abaqus第七讲:abaqus接触分析

合集下载

abaqus七讲:abaqus接触分析

abaqus七讲:abaqus接触分析

• ABAQUS/Standard中使 用的严格的主/从接触算法。 • 从属表面的节点不能 穿透到主控表面。 • 主控表面的节点可以 穿透到从属表面。
在多数情况下,ABAQUS/Explicit使用平衡的主/从算法。
• 两次应用单纯的主-从接触算法,并平均化。在第二次施加接触 约束时,交换主/从表面。 • 使接触物体之间的侵彻达到最小化。
变形体之间的有限滑动接触 这是最一般类型的接触。
例子:螺纹连接。 • 这些问题一般包含初始的过盈配合
由于过盈精度引起的 接触压力的分布
自接触
单个表面与它自身接触称为自接 触。在ABAQUS的二维和三维模 型中可用。 在分析过中,当表面严重变形时, 使用自接触将非常方便。对于某 些问题,在分析之前不可能确定 单个的接触区域,或者确定接触 区域是非常困难的。 把单个接触表面作为接触对定义 自接触,而不是通过两个不同的 表面定义。
SURF1 (刚体) SURF2
最小主应力云图
例子:橡胶垫片的压缩 (选自 “Self-contact ts: rubber gasket,” ABAQUS例子手册1.1.17 节)
变形体与刚体的接触:
表面之间的有限滑动(大位移)。 变形组件之间的有限应变。
讲接触非线性
概述
• 简介 • 主/从方法和隐含假设 • 定义双面接触概述 • 定义面的规则 • 局部表面行为 • 接触问题中点的相对滑动 • 接触问题中调整初始节点位置
• 接触输出
• 完全约束的接触行为 • 刚体
简介
• 什么是接触?
当两个实体接触时,力通过它们的接触表面传递。 • 在某些情况下,只传递垂直接触表面的力。
定义表面接触属性
*SURFACE INTERACTION选项定义表面接触属性。

abaqus接触问题分析

abaqus接触问题分析

abaqus‎接触分析1、塑性材料和接‎触面上都不能‎用C3D20‎R和C3D2‎0单元,这可能是你收‎敛问题的主要‎原因。

如果需要得到‎应力,可以使用C3‎D8I (在所关心的部‎位要让单元角‎度尽量接近9‎0度),如果只关心应‎变和位移,可以使用C3‎D8R, 几何形状复杂‎时,可以使用C3‎D10M。

2、接触对中的s‎l ave surfac‎e应该是材料‎较软,网格较细的面‎。

3、接触面之间有‎微小的距离,定义接触时要‎设定“Adjust‎=位置误差限度‎”,此误差限度要‎大于接触面之间的距离‎,否则ABAQ‎U S会认为两‎个面没有接触‎:*Contac‎t Pair, intera‎c tion="SOIL PILE SIDE CONTAC‎T", small slidin‎g,adjust‎=0.2.4、定义tie时‎也应该设定类‎似的posi‎t ion tolera‎n ce:*Tie, name=ShaftB‎o ttom, adjust‎=yes, positi‎o n tolera‎n ce=0.15、msg文件中‎出现zero‎pivot说‎明ABAQU‎S无法自动解‎决过约束问题‎,例如在桩底部‎的最外一圈节‎点上即定义了‎t ie,又定义了co‎n tact, 出现过约束。

解决方法是在‎选择tie或‎c ontac‎t的slav‎e surfac‎e时,将类型设为n‎o de region‎,然后选择区域‎时不要包含这‎一圈节点(我附上的文件‎中没有做这样‎的修改)。

6、接触定义在哪‎个分析步取决‎于你模型的实‎际物理背景,如果从一开始‎两个面就是相‎接触的,就定义在in‎i tial或‎你的第一个分‎析步中;如果是后来才‎开始接触的,就定义在后面‎的分析步中。

