数据分析课程标准新

合集下载

《数据分析》课程标准

《数据分析》课程标准

《数据分析》课程标准1000字《数据分析》课程标准一、课程简介《数据分析》是一门针对数据分析领域的计算机类课程。

本课程主要介绍数据分析的基本概念、方法和工具,并利用大量实例向学生介绍如何使用相应的软件工具来分析数据。

本课程旨在培养学生的数据分析能力和信息素养。

二、课程目标本课程的目标是让学生从以下三个方面能够掌握数据分析的基础知识:1. 熟悉数据分析的基本概念和方法,并能够运用它们分析数据。

2. 掌握数据分析相关的软件工具,如Excel、SPSS等,并能够运用这些工具进行数据分析。

3. 进一步提高学生的信息素养,让他们能够更好地应对信息化时代的挑战。

三、教学内容1. 数据分析的基本概念和方法:介绍数据类型、样本和总体、统计量等基本概念,以及数据的可视化、统计推断、假设检验、回归分析等基本方法。

2. 数据分析软件工具:介绍Excel、SPSS、R等数据分析软件的基本操作和功能。

3. 实例分析:结合具体的实例,让学生练习使用相应的软件工具进行数据分析。

4. 数据挖掘:介绍数据挖掘的基础知识和算法,并以实例为基础练习数据挖掘技术。

四、教学方法1. 理论讲授:通过课堂讲解和PPT展示,向学生介绍数据分析的基本概念和方法。

2. 实践教学:通过实践练习,让学生熟练地掌握数据分析软件工具的操作和应用。

3. 课堂互动:通过课堂提问、讨论等方式,促进学生对知识的理解和掌握。

五、教学评估1. 平时成绩:平时成绩包括作业和参与度两部分,其中作业占60%,参与度占40%。

2. 期末考试:期末考试采用闭卷形式,考查学生对数据分析的理解和应用能力。

3. 综合评价:根据学生的平时表现和期末考试成绩,综合评价学生的课程成绩。

六、教学资源本课程的教学资源主要包括教师PPT、实验指导书、实验数据等。

同时,学生也可以通过网络、书籍等途径加强自学。

本课程鼓励学生应用网络、图书馆等资源,提高信息检索与利用的能力。

七、课程时间分配本课程一般分配为32个学时,时间分配如下:1. 数据分析基础(8学时),包括数据类型、样本和总体、统计量等基本概念。

(2021年整理)《数据分析》课程标准

(2021年整理)《数据分析》课程标准

《数据分析》课程标准编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(《数据分析》课程标准)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为《数据分析》课程标准的全部内容。

《数据分析》课程标准1.课程定位与课程设计1。

1课程的性质与作用本课程是电子商务专业的专业基础课程。

通过本课程的学习,使学生掌握调查方案设计、数据资料的收集、整理、分析和数据分析报告的撰写方法和思路,及运用EXCEL进行数据分析的基本方法.该课程主要是培养学生完整市场调查的理念与运用EXCEL进行数据分析的能力,为学生学习和掌握《网络营销与策划》、《店铺运营》、《客户服务》等其他专业课程提供必备的专业基础知识,也为学生从事电子商务运营与推广、客户服务等电子商务相关岗位工作打下良好的基础。

1。

2课程设计理念课程设计遵循“以学生为主体"教育思想,依据“任务引领”为课程内容设计原则,以提高学生整体素质为基础,以培养学生市场调查与数据分析工具的使用能力、特别是创新能力和实际操作能力为主线,兼顾学生后续发展需要,选取符合电子商务职场所要求的知识、素质和能力为教学内容;在基本理论和基础知识的选择上以应用为目的,以“必需、够用”为度,服从培养能力的需要,突出针对性和实用性(2)遵循能力本位的教学观.注重培养学生在工作中对数据资料的收集、整理和分析处理能力,训练学生的专业能力、社会能力和方法能力。

课程设计以能力为核心,围绕能力的形成学习相关知识。

1。

3 课程设计思路在课程设计上根据电子商务专业就业岗位群任职要求,改革传统的课程体系和教学方法,形成以就业为导向,立足于学生职业能力培养和职业素养养成,突出课程的应用性和操作性。

2024年小学信息技术新课程标准教育部部编版

2024年小学信息技术新课程标准教育部部编版

2024年小学信息技术新课程标准教育部部编版前言根据《中华人民共和国教育法》、《中华人民共和国义务教育法》和《全国教育科学规划纲要(2011-2020年)》,结合我国基础教育发展现状,特制定2024年小学信息技术新课程标准。

