《大学物理A(II)》第3次作业-解答

合集下载

《大学物理AI》作业 No.03 角动量、角动量守恒(参考解答)

《大学物理AI》作业 No.03 角动量、角动量守恒(参考解答)
答:(a)正确。与轴平行的力,对该轴都不产生力矩。(b)正确。比如当两个力垂直于轴,且力的 作用线通过轴时,每个力对该轴的力矩都为零;当两个力作用线不通过该轴时,这两个力的力矩之和 可以不为零。(c)错误。大小相等、方向相反的两个力作用于刚体上不同位置处,如下图所示,两个 力合力为零,但对 O 点的合力矩不为零。(d)错误,如下图所示情况,两个力对 O 点的合力矩为零, 但合力不为零。
为为零零。;((bc))不不正正确确; ;角当动参量考还点与不参在考运点动的直选线择上有时关,,质只点要相参对考于点参不考选点在的运位动矢直r 是线在上变,化角动的量,就因可此能角不动

L

r

mv
也是会变化的;(d)不正确;作匀速率圆周运动的物体,其合外力指向圆心,属于有心
力,以圆心为参考点,质点的角动量守恒,角动量大小和方向都不改变。
端的水平轴在竖直平面内自由摆动,现将棒由水平位置静止释放,求:
(1)细棒和小球绕 A 端的水平轴的转动惯量,
A
B
(2)当下摆至 角时,细棒的角速度。

m
解:(1) J

J1

J2

ml 2

1 ml 2 3

4 ml 2 3
(2)根据转动定理: M

J
d dt

J
d d
d dt

J
d d
1、理解质点、质点系、定轴转动刚体的角动量的定义及其物理意义; 2、理解转动惯量、力矩的概念,会进行相关计算; 3、熟练掌握刚体定轴转动定律,会计算涉及转动的力学问题; 4、理解角冲量(冲量矩)概念,掌握质点、质点系、定轴转动刚体的角动量定理,熟练进行有关计算; 5、掌握角动量守恒的条件,熟练应用角动量守恒定律求解有关问题。

(完整版)大学物理学(课后答案)第3章

(完整版)大学物理学(课后答案)第3章

第3章动量守恒定律和能量守恒定律习题一选择题3-1 以下说法正确的是[ ](A)大力的冲量一定比小力的冲量大(B)小力的冲量有可能比大力的冲量大(C)速度大的物体动量一定大(D)质量大的物体动量一定大解析:物体的质量与速度的乘积为动量,描述力的时间累积作用的物理量是冲量,因此答案A、C、D均不正确,选B。

3-2 质量为m的铁锤铅直向下打在桩上而静止,设打击时间为t∆,打击前锤的速率为v,则打击时铁捶受到的合力大小应为[ ](A)mvmgt+∆(B)mg(C)mvmgt-∆(D)mvt∆解析:由动量定理可知,F t p mv∆=∆=,所以mvFt=∆,选D。

3-3 作匀速圆周运动的物体运动一周后回到原处,这一周期内物体[ ] (A)动量守恒,合外力为零(B)动量守恒,合外力不为零(C)动量变化为零,合外力不为零, 合外力的冲量为零(D)动量变化为零,合外力为零解析:作匀速圆周运动的物体运动一周过程中,速度的方向始终在改变,因此动量并不守恒,只是在这一过程的始末动量变化为零,合外力的冲量为零。

由于作匀速圆周运动,因此合外力不为零。

答案选C。

3-4 如图3-4所示,14圆弧轨道(质量为M)与水平面光滑接触,一物体(质量为m)自轨道顶端滑下,M与m间有摩擦,则[ ](A )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能守恒(B )M 与m 组成的系统动量不守恒, 水平方向动量守恒,M 、m 与地组成的系统机械能不守恒(C )M 与m 组成的系统动量不守恒, 水平方向动量不守恒,M 、m 与地组成的系统机械能守恒(D )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能不守恒解析:M 与m 组成的系统在水平方向上不受外力,在竖直方向上有外力作用,因此系统水平方向动量守恒,总动量不守恒,。

由于M 与m 间有摩擦,m 自轨道顶端滑下过程中摩擦力做功,机械能转化成其它形式的能量,系统机械能不守恒。

大学物理a考试题及答案详解

大学物理a考试题及答案详解

大学物理a考试题及答案详解一、选择题(每题2分,共20分)1. 根据牛顿第二定律,作用在物体上的力F与物体的质量m和加速度a之间的关系是:A. F = maB. F = ma^2C. F = m/aD. F = a/m答案:A2. 光在真空中的传播速度是:A. 299,792 km/sB. 299,792 m/sC. 3.00 x 10^8 m/sD. 3.00 x 10^5 km/s答案:C3. 根据能量守恒定律,一个封闭系统的总能量:A. 随时间增加B. 随时间减少C. 保持不变D. 无法确定答案:C4. 一个物体从静止开始做匀加速直线运动,其位移s与时间t的关系是:A. s = 1/2at^2B. s = at^2C. s = 2atD. s = at答案:A5. 两个点电荷之间的库仑力与它们之间的距离r的关系是:A. F ∝ 1/r^2B. F ∝ r^2C. F ∝ 1/rD. F ∝ r答案:A6. 根据麦克斯韦方程组,电磁波在真空中的传播速度与光速的关系是:A. 相同B. 不同C. 无法确定D. 无关系答案:A7. 一个物体在水平面上受到一个恒定的力F作用,其加速度a与力F和摩擦力f的关系是:A. a = F - f/mB. a = F/m - fC. a = (F - f)/mD. a = F/m + f答案:C8. 根据热力学第一定律,一个系统的内能变化ΔU与做功W和热传递Q的关系是:A. ΔU = W + QB. ΔU = W - QC. ΔU = Q - WD. ΔU = -W - Q答案:A9. 一个单摆的周期T与摆长L和重力加速度g的关系是:A. T = 2π√(L/g)B. T = 2π√(g/L)C. T = 2πL/gD. T = 2πg/L答案:A10. 根据相对论,一个物体的质量m与其速度v和光速c的关系是:A. m = m0/√(1 - v^2/c^2)B. m = m0√(1 - v^2/c^2)C. m = m0(1 - v^2/c^2)D. m = m0 + v^2/c^2答案:A二、填空题(每空1分,共10分)1. 一个物体的动量p等于其质量m乘以速度v,即 p = ________。