边界条件也是‎这样。

7、我在前面上传‎的文件里用*CONTRO‎L设了允许的‎迭代次数18‎,意思是18次‎迭代不收敛时‎,才减小时间增量步‎(ABAQUS‎默认的值是1‎2)。

abaqus第七讲:abaqus接触分析解析

abaqus第七讲:abaqus接触分析解析
• 完全约束的接触行为 • 刚体
北京怡格明思工程技术有限公司
Innovating through simulation
简介
• 什么是接触?
当两个实体接触时,力通过它们的接触表面传递。 • 在某些情况下,只传递垂直接触表面的力。
• 如果存在摩擦,沿接触表面的切向传递切向力。
• 一般目标: 确定接触面积和传递的应力。
• 两次应用单纯的主-从接触算法,并平均化。在第二次施加接触 约束时,交换主/从表面。 • 使接触物体之间的侵彻达到最小化。
北京怡格明思工程技术有限公司
Innovating through simulation
接触方向总是与主控表面垂直。
• 沿主控表面的法向检查接触条件。 • 沿主控表面的法向传递接触力。 • 沿接触表面的切向传递摩擦力。
北京怡格明思工程技术有限公司
Innovating through simulation
主/从方法和隐含假设
北京怡格明思工程技术有限公司
Innovating through simulation
• 因为接触表面下面的 实体被离散化,接触 表面也必须被离散化。 接触表面分为: 主面 从面
北京怡格明思工程技术有限公司
北京怡格明思工程技术gh simulation
定义双面接触概述
北京怡格明思工程技术有限公司
Innovating through simulation
定义接触的三个步骤:
1
定义接触表面。 定义接触对。 定义接触属性。
2
3
北京怡格明思工程技术有限公司
Innovating through simulation
赫兹接触
接触面之间的相对位移很 小。 分布表面的接触。

ABAQUS有限元接触分析的基本概念

ABAQUS有限元接触分析的基本概念

CAE(计算机辅助工程)是一门复杂的工程科学,涉及仿真技术、软件、产品设计和力学等众多领域。

世界上几大CAE公司各自以其独到的技术占领着相应的市场。

ABAQUS有限元分析软件拥有世界上最大的非线性力学用户群,是国际上公认的最先进的大型通用非线性有限元分析软件之一。

它广泛应用于机械制造、石油化工、航空航天、汽车交通、土木工程、国防军工、水利水电、生物医学、电子工程、能源、地矿、造船以及日用家电等工业和科学研究领域。

ABAQUS在技术、品质和可靠性等方面具有卓越的声誉,可以对工程中各种复杂的线性和非线性问题进行分析计算。

《ABAQUS有限元分析常见问题解答》以问答的形式,详细介绍了使用ABAQUS 建模分析过程中的各种常见问题,并以实例的形式教给读者如何分析问题、查找错误原因和尝试解决办法,帮助读者提高解决问题的能力。

《ABAQUS有限元分析常见问题解答》一书由机械工业出版社出版。

16.1.1点对面离散与面对面离散【常见问题16-1】在ABAQUS/Standard分析中定义接触时,可以选择点对面离散方法(node-to-surface-dis-cre-tization)和面对面离散方法(surface-to-surfacediscretization),二者有何差别?『解答』在点对面离散方法中,从面(slavesurface)上的每个节点与该节点在主面(mastersurface)上的投影点建立接触关系,每个接触条件都包含一个从面节点和它的投影点附近的一组主面节点。

使用点对面离散方法时,从面节点不会穿透(penetrate)主面,但是主面节点可以穿透从面。

面对面离散方法会为整个从面(而不是单个节点)建立接触条件,在接触分析过程中同时考虑主面和从面的形状变化。

可能在某些节点上出现穿透现象,但是穿透的程度不会很严重。

在如图16-l和图16-2所示的实例中,比较了两种情况。

1)从面网格比主面网格细:点对面离散(图16-1a)和面对面离散(图16-2a)的分析结果都很好,没有发生穿透,从面和主面都发生了正常的变形。

abaqus-接触分析的基本概念

abaqus-接触分析的基本概念

abaqus-接触分析的基本概念在abaqus/standard分析中定义接触时,可以选择点对⾯离散⽅法(node-to-surface-dis- cre-tization)和⾯对⾯离散⽅法(surface-to-surface discretization),⼆者有何差别?『解答』在点对⾯离散⽅法中,从⾯(slave surface)上的每个节点与该节点在主⾯(master surface)上的投影点建⽴接触关系,每个接触条件都包含⼀个从⾯节点和它的投影点附近的⼀组主⾯节点。