本课程标准旨在落实立德树人的根本任务,培养学生的信息素养、创新精神和实践能力,为学生终身发展奠定基础。

课程理念1. 学生为本:关注学生个体差异,尊重学生兴趣,发挥学生的主体作用。

2. 能力为重:培养学生的信息获取、处理、传输和应用能力,提高学生的信息素养。

3. 融合创新:结合学科知识,培养学生的跨学科思维,促进学生的创新能力。

4. 实践育人:注重学生的实践操作,培养学生的动手能力和解决实际问题的能力。

课程目标1. 知识与技能:了解计算机基础知识,掌握常用的信息技术操作和应用软件。

2. 过程与方法:培养信息检索、数据分析、解决问题的能力。

3. 情感态度与价值观:增强信息意识,培养良好的信息技术使用习惯,树立正确的网络安全观念。

课程内容1. 计算机基础知识:计算机概述、操作系统、计算机网络基础。

2. 信息技术应用:文字处理、表格制作、演示文稿、网上信息检索、电子邮件、博客等。

3. 信息处理与分析:数据整理、数据分析、数据可视化。

4. 程序设计:了解编程基础,学习简单的编程语言,培养逻辑思维能力。

5. 网络与安全:网络安全知识、网络道德、个人信息保护。

教学建议1. 结合学生实际,灵活安排教学内容,关注学生的个体差异。

2. 采用项目式、任务驱动式教学方法,培养学生解决实际问题的能力。

3. 注重实践操作,加强学生的动手能力培养。

4. 融入德育教育,培养学生的信息素养和网络安全意识。

评价与反馈1. 过程性评价:关注学生在课堂上的表现、作业完成情况、实践操作能力等。

2. 终结性评价:定期进行课程考核,包括理论知识、操作技能、实践项目等。

3. 学生自评与互评:鼓励学生自我反思,培养学生的评价能力。

数据分析课程标准

数据分析课程标准

数据分析课程标准数据分析是当今社会中越来越重要的技能,因此越来越多的机构和学校开始开设数据分析课程。

但是,由于数据分析领域的复杂性和发展速度,课程内容和标准也需要不断调整和更新,以适应迅速变化的行业需求。

本文将讨论数据分析课程的标准,并介绍一些将帮助学生获得全面技能的核心领域。

1. 理论基础一个优秀的数据分析课程首先应该确保学生掌握数据分析的理论基础。

这包括统计学、概率论和线性代数等基本数学知识,以及数据处理、数据可视化和数据挖掘等数据分析基本概念。

2. 数据处理与数据清洗数据分析的第一步是数据处理和数据清洗。

学生应该学习如何处理不完整、不准确或不一致的数据,并进行适当的数据清洗。

他们还应该了解数据采集、数据存储和数据获取的最佳实践方法。

3. 数据可视化与探索性数据分析学生应该学会使用各种数据可视化工具和技术,以有效地探索和传达数据。

他们应该能够选择合适的图表类型、设计清晰的图表,并用数据故事讲述信息。

此外,学生还应该了解探索性数据分析的概念和方法,以从数据中发现模式、关联和异常。

4. 统计分析统计分析是数据分析的核心。

学生应该学会使用统计方法和技术来处理数据、进行推断和做出预测。

他们应该了解常用的统计分析方法,例如假设检验、回归分析和时间序列分析,并能够应用它们来解决实际问题。

5. 机器学习与预测分析随着机器学习和人工智能的发展,学生应该掌握基本的机器学习算法和技术。

他们应该了解机器学习的原理,能够选择合适的算法,并使用数据来构建和评估预测模型。

6. 数据管理与隐私保护在整个数据分析过程中,学生应该了解数据管理和隐私保护的重要性。

他们应该知道如何处理敏感数据,并遵守相关数据保护法规和伦理准则。

7. 商业洞察与决策支持数据分析的最终目标是为业务提供洞察和决策支持。

学生应该学会将数据分析的结果与业务问题和目标相结合,生成有意义的洞察,并提出有效的决策建议。

总结数据分析课程的标准应该涵盖理论基础、数据处理与数据清洗、数据可视化与探索性数据分析、统计分析、机器学习与预测分析、数据管理与隐私保护以及商业洞察与决策支持等核心领域。

《商务数据分析与应用》课程标准

《商务数据分析与应用》课程标准

《商务数据分析与应用》课程标准一、课程概述1.课程性质《商务数据分析与应用》是电子商务专业针对电子商务企业中的网店运营、网络营销、项目策划管理、电子商务业务分析等工作卤位典型工作任务的调研与分析后,分析总结出来的为适应电子商务的数据化运营分析、精细化管理等能力要求而设置的一门专业核心课程。

2.课程任务《商务数据分析与应用》课程通过与真实校企合作企业的合作,根据其业务需求,为其进行数据采集与处理的方案制定、基础数据采集、数据分析、数据监控与报告撰写等工作, 从而培养学生电子商务数据分析的技能。

3.课程要求通过课程的学习培养学生数据采集、数据帅选、图表制作、数据分析等方面的岗位职业能力,分析问题、解决问题的能力,养成良好的职业道德,为将来步入电子商务数据分析等职业岗位打下坚实的基础。

