1_最新人教版小学五年级数学上册知识点归纳总结

合集下载

人教版五年级(上册)数学知识点汇总

人教版五年级(上册)数学知识点汇总

人教版五年级(上册)数学知识点汇总第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:×3表示的3倍是多少或3个是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

?2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:×(整数部分是0)就是求的十分之八是多少。

×(整数部分不是0)就是求的倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

%4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法。

5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:《加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c:减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。

用数对要能解决两个问题:一是给出一对数对,要能在坐标途中标出物体所在位置的点。

人教版小学五年级数学上册知识点总结

人教版小学五年级数学上册知识点总结

人教版小学五年级数学上册知识点总结人教版小学五年级数学上册知识要点总结一、数的认识1.1 万以上数的认识:学生需要掌握万、十万、百万、千万、亿等大数的读法和写法,了解十进制计数法,并能够解决相关问题。

1.2 数的读写方法:学生需要掌握任意一个数的读写方法,包括整数、小数和分数。

1.3 数的改写和近似数:学生需要掌握如何将一个数改写成指定单位,如将千米改写成米,以及如何求一个数的近似数。

二、数的运算2.1 四则运算的意义:学生需要理解加法、减法、乘法和除法的意义,并能够解决简单的四则运算问题。

2.2 运算定律和简便运算:学生需要掌握加法交换律、加法结合律、乘法交换律、乘法结合律等基本运算定律,并能够运用这些定律进行简便运算。

2.3 估算:学生需要掌握如何对一个数进行估算,并能够运用估算解决实际问题。

三、简易方程3.1 方程的意义:学生需要理解方程的意义,并能够根据题意列方程。

3.2 解方程:学生需要掌握一些基本的解方程的方法,如移项、合并同类项、系数化为1等。

3.3 应用问题:学生需要能够运用方程解决一些简单的应用问题。

四、多边形面积4.1 平行四边形和三角形面积:学生需要掌握平行四边形和三角形的面积计算公式,并能够解决相关问题。

4.2 梯形面积:学生需要掌握梯形的面积计算公式,并能够解决相关问题。

4.3 面积单位换算:学生需要掌握常用的面积单位之间的换算关系,并能够进行简单的单位换算。

五、简易代数5.1 代数式和表达式:学生需要了解什么是代数式和表达式,并能够用代数式表示简单的数量关系。

5.2 解方程组:学生需要掌握如何解二元一次方程组,并能够解决相关问题。

5.3 应用问题解方程组:学生需要能够运用方程组解决一些简单的应用问题。

六、统计与概率6.1 统计图表的认识和应用:学生需要了解各种常见的统计图表,如柱状图、折线图和饼图等,并能够运用这些图表解决实际问题。

同时,学生还需要了解一些基本的概率知识,如随机事件、概率的意义和计算方法等。

人教版五年级数学知识点归纳总结

人教版五年级数学知识点归纳总结

人教版五年级数学知识点归纳总结第一章:数与计算一、数的认识与认读数的认识:数的概念、数的分类、数的读法和写法。

数的认读:认读一位数及其顺序。

二、加法1. 加法的概念和性质2. 逐位相加和竖式加法3. 含零加数的加法计算4. 不进位加法计算三、减法1. 减法的概念和性质2. 逐位相减和竖式减法3. 含零减数的减法计算4. 不退位减法计算第二章:数的认识一、数的拆分与组合2. 数的组合3. 数的排序二、数表的认识和应用1. 数表的认识2. 数表的使用三、数的大小比较1. 分类大小比较2. 使用"大于"、"小于"等符号进行大小比较第三章:计算一、进位与退位二、乘法和除法初步第四章:几何图形一、图形的直观认识1. 点、线、面的认识2. 点的分类3. 线的分类二、正方形和长方形三、圆和半圆第五章:时间与日历一、时间和钟表的基本认识1. 小时和分钟的认识2. 整点和半点的概念二、时间的计算1. 时、分和秒之间的换算2. 时刻的顺序三、日历的认识和应用1. 日历的结构和形式2. 利用日历进行计算第六章:数据处理一、调查和统计1. 数据的调查和收集2. 统计直方图3. 数据的分析和比较二、图形和图表1. 图形的绘制和分析2. 图表的认读和应用总结:五年级数学的知识点主要包括数与计算、数的认识、几何图形、时间与日历以及数据处理等内容。

