人教版五年级上册数学知识点汇总

合集下载

五年级上册数学必背知识点

五年级上册数学必背知识点

人教版五年级上册数学必背知识点一、小数乘法1.小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

-例如:2.5×6 表示6 个2.5 是多少。

2.小数乘小数的计算方法:-先按照整数乘法算出积;-再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点;-积的小数位数如果不够,要在前面用0 补足,再点小数点;-积的小数部分末尾有0 的可以把0 去掉。

3.规律:一个数(0 除外)乘大于1 的数,积比原来的数大;一个数(0 除外)乘小于1 的数,积比原来的数小。

二、位置1. 用数对表示位置时,第一个数表示列,第二个数表示行。

-例如:(3,5)表示第3 列第5 行。

三、小数除法1.小数除以整数的计算方法:-按照整数除法的方法去除;-商的小数点要和被除数的小数点对齐;-如果有余数,要添0 再除。

2.一个数除以小数的计算方法:-先移动除数的小数点,使它变成整数;-除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用0 补足);-然后按照除数是整数的小数除法进行计算。

3.商的近似数:求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。

4.循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

5.有限小数和无限小数:小数部分的位数是有限的小数叫做有限小数;小数部分的位数是无限的小数叫做无限小数。

四、可能性1.确定事件和不确定事件:-必然事件和不可能事件统称为确定事件。

-在一定条件下,可能出现也可能不出现的事件,称为不确定事件或随机事件。

2.可能性的大小:事件发生的可能性有大有小,在总数中所占数量越多,发生的可能性就越大;所占数量越少,发生的可能性就越小。

五、简易方程1.用字母表示数:-用字母可以表示数,也可以表示数量关系、运算定律和计算公式。

-在含有字母的式子里,数字和字母、字母和字母中间的乘号可以记作“·”,也可以省略不写。

人教版五年级数学上册(全册)知识点总结

人教版五年级数学上册(全册)知识点总结
三角形的面积=底×高÷2,用字母表示为S=ah÷2
等底等高的三角形的面积相等。
梯形的面积
1.梯形的额面积公式推导。
2.梯形面积公式。
梯形的面积=(上底+下底)×高÷2,用字母表示为S=(a+b)h÷2
求梯形的面积时,不要忘记除以2 。
组合图形的面积
1.认识组合图形。
由几个简单图形组合而成的图形称为组合图形。
用“四舍五入”法求商的近似数。
循环小数
1.循环小数:一个数的小数部分,从某一起,一个或者几个数字依次不断重复出现,这样的小数叫做循环小数。
2.循环节:一个循环小数的小数部分,依次不断重复出现的数字,就是这个循环小数的循环节。
小数部分的数位有限的小数是有限小数。
小数部分是数位无限的小数是无限小数。
无限小数分为:无限不循环小数和无限循环小数。
2.等式的两边乘同一个数或者除以同一个数(0除外),左右两边仍然相等。
方程一定是等式,但是等式不一定是方程。
解方程
1.方程的解与解方程。
使等式左右两边相等的未知数的值,叫做方程的解;求方程的解的过程,叫做解方程。
2.根据等式的性质解不同形式的方程。
3.把求得的未知数的值代入原方程,看方程左边的值是否等于方程右边的值,如果相等,所求的未知数的值就是原方程的解;否则就不是。
2.积与因数的关系:一个数(0除外)乘以大于1的数,积比原来的数大。一个数(0除外)乘以小于1的数,积比原来的数小。
一般来说,因数中一共有几位小数,积中就有几位小数。
积的小数位数不够时要用0补足,再点小数点。积的小数部分末尾有0的要先点小数点,再去掉末尾的0。
积的近似数
用“四舍五入”法取积的近似数,先算出积,再明确要保留的小数数位,然后看要保留的小数数位的下一位上的数字,大于或等于5时向前进1,小于5则直接舍去。

最新人教版五年级数学上册重要知识点归纳+直接打印背诵(精品)

最新人教版五年级数学上册重要知识点归纳+直接打印背诵(精品)

最新人教版五年级数学上册重要知识点归纳(精品)(可直接打印、背诵)1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零。