二、教学目标1.知识目标(1)了解电子商务数据主要来源,依据电子商务数据化运营方案,确定数据采集渠道;(2)了解数据采集常用工具以及数据分析辅助工具,结合数据采集渠道特点,确定数据采集工具。

(3)能够严格遵守相关法律法JE和公司制度,具备数据保密等相关职业道德。

(4)熟悉掌握电子商务运营类各种数据指标的含义2.能力目标(1)能根据电子商务数据化运营方案,明确数据分析需求,明确各部门对电子商务数据分析的诉求,制定出可行的数据分析目标(2)能依据数据分析目标,选择数据指标,对选择的数据指标进行分类整理,对分类的数据指标进行优化更新,按照确定的数据分析目标、采集指标、渠道和工具,形成数据采集规划。

(3)能进行数据采集与处理的方案撰写。

(4)能理解数据指标含义,根据电子商务数据化运营方案,熟练使用数据分析工具,进行市场数据分析(5)能理解数据指标含义,根据电子商务数据化运营方案,熟练使用数据分析工具,进行运营数据分析(6)能理解数据指标含义,根据电子商务数据化运营方案,熟练使用数据分析工具,进行产品数据分析(7)能进行数据监控与数据分析报告的撰写3.素质目标(1)具有较强的归纳分析和系统思维能力。

《数据分析》教案

《数据分析》教案

《数据分析》教案数据分析是当今社会中非常重要的一项技能,它不仅可以匡助人们更好地理解数据,还可以为决策提供重要的支持。

为了更好地教授数据分析知识,制定一份完善的教案是非常必要的。

本文将从教案的制定、内容安排、教学方法、评价方式和课程实践五个方面进行详细介绍。

一、教案的制定1.1 确定教学目标:明确教学目标,包括学生应该掌握的知识、技能和能力。

1.2 设计教学内容:根据教学目标设计教学内容,包括数据分析的基本概念、常用工具和技术等。

1.3 制定教学计划:根据教学内容制定教学计划,包括每节课的内容安排、教学方法和评价方式等。

二、内容安排2.1 数据分析基础知识:介绍数据分析的基本概念、数据类型、数据清洗和数据可视化等。

2.2 数据分析工具和技术:介绍常用的数据分析工具,如Python、R等,以及数据分析常用技术,如统计分析、机器学习等。

2.3 数据分析实践案例:通过实际案例演练,让学生了解数据分析在实际问题中的应用。

三、教学方法3.1 理论教学结合实践:结合理论知识和实际案例,让学生更好地理解数据分析的原理和方法。

3.2 互动教学:采用互动式教学方法,如讨论、小组合作等,激发学生的学习兴趣。

3.3 多媒体辅助教学:利用多媒体技术辅助教学,如PPT、视频等,提高教学效果。

四、评价方式4.1 考试评价:定期进行考试,测试学生对数据分析知识的掌握程度。

4.2 作业评价:布置数据分析作业,评价学生对数据分析工具和技术的掌握情况。

4.3 项目评价:组织数据分析项目,评价学生在实际问题中运用数据分析的能力。

五、课程实践5.1 实践课程设计:设计数据分析实践课程,让学生在实际问题中应用数据分析技术。

5.2 实践案例分析:分析实际数据案例,让学生掌握数据分析方法和技术。

5.3 实践成果展示:组织学生展示实践成果,让学生展示他们在数据分析领域的成就。

综上所述,一份完善的数据分析教案应该包括教案的制定、内容安排、教学方法、评价方式和课程实践五个方面。

《Python数据分析》课程标准

《Python数据分析》课程标准

《Python 数据分析》教案一、课程定位《Python 数据分析》主要培养学生具有全面完整的数据分析思路和实践能力,利用 python 编写和应用模块等工具解决实际业务的能力;该课程提升学生的数学素养、统计素 养、提升互联网思维、创新思维。