数与计算包括数的认识与认读、加法和减法的运算;数的认识涉及到数的拆分和组合、数表的认识和应用、数的大小比较等;几何图形方面主要学习图形的直观认识、正方形、长方形、圆和半圆等;时间与日历部分包括时间和钟表的基本认识、时间的计算、日历的认识和应用;数据处理方面学习调查和统计、图形和图表的绘制和分析等。

通过学习这些知识点,五年级的学生将更好地掌握数学知识,提高计算能力,并培养数据分析和解决问题的能力。

人教版五年级数学上册(全册)知识点总结

人教版五年级数学上册(全册)知识点总结
三角形的面积=底×高÷2,用字母表示为S=ah÷2
等底等高的三角形的面积相等。
梯形的面积
1.梯形的额面积公式推导。
2.梯形面积公式。
梯形的面积=(上底+下底)×高÷2,用字母表示为S=(a+b)h÷2
求梯形的面积时,不要忘记除以2 。
组合图形的面积
1.认识组合图形。
由几个简单图形组合而成的图形称为组合图形。
用“四舍五入”法求商的近似数。
循环小数
1.循环小数:一个数的小数部分,从某一起,一个或者几个数字依次不断重复出现,这样的小数叫做循环小数。
2.循环节:一个循环小数的小数部分,依次不断重复出现的数字,就是这个循环小数的循环节。
小数部分的数位有限的小数是有限小数。
小数部分是数位无限的小数是无限小数。
无限小数分为:无限不循环小数和无限循环小数。
2.等式的两边乘同一个数或者除以同一个数(0除外),左右两边仍然相等。
方程一定是等式,但是等式不一定是方程。
解方程
1.方程的解与解方程。
使等式左右两边相等的未知数的值,叫做方程的解;求方程的解的过程,叫做解方程。
2.根据等式的性质解不同形式的方程。
3.把求得的未知数的值代入原方程,看方程左边的值是否等于方程右边的值,如果相等,所求的未知数的值就是原方程的解;否则就不是。
2.积与因数的关系:一个数(0除外)乘以大于1的数,积比原来的数大。一个数(0除外)乘以小于1的数,积比原来的数小。
一般来说,因数中一共有几位小数,积中就有几位小数。
积的小数位数不够时要用0补足,再点小数点。积的小数部分末尾有0的要先点小数点,再去掉末尾的0。
积的近似数
用“四舍五入”法取积的近似数,先算出积,再明确要保留的小数数位,然后看要保留的小数数位的下一位上的数字,大于或等于5时向前进1,小于5则直接舍去。

(人教版)小学五年级数学上册各单元重要知识点梳理详解汇总

(人教版)小学五年级数学上册各单元重要知识点梳理详解汇总

(人教版)小学五年级数学上册各单元重要知识点梳理详解汇总第一单元 小数乘法1、小数乘整数:@意义——求几个相同加数的和的简便运算。

如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:@意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大:一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:(1)四舍五入法;(2)进一法: (3)去尾法 5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。

6、小数四则运算顺序和运算定律跟整数是一样的。

7、运算定律和性质:@加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)@减法:{a −bc =a −(b +c )a −(b +c )=a −b −c@乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c -b×c】@除法:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右分别为列数和行数,即“先列后行”。

{a ÷b ÷c =a ÷(b ×c )a ÷(b ×c )=a ÷b ÷c1、数对:第二单元位置2、作用:一组数对确定唯一一个点的位置。

数学五年级上册知识点总结(人教版)

数学五年级上册知识点总结(人教版)

数学五年级上册知识点总结(人教版)第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置1、确定物体的位置,要用到数对(先列:即竖,后行即横排)。

人教版五年级上册数学知识点梳理

人教版五年级上册数学知识点梳理

人教版五年级上册数学知识点梳理一、小数乘法。

1. 小数乘整数。

- 意义:与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

例如:2.5×3表示3个2.5相加的和是多少。

- 计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

如果积的末尾有0,要先点上小数点,再把0去掉。

例如:2.5×3 = 7.5,先算25×3 = 75,因数2.5有一位小数,所以从75右边起数出一位点上小数点得7.5。

2. 小数乘小数。

- 意义:表示一个数的十分之几、百分之几、千分之几……是多少。

例如:2.5×0.3表示2.5的十分之三是多少。

- 计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

例如:2.5×0.3 = 0.75,先算25×3 = 75,因数2.5有一位小数,0.3有一位小数,共两位小数,从75右边起数出两位点上小数点得0.75。

3. 积的近似数。

- 求积的近似数的方法:先算出积,然后看需要保留数位的下一位数字,再按照“四舍五入”的方法求出近似数。

例如:2.5×0.3 = 0.75,如果保留一位小数,看百分位上的5,向十分位进1,0.75≈0.8。

4. 整数乘法运算定律推广到小数。

- 乘法交换律:a×b = b×a;乘法结合律:(a×b)×c=a×(b×c);乘法分配律:(a + b)×c=a×c + b×c。

这些运算定律在小数乘法中同样适用。

例如:2.5×0.4×0.3=(2.5×0.4)×0.3 = 1×0.3 = 0.3(运用乘法结合律);(2.5+0.3)×0.4 =2.5×0.4+0.3×0.4 = 1 + 0.12 = 1.12(运用乘法分配律)。