3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。

6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/3。

3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是1/12,12是1/12的倒数。

8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/1。

9.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。

分数、整数也都使用这种规律。

10.分数除法:分数除法是分数乘法的逆运算。

11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:先找单位1。

单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

人教版小学五年级数学上册知识点归纳

人教版小学五年级数学上册知识点归纳

人教版小学五年级数学上册知识点归纳第一单元《小数乘法》一.小数乘整数1.计算小数加法先把小数点对齐,再把相同数位上的数相加2.计算小数乘法末尾对齐,按整数乘法法则进行计算.3.积中小数末尾有0的乘法. 先计算出小数乘整数的乘积后,积的小数末尾出现0 ,要再根据小数的性质去掉小数末尾的0.如:3.60 “0”应划去 .如果乘得的积的小数位数不够要在前面用0补足,再点上小数点.如0.02×2=0.044.计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐.二.小数乘小数1.因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数.2.小数乘法的一般计算方法:先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起数出几位,点上小数点.)乘得的积的小数位数不够要在积的前面用0补足,在点小数点.3.规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数.一个数(0除外)乘小于1的数(0除外),积小于这个数.一个数(0除外)乘1,积等于这个数.4.小数乘法的验算方法(1).把因数的位置交换相乘. (2).用计算器来验算三.积的近似数1.先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示.2. 如果求得的近似数所求数位的数字是9而后一位数字又大于等于5需要进1,这是就要依次进一用0占位.如6.597 保留两位为6.60.四.连乘.乘加.乘减1.小数乘法要按照从左到右的顺序计算2.小数的乘加运算与整数的乘加运算顺序相同,先乘除,后加减.五.简便运算整数乘法的交换律.结合律和分配律,同样适用于小数乘法.常见乘法计算(敏感数字):25×4=100 125×8=1000第二单元位置1.行和列的意义:竖排叫做列,横排叫做行.2.数对可以表示物体的位置,也可以确定物体的位置.3.数对表示位置的方法:先表示列,再表示行.用括号把代表列和行的数字或字母括起来,再用逗号隔开.例如:(7,9)表示第七列第九行.4.两个数对,前一个数相同,说明它们所表示物体位置在同一列上.如:(2,4)和(2,7)都在第2列上.5.两个数对,后一个数相同,说明它们所表示物体位置在同一行上.如:(3,6)和(1,6)都在第6行上.6.物体向左.右平移,行数不变,列数减去或加上平移的格数.物体向下.上平移,列数不变,行数减去或加上平移的格数.第三单元《小数除法》1.小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算.如:2.6÷1.3表示已知两个因数的积2.6与其中的一个因数1.3,求另一个因数的运算.2.小数除法的计算方法:(可以先写商的小数点,再写商)(1)除数是整数的小数除法:按整数除法的计算方法去除,商的小数点要和被除数的小数点对齐,如果被除数的整数部分比除数小,不够商1,要在商的个位上写0,然后点上小数点,再继续除;如果除到被除数的末尾仍有余数时,就在余数的后面添0再继续除.(2)除数是小数的除法:先把除数转化成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,位数不够时,在被除数的末尾用0补足,然后按照除数是整数的小数除法进行计算.3.商不变的性质:两数相除,被除数与除数同时扩大或缩小相同的倍数(0除外),商不变.4.商的变化规律:两数相除,除数不变,被除数扩大或缩小几倍,商也随着扩大或缩小几倍.两数相除,被除数不变,除数扩大或缩小几倍,商也随着缩小或扩大几倍.5.除法中比较大小时的规律:一个数(0除外)除以大于1的数,商小于被除数一个数(0除外)除以1,商等于被除数一个数(0除外)除以小于1的数(0除外),商大于被除数6.取近似数的方法:取近似数的方法有三种:①四舍五入法②进一法③去尾法一般情况下,按要求取近似数时用四舍五入法,进一法.去尾法在解决实际问题的时候选择应用.取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数.没有要求时,除不尽的一般保留两位小数.7.循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数.依次不断重复出现的数字,叫做这个循环小数的的循环节.8.循环小数的表示方法:(1)一种是用省略号表示,要写出两个完整的循环节,后面标上省略号.如:0.3636… 1.587587….(2)另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点.如:0.3。