大学物理a2期末考试试题及答案

大学物理a2期末考试试题及答案

大学物理a2期末考试试题及答案一、选择题(每题3分,共30分)1. 光在真空中的传播速度是:A. 3×10^8 m/sB. 3×10^5 km/sC. 3×10^7 m/sD. 3×10^6 m/s答案:A2. 以下哪个选项不是牛顿三大定律之一?A. 惯性定律B. 作用与反作用定律C. 能量守恒定律D. 万有引力定律答案:C3. 一个物体在水平面上以恒定加速度运动,其速度与时间的关系是:A. v = u + atB. v = u - atC. v = u * tD. v = u / t答案:A4. 根据热力学第一定律,下列说法正确的是:A. 能量可以被创造或消灭B. 能量守恒C. 能量可以被转化为质量D. 能量可以被转化为信息5. 电磁波的频率与波长的关系是:A. 频率与波长成正比B. 频率与波长成反比C. 频率与波长无关D. 频率与波长成正比,但与波速无关答案:B6. 以下哪种物质的导电性能最好?A. 玻璃B. 橡胶C. 金属D. 陶瓷答案:C7. 根据麦克斯韦方程组,电磁波的传播速度与以下哪个因素无关?A. 真空的介电常数B. 真空的磁导率C. 光速D. 电磁波的频率答案:D8. 一个点电荷在电场中受到的力与以下哪个因素无关?A. 电荷的大小B. 电场的强度C. 电荷的正负D. 电荷的质量答案:D9. 根据量子力学,以下哪个概念是错误的?B. 测不准原理C. 光的波动性D. 粒子的波动性答案:C10. 以下哪个选项是正确的?A. 光子没有质量B. 光子具有能量C. 光子具有动量D. 光子具有静止质量答案:B二、填空题(每题2分,共20分)1. 根据牛顿第二定律,力等于________。

答案:质量乘以加速度2. 光的折射定律是斯涅尔定律,其表达式为n1 * sin(θ1) = n2 *sin(θ2),其中n1和n2分别是光从介质1进入介质2时的________。

大学物理作业三答案定稿版

大学物理作业三答案定稿版

大学物理作业三答案精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】班级___ ___学号____ ____姓名____ _____成绩______________一、填空题1. 一旋转齿轮的角加速度=4at 3-3bt 2 ,式中a 、b 均为恒量,若齿轮具有初角速度为0,则任意时刻t的角速度 ,转过的角度为 .2. 质量为m ,半径为R 的均质圆盘,平放在水平桌面上,它与桌面的滑动摩擦系数为,试问圆盘绕中心轴转动所受摩擦力矩为 。

3. 一长为L 质量为m 的均质细杆,两端附着质量分别为m 1和m 2的小球,且m 1>m 2 ,两小球直径d 1 、d 2都远小于L ,此杆可绕通过中心并垂直于细杆的轴在竖直平面内转动,则它对该轴的转动惯量为 , 若将它由水平位置自静止释放,则它在开始时刻的角加速度为多大: 。

4. 质量为m ,半径为r 的均质圆盘,绕通过其中心且与盘垂直的固定轴以角速度匀速转动,则对其转轴来说,它的动量为____________,角动量为__________.三、计算题:1. 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴OO ’转动,设大小圆柱的半径分别为R 和r ,质量分别为M 和m ,绕在两柱体上的细绳分别与物体m 1和物体m 2 相连,m 1和m 2则挂在圆柱体的两侧,如图所示,设R =0.20m ,r =0.10m ,m =4kg ,M =10kg ,m 1=m 2=2kg ,求柱体转动时的角加速度及两侧绳中的张力.O ’O解:设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度,方向如图(如图b).题2-26(a)图 题2-26(b)图(1) 1m ,2m 和柱体的运动方程如下:2222a m g m T =- ①1111a m T g m =- ②12T R T r I α''-= ③式中 112221,,,T T T T a r a R αα''==== 而 222121mr MR I +=由上式求得(2)由①式 22220.10 6.1329.820.8T m r m g α=+=⨯⨯+⨯=N由②式11129.820.2. 6.1317.1T m g m R α=-=⨯-⨯⨯=N2. 计算题3-13图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg ,2m =200 kg,M =15 kg, r =0.1 m解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有a m T g m 222=- ①a m T 11= ②对滑轮运用转动定律,有α)21(212Mr r T r T =- ③又, αr a = ④联立以上4个方程,得 2212s m 6.721520058.92002-⋅=++⨯=++=M m m g m a题3-13(a)图 题3-13(b)图3. 如图质量为M ,长为L 的均匀直杆可绕O 轴在竖直平面内无摩擦地转动,开始时杆处于自由下垂位置,一质量为m 的弹性小球水平飞来与杆下端发生完全弹性碰撞,若M >3m ,且碰撞后,杆上摆的最大角度为=30,则求:(A)小球的初速度v 0,(B)碰撞过程中杆给小球的冲量. (教材)解: (1)设小球的初速度为0v ,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为mv MOLv ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:mvl I l mv +=ω0 ①2220212121mv I mv +=ω ② 上两式中231Ml I =,碰撞过程极为短暂,可认为棒没有显着的角位移;碰撞后,棒从竖直位置上摆到最大角度o 30=θ,按机械能守恒定律可列式:)30cos 1(2212︒-=lMg I ω ③ 由③式得 2121)231(3)30cos 1(⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡︒-=lg I Mgl ω由①式 mlI v v ω-=0 ④ 由②式 mI v v 2202ω-= ⑤所以 22001)(2ωωmv ml I v -=-求得glmM m m M l ml I l v +-=+=+=31232(6)311(2)1(220ωω(2)相碰时小球受到的冲量为 ⎰-=∆=0d mv mv mv t F由①式求得 ωωMl l I mv mv t F 31d 0-=-=-=⎰gl M 6)32(6--=负号说明所受冲量的方向与初速度方向相反.。

大学物理考试试题及答案3套

大学物理考试试题及答案3套

大学物理考试试题及答案3套2011 年12 月考试大学物理第一次作业一、判断题(本大题共30 分,共10 小题,每小题3 分) 1. 物体运动的速度越大,它具有的功也越大( ) 2. 物体处于一定的高度,就具有一定的重力势能( ) 3. 若刚体所受到的合外力为零,则刚体对定轴的角动量守恒( ) 4. 一物体的加速度恒定,而其速度方向不断改变( ) 5. 不可逆过程一定找不到另一过程使系统和外界同时复原( ) 6. 气体的温度表示每个分子的冷热程度( ) 7. 弹性势能和重力势能的零势点均可任意选择( ) 8. 气体的温度是分子平均动能的量度( ) 9. a 变化但质点作直线运动是可能的( ) 10. 在封闭容器中有一定量的理想气体,若气体各部分压强相等,分子数密度也相同,则该气体处于平衡态( )二、填空题(本大题共40 分,共8 小题,每小题5 分) 1. 质量为M 的车以速度v 沿光滑水平地面直线前进,车上的人将一质量为m 的物体相对于车以速度u 竖直上抛,则此时车的速度为______ 2. 温度27 ℃时,1mol 氢气具有的平动动能为______ ,转动动能为______ 3. 一质点沿x 轴运动,速度与位置的关系为v=kx,其中k 为一正常量,则质点在任意x 处的加速度为______ 4. 一圆运动质点的轨迹半径R=1.24,质点的角加速度α =2t,若t=0 时质点角速度为=0.32,t=1 时质点的角速度为______ 、切向加速度为______ 何法向加速度为______ 5. 一质点运动的速度与路程关系为v=4+3s ,则切向加速度与路程的关系为______ 6. 一星球可看作绕轴转动的匀质球体,若在一个演化过程中它的半径缩小为原来的一半,它的自转周期为原来的______ 倍,它赤道上一点的速率是原来的______ 倍7. 有氦气、氢气和水蒸气混合处于平衡态,若氦分子的平均动能为0.03eV,则氢分子的平均动能为______ eV,水分子的平均平动动能为______ eV,平均转动动能为______ eV 8. 一质点沿半径为R 的圆周运动,角速度,其中k 为一正常量。