人教版小学五年级上册数学知识点总结

人教版小学五年级上册数学知识点总结

人教版小学五年级上册数学知识点总结一、数与代数(一)小数的乘法和除法1.小数乘法•计算方法:将小数乘法转化为整数乘法进行计算,然后再将结果转化为小数形式。

•运算律:乘法交换律、乘法结合律、乘法分配律在小数乘法中仍然适用。

•积的近似值:根据题目要求,对乘积进行四舍五入。

•特殊情况:当两个小数相乘时,如果其中一个因数比1小,那么积也比另一个因数小;如果其中一个因数比1大,那么积也比另一个因数大;如果两个因数都比1大或都比1小,那么积比1大或比1小。

2.小数除法•计算方法:将小数除法转化为整数除法进行计算,然后再将结果转化为小数形式。

•商的近似值:根据题目要求,对商进行四舍五入。

•循环小数:当一个数除以另一个数时,如果结果是一个无限重复的小数,那么这个小数就是循环小数。

例如,1÷3=0.333…。

•除法的性质:除数大于1,商小于被除数;除数小于1,商大于被除数;除数等于1,商等于被除数。

(二)整数、小数四则混合运算1.运算顺序:先乘除后加减,有括号则先计算括号内的运算。

2.简便计算:利用运算律(如交换律、结合律、分配律)进行简便计算。

3.估算:对结果进行大致的估计,以判断答案的合理性。

(三)用字母表示数1.代数式:用字母和数字通过有限次的四则运算得到的式子。

2.方程:含有未知数的等式。

3.方程的解:使方程左右两边相等的未知数的值。

二、空间与图形(一)平行四边形的面积1.平行四边形面积的计算:底×高。

2.特殊平行四边形:正方形和长方形是特殊的平行四边形。

正方形的四条边都相等,长方形的对边相等。

(二)三角形的面积1.三角形面积的计算:底×高÷2。

2.等底等高的三角形:等底等高的三角形面积相等。

(三)梯形的面积1.梯形面积的计算:(上底+下底)×高÷2。

2.特殊梯形:当梯形的上底为0时,梯形变为三角形;当梯形的上底与下底相等时,梯形变为平行四边形。

人教版五年级上册全册数学知识点归纳

人教版五年级上册全册数学知识点归纳

人教版五年级上册全册数学知识点归纳第一单元:小数乘法。

、小数乘整数------重点:理解小数乘整数的算理。

2、小数乘小数------重点:小数乘小数的计算方法。

3、积的近似数------重点:会用“四舍五入”法取积是小数的近似数。

难点:根据实际情况取近似值。

4、连乘、乘加、乘减------重点:小数连乘、乘加、乘减的运算顺序。

难点:引导学生理解解决问题中出现的解题思路。

、整数乘法运算定律推广到小数------重点:理解整数乘法的运算定律在小数乘法中同样适用。

第二单元:小数除法。

、小数除以整数------重点:小数除以整数的计算方法。

难点:让学生理解商的小数点是如何确定的。

2、一个数除以小数------重点:掌握除数是小数除法的计算方法。

3、商的近似数------重点:求商的近似数时,商中的小数位数要比要求保留的小数位数多一位。

4、循环小数------重点:理解循环小数的意义,会用简便方法读写循环小数。

难点:怎样判断除得的商是循环小数。

、解决问题------重点:训练学生解决问题的思路,让学生掌握分析问题的基本步骤。

第三单元:观察物体。

观察物体(一)------重点:从不同位置观察物体,所看到的形状是不同的。

观察物体(二)------重点:正确辨认从上面、侧面、正面观察到的立体组合图形。

第四单元:简易方程。

、用字母表示数------重点:会用字母表示数、运算定律及计算公式。

2、用含有字母的式子表示数量及数量关系------重点:用含有字母的式子表示数量。

3、方程的意义------重点:初步理解方程的意义。

4、解方程------重点:利用天平平衡的道理理解解比较简单的方程的方法。

、稍复杂的方程(一)------重点:学生自主探索通过列方程解决较复杂应用题的方法。

6、稍复杂的方程(二)------重点:分析数量关系。

难点:列方程和解方程。

7、稍复杂的方程(三)------重点:正确设未知数,找出等量关系列方程并解决问题。

人教版小学五年级数学上册总复习知识点整理[全册]

