晶光学性质的改变称为液晶的电光效应。

1888年,奥地利植物学家Reinitzer 在做有机物溶解实验时,在一定的温度范围内观察到液晶。

1961年美国RCA 公司的Heimeier 发现了液晶的一系列电光效应,并制成了显示器件。

从70年代开始,日本公司将液晶与集成电路技术结合,制成了一系列的液晶显示器件,至今在这一领域保持领先地位。

液晶显示器件由于具有驱动电压低(一般为几伏),功耗极小,体积小,寿命长,无辐射等优点,在当今各种显示器件的竞争中有独领风骚之势。

【实验目的】1.在学习液晶光开关的基本原理,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。

2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。

3.测量液晶光开关的视角特性。

4.了解液晶光开关构成矩阵式图像显示的原理。

【仪器用具】ZKY-LCDEO 型液晶光开关电光特性综合实验仪、数字示波器【实验原理】1.液晶光开关的工作原理液晶的种类很多,仅以常用的扭曲向列型液晶为例,说明其工作原理。

光开关的结构如入射的自然光 偏振片P1偏振片P2 出射光扭曲排列的液晶分子具有光波导效应光波导已被电场拉伸图1. 液晶光开关的工作原理图1所示。

在两块玻璃板之间夹有液晶,液晶分子的形状如同火柴一样,为棍状。

棍的长度在十几埃,直径为4~6埃,液晶层厚度一般为5-8微米。

玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。

液晶光电效应实验报告

液晶光电效应实验报告

液晶光电效应实验报告液晶光电效应是指在外加电场作用下,液晶分子发生取向改变,从而导致光学性质的变化。

本次实验旨在通过观察液晶光电效应的现象,探究其机理原理,并对实验结果进行分析和总结。

实验仪器与材料:1. 液晶样品。

2. 透明电极玻璃基板。

3. 电源。

4. 偏振片。

5. 光源。

实验步骤:1. 将液晶样品均匀涂布在透明电极玻璃基板上,形成液晶薄膜。

2. 将偏振片置于液晶样品的上方,使其与液晶薄膜垂直。

3. 将电源接通,施加外加电场。

4. 调节光源位置和强度,观察液晶样品的光学特性变化。

实验结果与分析:在实验过程中,我们观察到了明显的液晶光电效应。

当施加外加电场后,液晶样品的光学特性发生了明显的变化,透过偏振片观察液晶样品时,可以看到光强度的变化。

这表明外加电场导致了液晶分子的取向改变,从而影响了光的传播方向和强度。

液晶光电效应的机理原理是液晶分子在外加电场作用下发生取向改变,从而影响了光的透过性。

液晶分子是具有一定取向性的长形分子,当外加电场施加在液晶样品上时,液晶分子会受到电场力的作用而发生取向改变,从而影响了光的透过性。

通过本次实验,我们深入了解了液晶光电效应的现象和机理原理。

液晶光电效应在液晶显示器等光电器件中具有重要的应用价值,对于我们深入理解液晶材料的光学性质和应用具有重要意义。

总结:本次实验通过观察液晶样品在外加电场作用下的光学特性变化,探究了液晶光电效应的机理原理。

实验结果表明,外加电场导致液晶分子取向改变,从而影响了光的传播方向和强度。

液晶光电效应在光电器件中具有重要的应用价值,对于我们深入理解液晶材料的光学性质和应用具有重要意义。

通过本次实验,我们对液晶光电效应有了更深入的了解,也为今后的相关研究和应用奠定了基础。

希望通过不断的实验和研究,能够进一步拓展液晶光电效应的应用领域,为光电技术的发展做出更大的贡献。

液晶光电效应实验报告

液晶光电效应实验报告

液晶光电效应实验报告液晶光电效应是一种重要的物理现象,它在许多电子产品中被广泛应用。

为了更好地了解液晶光电效应,我们进行了一系列实验,并在此报告中分享我们的实验过程和结果。

实验步骤1. 实验器材:液晶屏、电压源、光源、透射光管、偏振片、毛玻璃等。

2. 准备工作:将液晶屏与电压源连接,以及透射光管、偏振片和毛玻璃等器材组装好。

3. 实验一:观察液晶屏将光源照射在液晶屏上,并观察屏幕的显示效果。

此时,我们可以观察到液晶屏上呈现出一些形态各异的图案,这是因为液晶分子在光的作用下发生了变化。

4. 实验二:光扰动效应在实验一的基础上,将偏振片放在液晶屏前,透过偏振片照射光源,然后旋转偏振片,观察液晶屏上的图案变化。

我们可以发现,液晶屏上的图案会随着偏振片的旋转产生变化,这说明光扰动了液晶分子的排列状态。

