面向新型业务的多维快速包分类算法研究

面向新型业务的多维快速包分类算法研究
面向新型业务的多维快速包分类算法研究

数据包的分类

数据包的分类 刘杰 111220065 引言: 传统上,网络路由器通过同样的方式处理到来的数据包来提供最大努力地服务。随着新应用的出现,网络服务供应商希望路由器向不同的应用提供不同的服务质量(QoS)级别。为了满足这些服务质量(QoS)需求,路由器需要实现新的机制,例如许可控制,资源预约,每个数据流的排队,和均衡调度。然而,要实行这些机制的先决条件是路由器要能够对进入的数据流量进行甄别并分类成不同的数据流。我们称这些路由器为流量感知的路由器。一个流量感知的路由器与传统路由器的区别是,它能够持续地跟踪通过的流量并且针对不同的流量应用不同级别的服务。 所有的流量通过不同的规则来加以指定,每一条规则都是由一些通过用特定的值与分组字段进行比较的操作组成。我们称一个规则的集合为分类器。它的形成主要基于一些标准,而这些标准将要用来将不同的数据包分类到一个给定的网络应用。既然一个分类器要定义数据包的属性或者内容,那么数据包分类就是一个识别某个规则或者一个数据包符合或匹配的规则集合的过程。为了详细说明一个具有数据包分类能力的流量感知路由器所提供的各种各样的服务,我们运用了一个在表3.1中展示的示例分类器。假设在图3.1中显示的示例网络中,这个分类器被安装于路由器R中。

在示例分类器中只有四条规则,路由器X提供以下的服务: 数据包过滤:规则R1阻塞所有从外部进入网络A的远程登录连接,其中A可能是一个私有的用于研究的网络。 策略路由:在网络B到D的通过图3.1底部的ATM网络的应用层中,规则R2能够利用实时传输协议(RTP)让路由器传送所有的实时通信量。 流量监管:规则R3限制由C到B的所有传输协议(TCP)的流量速率不超过10Mbps。 有关规则、分类器和包分类的正式描述是在Lakshman 和Stiliadis的工作中给出

机器学习常见算法分类汇总

机器学习常见算法分类汇总 ?作者:王萌 ?星期三, 六月25, 2014 ?Big Data, 大数据, 应用, 热点, 计算 ?10条评论 机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里IT经理网为您总结一下常见的机器学习算法,以供您在工作和学习中参考。 机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。 学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。 监督式学习:

在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(Logistic Regression)和反向传递神经网络(Back Propagation Neural Network) 非监督式学习: 在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。 半监督式学习:

机器学习实战之分类算法

机器学习实战之分类算法 第一章机器学习概论 (4) 机器学习基本概念 (4) 机器学习的主要任务以及相应的算法 (4) 如何选择合适的算法? (4) 机器学习应用的步骤 (5) 第二章 K近邻算法(KNN) (5) 工作原理 (5) 实现步骤 (6) K近邻算法的优缺点 (6) 第三章决策树 (7) 基本思路 (7) 集合无序程度测量 (7) 应用场景 (7) 优缺点 (7) 第四章朴素贝叶斯分类 (8) 基本思路 (8) 基本假设 (8) 条件概率 (8) 词袋模型和词集模型 (9) 优缺点 (10) 标称型和数值型数据的区别 (10)

主要应用及步骤 (10) 第五章逻辑回归 (12) 基本思想 (12) 使用场景 (12) 优缺点 (12) Sigmoid函数 (13) 回归系数 (13) 梯度上升法 (14) 特征缺失处理 (14) 标签缺失处理 (14) 第六章支持向量机SVM (14) 基本思想 (14) SVM第一层理解 (15) 超平面的确定 (15) 函数间隔和几何间隔 (15) 最大间隔分类器 (16) SMO优化算法 (16) 核函数 (19) 应用场景 (19) 第七章 AdaBoost分类 (19) Bagging (20) Boosting (20) Adaboost (20) Adaboost的优点 (20)

Adaboost实现步骤 (21) 第八章非均衡分类问题 (23) 分类性能指标 (23) 混淆矩阵 (23) ROC曲线 (24) 处理非均衡问题的数据抽样 (24)

第一章机器学习概论 机器学习基本概念 机器学习就是将无序的数据转化为有用的信息。一个实例有n个特征,由n列组成。机器学习最主要的任务就是分类,另一个就是回归,回归中比较典型的就是线性拟合。分类和回归都属于监督学习,因为这类算法必须知道要预测什么,即已知目标变量的分类信息。与监督学习对应的是无监督学习,此时数据没有类别信息,也不会给定目标值,将数据集合分成由类似的对象组成的多个类的过程叫做聚类。将描述数据统计值的过程称之为密度估计。分类首先要进行训练,训练样本集必须确定目标变量的值,以便发现特征与目标变量之间的关系。特征或者属性通常是训练样本集的列,他们是独立测量得到的结果,多个特征联系在一起共同组成一个训练样本。 机器学习的主要任务以及相应的算法 如何选择合适的算法? 如果要预测目标变量的值:

快速流分类算法研究综述

快速流分类算法研究综述 李振强 (北京邮电大学信息网络中心,北京 100876) 摘要 本文对流分类算法进行了综述,包括流分类的定义,对流分类算法的要求,以及各种流分类算法的分析比较。文章的最后指出了在流分类方面还没有得到很好解决的问题,作为进一步研究的方向。 关键词 流分类;服务质量;IP 背景 当前的IP网络主要以先到先服务的方式提供尽力而为的服务。随着Internet的发展和各种新业务的出现,尽力而为的服务已经不能满足人们对Internet的要求,IP网络必须提供增强的服务,比如:SLA(Service Level Agreement)服务,VPN(Virtual Private Network)服务,各种不同级别的QoS (Quality of Service)服务,分布式防火墙,IP安全网关,流量计费等。所有这些增强服务的提供都依赖于流分类,即根据包头(packet header)中的一个或几个域(field)决定该包隶属的流(flow)。典型的,包头中可以用来分类的域包括:源IP地址(Source IP Address)、目的IP地址(Destination IP Address)、协议类型(Protocol Type)、源端口(Source Port)和目的端口(Destination Port)等。 流分类算法描述 首先定义两个名词:规则(rule)和分类器(classifier)。用来对IP包进行分类的由包头中若干域组成的集合称之为规则,而若干规则的集合就是分类器。构成规则的域(我们称之为组件component)的值可以是某个范围,例如目的端口大于1023。流分类就是要确定和每个包最匹配的规则。表1是由6条规则组成的一个分类器。我们说这是一个5域分类器,因为每条规则由5个组件构成。我们假定分类器中的规则是有优先级的,越靠前的规则优先级越高,即规则1的优先级最高,规则6的最低。

R语言常用包分类

1、聚类 ?常用的包:fpc,cluster,pvclust,mclust ?基于划分的方法: kmeans, pam, pamk, clara ?基于层次的方法: hclust, pvclust, agnes, diana ?基于模型的方法: mclust ?基于密度的方法: dbscan ?基于画图的方法: plotcluster, plot.hclust ?基于验证的方法: cluster.stats 2、分类 ?常用的包: rpart,party,randomForest,rpartOrdinal,tree,marginTree, maptree,survival ?决策树: rpart, ctree ?随机森林: cforest, randomForest ?回归, Logistic回归, Poisson回归: glm, predict, residuals ?生存分析: survfit, survdiff, coxph 3、关联规则与频繁项集 ?常用的包:

arules:支持挖掘频繁项集,最大频繁项集,频繁闭项目集和 关联规则 DRM:回归和分类数据的重复关联模型 ?APRIORI算法,广度RST算法:apriori, drm ?ECLAT算法:采用等价类,RST深度搜索和集合的交集:eclat 4、序列模式 ?常用的包:arulesSequences ?SPADE算法:cSPADE 5、时间序列 ?常用的包:timsac ?时间序列构建函数:ts ?成分分解: decomp, decompose, stl, tsr 6、统计 ?常用的包:Base R, nlme ?方差分析: aov, anova ?密度分析: density ?假设检验: t.test, prop.test, anova, aov ?线性混合模型:lme

决策树分类算法与应用

机器学习算法day04_决策树分类算法及应用课程大纲 决策树分类算法原理决策树算法概述 决策树算法思想 决策树构造 算法要点 决策树分类算法案例案例需求 Python实现 决策树的持久化保存 课程目标: 1、理解决策树算法的核心思想 2、理解决策树算法的代码实现 3、掌握决策树算法的应用步骤:数据处理、建模、运算和结果判定

1. 决策树分类算法原理 1.1 概述 决策树(decision tree)——是一种被广泛使用的分类算法。 相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置 在实际应用中,对于探测式的知识发现,决策树更加适用 1.2 算法思想 通俗来说,决策树分类的思想类似于找对象。现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话: 女儿:多大年纪了? 母亲:26。 女儿:长的帅不帅? 母亲:挺帅的。 女儿:收入高不? 母亲:不算很高,中等情况。 女儿:是公务员不? 母亲:是,在税务局上班呢。 女儿:那好,我去见见。 这个女孩的决策过程就是典型的分类树决策。 实质:通过年龄、长相、收入和是否公务员对将男人分为两个类别:见和不见 假设这个女孩对男人的要求是:30岁以下、长相中等以上并且是高收入者或中等以上收入的公务员,那么这个可以用下图表示女孩的决策逻辑