使⽤点对⾯离散⽅法时,从⾯节点不会穿透(penetrate)主⾯,但是主⾯节点可以穿透从⾯。

⾯对⾯离散⽅法会为整个从⾯(⽽不是单个节点)建⽴接触条件,在接触分析过程中同时考虑主⾯和从⾯的形状变化。

可能在某些节点上出现穿透现象,但是穿透的程度不会很严重。

1)从⾯⽹格⽐主⾯⽹格细:点对⾯离散(图16-1a)和⾯对⾯离散(图16-2a)的分析结果都很好,没有发⽣穿透,从⾯和主⾯都发⽣了正常的变形。

2)从⾯⽹格⽐主⾯⽹格粗:点对⾯离散(图16-1b)的分析结果很差,主⾯节点进⼊了从⾯,穿透现象很严重,从⾯和主⾯的变形都不正常;⾯对⾯离散(图16-2b)的分析结果相对较好,尽管有轻微的穿透现象,从⾯和主⾯的变形仍⽐较正常。

从上⾯的例⼦可以看出,在为接触⾯划分⽹格时需要慎重,⽆论使⽤点对⾯离散还是⾯对⾯离散,都应尽量保证从⾯⽹格不能⽐主⾯⽹格粗。

关于从⾯和主⾯的选择⽅法,请参见《实例详解》第5.2.2节“定义接触对”。

选⽤离散⽅法时,还应考虑以下因素。

1)⼀般情况下,⾯对⾯离散得到的应⼒和压强的结果精度要⾼于点对⾯离散。

2)⾯对⾯离散需要分析整个接触⾯上的接触⾏为,其计算代价要⾼于点对⾯离散。

⼀般情况下,⼆者的计算代价相差不是很悬殊,但在以下情况中,⾯对⾯离散的计算代价将会⼤很多:①模型中的⼤部分区域都涉及到接触问题。

②主⾯的⽹格⽐从⾯的⽹格细化很多。

ABAQUS接触分析

ABAQUS接触分析

ABAQUS接触分析1、塑性材料和接触面上都不能用C3D20R和C3D20单元,这可能是你收敛问题的主要原因。

如果需要得到应力,可以使用C3D8I (在所关心的部位要让单元角度尽量接近90度),如果只关心应变和位移,可以使用C3D8R, 几何形状复杂时,可以使用C3D10M。

2、接触对中的slave surface应该是材料较软,网格较细的面。

3、接触面之间有微小的距离,定义接触时要设定“Adjust=位置误差限度”,此误差限度要大于接触面之间的距离,否则ABAQUS会认为两个面没有接触:*Contact Pair, interaction="SOIL PILE SIDE CONTACT", small sliding, adjust=0.2.4、定义tie时也应该设定类似的position tolerance:*Tie, name=ShaftBottom, adjust=yes, position tolerance=0.1 5、msg文件中出现zero pivot说明ABAQUS无法自动解决过约束问题,例如在桩底部的最外一圈节点上即定义了tie,又定义了contact, 出现过约束。

解决方法是在选择tie或contact的slave surface时,将类型设为node region, 然后选择区域时不要包含这一圈节点(我附上的文件中没有做这样的修改)。

6、接触定义在哪个分析步取决于你模型的实际物理背景,如果从一开始两个面就是相接触的,就定义在initial或你的第一个分析步中;如果是后来才开始接触的,就定义在后面的分析步中。

边界条件也是这样。

7、我在前面上传的文件里用*CONTROL设了允许的迭代次数18,意思是18次迭代不收敛时,才减小时间增量步(ABAQUS默认的值是12)。

一般情况下不必设置此参数,如果在msg文件中看到opening和closure的数目不断减小(即迭代的趋势是收敛的),但12次迭代仍不足以完全达到收敛,就可以用*CONTROL来增大允许的迭代次数。