5. 实验三:电光效应在实验一的基础上,给液晶屏加上电压,观察液晶屏上的图案变化。

我们可以发现,当电压作用在液晶分子上时,液晶分子会发生变化,图案也会发生变化。

实验结果通过我们的实验,我们可以得出以下结论:液晶光电效应是一种重要的物理现象,可以应用于液晶屏等电子产品中。

光扰动效应是指光作用在液晶分子上,使得液晶分子的排列状态发生变化。

电光效应是指电场作用在液晶分子上,使得液晶分子的排列状态发生变化。

指导意义液晶光电效应是一种非常重要的物理现象,研究液晶光电效应对于我们深入理解和应用电子产品都有着重要的意义。

本次实验的过程中,我们不仅仅了解了液晶光电效应的基本原理,而且还通过实验观察和分析,深入了解了光扰动效应和电光效应等细节。

这对我们今后在学习和应用电子产品方面都有着很大的指导意义。

总之,液晶光电效应是一种非常重要的物理现象,我们应该深入了解和学习,以更好地应用到实际生活中。

液晶电光效应实验

液晶电光效应实验

液晶电光效应实验
一、实验目的
1.了解液晶的形成及液晶电光效应机理
2.掌握液晶光开关的工作原理
3.熟悉液晶光开关静态电光特性和视角特性
4.测量液晶样品在水平及垂直方向上的电光特性曲线
二、实验原理
1.液晶是一种介于液体和晶体之间的一种状态, 它既可以通过加热由晶体变化得到, 也可以通过液体冷却得到。

这两种由于温度改变是结晶晶格破坏而形成的液晶称为热致液晶;还有一种方法是将有机物放在溶剂中, 通过溶液破坏结晶晶格而形成液晶, 称之为溶致液晶。

三、当对液晶施加电场或电流时, 随着液晶分子的取向结构发生变化, 其光学特性也发生改变, 这就
是液晶电光效应, 从本质上讲是外电场使液晶分子的排列发生变化的结果。

四、实验数据与处理
1.实验数据从略
2.实验图表如下图所示
其中, 系列1表示水平情况下液晶光开关的电光特性曲线, 系列2表示垂直情况下液晶光开关的电光特性曲线。

3.从图中可得出液晶的阈值电压(即T=90%时)为1V, 关断电压(即T=10%时)为1.5V。

液晶光电效应实验报告

液晶光电效应实验报告

液晶光电效应实验报告液晶光电效应实验报告引言:液晶光电效应是指液晶材料在外界光场的作用下产生的光学现象。

液晶光电效应的研究不仅在理论上对液晶材料的性质有深入了解,而且在实际应用中也具有广泛的意义。

本实验旨在通过实验观察液晶光电效应,深入了解液晶材料的光学特性。

实验装置:本实验所需的装置包括:液晶样品、偏振片、光源、电源等。

实验步骤:1. 准备工作:首先,确保实验装置的安全可靠,检查电源和光源是否正常工作。

然后,用纸巾擦拭液晶样品的表面,确保其干净无尘。

2. 实验一:光透过液晶样品的实验。

将液晶样品放置在两片偏振片之间,其中一片偏振片的方向与另一片垂直。

然后,打开光源,使光线透过液晶样品。

观察光线透过液晶样品后的效果,并记录下观察结果。

3. 实验二:电场对液晶样品的影响实验。

在实验一的基础上,接通电源,给液晶样品施加电场。

观察液晶样品在电场作用下的光学变化,并记录下观察结果。

实验结果与分析:通过实验一观察到,当光线透过液晶样品时,由于液晶分子的排列结构,光线会发生偏振现象。

当两片偏振片的方向相同时,光线透过液晶样品后仍然保持原有的偏振方向。

而当两片偏振片的方向垂直时,光线透过液晶样品后会被液晶分子的排列结构所影响,使得光线发生偏振转换,只有一部分光线能够透过。

通过实验二观察到,在给液晶样品施加电场后,液晶分子的排列结构发生变化,导致光线透过液晶样品的偏振现象发生改变。

当电场作用方向与液晶分子排列方向平行时,光线透过液晶样品后的偏振方向与实验一中相同。

而当电场作用方向与液晶分子排列方向垂直时,光线透过液晶样品后的偏振方向发生了改变,与实验一中的结果相反。

这一现象可以通过液晶分子的电光效应来解释。

液晶分子在电场的作用下会发生形变,从而改变液晶分子的排列结构。

这种形变会导致光线在液晶样品中的传播速度发生变化,进而改变光线的偏振状态。

结论:通过本实验,我们观察到了液晶光电效应的现象,并深入了解了液晶材料的光学特性。

液晶电光效应实验报告

液晶电光效应实验报告

液晶电光效应实验报告
实验目的,通过实验观察液晶电光效应,了解液晶在电场作用下的光学特性。

实验仪器和材料,液晶样品、直流电源、偏振片、玻璃片、导线等。

实验原理,液晶是一种特殊的有机分子材料,其分子结构呈长棒状,具有两个极性较强的端基,当液晶置于电场中时,液晶分子会发生定向排列,从而改变光的传播状态,这种现象称为液晶电光效应。