上图完整表达了这个女孩决定是否见一个约会对象的策略,其中: ◆绿色节点表示判断条件 ◆橙色节点表示决策结果 ◆箭头表示在一个判断条件在不同情况下的决策路径 图中红色箭头表示了上面例子中女孩的决策过程。 这幅图基本可以算是一颗决策树,说它“基本可以算”是因为图中的判定条件没有量化,如收入高中低等等,还不能算是严格意义上的决策树,如果将所有条件量化,则就变成真正的决策树了。 决策树分类算法的关键就是根据“先验数据”构造一棵最佳的决策树,用以预测未知数据的类别 决策树:是一个树结构(可以是二叉树或非二叉树)。其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。

三种包分类算法的实现 SX1116090

简单实现包分类算法 概要 包分类是VPNs、下一代路由器、防火墙等设备的关键技术。包分类算法研究具有十分重要的意义,是目前的热点之一。本文介绍了常用的包分类算法,分析了它们的优缺点,并简单实现线性、Hicuts 和Hypercut三种基本算法,对这三种算法进行性能对比。

一、包分类算法背景 路由器的主要功能是将一个网络的IP数据报(包)Packet转发到另一个网络。传统路由器仅根据数据包的目的地址对数据包进行转发,提供未加区分的尽力服务(Best Effort Service),这是一维报文分类的典型形式:对所有的用户报文一视同仁的处理。但是,随着因特网规模的不断扩大和应用技术的进步,越来越多的业务需要对数据包进行快速有效的分类以便区别处理提供不同级别的服务,因此路由器还需要对数据包进行进一步的处理。最常见的是根据安全性需要,对包进行过滤,阻止有安全隐患的数据包通过。因此,研究高速包分类算法具有十分重要的意义。 因特网是由许许多多的主机及连接这些主机的网络组成,主机间通过TCP /IP协议交换数据包。数据包从一个主机穿过网络到达另一个主机,其中就需要路由器提供数据包转发服务。近年来,因特网己经从主要连接教育机构的低速网络迅速成为重要的商业基础设施。现在,因特网正呈现两方面的新变化:一方面,因特网上的用户正在呈现爆炸性增长,Web站点正在迅速增加,需要宽带网络的多媒体应用正在日益普及,因特网的通信量也正在呈现爆炸性增长,因特网正日益变得拥挤:另一方面,因特网上的用户正呈现许多不同的种类,从以浏览和下载资料为主的普通家庭用户到经营电子商务的大型企业等等,这些用户从安全、性能、可靠性方面对因特网的期望是不同的。人们希望路由器能够具有诸如数据包过滤、区分服务、QoS、多播、流量计费等额外功能。所有这些处理都需要路由器按某些规则将数据包进行分类,分类后的数据构成许多“流’’,再对每一个流分别进行处理。对于网络流量的不断增长问题,由于光纤技术和DWDM 技术的发展使得链路的速率不再成为瓶颈,已经满足了大流量传输的需求,这就使得路由器的处理速度成为网络整体速度的一个瓶颈。这主要由于路由器需要对每个输入包执行许多操作,包括十分复杂的分类操作。例如,它们需要对每个输入包执行最长前缀匹配以发现其下一跳地址:需要对每个输入包执行多维包分类以便在执行缓冲器管理、QoS调度、防火墙、网络地址翻译、多播服务、虚拟专用网、速率限制、流量计费等任务时区别对待不同的包。因此,为了满足服务快速性和服务多样性这两方面的需要,就必须研究相应的快速包分类算法应用到实际路由中。

数据挖掘分类算法比较

数据挖掘分类算法比较 分类是数据挖掘、机器学习和模式识别中一个重要的研究领域。通过对当前数据挖掘中具有代表性的优秀分类算法进行分析和比较,总结出了各种算法的特性,为使用者选择算法或研究者改进算法提供了依据。 一、决策树(Decision Trees) 决策树的优点: 1、决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 2、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。 3、能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。 4、决策树是一个白盒模型。如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。 5、易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。 6、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。 7、可以对有许多属性的数据集构造决策树。 8、决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小。 决策树的缺点: 1、对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。 2、决策树处理缺失数据时的困难。 3、过度拟合问题的出现。 4、忽略数据集中属性之间的相关性。 二、人工神经网络 人工神经网络的优点:分类的准确度高,并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系,具备联想记忆的功能等。 人工神经网络的缺点:神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。

分类算法的研究进展

分类算法的研究进展 分类是数据挖掘、机器学习和模式识别中一个重要的研究领域,分类的目的是根据数据集的特点构造一个分类函数或分类模型,该分类模型能把未知类别的样本映射到给定类别中的某一个。分类和回归都可以用于预测,和回归方法不同的是,分类的输出是离散的类别值,而回归的输出是连续或有序值。 一、分类算法概述为了提高分类的准确性、有效性和可伸缩性,在进行分类之前,通常要对数据进行预处理,包括:(1)数据清理,其目的是消除或减少数据噪声处理空缺值。 (2)相关性分析,由于数据集中的许多属性可能与分类任务不相关,若包含这些属性将减慢和可能误导分析过程,所以相关性分析的目的就是删除这些不相关的或兀余 性。(3)数据变换,数据可以概化到较 高层概念,比如连续值属 为离散值:低、 可概化到高层概念“省”此外,数据也可以规范化,规 范化将给定的值按比例缩放,落入较小的区间,比如【0,1】等。