该课程还可以有助于学生考取 1+x 大数据分析职业技能 证书的高级证书。

二、课程目标(一)社会主义核心价值观目标(1)具有富强、民主、文明、和谐等社会主义价值目标。

(2)具备自由、平等、公正、法治等价值取向。

(3)具备爱国、敬业、诚信、友善等价值准则。

(二)情感态度目标(1)具备民族团结、社会责任情感等。

(2)具备社会主义公民道德、社会公德和家庭美德意识等。

(3)具备求实的科学态度、 积极的生活态度等。

(4)具备以数据驱动决策的职业情感。

(三)职业素养目标(1)具备结构化思维和逻辑思维能力。

(2)具备对新知识、新技术的自主更新、 终身学习的能力。

(3)具备一定的项目管理和系统解决问题的能力。

(4)具备互联网思维和大数据思维 (5)具有一定的创业能力和创新意识。

(四) 知识目标(1) 掌握数据分析的流程和基本工具(2) 理解python 编程的模式和面对对象编程的原理 (3) 了解数据分析基本慨念、思维、 处理过程等。

(五)技能目标(1) 能够熟练掌握 python 的语法,编写python 程序设计完成相关任务。

(2) 能够应用 python 进行数据的读写、整理、清洗和处理。

(3) 能够应用 numpy 和 pandas 进行统计分析。

(4) 能够应用matplotlib 进行可视化分析。

三、课程主要内容(一)能力单元与学时分配专家讲座 (学时)参观 (学时)讨论 (学时)其他 (学时)讲授 (学时) 实作 (学时)能力单元名称序号(二)教学任务描述能力单元一: 数据分析的基本概述教学目的 1. 了解数据分析的基本流程和数据分析的应用2. 了解数据分析的语言3. 了解 Python 语言4. 掌握 Anaconda 的安装5. 掌握 Jopyter Notebook教 学重 点与难 1. Anaconda 的安装 点 2. 文本标记语言 Markdown 教学时数 4教 学方法与手 利用多媒体,进行启发式、案例式教学、实际操作 段考核方式 课堂测试任务 1-1、1-2、1-3: 数据分析的认知、数据分析语言的认知、 Python 语言的概述 相关知识点 相关实作技能 相关实训 教师注意事项 任务 1-4: 相关知识点 相关实作技能数据分析的概论、数据分析的流程和应用、 Python 语言的特点安装 AnacondaAnaconda 的概述、 Anaconda 的环境和命令在 windwos 安装 Anaconda数据分析的基 本概述 Python 语 言基 础Python 语 言进 阶高性能科学计 算类库 Numpy 高级数据分析 类库 Pandas 基 础高级数据分析 类库 Pandas 高 级出版质量级绘图 类 库 Matplotlib 1234567合 计245466532245466532相关实训教师注意事项任务 1-5:相关知识点相关实作技能相关实训教师注意事项边做边练使用 Jupter NotebookJupter Notebook 的概述、文本标记语言 markdown Jupter Notebook 的应用,使用 Markdown 的语法边做边练能力单元二:教学目的教学重点与难点教学时数教学方法与手段考核方式任务 2-1:相关知识点相关实作技能相关实训教师注意事项任务 2-2:相关知识点相关实作技能相关实训教师注意事项Python 语言基础1. 掌握 Python 的语法基础知识2. 掌握 Python 的输入输出方法3. 掌握 Python 的常用运算符和表达式4. 掌握 Python 的常用处理字符串方法5. 掌握 Python 的程序基本结构1.输入输出2.常用运算符和表达式3.常用处理字符串方法4.程序基本结构8利用微课,多媒体,进行启发式、案例式教学、实际操作课堂测试输入输出1. 简单的输入输出2. 转义字符3. 格式化函数4. 类型转换通过转义字符、格式化函数、类型转换处理常见的输入输出边做边练运算符和表达式1. 算术运算符2. 关系运算符3. 逻辑运算符4. 位运算符5. 赋值运算符6. 运算符优先级学会使用 Python 的多种运算符和表达式边做边练Python 语言进阶1. 了解 Python 的容器类型数据2. 掌握 Python 的常用内置函数3. 学会自定义函数4. 学会函数式编程5. 会使用常用的高阶函数和特殊函数 1.容器类型数据 2.常用内置函数 3.自定义函数 4.函数式编程 10利用微课,多媒体,进行启发式、案例式教学、实际操作课堂测试容器类型数据1. 列表2. 元组3. 字典4. 集合使用容器类型数据处理相关数据 边讲边练在教学过程中,尽量避免在Python 程序中带有其他编程语言的痕迹,要 尽量从最简单的角度去思考和解决问题、实现自己的想法和思路,尽量 多使用 Python 内置函数、标准库对象和合适的扩展库对象,多使用函数 式编程模式, 保证代码的优雅、简洁,让代码更ythonic 。

Excel数据处理与分析(史小英 高海英)课程标准[4页]

Excel数据处理与分析(史小英 高海英)课程标准[4页]

《Excel数据处理与分析》课程标准1、课程性质大数据时代已经到来,在商业、经济及其他领域中基于数据和分析去发现问题并做出科学、客观的决策越来越重要。

Excel作为常用的数据分析工具之一,在数据分析技术的研究和应用中,扮演着至关重要的角色。

为了满足日益增长的数据分析人才需求,特开设《Excel数据处理与分析》课程。

《Excel数据处理与分析》是大数据技术专业的核心课程。

通过本课程的学习,使学生学会利用Excel 2016完成数据采集、数据处理、数据分析、数据可视化等操作。

学生通过编辑数据,通过排序、筛选、分类汇总、数据透视等方式探索数据,通过多种函数的使用处理数据,将理论与实践相结合,为将来从事以Excel为生产力工具的人员奠定基础。