人教版小学五年级数学上册知识点归纳总结

人教版小学五年级数学上册知识点归纳总结

人教版小学五年级数学上册知识点归纳总结第一单元小数乘法1.小数乘法计算方法:按整数乘法的法则算出积;再看因数中一共有几位小数;就从积的右边起数出几位点上小数点。

注意:(1)计算结果中;小数部分末尾的0要去掉;把小数化简;小数部分位数不够时;要用0占位。

(2)计算小数加减法先把小数点对齐;再把相同数位上的数相加。

(3)计算小数乘法末尾对齐;按整数乘法法则进行计算。

(4)计算整数因数末尾有0的小数乘法时;要把整数数位中不是0的最右侧数字与小数因数末尾对齐。

2、一个数(0除外)乘大于1的数;积比原来的数大;一个数(0除外)乘小于1的数;积比原来的数小。

3、求积的近似数:先求出积;在根据需要求近似数。

求近似数的方法一般有三种:⑴四舍五入法(常用) ;⑵进一法;⑶去尾法。

后两种多用于解决实际问题求近似数中。

4、计算钱数;保留两位小数;表示精确到分。

保留一位小数;表示精确到角。

5、小数四则运算顺序跟整数四则运算顺序是一样的。

(只有同级运算;从左到右依次计算;两级都有;先乘除后加减;有括号;先算括号里面。

)6、运算定律和性质:方法1、看(观察算式)2、想(思考能否简便计算)3、做(确定定律按运算律简便计算。

)整数乘法的交换律、结合律和分配律;同样适用于小数乘法。

常见乘法计算(敏感数字):25×4=100 125×8=1000加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:三个数相乘;先把前两个数相乘;再和最后一个数相乘;或先把后两个数相乘;再和第一个数相乘;积不变. (a×b)×c=a×(b×c)乘法分配律:两个数的和(或者差)同一个数相乘,可以先把这两个数(或者被减数与减数)分别同这个数相乘,再相加(或者再相减)。

(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c 减法性质:从一个数里连续减去两个数,我们可以减去两个减数的和,或者交换两个减数的位置。

人教版五年级上册数学知识点梳理

人教版五年级上册数学知识点梳理

人教版五年级上册数学知识点梳理一、小数乘法。

1. 小数乘整数。

- 意义:与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

例如:2.5×3表示3个2.5相加的和是多少。

- 计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

如果积的末尾有0,要先点上小数点,再把0去掉。

例如:2.5×3 = 7.5,先算25×3 = 75,因数2.5有一位小数,所以从75右边起数出一位点上小数点得7.5。

2. 小数乘小数。

- 意义:表示一个数的十分之几、百分之几、千分之几……是多少。

例如:2.5×0.3表示2.5的十分之三是多少。

- 计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

例如:2.5×0.3 = 0.75,先算25×3 = 75,因数2.5有一位小数,0.3有一位小数,共两位小数,从75右边起数出两位点上小数点得0.75。

3. 积的近似数。

- 求积的近似数的方法:先算出积,然后看需要保留数位的下一位数字,再按照“四舍五入”的方法求出近似数。

例如:2.5×0.3 = 0.75,如果保留一位小数,看百分位上的5,向十分位进1,0.75≈0.8。

4. 整数乘法运算定律推广到小数。

- 乘法交换律:a×b = b×a;乘法结合律:(a×b)×c=a×(b×c);乘法分配律:(a + b)×c=a×c + b×c。

这些运算定律在小数乘法中同样适用。

例如:2.5×0.4×0.3=(2.5×0.4)×0.3 = 1×0.3 = 0.3(运用乘法结合律);(2.5+0.3)×0.4 =2.5×0.4+0.3×0.4 = 1 + 0.12 = 1.12(运用乘法分配律)。

人教版小学五年级数学上册知识点

人教版小学五年级数学上册知识点

人教版小学五年级数学上册知识点第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)见2.5找4或0.4,见1.25找8或0.8乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式: (a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。