实验步骤:
1. 将液晶样品均匀涂抹在玻璃片上,并待干燥。

2. 用导线将直流电源与液晶样品连接。

3. 在液晶样品的上下方分别放置偏振片,并调整偏振片的方向。

4. 调节电源输出电压,观察液晶样品的光学变化。

实验结果:
当电场作用下,液晶分子发生定向排列,使得通过液晶样品的光线偏振状态发生改变,从而观察到了液晶电光效应。

当电压增大时,液晶分子排列更加有序,光学效应更加明显;当电压减小时,光学效应逐渐减弱。

实验分析:
液晶电光效应是由于电场作用下液晶分子排列状态的改变导致的光学现象。

这一效应不仅在液晶显示器等技术中有着重要应用,也为我们提供了一种研究材料光学特性的有效手段。

结论:
通过本次实验,我们成功观察到了液晶电光效应,并了解了液晶在电场作用下的光学特性。

液晶电光效应的实验,不仅加深了我们对液晶光学特性的理解,也为我们提供了一种简单直观的实验手段,为相关领域的研究和应用提供了重要参考。

参考文献,无。

作者,XXX。

日期,XXXX年XX月XX日。

吉林大学大学物理实验 液晶电光效应实验

吉林大学大学物理实验 液晶电光效应实验

液晶电光效应实验液晶是介于液体与晶体之间的一种物质状态。

一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的各向异性。

当光通过液晶时,会产生偏振面旋转,双折射等效应。

液晶分子是含有极性基团的极性分子,在电场作用下,偶极子会按电场方向取向,导致分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液晶光学性质的改变称为液晶的电光效应。

1888年,奥地利植物学家Reinitzer在做有机物溶解实验时,在一定的温度范围内观察到液晶。

1961年美国RCA公司的Heimeier发现了液晶的一系列电光效应,并制成了显示器件。

从70年代开始,日本公司将液晶与集成电路技术结合,制成了一系列的液晶显示器件,并至今在这一领域保持领先地位。

液晶显示器件由于具有驱动电压低(一般为几伏),功耗极小,体积小,寿命长,环保无辐射等优点,在当今各种显示器件的竞争中有独领风骚之势。

实验意义与目的实验意义:液晶作为物质存在的第四态,早在上世纪开始至今已成为由物理学家、化学家、生物学家、工程技术人员和医药工作者共同关心与研究的领域,在物理、化学、电子、生命科学等诸多领域有着广泛应用,如:光导液晶光阀,光调制器,液晶显示器件,各种传感器、微量毒气监测、夜视仿生等,尤其液晶显示器件独占了电子表,手机,笔记本电脑等领域。

其中液晶显示器件、光导液晶光阀、光调制器、光路转换开关等均是利用液晶电光效应的原理制成的,因此,掌握液晶电光效应从实用角度或物理实验教学角度都是很有意义的。

液晶显示器件由于具有驱动电压低(一般为几伏),功耗极小,体积小,寿命长,环保无辐射等优点,在当今已广泛应用于各种显示器件中。

实验目的:(1)掌握液晶光开关的基本工作原理,测量液晶光开关的电光特性曲线。

(2)观察液晶光开关的时间响应曲线,并求出液晶的上升时间和下降时间。

(3)测量液晶显示器的视角特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验14 液晶电光效应实验液晶是介于液体与晶体之间的一种物质状态。

一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的特性。

当光通过液晶时,会产生偏振面旋转,双折射等效应。

液晶分子是含有极性基团的极性分子,在电场作用下,偶极子会按电场方向取向,导致分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液晶光学性质的改变称为液晶的电光效应。