《Excel数据处理与分析》课程以《信息技术》课程的学习为基础,为后续课程《数据分析与可视化》课程奠定基础,是研究大数据处理与数据分析方向的重要研究内容。

2、设计思路《Excel数据处理与分析》课程教学采用理论与实践一体化的教学模式。

教学内容设计由浅入深,学生循序渐进地学习数据处理与分析的内容。

每一部分根据所学内容,教学形式可为理论+实践,达到学会使用Excel解决实际工作情境中的信息与数据处理的能力。

教学模块主要包括三个模块。

第一个模块是Excel 基础知识和Excel基本操作;第二模块是对数据进行排序、筛选和分类汇总达到对数据的分析过程。

第三模块在Excel中引入公式和函数对数据进行处理。

同时,应用不同的案例进一步加深学生对Excel使用的理解。

本课程是理论、实践相结合的课程,采用“做中学,学中做”的方法教学。

教学过程按给出实例和实践任务问题,每进行一个能力层次之后,辅以围绕主题的实践教学训练。

课程前一部分,以基础知识训练为主;后半部分则可加入管理性应用和设计性应用的实践训练。

教学过程中,充分开发学习资源,给学生提供丰富的实践机会。

教学效果评价采取过程评价与结果评价相结合的方式,通过理论与实践相结合,重点评价学生的职业能力。

最新版数学新课程标准(完整版)

最新版数学新课程标准(完整版)

最新版数学新课程标准第一部分前言数学是研究数量关系和空间形式的科学。

数学与人类发展和社会进步息息相关,随着现代信息技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。

数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在人文科学与社会科学中发挥着越来越大的作用。

特别是20世纪中叶以来,数学与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。

数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。

作为促进学生全面发展教育的重要组成部分,数学教育既要使学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的理性思维和创新能力方面的不可替代的作用。

一、课程性质义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。

数学课程能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展。

义务教育的数学课程能为学生未来生活、工作和学习奠定重要的基础。

二、课程基本理念1.数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

2.课程内容要反映社会的需要、数学的特点,要符合学生的认知规律。

它不仅包括数学的结果,也包括数学结果的形成过程和蕴涵的数学思想方法。

课程内容的选择要贴近学生的实际,有利于学生体验与理解、思考与探索。

课程内容的组织要重视过程,处理好过程与结果的关系;要重视直观,处理好直观与抽象的关系;要重视直接经验,处理好直接经验与间接经验的关系。

课程内容的呈现应注意层次性和多样性。

3.教学活动是师生积极参与、交往互动、共同发展的过程。

有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。

《Python数据分析》课程标准

《Python数据分析》课程标准
通过训练数据自动学习规律,并应用于新数据的算法。
机器学习算法分类
监督学习、无监督学习、半监督学习、强化学习等。
机器学习算法在数据分析中的作用
数据挖掘、预测分析、数据分类、异常检测等。
常用机器学习算法介绍
线性回归
通过最小化预测值与 真实值之间的误差平 方和,得到最优线性 模型。
逻辑回归
用于二分类问题,通 过sigmoid函数将线 性回归结果映射到 [0,1]区间,表示概率 。
Bokeh
另一个强大的交互式数据可视化库, 专注于Web浏览器上的数据可视化, 支持大数据集和实时数据流的可视化 。
探索性数据分析方法
数据清洗
对数据进行预处理,包括缺失值处理 、异常值处理、重复值处理等,以保 证数据质量。
01
02
描述性统计
对数据进行基本的统计描述,包括均 值、中位数、众数、方差、标准差等 ,以了解数据的分布和特征。
数据处理与清洗
数据读取与存储
掌握使用pandas库读 取和存储各种格式的 数据文件,如CSV、
Excel、JSON等。
数据清洗
熟悉数据清洗的基本 流程,包括缺失值处 理、异常值处理、重
复值处理等。
数据转换
了解如何进行数据类 型的转换、数据的排 序、分组以及透视等
操作。
数据筛选与合并
掌握数据的筛选条件 设置、数据的合并与
数据清洗和处理
Python可以方便地处理各种类型的数 据,包括缺失值、异常值、重复值等 ,以及进行数据的转换和合并。
机器学习应用
Python是机器学习领域最常用的编程 语言之一,可以利用Scikit-learn等库 进行数据建模和预测分析。
数据可视化