《大学物理(A)Ⅱ》期末试卷三及答案

《大学物理(A)Ⅱ》期末试卷三及答案

《大学物理(A)Ⅱ》期末试卷三及答案一、选择题(每题3分,共30分)1把轻的导线圈用线挂在磁铁N极附近,磁铁的轴线穿过线圈中心,且与线圈在同一平面内,如图所示.当线圈内通以如图所示方向的电流时,线圈将()(A) 不动.(B) 发生转动,同时靠近磁铁.(C) 发生转动,同时离开磁铁.(D) 不发生转动,只靠近磁铁.(E) 不发生转动,只离开磁铁.2如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流I ,下列哪一种情况可以做到?()(A)载流螺线管向线圈靠近.(B) 载流螺线管离开线圈.(C)载流螺线管中电流增大.(D)载流螺线管中插入铁芯.3一质点作简谐振动,周期为T.当它由平衡位置向x轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为()(A) T /12. (B) T /8.(C) T /6. (D) T /4.4一质点作简谐振动,已知振动周期为T,则其振动动能变化的周期是()(A) T/4. (B) 2/T. (C) T.(D) 2 T. (E) 4T.5当机械波在媒质中传播时,一媒质质元的最大变形量发生在()(A) 媒质质元离开其平衡位置最大位移处.(B) 媒质质元离开其平衡位置 (2/2A) 处 ( A是振动振幅 ).(C) 媒质质元在其平衡位置处.1处(A是振动振幅).(D) 媒质质元离开其平衡位置A26一束平行单色光垂直入射在光栅上,当光栅常数(a+ b)为下列哪种情况时(a代表每条缝的宽度),k=3、6、9 等级次的主极大均不出现?()(A) a+b=2 a. (B) a+b=3 a.(C) a+b=4 a. (A) a+b=6 a.7两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过.当其中一偏振片慢慢转动180°时透射光强度发生的变化为:()(A) 光强单调增加.(B) 光强先增加,后又减小至零.(C) 光强先增加,后减小,再增加.(D) 光强先增加,然后减小,再增加,再减小至零.8在某地发生两件事,静止位于该地的甲测得时间间隔为4 s,若相对于甲作匀速直线运动的乙测得时间间隔为5 s,则乙相对于甲的运动速度是(c表示真空中光速)() (A) (4/5) c. (B) (3/5) c.(C) (2/5) c. (D) (1/5) c.9K系与K'系是坐标轴相互平行的两个惯性系,K'系相对于K系沿Ox轴正方向匀速运动.一根刚性尺静止在K'系中,与O'x'轴成 30°角.今在K系中观测得该尺与Ox轴成 45°角,则K'系相对于K系的速度是:()(A) (2/3)c . (B) (1/3)c . (C) (2/3)1/2c . (D) (1/3)1/2c .10有下列四组量子数:( ) (1) n = 3,l = 2,m l = 0,21=s m . (2) n = 3,l = 3,m l = 1,21=s m . (3) n = 3,l = 1,m l = -1,21-=s m . (4) n = 3,l = 0,m l = 0,21-=s m . 其中可以描述原子中电子状态的 (A) 只有 (1) 和 (3) . (B) 只有 (2) 和 (4). (C) 只有 (1)、(3) 和 (4). (D) 只有 (2)、(3) 和 (4).二、填空题(共30分) 1铜的相对磁导率r= 0.9999912,它是______(填顺、抗)磁性磁介质.2在磁感强度为B的磁场中,以速率v 垂直切割磁力线运动的一长度为L 的金属杆,相当于一个电源,它的电动势 ε=____________,产生此电动势的非静电力是______________.3如图,两根彼此紧靠的绝缘的导线绕成一个线圈,其A 端用焊锡将二根导线焊在一起,另一端B 处作为连接外电路的两个输入端.则整个线圈的自感系数为________.B4一质点沿x 轴以 x = 0 为平衡位置作简谐振动, 频率为 0.25 Hz . t = 0时x = -0.37cm 而速度等于零,则振幅是_____________________,振动的数值表达式为______________________________.5在弦线上有一驻波,其表达式为 )2cos()/2cos(2t x A y νλππ=, 两个相邻波节之间的距离是_______________. 6He -Ne 激光器发出=632.8 nm (1nm=10-9 m)的平行光束,垂直照射到一单缝上,在距单缝3 m 远的屏上观察夫琅禾费衍射图样,测得两个第二级暗纹间的距离是10 cm ,则单缝的宽度a =____________.7一束光线入射到单轴晶体后,成为两束光线,沿着不同方向折射.这样的现象称为双折射现象.其中一束折射光称为寻常光,它___________(遵守、不遵守)通常的折射定律;另一束光线称为非常光,它__________(遵守、不遵守)通常的折射定律. 8设电子静止质量为m e ,将一个电子从静止加速到速率为 0.6 c (c 为真空中光速),需作功________________________.9为使电子的德布罗意波长为1 Å,需要的加速电压为____________.(普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C ,电子质量m e =9.11×10-31 kg)三、计算题 (共40分)1如图所示,一半径为 R 的均匀带电无限长直圆筒,面电荷密度为.该筒以角速度绕其轴线匀速旋转.试求圆筒内部的磁感强度的大小和方向.Rωσ2如图所示为一平面简谐波在t = 0 时刻的波形图,设此简谐波的频率为250 Hz ,且此时质点P 的运动方向向下,求 (1) 该波的表达式;(2) 在距原点O 为100 m 处质点的振动方程与振动速度表达式.3. 薄钢片上有两条紧靠的平行细缝,用波长=546.1 nm (1 nm=10-9 m)的平面光波正入射到钢片上.屏幕距双缝的距离为D =2.00 m ,测得中央明条纹两侧的第五级明条纹间的距离为 x =12.0 mm . (1) 求两缝间的距离.(2) 从任一明条纹 (记作0) 向一边数到第20条明条纹,共经过多大距离? (3) 如果使光波斜入射到钢片上,条纹间距将如何改变?x (m)100-AP O 2/2A y (m)4 实验发现基态氢原子可吸收能量为 12.75 eV 的光子. (1) 试问氢原子吸收该光子后将被激发到哪个能级?(2) 受激发的氢原子向低能级跃迁时,可能发出哪几条谱线?请画出能级图(定性),并将这些跃迁画在能级图上.一、选择题 (每题3分,共30分)1(2462) 2(2493) 3(3253) 4(5311) 5(3288) 6(3212) 7(3528) 8(4169) 9(4358) 10(4966) 1-10答案: BBCBC BBBCC二、填空题(共30分)1(2785)(本题3分) 抗 3分 2(2403)(本题5分) 一个电源 0分,vBL 3分, 洛伦兹力 2分3(2691)(本题3分) 0 3分 4(3816)(本题3分) 0.37 cm 1分,)21cos(1037.02π±π⨯=-t x (SI) 2分5(3314)(本题3分) λ213分6(0464)(本题4分) 7.6×10-2 mm 4分 7(7966)(本题3分) 遵守 通常的折射 1分,不遵守 通常的折射 2分8(4175)(本题3分) 0.25m e c 2 3分 9(4771)(本题3分) 150 V 3分三、计算题 (共40分) 1.(1929)(本题10分)解:如图所示,圆筒旋转时相当于圆筒上 具有同向的面电流密度i ,σωσωR R i =ππ=)2/(24分作矩形有向闭合环路如图中所示.从电流分布的对称性分析可知,在ab 上各点B的大小和方向均相同,而且B 的方向平行于ab ,在bc 和fa 上各点B的方向与线元垂直,在de ,cd fe ,上各点0=B.应用安培环路定理∑⎰⋅=I l B 0d μ 3分可得 ab i ab B 0μ=, σωμμR i B 00== 2分圆筒内部为均匀磁场,磁感强度的大小为σωμR B 0=,方向平行于轴线朝右.1分2.(3143)(本题10分)解:(1) 由P 点的运动方向,可判定该波向左传播. 原点O 处质点,t = 0 时 φcos 2/2A A =, 0sin 0<-=φωA v 所以 4/π=φO 处振动方程为 )41500cos(0π+π=t A y (SI) 4分由图可判定波长= 200 m ,故波动表达式为]41)200250(2cos[π++π=x t A y (SI) 3分i ω σc deab f(2) 距O 点100 m 处质点的振动方程是)45500cos(1π+π=t A y1分振动速度表达式是 )45500cos(500π+ππ-=t A v (SI) 2分 sin3.(3651)(本题10分) 解:(1) x = 2kD/ dd = 2kD/x 3分此处 k =5∴ d =10 D/ x =0.910 mm 2分(2) 共经过20个条纹间距,即经过的距离l =20 D / d =24 mm 3分(3) 不变 2分4.(0521)(本题10分) 解:(1) )11(2nRhc E -=∆ 75.12)11(6.132=-=neV n =4 4分(2) 可以发出41、31、21、43、42、32六条谱线. 3分能级图如图所示. 图 3分λ43λ42λ41λ32λ31 λ21n =4321。