的属 性“收入”的数值可以概化 性“市” 中、高。又比如,标称值属 二、常见分类算法 2.1 决策树 决策树是用于分类和预测的主要技术之一,决策树学习是以实例为基础的归纳学习算法,它着眼于从一组无次序、无规则的实例中推理出以决策树表示的分类规则。构造决策树的目的是找出属性和类别间的关系,用它来预测将来未知类别的记录的类别。它采用自顶向下的递归方式,在决策树的内部节点进行属性的比较,并根据不同属性值判断从该节点向下的分支,在决策树的叶节点得到结论。 2.2贝叶斯分类贝叶斯分类是统计学分类方法,它足一类利用概率统计知识进行分类的算法。在许多场合,朴素贝叶斯(Naive Bayes, NB)分类算法可以与决策树和神经网络分类算法相媲美,该算法能运用到大型数据库中,且方法简单、分类准确率高、速度快。由于贝叶斯定理假设一个属性值对给定类的影响独立于其它属性的值,而此假设在实际情况中经常是不成立的,因此其分类准确率可能会下降。为此,就出现了许多降低独立性假设的贝叶斯分类算

分类算法

分类算法 摘要:分类算法是数据挖掘中的最重要的技术之一。通过对当前提出的最新的具有代表性的分类算法进行分析和比较,总结每类算法的各方面特性,从而便于研究者对已有的算法进行改进,提出具有更好性能的新的分类算法,同时方便使用者在应用时对算法的选择和使用。 关键词:分类算法决策树基于规则贝叶斯人工神经网络支持向量机 分类是挖掘数据的一个重要技术,是数据挖掘中最有应用价值的技术之一,其应用遍及社会各个领域。分类任务就是通过学习得到一个目标函数(通常也称作分类模型,即分类器),把每个属性集映射到一个预先定义的类标号。分类和回归都可以用于预测。和回归方法不同的是,分类的类标号是离散属性,而预测建模的回归的目标属性是连续的。 构造分类器的过程一般分为训练和测试两个阶段。在构造模型之前,要求将数据集随机地分为训练数据集和测试数据集。在训练阶段,分析训练数据集的属性,为每个属性产生一个对相应数据集的属性描述或模型。在测试阶段,利用属性描述或模型对测试数据集进行分类,测试其分类准确度。一般来说,测试阶段的代价远远低于训练阶段。 为了提高分类的准确性、有效性和可伸缩性,在进行分类之前,通常要对数据进行预处理,包括: (1)数据清理。其目的是消除或减少数据噪声,处理空缺值。 (2)相关性分析。由于数据集中的许多属性可能与分类任务不相关,若包含这些属性将减慢和可能误导学习过程。相关性分析的目的就是删除这些不相关或冗余的属性。 (3)数据变换。数据可以概化到较高层概念。比如,连续值属性“收入”的数值可以概化为离散值:低,中,高。又比如,标称值属性“市”可概化到高层概念“省”。此外,数据也可以规范化, ,规范化将给定属性的值按比例缩放,落入较小的区间,比如[0,1]等。 分类模型的构造方法有决策树类、基于规则类、最近邻类、贝叶斯类、人工神经网络类等。 1决策树分类算法 1.1决策树基本概念 决策树是一种由结点和有向边组成的层次结构,树中包含三种结点;根结点、内部结点和叶结点(终结点)。它采用自顶向下的递归方式,在根结点使用属性将训练数据集区分开,在内部结点进行属性值的比较,并根据不同的属性值从该结点向下分支,树的每个叶结点都赋予一个类标号,即在叶结点得到结论。决策树是实例的分类器。从根到叶结点的一条路径就对应着一条规则,整个决策树就对应着一组析取表达式规则。可将实例分到多个分类(≥2)并以析取范式(DNF)形式重写为规则。这种具有预测功能的系统叫决策树分类器。 1.2常用的决策树算法 决策树分类算法从提出以来,出现了很多算法,比较常用的有:1986年Quinlan提出了著名的ID3算法。ID3算法体现了决策树分类的优点:算法的理论清晰,方法简单,学习能力较强。其缺点是:只对比较小的数据集有效,且对噪声比较敏感,当训练数据集加大时,决策树可能会随之改变,并且在测试属性选择时,它倾向于选择取值较多的属性。 在ID3算法的基础上,1993年Quinlan又自己提出了改进算法—C4. 5算法。为了适应处理大规模数据集的需要,后来又提出了若干改进的算法,其中SLIQ(su-pervised learning in quest)和SPRINT (scalable parallelizable induction of decision trees)是比较有代表性的两个算法,PUBLIC (Pruning and