人教版五年级(上册)数学知识点汇总

人教版五年级(上册)数学知识点汇总

人教版五年级(上册)数学知识点汇总第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法。

5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。

人教版五年级上册全册数学知识点归纳

人教版五年级上册全册数学知识点归纳

人教版五年级上册全册数学知识点归纳第一单元:小数乘法。

、小数乘整数------重点:理解小数乘整数的算理。

2、小数乘小数------重点:小数乘小数的计算方法。

3、积的近似数------重点:会用“四舍五入”法取积是小数的近似数。

难点:根据实际情况取近似值。

4、连乘、乘加、乘减------重点:小数连乘、乘加、乘减的运算顺序。

难点:引导学生理解解决问题中出现的解题思路。

、整数乘法运算定律推广到小数------重点:理解整数乘法的运算定律在小数乘法中同样适用。

第二单元:小数除法。

、小数除以整数------重点:小数除以整数的计算方法。

难点:让学生理解商的小数点是如何确定的。

2、一个数除以小数------重点:掌握除数是小数除法的计算方法。

3、商的近似数------重点:求商的近似数时,商中的小数位数要比要求保留的小数位数多一位。

4、循环小数------重点:理解循环小数的意义,会用简便方法读写循环小数。

难点:怎样判断除得的商是循环小数。

、解决问题------重点:训练学生解决问题的思路,让学生掌握分析问题的基本步骤。

第三单元:观察物体。

观察物体(一)------重点:从不同位置观察物体,所看到的形状是不同的。

观察物体(二)------重点:正确辨认从上面、侧面、正面观察到的立体组合图形。

第四单元:简易方程。

、用字母表示数------重点:会用字母表示数、运算定律及计算公式。

2、用含有字母的式子表示数量及数量关系------重点:用含有字母的式子表示数量。

3、方程的意义------重点:初步理解方程的意义。

4、解方程------重点:利用天平平衡的道理理解解比较简单的方程的方法。

、稍复杂的方程(一)------重点:学生自主探索通过列方程解决较复杂应用题的方法。

6、稍复杂的方程(二)------重点:分析数量关系。

难点:列方程和解方程。

7、稍复杂的方程(三)------重点:正确设未知数,找出等量关系列方程并解决问题。

人教版五年级上册数学知识点集锦

人教版五年级上册数学知识点集锦

人教版五年级上册数学知识点集锦五年级上册数学概念公式第一单元:小数乘法1、小数乘坐整数的意义与整数乘法的意义相同,就是谋几个相同加数的和的方便快捷运算。

例如:1.2×5则表示5个1.2就是多少。

2、一个数乘纯小数的意义就是求这个数的十分之几、百分几、千分之几……是多少。

例如:1.2×0.5则表示谋1.2的十分之五就是多少。

3、小数乘法的计算方法:计算小数乘法,先按整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

乘得的积的小数位数不够,要在前面用0补足,再点上小数点。

4、一个数(0除外)乘1,内积等同于原来的数。

一个数(0除外)乘大于1的数,积比原来的数大。

一个数(0除外)乘坐大于1的数,积比原来的数小。

5、整数乘法的交换律、结合律和分配率,对于小数乘法也适用。

第二单元:小数乘法1、小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中一个因数,求另一个因数的运算。

如:2.4÷1.6表示已知两个因数的积是2.4与其中一个因数是1.6,求另一个因数是2、小数除以整数,按整数乘法的方法除去,商的小数点必须和被除数的小数点对齐。

如果文苑路末尾仍存有余数,必须迎0再继续除。

3、被除数比除数大的,商大于1。

被除数比除数小的,商小于1。

4、排序除数就是小数的乘法,先移动除数的小数点,并使它变为整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,数位比较的必须迎0补齐。

再按照除数是整数的小数除法进行计算。

5、一个数(0除外)除以1,商等同于原来的数。

一个数(0除外)除以大于1的数,商比原来的数小。

一个数(0除外)除以大于1的数,商比原来的数大。

6、a除以b=a÷b;a除b=b÷a;a去除b=b÷a;a被b除=a÷b。

7、一个数的小数部分,从某一位起至,一个数字或者几个数字依次不断重复发生,这样的小数叫作循环小数。

人教版五年级(上册)数学知识点汇总

人教版五年级(上册)数学知识点汇总

人教版五年级(上册)数学知识点汇总第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。

人教版五年级数学上册知识要点归纳

人教版五年级数学上册知识要点归纳

人教版小学数学五年级上册知识点归纳第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。

人教版五年级上册数学全册知识点整理

人教版五年级上册数学全册知识点整理

人教版五年级数学上册知识点整理(完整版)第一单元小数乘法一、小数乘整数(一)小数乘整数与整数乘法的联系1、小数乘整数的意义和整数乘法的意义相同,都是求几个相同加数的和的简便运算。

2、计算小数乘整数,可以根据计量单位间的关系进行单位转化,先把小数转化成整数,再按照整数乘法的计算方法进行计算。

(二)小数乘整数的算理和算法1、算理(1)小数点移动引起小数大小变化的规律小数点向右①移动一位,相当于把原数乘10,小数就扩大到原数的10倍;②移动两位,相当于把原数乘100,小数就扩大到原数的100倍;③移动三位,相当于把原数乘1000,小数就扩大到原数的1000倍;小数点向左:①移动一位,相当于把原数除以10,小数就缩小到原数的110。

②移动两位,相当于把原数除以 100,小数就缩小到原数的1100;③移动三位,相当于把原数除以1000,小数就缩小到原数的11000;(2)积的变化规律:两个数相乘,一个因数不变,另一个因数乘几或除以几(0除外),积也乘(或除以)几。