《大学物理(A)Ⅱ》期末试卷H及答案

《大学物理(A)Ⅱ》期末试卷H及答案

《大学物理(A)Ⅱ》期末试卷H 及答案一、选择题 (每题3分,共30分)1.在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为 ( )(A)04πRIμ. (B)02πRIμ.(C) 0. (D)04RIμ.2. 两根平行的金属线载有沿同一方向流动的电流.这两根导线将: ( ) (A) 互相吸引. (B) 互相排斥. (C) 先排斥后吸引. (D) 先吸引后排斥.3. 一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B 中,另一半位于磁场之外,如图所示.磁场B 的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使 ( )(A) 线环向右平移 (B) 线环向上平移. (C) 线环向左平移. (D) 磁场强度减弱.B4. 一质点作简谐振动,周期为T .质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为 ( )(A) T /4. (B) T /6 (C) T /8 (D) T /125.图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A) π23. (B) π.(C) π21. (D) 0.xtO A/2 -Ax 1x 26. 在双缝干涉实验中,光的波长为= 600 nm (1 nm =10-9 m),双缝间距为d = 2 mm ,双缝与屏的间距为D = 300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm . (B) 0.9 mm . (C) 1.2 mm (D) 3.1 mm .7. 光强为I 0的自然光依次通过两个偏振片P 1和P 2.若P 1和P 2的偏振化方向的夹角=30°,则透射偏振光的强度I 是 ( )(A) I 0 / 4. (B)3I 0 / 4. (C)3I 0 / 2. (D) I 0 / 8. (E) 3I 0 / 8.8. 一定频率的单色光照射在某种金属上,测出其光电流的曲线如图中实线所示.然后在光强度不变的条件下增大照射光的频率,测出其光电流的曲线如图中虚线所示.满足题意的图是: ( )9. 具有下列哪一能量的光子,能被处在n = 2的能级的氢原子吸收? ( ) (A) 1.51 eV . (B) 1.89 eV . (C) 2.16 eV . (D) 2.40 eV .10. 如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的( )(A) 动量相同. (B) 能量相同. (C) 速度相同. (D) 动能相同.二、填空题(共30分)1. 一弯曲的载流导线在同一平面内,形状如图(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是______________.OIU(B)OIU(A)OIU(C)OIU(D)2. 有一半径为a ,流过稳恒电流为I 的1/4圆弧形载流导线bc ,按图示方式置于均匀外磁场B中,则该载流导线所受的安培力大小为_______________________.c a3. 如图所示,aOc 为一折成∠形的金属导线(aO =Oc=L ),位于xy 平面中;磁感强度为B 的匀强磁场垂直于xy 平面.当aOc 以速度v 沿x 轴正向运动时,导线上a 、c两点间电势差 U ac =_______________;当aOc 以速度v沿y 轴正向运动时,a 、c 两点的电势相比较, 是____________点电势高.x ×××××4. 一弹簧振子作简谐振动,其运动方程用余弦函数表示()0cos x A t ωϕ=+.若t = 0时, (1) 振子在负的最大位移处,则初相0ϕ为______________________; (2) 振子在平衡位置向正方向运动,则初相0ϕ为________________;5.两相干波源S 1和S 2的振动方程分别是)cos(1φω+=t A y 和)cos(2φω+=t A y 。

自-西北工业大学大学物理作业答案3刚体力学10

自-西北工业大学大学物理作业答案3刚体力学10

第三次作业 刚体力学基础一、选择题1.AEG ; 2.AE ;3.C; 4.CD ;5.C ; 6.E;7.C ;8.C 。

二、填空题1. -2s 0.8rad ⋅; -1s 0.8rad ⋅; 1s m 51.0 -⋅。

2. 4104⨯; 6108⨯。

3.bFRlμ。

4.912ml ;l g 2cos 3θ。

5. s rad 81.251-⋅。

6.lg θsin 23; θsin 23mgl ; θsin 23mgl 。

7. 22sin 2R J m kx mgx +-θ或265.212.3x x -; 0.59m 。

8. 02ωmRJ J+; 4.49 三、回答题1. 答:质点:合力为零;刚体:合外力、合外力矩均为零。

2. 答:转动惯量J 是描述刚体在转动中转动惯性大小量度的物理量。

影响刚体转动惯量的因素有三个:(1)刚体的转轴位置;(2)刚体的总质量;(3)在总质量一定的情况下,质量相对转轴的分布。

四、计算与证明题1.解:① 设此题中定滑轮顺时针转动为正,根据牛顿定律和转动定律列出方程组:ma mg-T =1 ①J βR -T T =)(21 ② (注意:这里有个力矩与角加速度正负的设定问题,若设顺时针为正,则如本题解;但若学生按逆时针为正也可,只是题解中力矩符号相反,答案中a 和β则为负,只意味着顺时针转动,后续计算中要取掉负号)。