1888年,奥地利植物学家Reinitzer在做有机物溶解实验时,在一定的温度范围内观察到液晶。

1961年美国RCA公司的Heimeier发现了液晶的一系列电光效应,并制成了显示器件。

从70年代开始,日本公司将液晶与集成电路技术结合,制成了一系列的液晶显示器件,至今在这一领域保持领先地位。

液晶显示器件由于具有驱动电压低(一般为几伏),功耗极小,体积小,寿命长,无辐射等优点,在当今各种显示器件的竞争中有独领风骚之势。

【实验目的】1.在学习液晶光开关的基本原理,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。

2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。

3.测量液晶光开关的视角特性。

4.了解液晶光开关构成矩阵式图像显示的原理。

【仪器用具】ZKY-LCDEO型液晶光开关电光特性综合实验仪、数字示波器【实验原理】1.液晶光开关的工作原理液晶的种类很多,仅以常用的扭曲向列型液晶为例,说明其工作原理。

光开关的结构如图1所示。

在两块玻璃板之间夹有液晶,液晶分子的形状如同火柴一样,为棍状。

棍的长度在十几埃,直径为4~6埃,液晶层厚度一般为5-8微米。

玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。

上下电极之间的那些液晶分子趋向于平行排列。

然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。

如图1左图所示。

理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。

取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。

在未加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。

这时光的偏振面与P2的透光轴平行,因而有光通过。

在施加足够电压情况下,在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。

于是原来的扭曲结构被破坏,成了均匀结构,如图1右图所示。

从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。

这时光的偏振方向与P2正交,因而光被关断。

由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。

若P1和P2的透光轴相互平行,则构成常黑模式。

入射的自然光 偏振片P1偏振片P2 出射光扭曲排列的液晶分子具有光波导效应光波导已被电场拉伸图1. 液晶光开关的工作原理2.液晶光开关的电光特性图2为光线垂直液晶面入射时本实验所用液晶相对透射率(以不加电场时的透射率为100%)与外加电压的关系。

由图2可见,对于常白模式的液晶,其透射率随外加电压的升高而逐渐降低,在一定电压下达到最低点,此后略有变化。

可以根据此电光特性曲线图得出液晶的阈值电压和关断电压。

阈值电压:透过率为90%时的驱动电压;关断电压:透过率为10%时的驱动电压。

液晶的电光特性曲线越陡,即阈值电压与关断电压的差值越小,由液晶开关单元构成的显示器件允许的驱动路数就越多。

TN 型液晶最多允许16路驱动,故常用于数码显示。

在电脑,电视等需要高分辨率的显示器件中,常采用STN (超扭曲向列)型液晶,以改善电光特性曲线的陡度,增加驱动路数。

3.液晶光开关的时间响应特性加上(或去掉)驱动电压能使液晶的开关状态发生改变,是因为液晶的分子排序发生了改变,这种重新排序需要一定时间,反映在时间响应曲线上,用上升时间τr 和下降时间τd 描述。

给液晶开关加上一个如图3上图所示的周期性变化的电压,就可以得到液晶的时间响应曲线,上升时间和下降时间。

如图3下图所示。

上升时间:透过率由10%升到90%所需时间; 下降时间:透过率由90%降到10%所需时间。

液晶的响应时间越短,显示动态图像的效果越好,这是液晶显示器的重要指标。

早期的液晶显示器在这方面逊色于其它显示器,现在通过结构方面的技术改进,已达到很好的效果。

4.液晶光开关的视角特性液晶光开关的视角特性表示对比度与视角的关系。

对比度为光开关打开和关断时透射光强度之比,对比度大于5时,可以获得满意的图像,对比度小于2,图像就模糊不清了。

这里,视角仅考虑入射光线与液晶屏法线方向的夹角。

5.液晶光开关构成矩阵式图像显示的原理除了液晶显示器以外,其他显示器靠自身发光来实现信息显示功能。

这些显示器主要有以下一些:阴极射线管显示,等离子体显示,电致发光显示,发光二极管显示,真空荧光管显示,场发射显示等,这些显示器因为要发光,所以要消耗大量的能量。

液晶显示器通过对外界光线的开关控制来完成信息显示任务,为非主动发光型显示,其最大的优点在于能耗极低。

正因为如此,液晶显示器在便携式装置的显示方面,例如电子表、万用表、手机、传呼机等具有不可代替地位。

下面介绍如何利用液晶光开关来实现图形显示任务。

矩阵式图形显示结构见图5(a )所示。

横条形状的透明电极做在一块玻璃片上,称为行驱动电极,竖条形状的电极制在另一块玻璃片上,称为列驱动电极。

把这两块玻璃片面对面组合起来,把液晶灌注在这两片玻璃之间构成液晶盒。

通常将横条形状和竖条形状的电极抽象为横线和竖线,分别代表扫描电极和信号电极,如图5(b )所示。

透射率T(%) 100 阈值电压80 60 40 20 关断电压 电压(V)1 2 3 4 5 6图2 液晶光开关的电光特性曲线ABDEa b c d e f(a)(b)图5. 液晶光开关组成的矩阵式图形显示器准备显示的信息由开关矩阵输入。