人教版小学五年级数学上册总复习知识点整理[全册]

五年级数学上册期末复习知识点归纳第一单元小数乘法1、小数乘整数的意义——求几个相同加数的和的简便运算。

如:1.5×3表示3个1.5的和。

2、小数乘小数的意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少。

3、小数乘法的计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

积的小数部分位数不够时,要用0补足,再点小数点。

小数部分末尾的0可以去掉;4、一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

一个数(0除外)乘1的数,积等于原来的数。

5、乘法中的变化规律:积不变性质:一个因数乘一个数,另一个除以同一个数(0除外),积不变。

一个因数不变,另一个数乘几,积就乘几。

一个因数不变,另一个因数除以几,积就除以几。

6、求一个数的小数倍是多少,用乘法计算。

7、“四舍五入法”求积的近似数:保留整数:表示精确到个位,看十分位上的数; 保留一位小数:表示精确到十分位,看百分位上的数; 保留两位小数:表示精确到百分位,看千分位上的数……求近似数小数末尾的0不能去掉。

计算钱数,保留两位小数,表示精确到分。

保留一位小数,表示精确到角。

8、小数四则运算顺序跟整数四则运算顺序是一样的。

9、运算定律和性质:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:三个数相乘,先把前两个数相乘,再和最后一个数相乘,或先把后两个数相乘,再和第一个数相乘,积不变。

(a×b)×c=a×(b×c)乘法分配律:两个数的和同一个数相乘,可以先把这两个数分别同这个数相乘,再相加。

(a+b)×c=a×c+b×c或 (a-b)×c=a×c-b×c减法性质:一个数连续减去两个数,可以减去两个减数的和,或者交换两个减数的位置。

最新人教版小学五年级数学上册知识点归纳总结

最新人教版小学五年级数学上册知识点归纳总结

最新人教版小学五年级数学上册知识点归纳总结
小学五年级数学上册主要包括以下知识点:
1. 数字的认识:认识万以内的整数,认识正数、负数、零以及它们在数轴上的位置关系。

2. 常见整数的运算:掌握整数的加法、减法,能够解决与整数运算相关的实际问题。

3. 分数的认识:认识真分数、假分数、整数,能够对分数进行比较大小。

4. 分数的运算:学习分数的加法、减法,了解几个同分母分数相加时分子不变分母相
加的规律。

5. 单位之间的转换:认识厘米、米、千米、毫升、升、毫克、克、千克等单位之间的
换算关系,能够进行简单的单位换算。

6. 顺序数的认识:学习顺序数的读法、表达及顺序数之间的比较。

7. 图形的认识:认识平面图形和立体图形的名称、性质及特征。

8. 图形的初步操作:能够正确使用直尺、量角器等工具进行测量和画图。

9. 关系和函数:学习集合和集合中元素的关系,了解数与数之间的函数关系。

10. 数据的整理和处理:学习用表格和图表整理和描述数据,能够进行简单的数据分析。

这些知识点是小学五年级数学上册的主要内容,通过学习这些知识点,可以帮助学生打好数学基础,为进一步学习打下坚实的基础。

小学人教版五年级数学上册复习知识点归纳总结

小学人教版五年级数学上册复习知识点归纳总结

小学人教版五年级数学上册复习知识点归纳总结第一单园小数乘法1、小数乘整数:@意义——求几个相同加数的和的简便运算。

如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:@意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的0.8倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。

6、小数四则运算顺序和运算定律跟整数是一样的。

7、运算定律和性质:@ 加法:加法交换律:ab=ba加法结合律:(ab)c=a(bc)@ 减法:abc=a(bc)a(bc)=abc@ 乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(ab)×c=a×cb×c【(ab)×c=a×cb×c】@ 除法:a÷b÷c=a÷(b×c)a÷(b×c) =a÷b÷c第二单园位置1、数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右分别为列数和行数,即“先列后行”。