02=-kx T ③βR a = ④联立求解得:2RJ m mg-kxa +=而 2d d d d d d d d R Jm mg-kxx t x x t a +==⋅==υυυυ ⎰⎰-+=h x kx mg RJ m d 002d )(1υυυ 解上式得: 22-2RJ m kh mgh +=υ 或 J mR h kR mghR +=2222-2υ ② 系统机械能守恒,取初始位置的势能为零点,则0212121222=-++mgh kh J ωm υ 且 Rωυ= 解上式得:22-2RJ m kh mgh +=υ 或 J mR h kR mghR +=2222-2υ,结果同上。

大学物理第3章作业解答

大学物理第3章作业解答

第三章刚体的定轴转动选择题3-1 如图所示,四个质量相同、线度相同而形状不同的物体,它们对各自的几何对称轴的转动惯量最大的是( A )(A) (B) (C) (D)3-2 在上题中,它们对各自的几何对称轴的转动惯量最小的是( C )3-3 如图所示,P、Q、R、S是附于刚体轻细杆上的四个质点,它们的质量分别为4m、3m、2m和m,PQ QR RS l===,该系统对O O'轴的转动惯量为( A )(A) 29m l.10m l; (D) 214m l; (C) 250m l; (B) 23-4 均匀细棒O A,可绕通过点O与棒垂直的光滑水平轴转动,如图所示.如果使棒从水平位置开始下落,在棒到竖直位置的过程中,下列陈述正确的是( A )(A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.3-5 几个力同时作用在一个具有固定转轴的刚体上.如果这几个力的矢量和为零,则下列陈述正确的是( D )(A) 刚体必然不会转动; (B) 刚体的转速必然不变;(C) 刚体的转速必然会变; (D) 刚体的转速可能变,也可能不变.3-6 在光滑的桌面上开一个小孔,把系在绳的一端质量为m的小球置于桌面上,绳的另一端穿过小孔而执于手中.设开始时使小球以恒定的速率v 在水平桌面上作半径为1r 的圆周运动,然后拉绳使小球的轨道半径缩小为2r ,新的角速度2ω和原来的角速度1ω的关系为( B ) (A) 1212r r ωω⎛⎫ ⎪⎝⎭=; (B) 21212r r ωω⎛⎫⎪⎝⎭=;(C) 2211r r ωω⎛⎫ ⎪⎝⎭=; (D) 22211r r ωω⎛⎫⎪⎝⎭=.3-7 在上题中,新的动能和原来的动能之比为 ( A )(A) 212r r ⎛⎫ ⎪⎝⎭; (B) 12r r ; (C) 21rr ; (D) 221r r ⎛⎫ ⎪⎝⎭.3-8 刚体绕定轴高速旋转时,下列陈述正确的是 ( D )(A) 它受的外力一定很大; (B) 它受的外力矩一定很大;(C) 它的角加速度一定很大; (D) 它的角动量和转动动能一定很大. 3-9 芭蕾舞演员绕通过脚尖的竖直轴旋转,当她伸长手臂时的转动惯量为J ,角速度为ω.她将手臂收回至前胸时,转动惯量减小为3J ,此时她的角速度为 ( A )(A) 3ω; (D) 13ω.3-10 三个完全相同的转轮绕一公共轴旋转.它们的角速度大小相同,但其中一轮的转动方向与另外两个轮相反.今沿轴的方向施力,将三者靠在一起,使它们获得相同的角速度.此时靠在一起后系统的动能与原来三转轮的总动能相比是 ( B )(A) 减少到13; (B) 减少到19;(C) 增大到3倍; (D) 增大到9倍.计算题3-11 一电动机的电枢转速为11800r min -⋅,当切断电源后,电枢经20s 停下.求:(1) 切断电源后电枢转了多少圈;(2) 切断电源后10s 时,电枢的角速度以及电枢边缘上一点的线速度、切向加速度和法向加速度(设电枢半径为10cm ).解 (1) 切断电源时,电枢的转速为11018002πrad s60πrad s60ω--⨯=⋅=⋅电枢的平均角加速度为22060πrad s3.0πrad s20tωα----==⋅=-⋅∆由2202ωωαθ-=∆,且0ω=,可得切断电源后电枢转过的角度为()()22060πrad 600πrad 223πωθα--∆===⨯-转过的圈数为600πr 300r 2π2πN θ∆===(2) 切断电源后10s 时,电枢的角速度为()11060π 3.0π10rad s30πrad s t ωωα--=+=-⨯⋅=⋅此时电枢边缘上一点的线速度、切向加速度和法向加速度分别为()111222t 222222n 0.1030πm s3.0πm s9.42m s0.10 3.0πm s0.30πm s0.942m s0.1030πm s90πm s888m sr a r a r ωαω---------==⨯⋅=⋅=⋅==-⨯⋅=-⋅=-⋅==⨯⋅=⋅=⋅v3-12 一飞轮由直径为0.30m 、厚度为22.010m -⨯的圆盘和两个直径为0.10m 、长为28.010m -⨯的圆柱体组成.设飞轮的密度为337.810kg m -⨯⋅,求飞轮对转轴的转动惯量.解 飞轮上的圆盘的半径为10.15m r =,圆柱体的半径为20.05m r =. 飞轮上的圆盘质量为2322111π7.810π0.15 2.010kg 11.0kg m r h ρ-==⨯⨯⨯⨯=圆柱体的质量为2322222π7.810π0.058.010kg 4.90kgm r h ρ-==⨯⨯⨯⨯⨯=飞轮的转动惯量是圆盘和两个圆柱体的转动惯量之和为22222211221111.00.15 4.900.05kg m 0.136kg m 22J m r m r ⎛⎫=+=⨯⨯+⨯⋅=⋅ ⎪⎝⎭3-13 如图所示,质量分别为2m 、3m 和4m 的三个小球,用长均为l 、质量均为m 的三根均匀细棒相连,如图所示(小球的半径r l <<,可视为质点).求该物件对通过点O 垂直于图面的转轴的转动惯量.解 该物件的转动惯量是三个小球和三根细棒的转动惯量之和为2222212343103J m l m l m l m l m l =+++⨯=3-14 细棒长为l ,质量为m ,设转轴通过棒上离中心为h 的一点并与棒垂直.求棒对此轴的转动惯量.解 由平行轴定理,细棒的转动惯量为22222c 111212J J m h m l m h m l h ⎛⎫=+=+=+ ⎪⎝⎭3-15 一个半径为R 质量为m 的均匀圆盘,挖去直径为R 的一个圆孔,如图所示.求剩余部分对通过圆心O 且与盘面垂直的轴的转动惯量.解 开孔圆盘的转动惯量等于完整圆盘的转动惯量减去位于圆孔部位的被挖去的小圆盘的转动惯量:2222111322424232m R m R J m R m R ⎡⎤⎛⎫⎛⎫=-+=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ 3-16 如图所示,某飞轮的直径为0.50m 、转动惯量为22.4k g m ⋅、转速为311.010r min-⨯⋅.如果制动时闸瓦对轮的压力为490N ,闸瓦与轮之间的滑动摩擦因数为0.4,求制动后飞轮转多少圈才停止.