数据挖掘分类算法的研究与应用

首都师范大学 硕士学位论文 数据挖掘分类算法的研究与应用 姓名:刘振岩 申请学位级别:硕士 专业:计算机应用技术 指导教师:王万森 2003.4.1

首都师范入学硕.卜学位论Z数据挖掘分类算法的研究与应用 摘要 , f随着数据库技术的成熟应用和Internet的迅速发展,人类积累的数据量正在以指数速度增长。科于这些数据,人{}j已经不满足于传统的查询、统计分析手段,而需要发现更深层次的规律,对决策或科研工作提供更有效的决策支持。正是为了满足这种要求,从大量数据中提取出隐藏在其中的有用信息,将机器学习应用于大型数据库的数据挖掘(DataMining)技术得到了长足的发展。 所谓数据挖掘(DataMining,DM),也可以称为数据库中的知识发现(KnowledgeDiscoverDat曲鹅e,KDD),就是从大量的、不完全的、有噪声的、模糊的、随机的数据r},,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。发现了的知识可以被用于信息管理、查询优化、决策支持、过程控制等,还可以用于数据自身的维护。因此,数据挖掘是数据库研究中的一个很有应用价值的新领域,它又是一门广义的交叉学科,融合了数据库、人工智能、机器学习、统计学等多个领域的理论和技术。 分类在数据挖掘中是一项非常重要的任务,目前在商业上应用最多。分类的目的是学会一个分类函数或分类模型,该模型能把数据库中的数据项映射到给定类别中的某一个。{乍多分类的方法已被机器学习、专家系统、统计学和神经生物学方面的研究者提}H。本论文主要侧重数据挖掘中分类算法的研究,并将分类算法划分为急切分类和懒散分类,全部研究内容基本围绕着这种划分方法展开。.1本文的主要研究内容:, l,讨论了数掂挖掘中分类的基本技术,包括数据分类的过程,分类数据所需的数据预处理技术,以及分类方法的比较和评估标准;比较了几种典 型的分类算法,包括决策树、k.最近邻分类、神经网络算法:接着,引 出本文的研究重点,即将分类算法划分为急切分类和懒散分类,并基于 这种划分展歼对数据挖掘分类算法的研究。 2.结合对决簸树方法的研究,重点研究并实现了一个“懒散的基于模型的分类”思想的“懒散的决策树算法”。在决策树方法的研究中,阐述了决 策树的基本概念以及决策树的优缺点,决策树方法的应用状况,分析了 决策树算法的迸一步的研究重点。伪了更好地满足网络环境下的应用需 求,结合传统的决策树方法,基于Ⅶ懒散的基于模型的分类”的思想, 实现了一个网络环境下基于B/S模式的“懒散的决策树算法”。实践表明: 在WEB应fH程序叶i采用此算法取得了很好的效果。、 ≯ 3.选取神经H络分类算法作为急切分类算法的代表进行深入的研究。在神经网络中,重点分析研究了感知器基本模型,包括感知器基本模型的构 造及其学习算法,模型的几何意义及其局限性。并针对该模型只有在线 性可分的情况一F彳‘能用感知器的学习算法进行分类的这一固有局限性, 研究并推广了感知器模型。

分类算法小结

分类算法小结

分类算法小结 学号:12013120116 李余芳 分类是数据挖掘中比较重要的一类,它的算法也有很多。在此,我将一些常用的算法做一个简单的小结。 一、决策树 决策树技术是用于分类和预测的主要技术,决策树学习是以实例为基础的归纳学习算法。它着眼于从一组无次序、无规则的事例中推理除决策树表示形式的分类规则。它采用自顶向下的递归方式,在决策树的内部节点进行属性值的比较并根据不同属性判断从该节点向下的分支,然后进行剪枝,最后在决策树的叶节点得到结论。所以从根到叶节点就对应着一条合取规则,整棵树就对应着一组析取表达式规则。树的每一个结点上使用信息增益度量选择测试属性。可以从生成的决策树中提取规则。。 优点: 1、易于理解和解释.人们在通过解释后有能力去理解决策树所表达的意义。 2、能够同时处理数据型和常规型属性。其他技术往往要求数据属性的单一。 3、易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。 4、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。 5、可以对有许多属性的数据集构造决策树。 6、决策树可很好地扩展到大型数据库中,它的大小独立于数据库的大小。 缺点: 1、对于各类别样本数量不一致的数据,在决策树中,信息增益的结果偏向于那些具有更多数值的特征。 2、决策树处理缺失数据时的困难。 3、过度拟合问题的出现。 4、忽略数据集中属性之间的相关性。 应用 1、决策树是用二叉树形图来表示处理逻辑的一种工具。可以直观、清晰地表