2、作用:一组数对确定唯一一个点的位置。

数学五年级上册知识点整理

数学五年级上册知识点整理

数学五年级上册知识点整理
一、数与代数
1. 认识亿以内的数,并能根据需要选择数。

2. 认识分数,掌握分数的加减运算。

3. 认识负数,会用负数表示一些日常生活中的问题。

4. 掌握四则运算的意义、性质和法则,会进行简单的运算。

二、空间与图形
1. 认识分数,掌握分数的加减运算。

2. 认识长方体、正方体、圆柱和球等几何图形,并能够测量或估计它们的大小。

3. 会画直线、线段,并能够画垂线、平行线。

4. 了解比例尺,会进行简单的图上计算。

三、统计与可能性
1. 认识复式条形统计图和复式折线统计图,并能够根据统计图进行简单的数据分析。

2. 会设计简单的调查表。

3. 了解可能性和可能性大小的含义,会求一些事件的可能性大小。

四、实践与综合应用
1. 探索事物的奥秘,发现事物的规律。

2. 开展有趣的数学
活动,体会数学学习的乐趣。

3. 综合运用数学知识解决实际问题,体会数学在日常生活中的应用价值。

以上是五年级上册数学知识点整理的主要内容,希望能够帮助学生们更好地理解和掌握数学知识,提高数学素养。

人教版小学五年级数学上册知识点归纳总结

人教版小学五年级数学上册知识点归纳总结

小学五年级数学上册知识点归纳总结班级:姓名:第一单元小数乘法1.小数乘法计算方法:按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:(1)计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

(2)计算小数加减法先把小数点对齐,再把相同数位上的数相加。

(3)计算小数乘法末尾对齐,按整数乘法法则进行计算。

2、乘法的规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小;一个数(0除外)乘等于1的数,积等于原来的数。

3、求积的近似数:先求出积,在根据需要求近似数。

求近似数的方法一般有三种:⑴四舍五入法(常用) ;⑵进一法;⑶去尾法。

后两种多用于解决实际问题求近似数中。

4、计算钱数,保留两位小数,表示精确到分。

保留一位小数,表示精确到角。

5、小数四则运算顺序跟整数四则运算顺序是一样的。

(只有同级运算,从左到右依次计算;两级都有,先乘除后加减;有括号,先算括号里面。

)6、运算定律和性质:方法:1、看(观察算式)2、想(思考能否简便计算)3、做(确定定律按运算律简便计算。

)整数乘法的交换律、结合律和分配律,同样适用于小数乘法。

常见乘法计算(好朋友):25×4=100 125×8=1000 24×5=120加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:交换两个因数的位置,积不变。

a×b=b×a乘法结合律:三个数相乘,先把前两个数相乘,再和最后一个数相乘,或先把后两个数相乘,再和第一个数相乘,积不变. (a×b)×c=a×(b×c)乘法分配律:①两个数的和(或者差)同一个数相乘,可以先把这两个数(或者被减数与减数)分别同这个数相乘,再相加(或者再相减)。

(a+b)×c=a×c+b×c②两个数的差同一个数相乘,可以先把被减数与减数分别同这个数相乘,再相减。

人教版小学数学五年级(上册)各单元知识点归纳

人教版小学数学五年级(上册)各单元知识点归纳

人教版小学数学五年级(上册)各单元【知识点】第一单元《小数乘法》一、小数乘整数的计算方法:1、先将小数转化成整数2、再按照整数乘法的计算方法算出积3、最后确定积的小数点的位置。

4、如果积的小数部分末尾若出现0,要去掉小数末尾的0,使小数成为最简形式。

二、小数乘小数的算理及计算方法:(1)按照整数乘法算出积,再点小数点;(2)点小数点时,看因数中一共有几位小数,有几位小数就从积的右边起数出几位,点上小数点;(3)积的小数位数如果不够,在前面用0补足,再点小数点;(4)积的小数部分末尾有0的要把0去掉。

三、积与因数的关系一个因数(0除外)乘大于1的数,积比原来的因数大;一个因数(0除外)乘小于1的数,积比原来的因数小。

四、求一个数的小数倍数是多少的问题的解题方法:用乘法计算,即用这个数乘小数倍数。

五、小数乘法的常用验算方法:(1)根据因数与积的大小关系检验;(2)交换两个因数的位置,重新计算;(3)用计算器验算。

六、用“四舍五入”法求积的近似数:1、先算出积,然后看要保留数位的下一位,再按“四舍五入法”求出结果,用“≈”表示;2、用四舍五入法保留一定的小数位数。

四舍五入法:小于5,把它和右边的数全舍去,改写成0大于5,向前进1,再把它和右面的数全舍去,改写成0由于小数的末尾去掉0和加上0,小数的大小不变,所以取小数的近似数时不用把数改写成0,直接去掉。