如准备显示数字“2”,则按相应位置开关,仪器内部有计算机读入相应信息,然后按扫描方式在液晶显示器上显示。

如显示图5(b)的那些有方块的像素,首先在第A行加上高电平,其余行加上低电平,同时在列电极的对应电极c、d 上加上低电平,于是A行的那些带有方块的像素就被显示出来了。

然后第B行加上高电平,其余行加上低电平,同时在列电极的对应电极b、e 上加上低电平,因而B行的那些带有方块的像素被显示出来了。

然后是第C行、第D行……,余此类推,最后显示出完整的图像。

【仪器介绍】1.液晶光开关电光特性综合实验仪(ZKY-LCDEO型)外部结构如图6所示。

下面简单介绍仪器各个部件的功能。

(1)模式转换开关:切换液晶的静态和动态(图像显示)两种工作模式。

在静态时,所有的液晶单元所加电压相同,在(动态)图像显示时,每个单元所加的电压由开关矩阵控制。

同时,当开关处于静态时打开激光发射器,当开关处于动态时关闭激光发射器;(2)静态闪烁/动态清屏切换开关:当仪器工作在静态的时候,此开关可以切换到闪烁和静止两种方式;当仪器工作在动态的时候,此开关可以清除液晶屏幕因按动开关矩阵而产生的斑点;(3)供电电压显示:显示加在液晶板上的电压,范围在~之间;(4)供电电压调节按键:改变加在液晶板上的电压,调节范围在0V~之间。

其中单击+按键(或-按键)可以增大(或减小)。

一直按住+按键(或-按键)2秒以上可以快速增大(或减小)供电电压,但当电压大于或小于一定范围时需要单击按键才可以改变电压;(5)透过率显示:显示光透过液晶板后光强的相对百分比;(6)透过率校准按键:在激光接收端处于最大接收的时候(即供电电压为0V时),如果显示值大于“250”,则按住该键3秒可以将透过率校准为100%;如果供电电压不为0,或显示小于“250”,则该按键无效,不能校准透过率。

(7)液晶驱动输出:接存储示波器,显示液晶的驱动电压;(8)光功率输出:接存储示波器,显示液晶的时间响应曲线,可以根据此曲线来得到液晶响应时间的上升时间和下降时间;(9)扩展接口:连接LCDEO 信号适配器的接口,通过信号适配器可以使用普通示波器观测液晶光开关特性的响应时间曲线;(10)激光发射器:为仪器提供较强的光源; (11)液晶板:本实验仪器的测量样品;(12)激光接收器:将透过液晶板的激光转换为电压输入到透过率显示表; (13)开关矩阵:此为16×16的按键矩阵,用于液晶的显示功能实验; (14)液晶转盘:承载液晶板一起转动,用于液晶的视角特性实验; (15)电源开关:仪器的总电源开关。

2.存储示波器(DS-5000型)详细内容参见DS-5000仪器使用说明书。

【实验内容与要求】1.液晶板安装与检查首先将液晶板金手指1(如图7)插入转盘上的插槽,液晶凸起面必须正对激光发射方向。

打开电源开关,点亮激光器,使激光器预热10~20分钟。

图6 液晶光开关电光特性综合实验仪功能键示意图检查仪器的初始状态,看发射器光线是否垂直入射到接收器;在静态0V供电电压条件下,透过率显示是否为“100%”。

如果显示正确,则可以开始实验,如果不正确,指导教师可以根据附录1的调节方法将仪器调整好。

.2.液晶光开关电光特性测量将模式转换开关置于静态模式,将透过率显示校准为100%,按表1的数据改变电压,使得电压值从0V到6V变化,记录相应电压下的透射率数值。

重复3次并计算相应电压下透射率的平均值,依据实验数据绘制电光特性曲线,可以得出阈值电压和关断电压。

表1 液晶光开关电光特性测量电压(伏)透射率(%)1 2 3平均3.液晶的时间响应的测量①将模式转换开关置于静态模式,透过率显示调到100,然后将液晶供电电压调到,选择液晶静态闪烁状态,用存储示波器观察光开关时间响应特性曲线,可以根据此曲线得到液晶的上升时间τr和下降时间τd。

②存储示波器测量时间响应主要操作步骤。

1)触发方式选择普通。

2)触发控制选择边沿触发,并选折上升沿或下降沿。

3)调节触发电平(LEVEL),使触发电压在被测信号电压范围之内。

4)垂直系统设置通道耦合为直流。

5)使用RUN/STOP键启动和停止波形采样。

相关文档
最新文档