达加工的逻辑要求。特别适合于判断因素比较少、逻辑组合关系不复杂的情况。 2、决策树提供了一种展示类似在什么条件下会得到什么值这类规则的方法。比如,在贷款申请中,要对申请的风险大小做出判断。 3、决策树很擅长处理非数值型数据,这与神经网络只能处理数值型数据比起来,就免去了很多数据预处理工作等等。 二、K最近邻法(KNN) KNN法即K最近邻法,最初由Cover和Hart于1968年提出的,是一个理论上比较成熟的方法。该方法的思路非常简单直观:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。因此,采用这种方法可以较好地避免样本的不平衡问题。另外,由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。 优点: 1、简单、有效。 2、K最近邻算法是一种非参数的分类技术,在基于统计的模式识别中非常有效,并对未知和非正态分布可取得较高的分类准确率。 3、在类别决策时,只与极少量的相邻样本有关,可以较好地避免样本的不平衡问题。 4、该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。 缺点: 1、KNN算法是建立在VSM模型上的,其样本距离测度使用欧式距离。若各维权值相同,即认定各维对于分类的贡献度相同,显然这不符合实际情况。 2、KNN是懒散的分类算法,对于分类所需的计算均推迟至分类进行,故在其分

分类算法综述

《数据挖掘》 数据挖掘分类算法综述 专业:计算机科学与技术专业学号:S2******* 姓名:张靖 指导教师:陈俊杰 时间:2011年08月21日

数据挖掘分类算法综述 数据挖掘出现于20世纪80年代后期,是数据库研究中最有应用价值的新领域之一。它最早是以从数据中发现知识(KDD,Knowledge Discovery in Database)研究起步,所谓的数据挖掘(Data Mining,简称为DM),就从大量的、不完全的、有噪声的、模糊的、随机的、实际应用的数据中提取隐含在其中的、人们不知道的但又有用的信息和知识的过程。 分类是一种重要的数据挖掘技术。分类的目的是根据数据集的特点构造一个分类函数或分类模型(也常常称作分类器)。该模型能把未知类别的样本映射到给定类别中的一种技术。 1. 分类的基本步骤 数据分类过程主要包含两个步骤: 第一步,建立一个描述已知数据集类别或概念的模型。如图1所示,该模型是通过对数据库中各数据行内容的分析而获得的。每一数据行都可认为是属于一个确定的数据类别,其类别值是由一个属性描述(被称为类别属性)。分类学习方法所使用的数据集称为训练样本集合,因此分类学习又可以称为有指导学习(learning by example)。它是在已知训练样本类别情况下,通过学习建立相应模型,而无指导学习则是在训练样本的类别与类别个数均未知的情况下进行的。 通常分类学习所获得的模型可以表示为分类规则形式、决策树形式或数学公式形式。例如,给定一个顾客信用信息数据库,通过学习所获得的分类规则可用于识别顾客是否是具有良好的信用等级或一般的信用等级。分类规则也可用于对今后未知所属类别的数据进行识别判断,同时也可以帮助用户更好的了解数据库中的内容。 图1 数据分类过程中的学习建模 第二步,利用所获得的模型进行分类操作。首先对模型分类准确率进行估计,例如使用保持(holdout)方法。如果一个学习所获模型的准确率经测试被认为是可以接受的,那么就可以使用这一模型对未来数据行或对象(其类别未知)进行分类。例如,在图2中利用学习获得的分类规则(模型)。对已知测试数据进行模型

分类算法综述

分类算法综述 1 分类算法分类是数据挖掘中的一个重要课题。分类的目的是学会一个分类函数或分类模型(也常常称作分类器),该模型能把数据库中的数据项映射到给定类别中的某一个。分类可用于提取描述重要数据类的模型或预测未来的数据趋势。分类可描述如下:输入数据,或称训练集(Training Set),是一条条的数据库记录(Record)组成的。每一条记录包含若干个属性(Attribute),组成一个特征向量。训练集的每条记录还有一个特定的类标签(Class Label)与之对应。该类标签是系统的输入,通常是以往的一些经验数据。一个具体样本的形式可为样本向量:(v1,v2,…, vn ;c)。在这里vi表示字段值,c表示类别。分类的目的是:分析输入数据,通过在训练集中的数据表现出来的特性,为每一个类找到一种准确的描述或者模型。这种描述常常用谓词表示。由此生成的类描述用来对未来的测试数据进行分类。尽管这些未来的测试数据的类标签是未知的,我们仍可以由此预测这些新

数据所属的类。注意是预测,而不能肯定,因为分类的准确率不能达到百分之百。我们也可以由此对数据中的每一个类有更好的理解。也就是说:我们获得了对这个类的知识。 2 典型分类算法介绍解决分类问题的方法很多,下面介绍一些经典的分类方法,分析 各自的优缺点。 2.1 决策树分类算法决策树(Decision Tree)是一种有向无环图(Directed Acyclic Graphics,DAG)。决策树方法是利用信息论中 的信息增益寻找数据库中具有最大信息量的属性字段,建立决策树的一个结点,在根据该属性字段的 不同取值建立树的分支,在每个子分支子集中重复 建立树的下层结点和分支的一个过程。构造决策树 的具体过程为:首先寻找初始分裂,整个训练集作 为产生决策树的集合,训练集每个记录必须是已经 分好类的,以决定哪个属性域(Field)作为目前最 好的分类指标。一般的做法是穷尽所有的属性域, 对每个属性域分裂的好坏做出量化,计算出最好的 一个分裂。量化的标准是计算每个分裂的多样性(Diversity)指标。其次,重复第一步,直至每个叶 节点内的记录都属于同一类且增长到一棵完整的树。