2.205≈2 (保留整数)2.205≈2.2 (保留一位小数)2.205≈2.21 (保留两位小数)3、如果求得的近似数要保留数位的数字是9而后一位数字又大于5需要进1,这时就要依次进一用0占位。

如6.597 保留两位小数为6.60。

特别注意:在保留整数、(一位、两位、三位)小数、省略(亿···万···十分位、百分位···)后面的尾数、精确到(亿···万···十分位、百分位···)这类题目,都可以用划圆圈的方法来完成。

人教版小学生五年级数学知识点总结(8篇)

人教版小学生五年级数学知识点总结(8篇)

人教版小学生五年级数学知识点总结(8篇)还在苦恼没有小学五年级的知识点总结吗?在日常的学习中,是不是听到知识点,就立刻清醒了?知识点就是掌握某个问题/知识的学习要点。

下面是小编给大家整理的人教版小学生五年级数学知识点总结,仅供参考希望能帮助到大家。

人教版小学生五年级数学知识点总结篇11、长方形周长=(长+宽)×2 字母公式:C=(a+b)×2长方形面积=长×宽字母公式:S=ab2、正方形周长=边长×4 字母公式:C=4a正方形面积=边长×边长字母公式:S=a23、平行四边形的面积=底×高字母公式: S=ah4、三角形的面积=底×高÷2 字母公式: S=ah÷2(三角形的'底=面积×2÷高; 三角形的高=面积×2÷底)5、梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2(上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底) )注明:求三角形的底或高和梯形的上下底或高时,可根据公式列方程求解。

这样容易列出方程,也好理解。

6、三角形面积公式推导:平行四边形可以转化成一个长方形;两个完全一样的三角形可以拼成一个平行四边形,长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;因为长方形面积=长×宽,所以平行四边形面积=底×高,长方形的面积等于平行四边形的面积。

平行四边形的底相当于三角形的底;平行四边形的高相当于三角形的高;平行四边形的面积等于等底等高三角形面积的2倍。

7、两个完全一样的梯形可以拼成一个平行四边形。

平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍。

人教版小学五年级数学上册知识点总结和复习要点

人教版小学五年级数学上册知识点总结和复习要点

人教版小学五年级数学上册知识点总结和复习要点一、数与代数1整数的认识概念:整数包括正整数、零和负整数,不包括小数和分数。

性质:整数可以进行加减乘除四则运算,但除以零没有意义。

特点:整数在数轴上表示为离散的点。

举例:1、2、3、0、-1、-2等都是整数。

2小数的认识概念:小数是由整数部分、小数点和小数部分组成的数。

性质:小数可以进行加减乘除四则运算,但小数点要对齐。

特点:小数可以表示比整数更精确的数量。

举例:0.5、1.23、4.567等都是小数。

3分数的认识概念:分数表示整体的一部分,由分子、分母和分数线组成。

性质:分数可以进行加减乘除四则运算,运算时需要通分或约分。

特点:分数可以表示不可分割的数量关系。

举例:1/2、3/4、5/6等都是分数。

4因数与倍数概念:一个整数能被另一个整数整除,则后者是前者的因数,前者是后者的倍数。

性质:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的。

特点:一个数的所有因数中,1和它本身总是因数;一个数的倍数总是比这个数大。

举例:12的因数有1、2、3、4、6、12;12的倍数有12、24、36、48等。

5奇数与偶数概念:能被2整除的整数是偶数,不能被2整除的整数是奇数。

性质:奇数与偶数的和或差是奇数;奇数与偶数的积是偶数。

特点:除2外,任何偶数都是合数;任何奇数都不能被2整除。

举例:2、4、6、8等都是偶数;1、3、5、7等都是奇数。

二、空间与几何1图形的变换概念:图形的变换包括平移、旋转和轴对称等。

性质:平移不改变图形的大小和形状;旋转不改变图形的大小和形状,但改变图形的方向;轴对称图形关于对称轴对称。

特点:平移和旋转是图形位置的变化;轴对称是图形形状的对称性。

举例:推拉窗户是平移;旋转门是旋转;蝴蝶的翅膀是对称的。

2图形的面积概念:面积是指一个物体表面或平面图形所占的大小。

性质:面积可以用平方单位来衡量,如平方厘米、平方米等。

小学生最新五年级数学上册知识点总结(8篇)

小学生最新五年级数学上册知识点总结(8篇)