2、算法(1)用竖式计算小数乘整数的要点:①把小数乘整数转化成整数乘法进行计算。

小数乘法中一般右端要对齐,不必把相同数位对齐。

②处理好积中小数点的位置。

因数中共有几位小数,积中也应该有几位小数。

注意:当积的小数部分末尾有0 时,要依据小数的性质进行化简。

二、小数乘小数(一)小数乘小数的算理和算法1、算理因数的变化引起积的变化规律:一个因数扩大到原来的a倍,另一个因数扩大到原来的 b 倍,积扩大到原来的(a×b)倍。

2、算法(1)小数乘小数的计算方法①先按照整数乘法算出积,再点小数点,小数乘法中一般右端要对齐,不必把相同数位对齐。

②点小数点时,看两个因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

(2)积的小数位数不够的小数乘法的计算方法:计算小数乘法,乘得的积的小数位数如果不够,要在前面用0补足,再点小数点。

三、探究因数和积之间的大小关系(一)一个数(0 除外)乘大于1的数,积比原来的数大。

五年级上册数学人教版知识要点汇总

五年级上册数学人教版知识要点汇总

第二单元知识梳理位置1.确定物体的位置,要用到数对(有两个数组成,中间用逗号隔开,用括号括起来,括号里面的数由左至右分别为列数和行数,即“先列后行”)。

2.用数对要能解决两个问题:一是给出一对数对,要能在坐标途中标出物体所在位置的点。

二是给出坐标中的一个点,要能用数对表示。

第三单元知识梳理小数除法1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:0.6÷0.3表示已知两个因数的积0.6,一个因数是0.3,求另一个因数是多少。

2、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。

整数部分不够除,商0,点上小数点。

如果有余数,要添0再除。

3、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。

4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

5、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

②除数不变,被除数扩大(缩小),商随着扩大(缩小)。

③被除数不变,除数缩小,商反而扩大;被除数不变,除数扩大,商反而缩小。

6、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

循环节:一个循环小数的小数部分,依次不断重复出现的数字。

如6.3232……的循环节是32.简写作6.327、小数部分的位数是有限的小数,叫做有限小数。

小数部分的位数是无限的小数,叫做无限小数。

小数分为有限小数和无限小数。

8、规律:一个数(0除外)除以大于1的数,商比原来的数小,例如1÷2=0.5;一个数(0除外)除以小于1的数,商比原来的数大,例如1÷0.1=10.第四单元知识梳理可能性1、事件发生有三种情况:可能发生、不可能发生、一定发生。

人教版五年级(上册)数学知识点汇总

人教版五年级(上册)数学知识点汇总

人教版五年级(上册)数学知识点汇总第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:×3表示的3倍是多少或3个是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:×(整数部分是0)就是求的十分之八是多少。

×(整数部分不是0)就是求的倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法。

5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式: (a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。

用数对要能解决两个问题:一是给出一对数对,要能在坐标途中标出物体所在位置的点。

【知识点梳理】五年级数学上册 人教版

【知识点梳理】五年级数学上册 人教版

第1单元小数乘法小数乘整数小数乘整数,可以根据单位间的进率,将高级单位转化为低级单位,即将小数乘法转化为整数乘法进行计算。

因数中有几位小数,积中也应该有几位小数。

积的小数部分末尾有0时,要依据小数的性质进行化简。

小数乘小数1.计算方法(1)先按整数乘法算出积;因数中一共有几位小数,就从积的右边起数出几位,点上小数点;(2)积的小数位数如果不够,要先在前面用0 补足后,再点小数点;积的小数部分末尾的0可以去掉。

2.因数与积的大小关系(1)如果第二个因数大于1,积就大于第一个因数(0除外);(2)如果第二个因数小于1,积就小于第一个因数(0除外);(3)如果第二个因数等于1,积就等于第一个因数。

3.小数乘法的验算方法(1)调换两个因数的位置,重新计算。

(2)用计算器验算。

积的近似数在实际应用中,小数乘法的积往往不需要保留很多的小数位数,可以根据需要,按“四舍五入”法保留一定的小数位数,求出积的近似数。

求积的近似数时,先按照小数乘法的法则求出积,再看需要保留数位的下一位数按“四舍五入”的方法取舍,求出结果,最后用“≈”连接。

【例】0.049×45=2.205,将积保留一位小数,要看百分位,百分位<5,则舍去0 和5,2.205≈2.2整数乘法运算定律推广到小数整数乘法的交换律、结合律和分配律,对于小数乘法同样适用。