《电子商务数据分析(第2版)》课程标准

《电子商务数据分析(第2版)》课程标准

《电子商务数据分析(第2版)》课程标准一、课程性质该课程是电子商务专业核心课程,同时是电子商务专业的一门面向职业岗位(群)的综合性实训课程。

通过本课程的讲解、演练与实践,使学生掌握数据资料的收集、整理、分析,及运用相关数据处理工具进行数据分析的基本方法。

该课程主要是培养学生完整数据分析的理念与运用相关数据处理工具进行数据分析的能力,为学生将来从事数据分析相关工作打下基础。

该课程的先修课程有《电子商务基础》《电子商务实务》《数据统计与分析》等,后续课程有《电子商务综合实训》《毕业实习》等课程。

二、设计思路课程内容全面且系统地对电子商务数据分析进行了介绍,采用理实一体的授课方法,通过操作+报告的考试方法,全面考核学生实际分析电子商务数据的能力。

1.遵循职业性。

高职教育就是就业教育,是一种适应市场需求、培养高等技术应用人才的职业教育。

所以高职电子商务专业的《电子商务数据分析:大数据营销数据化运营流量转化(第2版)》就应该达到直接为提高学生专业操作技能服务,并最终为学生就业服务的教学效果。

本课程的设计突出职业性,着力营造职业氛围,逐渐培养学生电子商务数据分析的能力。

2.坚持实践性。

以就业为导向、以能力为本位的职业教育,必须突破传统的“教材导向”的书本型教学模式,建立适应时代需要“以就业导向”的技能型教学模式。

“以就业导向”的技能型教学模式要求对电子商务数据分析课程进行技能定位,将理论与实际案例结合在一起,让学生在学习电子商务数据分析的方法后通过实训来巩固并应用相关理论知识,提高专业知识与技能紧密结合的力度。

3.奉行开放性。

在项目选择、教学观念、教材内容、学习方式、作业练习、绩效评价和教师心态等方面,融入企业机制,给师生提供更多选择的机会和更大创新的空间,努力打造《电子商务数据分析:大数据营销数据化运营流量转化(第2版)》精品课程资源。

4.注重能力性。

在对高职高专的课程体系重构的基础上,打破原有的建立在学科体系基础上的以“终结性”考试为主的教学评价模式,建立以能力考核为中心、以过程考核为基础的考核评价体系。

数据分析专业课程:课程标准分析

数据分析专业课程:课程标准分析

数据分析专业课程:课程标准分析一、课程背景随着大数据时代的到来,数据分析已成为企业乃至国家竞争力的重要因素。

我国政府高度重视数据分析人才培养,积极推进数据分析相关课程体系建设。

在此背景下,数据分析专业课程应运而生,旨在培养学生具备扎实的数据分析理论基础和实际操作能力。

二、课程目标1. 培养学生掌握数据分析的基本概念、原理和方法,理解数据分析在实际应用中的重要性。

2. 培养学生具备较强的数据挖掘、处理和分析能力,能够运用数据分析方法解决实际问题。

4. 培养学生具备团队协作能力和创新精神,能够在数据分析实践中不断探索和提高。

三、课程内容1. 数据分析基础:包括数据分析概述、数据采集与处理、数据可视化等知识点。

2. 统计学原理:包括描述性统计、推断性统计、概率论等知识点。

3. 数据挖掘技术:包括关联规则挖掘、分类与预测、聚类分析等知识点。

4. 常用数据分析软件与工具:包括Excel、SPSS、Python、R等知识点。

5. 实际案例分析:包括金融、营销、医疗等领域的数据分析案例。

6. 数据分析实践:学生通过实际操作,提高数据分析能力。

四、课程教学方法1. 讲授:教师通过讲解数据分析的基本概念、原理和方法,引导学生掌握相关知识点。

2. 案例分析:教师通过分析实际案例,让学生了解数据分析在实际应用中的价值。

3. 实践操作:学生通过上机操作,熟练掌握数据分析软件和工具的使用。

4. 小组讨论:学生分组进行讨论,培养团队协作能力和创新精神。

五、课程考核方式1. 平时成绩:包括课堂表现、作业完成情况、小组讨论等,占总成绩的30%。

2. 实践操作成绩:包括上机操作、数据分析项目完成情况等,占总成绩的30%。

3. 课程报告成绩:包括报告质量、数据分析能力展示等,占总成绩的40%。

六、课程效果评估1. 学生满意度:通过问卷调查,了解学生对课程的满意度。

2. 学生学习成绩:观察学生在课程中的学习成绩变化,评估课程效果。

3. 实际应用能力:考察学生在实际工作中运用数据分析的能力。

数据分析课程标准(新)

数据分析课程标准(新)
较弱
15
组织协调能力
教师评价+互评+自评
较强

较弱
20
合计
100
九、学习情境设计
项目编号:1
学时:4
项目目标:
掌握Excel的工作环境和基本操作和函数、公式的基本使用
项目任务:
完成Excel基本模式、名称的定义和基本公式与函数的设置、使用和编辑
教师知识与能力要求
能清析准确地讲授工作薄的基本概念和操作、工作表名称的定义和使用方法,熟练进行常用公式与函数的设置、使用和编辑
Excel基本操作
1.建立Excel基本模式、名称的定义
2.Excel的基本使用、公式与函数的设置
3.函数的使用与编辑等内容
1.掌握Excel的工作环境和基本操作
2.掌握函数、公式的基本使用
8
2
数据分析的基础
在Excel中进行数据分析的基础
1.文件格式的转换
2.文本导入
3.与HTML之间的文件
4.转换和导入外部数据
项目编号:2
学时:6
项目目标:
掌握Excel与其他常用软件的交换;掌握文本数据的导入;掌握与HTML之间的文件转换和外部数据的导入和转换
项目任务:
完成在Excel中进行数据分析的基础知识学习和训练
教师知识与能力要求
能清析准确地讲授Excel文件格式转换;掌握文本数据的导入;掌握与HTML之间的文件转换和外部数据的导入和转换
1.掌握市场调查的基本流程
2.掌握问卷的制作、整理、编码
3.掌握对数据进行各种操作与分析的方法
8
五、学习资源的选用:
1、教材选取的原则:
高职高职优秀教材或自编教材