小学生最新五年级数学上册知识点总结篇1第一单元《小数乘法》知识点一、小数乘整数(利用因数的变化引起积的变化规律来计算小数乘法)知识点一:1、计算小数加法先把小数点对齐,再把相同数位上的数相加2、计算小数乘法末尾对齐,按整数乘法法则进行计算。

知识点二:积中小数末尾有0的乘法。

先计算出小数乘整数的乘积后,积的小数末尾出现0,要再根据小数的性质去掉小数末尾的0。

如:3.60“0”应划去知识点三:如果乘得的积的小数位数不够要在前面用0补足,再点上小数点。

如0.02×2=0.04知识点四:计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐。

思考:小数乘整数与整数乘整数有什么不同?1、小数乘整数中有一个因数是小数,所以积一般来说也是小数。

2小数乘法中积的小暑部分末尾如有0可以根据小数的基本性质去掉小数末尾的0而整数乘法中是不能去掉的。

二、小数乘小数知识点一:因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数。

知识点二:小数乘法的一般计算方法:先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起输出几位,点上小数点。

)乘得的积的小数位数不够要在积的前面用0补足,在点小数点。

知识点三:小数乘法的验算方法1、把因数的位置交换相乘2、用计算器来验算三、积的近似数知识点一:先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示。

知识点二:如果求得的近似数所求数位的数字是9而后一位数字又大于5需要进1,这是就要依次进一用0占位。

如6.597保留两位为6.60四、连乘、乘加、乘减知识点一:小数乘法要按照从左到右的顺序计算知识点二:小数的乘加运算与整数的乘加运算顺序相同。

先乘法,后加法整数乘法的交换律、结合律和分配律,对于小数乘法也适用。

五、简便运算整数乘法的交换律、结合律和分配律,对于小数乘法也适用计算连乘法时可应用乘法交换律、结合律将几位整数的两个数先乘,再乘另一个数,计算一步乘法时,可将接近整十、整百的数拆成整十整百的数和一位数相加减的算式,再应用乘法分配律简算。

人教版五年级数学上册知识点归纳

人教版五年级数学上册知识点归纳

人教版五年级数学上册知识点归纳1. 单数和复数:- 单数是指一个(物品、人或事物)的数量。

例如:一个苹果,一只猫。

- 复数是指多个(物品、人或事物)的数量。

例如:两个苹果,三只猫。

2. 数的读法:- 十以内的数,个位数读法变化,十位数朗读加“十”。

例如:13读作十三,24读作二十四。

- 十与个位数相同的数,个位数读作“零”。

例如:十读作十,二十读作二十。

3. 数的大小比较:- 通过观察数的位数来判断数的大小。

位数多的数比位数少的数大。

例如:46比较大于9。

- 若两个数位数相同,则从最高位开始,逐一比较各位数字的大小。

例如:24比较大于16。

4. 算式的运算顺序:- 先乘除后加减的原则。

例如:2 + 3 × 4 = 2 + 12 = 14。

- 可以用括号来改变运算顺序。

例如:(2 + 3) × 4 = 5 × 4 = 20。

5. 加法与减法的运算:- 加法指两个或更多数相加的运算。

例如:3 + 4 = 7。

- 减法指一个数减去另一个数的运算。

例如:8 - 2 = 6。

6. 乘法与除法的运算:- 乘法指两个数相乘的运算。

例如:3 × 2 = 6。

- 除法指一个数被另一个数除的运算。

例如:6 ÷ 2 = 3。

7. 连加与连乘:- 连加是指将一连串连续的数相加的运算。

例如:1 + 2 + 3+ 4 = 10。

- 连乘是指将一连串连续的数相乘的运算。

例如:1 × 2 × 3× 4 = 24。

8. 分数的概念:- 分数是指一个整体被分成若干等分,其中的一份即为分数。

例如:1/2表示一个整体分成两等分中的一份。

9. 几何图形的认识:- 点是没有长度、宽度和厚度的,只有位置的图形。

例如:黑板上的一个点。

- 线段是由两个点之间的全部点构成的图形。

例如:纸上的一段直线。

- 角是由两条相交的线段所围成的图形。

例如:一个纸上的直角。

10. 几何图形的分类:- 直线、线段、尺和尺弧是没有端点的图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学五年级数学上册复习教学知识点归纳总结
第一单元小数乘法
1、小数乘整数:
@意义——求几个相同加数的和的简便运算。

如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:
@意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的0.8倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。