解 制动前,飞轮的转速为31102π 1.010rad s105rad s60ω--⨯⨯=⋅=⋅飞轮所受的制动力矩为n 0.44900.25N m 49N m M F R μ=-=-⨯⨯⋅=-⋅根据转动定律,M J α=,可得制动后飞轮的角加速度为2249rad s20.4rad s2.4M J α---==⋅=-⋅由2202ωωαθ-=∆,且0ω=,可得制动后飞轮转过角度为220105rad 270rad 22(20.4)ωθα--∆===⨯-转过的圈数为270r 43.0r 2π2πN θ∆===3-17 如图所示,一物体质量为5kg ,从一倾角为o 37的斜面滑下,物体与斜面的摩擦因数为0.25.一滑轮装在固定轴O 处,轻绳的一端绕在滑轮上,另一端与物体相连.若滑轮可视为是实心圆盘,其质量为20kg 、半径为0.2m ,绳与轮间无相对滑动,且轮轴的摩擦阻力矩忽略不计.求:(1) 物体沿斜面下滑的加速度; (2) 绳中的张力.解 物体和滑轮的示力图以及坐标选取如图所示.图中P 为重力,N F 为正压力,r F 为摩擦力,T F 为张力,T T F F '=.O x 轴沿斜面向下,Oy 垂直于斜面.设物体的质量为1m ,滑轮的质量为2m ,滑轮的半径为r .对物体,根据牛顿第二定律,在O x 和Oy 方向分别有o1T r 1sin 37m g F F m a --=oN 1cos 370F m g -=重力2P 和轮轴对滑轮的压力N 2F 均通过转轴,对转轴的力矩为零.以垂直纸面向里为正方向,滑轮所受的力矩为T T M F r F r '=⋅=⋅.对滑轮,根据转动定律,有T F r J α⋅=而a r α=r N F F μ=2212J m r =联立解以上方程,可得物体沿斜面下滑的加速度和绳中的张力分别为()oo11222sin 37cos 3712345 0.259.8 m s 1.31 m s1555202m a gm m μ--=-+⎛⎫=-⨯⨯⨯⋅=⋅ ⎪⎝⎭+⨯T 21120 1.31 N 13.1 N 22F Jm a rα===⨯⨯=3-18 如图所示,长为l 、质量为m 的均匀细棒可绕点O 转动.此棒原先静止在竖直位置,受微小扰动而倒下.若不计摩擦和空气阻力,求细棒倒至与竖直位置成θ角时的角加速度和角速度.解 细棒的倒下,可看成定轴转动,其转轴通过地面上细棒端点,垂直于细棒的转动平面.在细棒倒下的过程中,细棒与地球组成的系统机械能守恒.以地面为势能零点,设细棒倒至与竖直方向成θ角时,角速度为ω,有21cos 222l l J m gm gωθ+=而213J m l =由此可得,角速度为ω=只有细棒所受的重力对转轴有力矩.以垂直纸面向里为正方向,细棒倒至与竖直方向成θ角时,重力对转轴的力矩为sin 2l M m g θ=.设此时的角加速度为α,则对细棒,根据转动定律,有sin 2l m gJ θα= 将213J m l =代入上式,可得角加速度为3sin 2g lαθ=3-19 如图所示,两个物体质量分别为1m 和2m .定滑轮的质量为m 、半径为R ,可视为圆盘.已知2m 与桌面间的摩擦因数为μ.设轻绳与轮间无相对滑动,且可不计滑轮轴的摩擦力矩,求1m 下落的加速度和滑轮两边绳中的张力.解 两个物体和滑轮的示力图以及坐标选取如图所示.图中P 为重力,N F 为正压力,r F 为摩擦力,T F 为张力,T1T1F F '=,T 2T 2F F '=.O x 轴水平向右,Oy 轴竖直向下.两个物体的加速度虽方向不同,但大小相同,12a a a ==.对物体1m ,根据牛顿第二定律,在Oy 方向有1T 11m g F m a -=对物体2m ,根据牛顿第二定律,在O x 方向有T 2r 2F F m a -=滑轮所受的重力和转轴对滑轮的压力都通过转轴,对转轴的力矩为零.以垂直纸面向里为正方向,滑轮所受的力矩为T 1T 2M F R F R =-.对滑轮,根据转动定律,有T 1T 2F R F R J α-=而212J m R =a R α=r 2F m gμ=联立解以上方程,可得物体的加速度与绳中的张力分别为()1212222m m a g m m mμ-=++()2T 11122122m m F m gm m m μ++=++()1T 22122122m m F m gm m mμ++=++3-20 一圆盘状的均匀飞轮,其质量为100kg 、半径为0.5m ,绕几何中心轴转动.在30s 内,由起始转速13000r m in-⋅均匀地减速至11000r m in -⋅.求阻力矩所做的功.解 飞轮初、末角速度分别为1102π3000rad s100πrad s60ω--⨯=⋅=⋅112π1000100rad sπrad s603ω--⨯=⋅=⋅飞轮的转动惯量为2222111000.5kg m 12.5kg m 22J m R ==⨯⨯⋅=⋅根据动能定理理,外力矩对飞轮所做的功等于飞轮转动动能的增量,可得在飞轮减速的过程中,阻力矩对飞轮所做的功为()222200225111()2221100π 12.5100πJ 5.4810J23A J J J ωωωω=-=-⎡⎤⎛⎫=⨯⨯-=-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦3-21 质量为m '、半径为R 的转台,可绕过中心的竖直轴转动.质量为m 的人站在转台的边缘.最初人和转台都静止,后来人在转台的边缘开始跑动.设人的角速度(相对于地面)为ω,求转台转动的角速度(转台可看成质量均匀分布的圆盘,并忽略转轴处的摩擦力矩和空气的阻力).解 人和转台组成的系统对中心轴角动量守恒.以人的角速度的方向为正方向,设转台的角速度为1ω,有210J m R ωω+=而212J m R '=由此可得12m m ωω-='式中的负号表明,转台的转动方向与人的转动方向相反.3-22 如图所示,一个转动惯量为J 、半径为R 的圆木盘,可绕通过中心垂直于圆盘面的轴转动.今有一质量为m 的子弹,在距转轴2R 的水平方向以速度0v 射入,并嵌在木盘边缘.求子弹嵌入后木盘转动的角速度.解 子弹和木盘组成的系统,对转轴角动量守恒.以垂直于纸面向外为正方向,设子弹嵌入后,木盘转动的角速度为ω,有2()2R J m R m ω+=v由此可得022()m R J m R ω=+v3-23 如图所示,一均匀细棒长为l 、质量为m ,可绕经过端点O 的水平轴转动.棒被拉到水平位置由静止轻轻放开,下落至竖直位置时,下端与放在地面上的静止物体相撞.若物体的质量也为m ,物体与地面间的摩擦因数为μ,物体滑动s 距离后停止.求: (1) 棒与物体碰撞后,物体的速度;(2) 棒与物体碰撞后,棒的角速度.解 (1)根据动能定理,摩擦力对滑块所做的功等于滑块动能的增量.设物体因碰撞而获得的速度为v ,有2102m gs m μ-=-v由此可得=v (2) 细棒下落的过程中,细棒与地球组成的系统机械能守恒定律.以地面为势能零点,设细棒下落至竖直位置时的角速度为0ω,有20122l J m gω=而213J m l =由此可得0ω=.碰撞过程中角动量守恒.以垂直纸面向外为正方向,设碰撞后,细棒的角速度为ω,有0J m l J ωω+=v将213J m l =、=v 和0ω=代入上式,可得lω=若0ω>,碰撞后细棒继续向右转动, 若0ω<,碰撞后细棒向左转动.。