新媒体数据分析与应用课程标准教案

新媒体数据分析与应用课程标准教案

《新媒体数据分析与应用》课程标准教案一、课程定位本课程是依照高等职业教育培养目标与企业实际需求设置的面向新媒体数据分析岗位的综合性实训课程,主要面向高等职业院校电子商务、网络营销与直播电商、市场营销等专业的学生,以及运营各类新媒体账号的个人或机构、从事新媒体行业的数据分析师,以实现技能提升和知识更新。

通过本课程的讲解、演练和实践,能够使学生快速掌握新媒体数据的收集、处理、分析与应用的方法与技巧。

本课程主要是强化学生新媒体数据分析的理念与运用各种工具进行新媒体数据分析的能力,为其将来从事数据分析相关工作打下坚实的基础。

本课程以培养应用型人才为出发点,系统地讲解了新媒体数据分析的基本理论,新媒体数据的收集、处理、分析及可视化的应用技能,新媒体数据分析报告的写作方法,以及短视频、直播、微信公众号、微博、今日头条等主流新媒体平台账号运营数据分析与应用的方法。

本课程纵向与《新媒体运营》《新媒体营销》等课程前后衔接,横向与《商务数据分析与应用》《商务数据可视化》等课程有机结合。

二、课程设计思路(一)设计理念在课程设计上,本课程根据数据分析相关岗位的任职要求,改变了传统的课程体系和教学方法,形成了以就业为导向,以案例为主导,重在培养学生的职业能力和职业素养,突出应用性与操作性,通过目标驱动充分发挥学生的主体作用,让学生在完成目标任务的过程中领悟相关理论知识,发展职业能力,并提升职业素养。

(二)课程设计思路1.教学内容设计本课程在内容设计上遵循“理论够用即可,重在实践应用”的原则,弱化理论知识占比,将新媒体数据的收集、新媒体数据的处理、新媒体数据的分析、新媒体数据分析报告的写作、短视频运营数据分析与应用、直播运营数据分析与应用、微信公众号运营数据分析与应用等作为重点内容,以适应工作岗位实践能力需求,达到职业技能培养的最终目标。