3、规律:
一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。

6、小数四则运算顺序和运算定律跟整数是一样的。

7、运算定律和性质:
@ 加法:
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
@ 减法:
a-b-c=a-(b+c)
a-(b+c)=a-b-c
@ 乘法:
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
@ 除法:
a÷b÷c=a÷(b×c)
a÷(b×c) =a÷b÷c
第二单元位置
1、数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右分别为列数和行数,即“先列后行”。

2、作用:一组数对确定唯一一个点的位置。

经度和纬度就是这个原理。

例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。

如:数对(3,2)表示第三列,第二行。

(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。

(有一个数不确定,不能确定一个点)
2、图形左右平移行数不变;图形上下平移列数不变。

第三单元小数除法
1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。

2、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。

商的小数点要和被除数的小数点对齐。

整数部分不够除,商0,点上小数点。

如果有余数,要添0再除。

3、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。

4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

5、除法中的变化规律:
①商不变:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

②除数不变,被除数扩大,商随着扩大。

③被除数不变,除数缩小,商扩大。

6、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

@ 循环节:一个循环小数的小数部分,依次不断重复出现的数字。


6.3232……的循环节是32.
7、小数部分的位数是有限的小数,叫做有限小数。

小数部分的位数是无限的小数,叫做无限小数。

第四单元可能性
1、有些事件的发生是确定的,有些是不确定的。

可能
(不能确定)
可能性不可能
一定
2、事件发生的机会(或概率)有大小。

大数量多
小数量少
第五单元简易方程
1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。

注:加号、减号、除号以及数与数之间的乘号不能省略。

2、a×a可以写作a·a或a2读作a的平方。

(确定)
注: 2a表示a+a ; a2表示a×a
3、方程:含有未知数的等式称为方程。

4、使方程左右两边相等的未知数的值,叫做方程的解。

5、求方程的解的过程叫做解方程。

6、解方程原理:天平平衡。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

7、10个数量关系式:
@ 加法;
和=加数+加数;
一个加数=和-另一个加数
@ 减法:
差=被减数-减数;
被减数=差+减数;
减数=被减数-差
@乘法:
积=因数×因数;
一个因数=积÷另一个因数
@ 除法:
商=被除数÷除数;
被除数=商×除数;
除数=被除数÷商
第六单元多边形的面积
1、长方形:
@ 周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】
字母表示:C=(a+b)×2
@面积=长×宽
字母表示:S=ab
2、正方形:
@周长=边长×4
字母表示:C=4a
@面积=边长×边长
字母表示:S=a2
3、平行四边形的面积=底×高
字母表示: S=ah
4、三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】
字母表示: S=ah÷2
5、梯形的面积=(上底+下底)×高÷2
字母表示: S=(a+b)h÷2
上底=面积×2÷高-下底,
下底=面积×2÷高-上底;
高=面积×2÷(上底+下底)
6、平行四边形面积公式推导:剪拼、平移、割补法
7、三角形面积公式推导:旋转 、拼凑法
平行四边形可以转化成一个长方形;
两个完全一样的三角形可以拼成一个平行四边形,长方形的长相当于平行四边形的底;平行四边形的底相当于三角形的底;长方形的宽相当于平行四边形的高; 平行四边形的高相当于三角形的高;长方形的面积等于平行四边形的面积,平行四边形的面积等于三角形面积的2倍,因为长方形面积=长×宽,所以平行四边形面积=底×高。

因为平行四边形面积=底×高,所以三角形面积=底×高÷2
8、梯形面积公式推导:旋转、拼凑法
9、两个完全一样的梯形可以拼成一个平行四边形;
平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
10、等底等高的平行四边形面积相等;等底等高的三角形面积相等; 等底等高的平行四边形面积是三角形面积的2倍。

11、长方形框架拉成平行四边形,周长不变,面积变小。

12、组合图形面积(或阴影部分面积):转化成已学的简单图形,通过加、减进行计算(整体-部分=另一部分)。

第七单元数学广角——植树问题
1、 只载一端(封闭线路植树问题)
如图:
间隔数=棵树 间隔长×间隔数=全长
全长÷间隔长=间隔数 全长÷间隔数=间隔长
2、 两端都载:
如图:
间隔数+1=棵树 间隔长×间隔数=全长
全长÷间隔长=间隔数 全长÷间隔数=间隔长
全长÷间隔长+1=棵数 全长÷(棵树-1)=间隔长
3、 两端都不载
如图:
间隔数-1=棵树 间隔长×间隔数=全长
全长÷间隔长=间隔数 全长÷间隔数=间隔长
全长÷间隔长-1=棵数 全长÷(棵树+1)=间隔长。

相关文档
最新文档