大学物理2A卷附答案

大学物理2A卷附答案

大学物理2A卷附答案A 卷一、选择题(每题3分,共30分)1、轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2的物体,于是弹簧又伸长了?x .若将m 2移去,并令其振动,则振动周期为(A) g m xm T 122?π= . (B) g m x m T 212?π=.(C) g m x m T 2121?π=. (D) gm m xm T )(2212+π=?.[]2、一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形图是[]-3、图中画出一平面简谐波在t = 2 s 时刻的波形图,则平衡位置在P 点的质点的振动方程是 (A) ]31)2(cos[01.0π+-π=t y P (SI). (B) ]31)2(cos[01.0π++π=t y P (SI). (C) ]31)2(2cos[01.0π+-π=t y P (SI). (D) ]31)2(2cos[01.0π--π=t y P (SI).[] 4\一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A) 它的动能转换成势能. (B) 它的势能转换成动能.(C) 它从相邻的一段质元获得能量其能量逐渐增大. (D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小.[]5、在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为y (m)30°的方向上,若单缝处波面可分成 3个半波带,则缝宽度a 等于(A) λ.(B) 1.5 λ.(C) 2 λ.(D) 3 λ.[] 6、自然光以60°的入射角照射到某两介质交界面时,反射光为完全线偏振光,则知折射光为(A) 完全线偏振光且折射角是30°.(B) 部分偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30°. (C) 部分偏振光,但须知两种介质的折射率才能确定折射角. (D) 部分偏振光且折射角是30°.[]7、(1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生?关于上述两个问题的正确答案是:(A) (1)同时,(2)不同时.(B)(1)不同时,(2)同时. (C) (1)同时,(2)同时.(D) (1)不同时,(2)不同时.[]8、在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为(A) 2. (B) 3. (C) 4. (D) 5.[]9、根据玻尔的理论,氢原子在n =5轨道上的动量矩与在第一激发态的轨道动量矩之比为(A) 5/4. (B) 5/3.(C) 5/2. (D) 5.[]10、已知粒子在一维矩形无限深势阱中运动,其波函数为:a x ax 23cos 1)(π?=ψ, ( - a ≤x ≤a )那么粒子在x = 5a /6处出现的概率密度为(A) 1/(2a ).(B) 1/a . (C) a 2/1. (D) a /1 []1、图中用旋转矢量法表示了一个简谐振动.旋转矢量的长度为0.04 m ,旋转角速度ω = 4π rad/s .此简谐振动以余弦函数表示的振动方程为x =__________________________(SI).2、在截面积为S 的圆管中,有一列平面简谐波在传播,其波的表达式为)]/(2cos[λωx t A y π-=,管中波的平均能量密度是w ,则通过截面积S 的平均能流是____________________________________.3、如图所示,波源S 1和S 2发出的波在P 点相遇,P 点距波源S 1和S 2的距离分别为3λ 和10 λ / 3 ,λ 为两列波在介质中的波长,若P 点的合振幅总是极大值,波源S 1 的相位比S 2 的相位领先_________________.4、用波长为λ的单色光垂直照射到空气劈形膜上,从反射光中观察干涉条纹,距顶点为L 处是暗条纹.使劈尖角θ 连续变大,直到该点处再次出现暗条纹为止.劈尖角的改变量?θ是_____________.5、一个平凸透镜的顶点和一平板玻璃接触,用单色光垂直照射,观察反射光形成的牛顿环,测得中央暗斑外第k 个暗环半径为r 1.现将透镜和玻璃板之间的空气换成某种液体(其折射率小于玻璃的折射率),第k 个暗环的半径变为r 2,由此可知该液体的折射率为___ _____.6、用迈克耳孙干涉仪测微小的位移.若入射光波波长λ=628.9nm ,当动臂反射镜移动时,干涉条纹移动了2048条,反射镜移动的距离d =________.7、波长为λ=550 nm (1nm=10-9m )的单色光垂直入射于光栅常数d =2310-4 cm 的平面衍射光栅上,可能观察到光谱线的最高级次为第________________级.8、两个偏振片叠放在一起,强度为I 0的自然光垂直入射其上,若通过两个偏振片后的光强为I 0 /8。

《大学物理AII》作业 No.03波的干涉 参考解答

《大学物理AII》作业 No.03波的干涉 参考解答

《大学物理AII 》作业No.03波的干涉班级________学号________姓名_________成绩_______-------------------------------------------------------------------------------------------------------****************************本章教学要求****************************1、理解波的叠加原理、波的相干条件;掌握干涉相长、干涉相消条件。

2、理解波程差与相位差的关系、全波反射(自由端反射)和半波反射(固定端反射)的区别。

理解半波损失的意义,在有半波损失时会计算波程差。

3、理解驻波、波节、波腹等概念;掌握驻波形成条件、驻波的特征,各质元振动相位关系。

理解驻波与行波的区别。

-------------------------------------------------------------------------------------------------------一、填空题1、几列波相遇,在相遇区域内每一点的振动等于(各列波独立传播时在该点引起振动的矢量和)。