分类算法

分类算法 目录 1.分类算法 (3) 2.典型分类算法 (3) 2.1 决策树分类算法 (3) 2.1.1 算法概述 (3) 2.1.2 算法优缺点 (3) 2.1.3 算法分类介绍 (4) 2.1.3.1 ID3(C4.5)算法 (4) 2.1.3.2 SLIQ分类算法 (4) 2.1.3.3 SPRINT分类算法 (5) 2.2 三种典型贝叶斯分类器 (5) 2.2.1 算法概述 (5) 2.2.2 算法分类介绍 (5) 2.2.2.1 朴素贝叶斯算法 (5) 2.2.2.2 TAN算法 (6) 2.2.2.3 贝叶斯网络分类器 (7) 2.2.3 三类方法比较 (7) 2.3 k-近邻 (8) 2.4 基于数据库技术的分类算法 (9) 2.4.1 MIND算法 (9) 2.4.2 GAC-RDB算法 (9)

2.5 基于关联规则的分类算法 (10) 2.5.1 Apriori算法 (10) 2.6 支持向量机分类 (11) 2.7 基于软计算的分类方法 (11) 2.7.1 粗糙集 (12) 2.7.2 遗传算法 (12) 2.7.3 模糊逻辑 (13) 2.7.4 人工神经网络算法 (14) 2.7.4.1 算法概述 (14) 2.7.4.2 算法优缺点 (14) 2.7.4.3 算法分类 (15) 2.7.4.3.1 BP神经网络分类算法 (15) 2.7.4.3.2 RBF神经网络 (16) 2.7.4.3.3 SOFM神经网络 (17) 2.7.4.3.4 学习矢量化(LVQ)神经网络 (17) 3 其他分类算法 (18) 3.1 LB算法 (18) 3.2 CAEP算法 (18)

各种分类算法比较

各种分类算法比较 最近在学习分类算法,顺便整理了各种分类算法的优缺点。 1决策树(Decision Trees)的优缺点 决策树的优点: 一、决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 二、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。 三、能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。 四、决策树是一个白盒模型。如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。 五、易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。 六、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。 七、可以对有许多属性的数据集构造决策树。 八、决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小。 决策树的缺点: 一、对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。 二、决策树处理缺失数据时的困难。 三、过度拟合问题的出现。 四、忽略数据集中属性之间的相关性。 2 人工神经网络的优缺点

人工神经网络的优点:分类的准确度高,并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系,具备联想记忆的功能等。 人工神经网络的缺点:神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。 3 遗传算法的优缺点 遗传算法的优点: 一、与问题领域无关切快速随机的搜索能力。 二、搜索从群体出发,具有潜在的并行性,可以进行多个个体的同时比较,鲁棒性好。 三、搜索使用评价函数启发,过程简单。 四、使用概率机制进行迭代,具有随机性。 五、具有可扩展性,容易与其他算法结合。 遗传算法的缺点: 一、遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码, 二、另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.没有能够及时利 用网络的反馈信息,故算法的搜索速度比较慢,要得要较精确的解需要较多的训练时间。 三、算法对初始种群的选择有一定的依赖性,能够结合一些启发算法进行改进。 4 KNN算法(K-Nearest Neighbour) 的优缺点 KNN算法的优点: 一、简单、有效。 二、重新训练的代价较低(类别体系的变化和训练集的变化,在Web环境和电子商务应用中是很常见的)。 三、计算时间和空间线性于训练集的规模(在一些场合不算太大)。

机器学习常见算法分类

机器学习常见算法分类汇总 机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里IT经理网为您总结一下常见的机器学习算法,以供您在工作和学习中参考。 机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。 学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。 监督式学习: 在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(Logistic Regression)和反向传递神经网络(Back Propagation Neural Network)

非监督式学习: 在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。 半监督式学习: 在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。如图论推理算法(Graph Inference)或者拉普拉斯支持向量机(Laplacian SVM.)等。