小数的乘加、乘减混合运算1.小数混合运算的运算顺序与整数混合运算的运算顺序相同.2.算式中有乘法又有加法,要先算乘法,再算加法。

3.算式中有括号时,要先算括号里面的,再算括号外面的。

分段计费问题1.出租车起步价所算的单价与起步价以外的路程的单价不相等。

2.总路程=起步价以内的路程+起步价以外的路程。

3.总费用=起步价+起步价以外路程的出租车费。

第2单元位置用数对表示位置1.横排叫做行,竖排叫做列。

在平面图中,确定行数时,一般从下往上数,确定列数时,一般从左往右数。

2.在表示物体的位置时,用两个数分别表示列和行,中间用逗号隔开,为了表示它是一个整体,外面再加一个小括号,像这样有顺序的两个数,称为“数对”。

人教版五年级上册数学知识点汇总

人教版五年级上册数学知识点汇总

人教版五年级上册数学知识点汇总一、小数乘法1.小数乘整数:o理解小数乘整数的意义,掌握计算方法。

o会用小数乘整数解决简单的实际问题。

2.小数乘小数:o掌握小数乘小数的计算方法,理解积的小数位数与乘数小数位数的关系。

o能进行小数乘法的简便计算。

3.积的近似数:o理解近似数的概念,学会用四舍五入法求积的近似数。

4.连乘、乘加、乘减:o掌握小数连乘、乘加、乘减的运算顺序和计算方法。

5.整数乘法运算定律推广到小数:o理解并应用加法交换律、结合律,乘法交换律、结合律和分配律进行小数计算。

二、位置1.用数对表示位置:o理解数对的概念,能用数对表示具体情境中物体的位置。

o能在方格纸上根据数对确定物体的位置。

三、小数除法1.小数除以整数:o理解小数除以整数的意义,掌握计算方法。

o能进行小数除以整数的估算和精确计算。

2.一个数除以小数:o掌握除数是小数的除法计算方法,理解商的变化规律。

3.商的近似数:o理解近似数的必要性,学会用四舍五入法求商的近似数。

4.循环小数:o认识循环小数,能用简便方法表示循环小数。

5.用计算器探索规律:o学会使用计算器进行复杂的小数计算,并通过计算探索数学规律。

四、可能性1.简单事件发生的可能性:o理解可能性的概念,能用“一定”、“可能”、“不可能”等词语描述简单事件发生的可能性。

2.游戏规则的公平性:o理解游戏规则的公平性,能设计简单的公平游戏。

五、简易方程1.用字母表示数:o理解用字母表示数的意义和作用,能用字母表示简单的数量关系。

2.方程的意义:o理解方程的概念,知道等式与方程的关系。

3.解简易方程:o掌握解简易方程的基本步骤和方法,如等式两边同时加、减、乘、除同一个数(不为0)。

4.列简易方程解决问题:o学会根据问题中的等量关系列简易方程,并解方程求解。

六、多边形的面积1.平行四边形的面积:o掌握平行四边形的面积计算公式,能正确计算平行四边形的面积。

2.三角形的面积:o掌握三角形的面积计算公式,理解等底等高的三角形面积相等。

人教版 五年级 数学 上册知识点汇总(全)

人教版 五年级 数学 上册知识点汇总(全)

人教版五年级数学上册各单元知识点小数加减法的计算方法:计算小数加减法,要先把小数点对齐,然后按照整数加减法的法则进行计算。

第一单元《小数乘法》知识点一、小数乘整数(利用因数的变化引起积的变化规律来计算小数乘法)知识点一:1、计算小数加法先把小数点对齐,再把相同数位上的数相加2、计算小数乘法末尾对齐,按整数乘法法则进行计算。

知识点二:积中小数末尾有0的乘法。

先计算出小数乘整数的乘积后,积的小数末尾出现0 ,要再根据小数的性质去掉小数末尾的0。

如:3.60 “0”应划去知识点三:如果乘得的积的小数位数不够要在前面用0补足,再点上小数点。

如0.02×2=0.04 知识点四:计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐。

思考:小数乘整数与整数乘整数有什么不同?1、小数乘整数中有一个因数是小数,所以积一般来说也是小数。

2 小数乘法中积的小暑部分末尾如有0可以根据小数的基本性质去掉小数末尾的0而整数乘法中是不能去掉的。

二、小数乘小数知识点一:因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数。

知识点二:小数乘法的一般计算方法:先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起输出几位,点上小数点。