2.教学模式设计本课程采取“目标驱动,学做合一”的教学模式,以新媒体数据分析与应用为教学目标引领整个教学过程,培养学生企业所需的职业能力和职业素养。

数学新课程标准的核心概念有哪些

数学新课程标准的核心概念有哪些

数学新课程标准的核心概念有数感、符号意识、空间观点、几何直观、数据分析观点、运算水平、推理水平、模型思想、应用意识和创新意识。

它们有着密切的联系,这十个概念在数学新课程标准中有一个承上启下的作用,上连目标,下接内容,非常重要,所以也把它们称为核心概念。

通过学习数学新课程标准,在新课程标准的理念下,结合教学实际,我对这些核心概念有一些粗浅的理解。

1、数感:数感是关于对数量、数量关系、运算结果估计等方面的感悟,也是对数的抽象、数的应用的一种理解。

相关数感的教学内容很多。

比如:单位,在具体情境中,碰到一些数量就要选择一种对应单位对它实行刻画,这种感悟就是一种数感。

在培养数感的问题上,我们教师有很多工作要做,要创建具体情境,举行各种活动,给孩子创造各种机会,激发他们对数的感悟,逐步积累经验,慢慢建立数感。

数感不是短时间内就能让学生感受到的,数感的形成是一个长期的过程。

2、符号意识:符号意识主要是指能理解并使用符号表示数、数量关系和变化规律,还能使用符号实行运算和推理,获得一般性的结论,促动学生数学的表达和思考。

符号意识在数学学习中很重要,能够说它是一种简洁的数学语言,能对数学内容实行准确的表达和交流,是一种重要的载体。

比如:在数学教学中对鸡兔同笼、方程等问题的研究中,符号意识的应用就能方便、快捷地刻画数学模型,迅速便捷地解题,渗透模型思想,奠定重要的数学基础。

空间观点是指根据实物特征抽象出几何图形,根据几何图形描述和想象实物的方位和相互位置关系,从而描述图形的运动和变化。

根据语言描述画出图形,这是对空间观点的一种刻画。

而几何直观是指利用图形描述和分析问题,借助几何直观,能够把复杂的数学问题变得简明、形象、具体、简单,有助于解决问题,预测结果。

几何直观能够协助学生理解数学掌握规律。

这两个概念之间是有密切联系的。

我简单地理解为:空间观点是看着实物,抽象出图形,想象图形的运动和变化(我简单记成看物抽图想变化);几何直观是看图想事、看图分析、看图说理。

新课标十大核心概念之 “数据分析观念 ”解读

新课标十大核心概念之 “数据分析观念 ”解读

新课标十大核心概念之“数据分析观念”解读在对“数据分析观念”进行分析之前,我们首先要理解新、旧课标在“统计与概率”这一版块的要求与区别。

原课标的核心词:数感、符号感、空间观念、统计观念、应用意识、推理能力。

新课标核心词:数感、符号意识、运算能力、模型思想、空间观念、几何直观、推理能力、数据分析观念、应用意识、创新意识。

在“统计与概率”板块的核心词由“统计观念”改为“数据分析观念”。

“统计观念”(旧):强调的是从统计的角度思考问题,认识统计对决策的作用,能对数据处理的结果进行合理的质疑。

“数据分析观念”(新):改变过去这一概念含义较“泛”,体现统计与概率的本质意义不够鲜明的弱点,而将该部分内容聚焦于“数据分析”。

那么让我们来深入学习“数据分析观念”跟上教学改革的步伐。

(一)什么是“数据分析观念”?数据分析观念是学生在有关数据的活动过程中建立起来的对数据的某种“领悟”、由数据去作出推测的意识、以及对于其独特的思维方法和应用价值的体会和认识。

在课标当中,对于数据分析观念,有这样的描述:了解在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。

体会数据中蕴含着信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性。

一方面对于同样的事物,每次收到的数据可能不同,另一方面只要有足够的数据,就可以从中发现规律。

(二)为什么要学数据分析的观念?数据分析是统计学里的一个核心内容。

不论是统计还是概率,都要基于数据,基于对数据的分析;在进行预测的时,为了使预测更合理,也需要收集更多的数据。

数据分析观念是学生在义务教育阶段数学课程中最应培养的数学素养之一,是促进学生发展的重要方面。

通过数据分析的教学,使学生体会到统计时需要收集数据,应用数据分析,能解决日常生活中很多实际问题,从而感受统计的实际价值,发展学生的应用意识。

(三)培养数据分析观念的要求:一是过程性(或活动性)要求:让学生经历调查研究,收集、处理数据的过程,通过数据分析作出判断,并体会数据中蕴涵着信息二是方法性要求:了解对于同样的数据可以有多种分析方法,需要根据问题背景选择合适的数据分析方法三是体验性要求:通过数据分析体验随机性(四)怎样培养学生数据分析的观念?1、让学生经历数据分析过程,体会数据中蕴含的信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《应用数据分析》课程标准
【适用专业】:工商管理系
【开设学期】:第五学期
【学时数】:64
【课程编码】:020474
一、课程描述
本课程是电子商务专业的专业技术课程,该课程主要是培养学生完整市场调查的理念与EXCEL的应用,EXCEL是Microsoft公司推出的Office 办公应用软件的主要组件之一,本课程主要学习任务是通过该软件快速计算和分析大量的数据,并能轻松制作出符合要求的报表,表达复杂的数据信息。

本课重点讲解Excel 在数据分析与市场调查方面的应用,使学生掌握数字运算、财务、数据分析、市场调查等相关知识技能。

二、培养目标
1、方法能力目标:
为了适应当今信息化飞速发展的商务管理需求,培养学生数字处理、分析的自动化方法和能力。

2、社会能力目标:
数据分析师
3、专业能力目标:
培养具备现代商务管理领域所需数据分析人才,注重信息管理以及信息系统分析、设计、实施、管理和评价等方面的基本理论和方法。

使用计算机作为工具处理大量纷繁的信息,并进行有效管理。

三、与前后课程的联系
1、与前续课程的联系
为了更好地掌握这门技术,应具有一定的计算机应用、数据库等相关基础知识。

2、与后续课程的关系
为了更好地培养学生的可持续学习能力和创新思维,掌握《应用数据分析》为后续学习《电子商务管理》奠定良好的基础。

四、教学内容与学时分配
将职业领域的工作任务融合在课程的项目教学中。

具体项目结构与学时分配表如下:
五、学习资源的选用:
1、教材选取的原则:
高职高职优秀教材或自编教材
2、推荐教材:
《Excel数据分析与市场调查》林宏谕姚瞻海编着中国铁道出版社
3、参考的教学资料
《Excel与数据分析》电子工业出版社
4、学习的网站:
/
六、教师要求:
1、理论课教师的要求
具有一定的专业素质及专业技术水平,从事计算机教龄3年经验以上,有一定的一体化教学经验的双师型教师任教。

2、实训指导师要求
具有本职业丰富的实践经验,有教育培训经验,具有良好的语音呢表达能力。

七、学习场地、设施要求
场地:计算机机房
设备:计算机、EXCEL、SQL
八、考核方式与标准
要求:全面考核学生的学习情况,以过程考核为主,涵盖项目任务全过程。

项目公共考核评价标准
九、学习情境设计。

相关文档
最新文档