因此波的叠加实质就是(振动的叠加)。

2、波的独立传播原理是指,波在传播过程中每列波的(振幅)、(周期或频率)、(振动方向)和(传播方向)等特性不因其他波的存在而改变。

3、波的相干条件包括:(振动方向相同)、(频率相同)和(相位差恒定)。

满足相干条件的两列波在空间相遇,合成波的强度(≠)两分波强度之和(选填:=、>、<或≠)。

波的强度在空间上是(非均匀)分布,在时间上是(稳定)分布。

这种现象就称为波的干涉。

4、两相干波叠加时,合成波的强度由两波在相遇点的(波程差)或者(相位差)决定,当两波在相遇点的相位差φ∆满足......)2,1,0(2±±=k k π时产生干涉相长现象;当两波在相遇点的波程差满足......)2,1,0(212±±=+=k k λδ)(时产生干涉相消现象。

大学物理_下A2 期末练习题含解答汇编

大学物理_下A2  期末练习题含解答汇编

xyoa∙∙∙a-(0,)P y qq-大学物理(下A2)练习题第八章 真空中的静电场1.如图所示,在点((,0)a 处放置一个点电荷q +,在点(,0)a -处放置另一点电荷q -。

P 点在y 轴上,其坐标为(0,)y ,当y a 时,该点场强的大小为(A) 204q y πε; (B) 202q y πε;(C)302qa y πε; (D)304qa y πε.[ ]2.将一细玻璃棒弯成半径为R 的半圆形,其上半部均匀分布有电量Q +, 下半部均匀分布有电量Q -,如图所示。

求圆心o 处的电场强度。

3.带电圆环的半径为R ,电荷线密度0cos λλφ=,式中00λ>,且为常数。

求圆心O 处的电场强度。

4.一均匀带电圆环的半径为R ,带电量为Q ,其轴线上任一点P 到圆心的距离为a 。

求P 点的场强。

5.关于高斯定理有下面几种说法,正确的是(A) 如果高斯面上E 处处为零,那么则该面内必无电荷; (B) 如果高斯面内无电荷,那么高斯面上E 处处为零; (C) 如果高斯面上E 处处不为零,那么高斯面内必有电荷;(D) 如果高斯面内有净电荷,那么通过高斯面的电通量必不为零; (E) 高斯定理仅适用于具有高度对称性的电场。

[ ]6.点电荷Q 被闭合曲面S 所包围,从无穷远处引入另一点电荷q 至曲面S 外一点,如图所示,则引入前后(A) 通过曲面S 的电通量不变,曲面上各点场强不变;(B) 通过曲面S 的电通量变化,曲面上各点场强不变;(C) 通过曲面S 的电通量变化,曲面上各点场强变化;(D) 通过曲面S 的电通量不变,曲面上各点场强变化。

[ ]7.如果将带电量为q 的点电荷置于立方体的一个顶角上,则通过与它不相邻的每个侧面的电场强度通量为(A) 06q ε; (B) 012q ε; (C) 024q ε; (D) 048q ε. [ ]xq S Q8.如图所示,A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上的电荷面密度721.7718A C m σ--=-⨯⋅,B 面上的电荷面密度723.5418B C m σ--=⨯⋅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

σx E1 i 2 0 x
σx 1 1 i E2 2 2 2 0 x R x σx ∴ E E1 E2 i 2 0 R 2 x 2
该点电势为:
P O x
U
0
x
2 0
R R2 x2 R 2 x 2 2 0
Q Q U 4 0 r体密度分布为:
qr (r≤R) (q为一正的常量) 4 πR 0 ( r R)
试求:(1) 带电球体的总电荷;(2) 球内、外各点的电场强度;(3) 球内、外各点的电势。 4、一“无限大”平面,中部有一半径为R的圆孔,设平面上均匀 带电,电荷面密度为σ。如图所示,试求通过小孔中心O并与平面 垂直的直线上各点的场强和电势(选O点的电势为零)。
1、半径为R的均匀带电球面,总电荷为Q。设无穷远处电势为零, 则该带电体所产生的电场的电势U,随离球心的距离r变化的分布曲 线为 [A ]
U U∝1/r O R (A) r O R (B) U U∝1/r r O R (C) U U∝1/r r O R (D) U U∝1/r2 r O R (E) U U∝1/r2 r
( 1)球的电势U1 1

R
R1 E dr
R
q q qQ ( - ) 4 0 R R1 R2 qQ 球壳电势U 2 EIII dr R2 4 0 R2
qQ dr dr 2 2 R2 4 r 4 0 r 0 q
4r12 E1
1
0

r1
0
4 qr qr 2 1 4 r d r R 4 0 R4
2 qr 1 得: E 1 4 0 R 4
(r1≤R), E1 方向沿半径向外
在球体外作半径为r2的高斯球面,按高斯定理:
得: E 2
q
4 0 r22
(r2 >R), E 2 方向沿半径向外
4r22 E2 q / 0
(3) 球内电势:
U1
R
r1
R E1 d r E2 d r
R
qr 2 q dr dr 4 2 r 1 4 R R 4 r 0 0
3 3 qr r q 1 1 4 3 4 12 0 R R 3 0 R 12 0 R
xd x


5、 半径为R的导体球,放在内、外半径为R1和R2的同心导体球壳 内,若球和球壳分别带电q和Q。 试求: (1)球和球壳的电势; (2)若用导线将球和球壳连接, 此时它们的电势又为多少?
R2 R1
R O
5、解:由于静电感应,球壳内表面带电 q, 外表面带电q Q,利用高斯定理求出场强分布 q ˆ (R r R1 ) EI 4 r 2 r 0 (R1 r R 2 ) EII 0 qQ ˆ E r (r R ) III 2 2 4 r 0

(2)当用导线将球和球壳连接后,两者 成为一个导体,则电荷q Q全部分布在 球壳外表面,且两者电势相等,此时: qQ U1 U 2 E dr R2 4 0 R2
2、如图,半径为R的均匀带电球面,总电荷为Q,设无穷远处的电 势为零,则球内距离球心为r的P点处的场强的大小和电势为 [ B ]
(A) E=0,U (C) E (D) E
Q 4 0 r
U (B) E=0,
Q 4 0 R
Q O R r P
Q 4 0 r 2
U
Q 4 0 r
q
r1 R
球外电势:
U2
R
r2
E2 d r
r2
q dr 2 4 0 r 4 0 r2
q
r2 R
4、解:将题中的电荷分布看作为面密度为σ的“无限大”平面和面 密度为-σ的圆盘叠加的结果。选x轴垂直于平面,坐标原点O在圆 盘中心,大平面在x处产生的场强为 圆盘在该处的场强为
R O

3、解:(1) 在球内取半径为r、厚为dr的薄球壳,该壳内所包含的电荷为: dq = dV = qr 4r2dr/(R4) = 4qr3dr/R4 则球体所带的总电荷为:
Q d V 4q / R
V

4
r
r 0
3
dr q
(2) 在球内作一半径为r1的高斯球面,按高斯定理有:
相关文档
最新文档