)乘得的积的小数位数不够要在积的前面用0补足,在点小数点。

知识点三:小数乘法的验算方法1、把因数的位置交换相乘2、用计算器来验算三、积的近似数知识点一:先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示。

知识点二:如果求得的近似数所求数位的数字是9而后一位数字又大于5需要进1,这是就要依次进一用0占位。

如6.597 保留两位为6.60四、连乘、乘加、乘减知识点一:小数乘法要按照从左到右的顺序计算知识点二:小数的乘加运算与整数的乘加运算顺序相同。

先乘法,后加法整数乘法的交换律、结合律和分配律,对于小数乘法也适用。

人教版小学五年级数学上册知识点总结和复习要点

人教版小学五年级数学上册知识点总结和复习要点

人教版小学五年级数学上册知识点总结和复习要点一、数与代数1整数的认识概念:整数包括正整数、零和负整数,不包括小数和分数。

性质:整数可以进行加减乘除四则运算,但除以零没有意义。

特点:整数在数轴上表示为离散的点。

举例:1、2、3、0、-1、-2等都是整数。

2小数的认识概念:小数是由整数部分、小数点和小数部分组成的数。

性质:小数可以进行加减乘除四则运算,但小数点要对齐。

特点:小数可以表示比整数更精确的数量。

举例:0.5、1.23、4.567等都是小数。

3分数的认识概念:分数表示整体的一部分,由分子、分母和分数线组成。

性质:分数可以进行加减乘除四则运算,运算时需要通分或约分。

特点:分数可以表示不可分割的数量关系。

举例:1/2、3/4、5/6等都是分数。

4因数与倍数概念:一个整数能被另一个整数整除,则后者是前者的因数,前者是后者的倍数。

性质:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的。

特点:一个数的所有因数中,1和它本身总是因数;一个数的倍数总是比这个数大。

举例:12的因数有1、2、3、4、6、12;12的倍数有12、24、36、48等。

5奇数与偶数概念:能被2整除的整数是偶数,不能被2整除的整数是奇数。

性质:奇数与偶数的和或差是奇数;奇数与偶数的积是偶数。

特点:除2外,任何偶数都是合数;任何奇数都不能被2整除。

举例:2、4、6、8等都是偶数;1、3、5、7等都是奇数。

二、空间与几何1图形的变换概念:图形的变换包括平移、旋转和轴对称等。

性质:平移不改变图形的大小和形状;旋转不改变图形的大小和形状,但改变图形的方向;轴对称图形关于对称轴对称。

特点:平移和旋转是图形位置的变化;轴对称是图形形状的对称性。

举例:推拉窗户是平移;旋转门是旋转;蝴蝶的翅膀是对称的。

2图形的面积概念:面积是指一个物体表面或平面图形所占的大小。

性质:面积可以用平方单位来衡量,如平方厘米、平方米等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版五年级上册数学知识点汇总
第一单元小数乘法
1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:
⑴四舍五入法;
⑵进一法;
⑶去尾法
5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:
加法:
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法:乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)
变式: (a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c
减法:减法性质:a-b-c=a-(b+c)
除法:除法性质:a÷b÷c=a÷(b×c)
第二单元位置
确定物体的位置,要用到数对(先列:即竖,后行即横排)。

用数对要能解决两个问题:一是给出一对数对,要能在坐标途中标出物体所在位置的点。

二是给出坐标中的一个点,要能用数对表示。

第三单元小数除法
1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:0.6÷0.3表示已知两个因数的积0.6,一个因数是0.3,求另一个因数是多少。

2、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。

整数部分不够除,商0,点上小数点。

如果有余数,要添0再除。

3、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。

4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

5、除法中的变化规律:
①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

②除数不变,被除数扩大(缩小),商随着扩大(缩小)。

③被除数不变,除数缩小,商反而扩大;被除数不变,除数扩大,商反而缩小。

5、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

循环节:一个循环小数的小数部分,依次不断重复出现的数字。

如6.3232……的循环节是32.简写作6.32
6、小数部分的位数是有限的小数,叫做有限小数。

小数部分的位数是无限的小数,叫做无限小数。

小数分为有限小数和无限小数。

第四单元可能性
1、事件发生有三种情况:可能发生、不可能发生、一定发生。

2、可能发生的事件,可能性大小。

把几种可能的情况的份数相加做分母,单一的这种可能性做分子,就可求出相应事件发生可能性大小。

第五单元简易方程
1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。

加号、减号除号以及数与数之间的乘号不能省略。

2、a×a可以写作a·a或a ,a 读作a的平方 2a表示a+a
特别地1a=a这里的:“1“我们不写
3、方程:含有未知数的等式称为方程(★方程必须满足的条件:必须是等式必须有未知数两者缺一不可)。