分类算法总结

分类算法 数据挖掘中有很多领域,分类就是其中之一,什么是分类, 分类就是把一些新得数据项映射到给定类别的中的某一个类别,比如说当我们发表一篇文章的时候,就可以自动的把这篇文章划分到某一个文章类别,一般的过程是根据样本数据利用一定的分类算法得到分类规则,新的数据过来就依据该规则进行类别的划分。 分类在数据挖掘中是一项非常重要的任务,有很多用途,比如说预测,即从历史的样本数据推算出未来数据的趋向,有一个比较著名的预测的例子就是大豆学习。再比如说分析用户行为,我们常称之为受众分析,通过这种分类,我们可以得知某一商品的用户群,对销售来说有很大的帮助。 分类器的构造方法有统计方法,机器学习方法,神经网络方法等等。常见的统计方法有knn 算法,基于事例的学习方法。机器学习方法包括决策树法和归纳法,上面讲到的受众分析可以使用决策树方法来实现。神经网络方法主要是bp算法,这个俺也不太了解。 文本分类,所谓的文本分类就是把文本进行归类,不同的文章根据文章的内容应该属于不同的类别,文本分类离不开分词,要将一个文本进行分类,首先需要对该文本进行分词,利用分词之后的的项向量作为计算因子,再使用一定的算法和样本中的词汇进行计算,从而可以得出正确的分类结果。在这个例子中,我将使用庖丁分词器对文本进行分词。 目前看到的比较全面的分类算法,总结的还不错. 2.4.1 主要分类方法介绍解决分类问题的方法很多[40-42] ,单一的分类方法主要包括:决策树、贝叶斯、人工神经网络、K-近邻、支持向量机和基于关联规则的分类等;另外还有用于组合单一分类方法的集成学习算法,如Bagging和Boosting等。 (1)决策树 决策树是用于分类和预测的主要技术之一,决策树学习是以实例为基础的归纳学习算法,它着眼于从一组无次序、无规则的实例中推理出以决策树表示的分类规则。构造决策树的目的是找出属性和类别间的关系,用它来预测将来未知类别的记录的类别。它采用自顶向下的递归方式,在决策树的内部节点进行属性的比较,并根据不同属性值判断从该节点向下的分支,在决策树的叶节点得到结论。 主要的决策树算法有ID3、C4.5(C5.0)、CART、PUBLIC、SLIQ和SPRINT算法等。它们在选择测试属性采用的技术、生成的决策树的结构、剪枝的方法以及时刻,能否处理大数据集等方面都有各自的不同之处。 (2)贝叶斯 贝叶斯(Bayes)分类算法是一类利用概率统计知识进行分类的算法,如朴素贝叶斯(Naive Bayes)算法。这些算法主要利用Bayes定理来预测一个未知类别的样本属于各个类别的可能性,选择其中可能性最大的一个类别作为该样本的最终类别。由于贝叶斯定理的成立本身需要一个很强的条件独立性假设前提,而此假设在实际情况中经常是不成立的,因而其分类准确性就会下降。为此就出现了许多降低独立性假设的贝叶斯分类算法,如TAN(Tree Augmented Na?ve Bayes)算法,它是在贝叶斯网络结构的基础上增加属性对之间的关联来实现的。 (3)人工神经网络 人工神经网络(Artificial Neural Networks,ANN)是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在这种模型中,大量的节点(或称”神经元”,或”单元”)之间相互联接构成网络,即”神经网络”,以达到处理信息的目的。神经网络通常需要进行训练,训练的过程就是网络进行学习的过程。训练改变了网络节点的连接权的值使其具有分类的功能,经过训练的网络就可用于对象的识别。

R包的分类介绍

R的包分类介绍 1.空间数据分析包 1)分类空间数据(Classes for spatial data) 2)处理空间数据(Handling spatial data) 3)读写空间数据(Reading and writing spatial data) 4)点格局分析(Point pattern analysis) 5)地质统计学(Geostatistics) 6)疾病制图和地区数据分析(Disease mapping and areal data analysis) 7)生态学分析(Ecological analysis) 2.机器学习包 1)神经网络(Neural Networks) 2)递归拆分(Recursive Partitioning) 3)随机森林(Random Forests) 4)Regularized and Shrinkage Methods 5)Boosting 6)支持向量机(Support Vector Machines) 7)贝叶斯方法(Bayesian Methods) 8)基于遗传算法的最优化(Optimization using Genetic Algorithms)9)关联规则(Association Rules) 10)模型选择和确认(Model selection and validation) 11)统计学习基础(Elements of Statistical Learning) 3.多元统计包 1)多元数据可视化(Visualising multivariate data) 2)假设检验(Hypothesis testing) 3)多元分布(Multivariate distributions) 4)线形模型(Linear models) 5)投影方法(Projection methods) 6)主坐标/尺度方法(Principal coordinates / scaling methods)7)无监督分类(Unsupervised classification) 8)有监督分类和判别分析(Supervised classification and discriminant analysis) 9)对应分析(Correspondence analysis) 10)前向查找(Forward search) 11)缺失数据(Missing data) 12)隐变量方法(Latent variable approaches) 13)非高斯数据建模(Modelling non-Gaussian data) 14)矩阵处理(Matrix manipulations) 15)其它(Miscellaneous utitlies) 4.药物(代谢)动力学数据分析

相关文档
最新文档