使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

4、解方程原理:天平平衡。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

5、10个数量关系式:
加法:和=加数+加数一个加数=和-另一个加数
减法:差=被减数-减数被减数=差+减数减数=被减数-差
乘法:积=因数×因数一个因数=积÷另一个因数
除法:商=被除数÷除数被除数=商×除数除数=被除数÷商
6、所有的方程都是等式,但等式不一定都是等式。

7、方程的检验过程:方程左边=……
8、方程的解是一个数;解方程式一个计算过程。

=方程右边所以,X=…是方程的解。

第六单元多边形的面积
1、公式:
2、平行四边形面积公式推导:剪拼、平移
平行四边形可以转化成一个长方形;长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;
长方形的面积等于平行四边形的面积,因为长方形面积=长×宽,所以平行四边形面积=底×高。

3、三角形面积公式推导:旋转
两个完全一样的三角形可以拼成一个平行四边形,平行四边形的
底相当于三角形的底;平行四边形的高相当于三角形的高;
平行四边形的面积等于三角形面积的2倍,因为平行四边形面积=底×高,所以三角形面积=底×高÷2
4、梯形面积公式推导:旋转
5、两个完全一样的梯形可以拼成一个平行四边形。

平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
6、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍。

7、长方形框架拉成平行四边形,周长不变,面积变小。

8、组合图形面积计算:必须转化成已学的简单图形。

当组合图形是凸出的,用虚线分割成几种简单图形,把简单图形面积相加计算。

当组合图形是凹陷的,用虚线补齐成一种最大的简单图形,用最大简单图形面积减几个较小的简单图形面积进行计算。

第七单元植树问题
1、不封闭栽树问题:
(1)一条路的一边两端都栽树=路长÷间隔+1;
已知间隔数,树的棵树,求路长。

路长=间隔数×(树的棵树-1)(2)一条路的两边两端都栽树=(路长÷间隔+1)×2
(3)一条路的一边两端不栽树=路长÷间隔-1
(4)一条路的两边两端不栽树=(路长÷间隔-1)×2
(5)锯木头时间问题:锯一段木头时间=总时间÷(段数-1)
2、封闭图形四周栽树问题:栽树棵树=周长÷间隔
3、鸡兔同笼问题:(龟鹤问题、大船小船问题)
(1)算术假设法1:假设几只都是兔子,(都是脚多的兔子),先求鸡的只数
鸡的只数:(总头数×4-总脚数)÷(4-2即一只兔的脚数减去一只鸡的脚数)
兔的只数:总头数-鸡的只数
算术假设法2:假设几只都是鸡,(都是脚少的鸡),先求兔子的只数兔子的只数:(总脚数-总头数×2)÷(4-2即一只兔的脚数减去一只鸡的脚数)
鸡的只数:总头数-兔子的只数
(2)方程法:设兔子有x只,则兔子脚有2x只。

那么鸡有(总头数-x)只
根据“兔子脚+鸡脚=总脚数”列方程解答先求兔子只数,再算出鸡的只数。

即:4x+2×(总头数-x)=总脚数
补充内容:观察物体
1、从不同的角度观察物体,看到的形状可能是不同的;观察长方体
或正方体时,从固定位置最多能看到三个面。

(习惯上我们从左面、正面、上面看,把这三种视图统称三视图)
2、图形的运动:轴对称图形。

(1)沿一条直线对折后,两边完全重合的图形叫做轴对称图形,这条直线叫做对称轴。

圆有无数条对称轴。

正方形有4条对称轴。

等边三角形有3条对称轴。

长方形有2条对称轴。

等腰三角形和等腰梯形有1条对称轴。

(2)轴对称图形的特点: 沿对称轴对折,两边完全重合。

每一组对应点到对称轴距离度相等。

对应点之间的连线与对称轴互相垂直。

(3)要能根据对称轴画出对称图形的另一半。

3、数字编码:
(1)数不仅可以用来表示数量和顺序,还可以用来编码。

(2)邮政编码由6位数字组成,前2位表示省;前3位表示邮区,前4位表示县市,最后2位表示投递局(大地基乡投递局)(3)身份证18位:第7至14位表示出生年月日倒数第二位的数字表示性别,单数-男,双数-女
(4)根据卡号信息、运动员编号信息、门牌信息填写编码规律。

相关文档
最新文档