第七讲 abaqus接触分析

第七讲 abaqus接触分析

• 接触例子-间隙接触
用节点与节点接触的方式为 点接触建模。
“Detroit Edison pipe whip experiment,” ABAQUS例子手 册2.1.2节
赫兹接触
接触面之间的相对位移很 小。 分布表面的接触。
例子选自 “Coolant manifold cover gasketed joint,” ABAQUS 例子手册5.1.3 节
接触问题中点的相对滑动
• 两种滑动距离选项:
有限滑动:
小滑动:
默认为有限滑动,有限滑动是最通用的滑动方式。
在接触表面之间,允许任意大的滑动和旋转。 在接触表面之间,允许小的相对滑动。
只要接触表面之间没有大的相对移动,允许接触表面 之间有大的转动。
相比有限滑动,具有较小的计算费用。
• 有限滑动
在有限滑动问题中的主控表面,最好使用延伸到角点之外的定义。 它们将防止从属节点“跌落”到主表面的后面或被主表面的后面捕获。 对于ABAQUS/Standard中的接触模拟,这是尤为重要的。
接触方向总是与主控表面垂直。
• 沿主控表面的法向检查接触条件。 • 沿主控表面的法向传递接触力。 • 沿接触表面的切向传递摩擦力。
定义双面接触概述
定义接触的三个步骤:
1
定义接触表面。 定义接触对。 定义接触属性。
2
3
输入文件中,完整定义接 触句法的例子:
*SURFACE, NAME=ASURF SLIDER, S1 *SURFACE, NAME=BSURF BLOCK, S3 *CSURF *SURFACE INTERACTION, NAME=FRIC1 1.0, *FRICTION 0.4,
作为*SURFACE INTERACTION 选项的子选项*SURFACE BEHAVIOR选项用于指定: • 软接触(指数或表格方式 表达的压力-间距关系) • 没有分离的接触 其它选项: • 间距相关的粘性阻尼 (*CONTACT DAMPING)。 • 带有过盈或拉伸接触力的接触 (*CONTACT CONTROLS; 只有 ABAQUS/Standard可用)。

abaqus两个面之间的接触间隙

abaqus两个面之间的接触间隙

abaqus两个面之间的接触间隙Abaqus是一款强大的有限元分析软件,广泛应用于各种工程领域。

在实际工程应用中,经常需要对接触问题进行分析和计算,而接触间隙是一个重要的参数。

本文将从Abaqus中的接触分析入手,介绍如何计算两个面之间的接触间隙。

一、接触分析接触分析是指在有限元分析中考虑两个或多个物体之间的接触行为。

在实际工程应用中,接触分析是非常重要的,例如在机械设计中,需要考虑零件之间的接触问题,以保证机械系统的正常运转;在土工工程中,需要考虑地基和地下水之间的接触问题,以评估土体的稳定性。

在Abaqus中,接触分析可以通过接触单元来实现。

接触单元是一种特殊的有限元单元,用于模拟两个或多个物体之间的接触行为。

常见的接触单元包括TIE、CONTAC、SURFACE TO SURFACE等。

在接触分析中,需要定义接触面和接触参数。

接触面是指两个物体之间接触的表面,接触参数是指接触行为的一些物理参数,例如摩擦系数、弹性模量等。

二、接触间隙接触间隙是指两个接触面之间的距离,也可以理解为两个物体之间的间隔距离。

在实际工程应用中,接触间隙是一个非常重要的参数。

例如在机械设计中,如果两个零件之间的接触间隙过大,会导致机械系统的运转不稳定;如果接触间隙过小,会导致零件之间的摩擦力过大,从而加速零件的磨损和损坏。

在Abaqus中,可以通过输出接触力和位移来计算接触间隙。

接触力是指两个接触面之间的作用力,可以通过接触分析计算得到;位移是指两个接触面之间的相对位移,也可以通过接触分析计算得到。

接触间隙可以通过位移来计算,即两个接触面之间的距离等于初始距离减去相对位移。

三、计算接触间隙的方法在Abaqus中,可以通过Python脚本来计算接触间隙。

Python 脚本是Abaqus的一个重要特性,可以通过编写脚本来实现自动化计算和数据处理。

下面介绍一种计算接触间隙的Python脚本。

1. 定义接触面和接触参数在进行接触分析之前,需要定义接触面和接触参数。

Abaqus中的分析步、接触和载荷

Abaqus中的分析步、接触和载荷

Abaqus中的分析步、接触和载荷Abaqus/CAE中的分析步、接触和载荷第五讲L1.2概述分析步 ? 输出 ? 接触 ? 载荷、边界条件和初始条件 ? 练习Introduction to Abaqus/CAE分析步L1.4分析步分析步模块有下面四个用途: 1. 定义分析步。

2. 指定输出需求。

3. 指定分析诊断。

4. 指定分析控制。

Introduction to Abaqus/CAE分析步分析步 ? 分析步为描述模拟历程提供了一种方便的途径。

分析的结果取决于事件的顺序。

比如,右图中的弓和箭。

整个分析过程包括四个分析步:L1.5Step 3 = Natural frequency extractionStep 1: 预拉伸弓弦 (静态响应)。

Step 2: 拉弓 (静态响应)。

Step 3: 为加载的系统提取自然频率。

Step 4: 放开弓弦 (动态响应)。

Introduction to Abaqus/CAE分析步在Abaqus/CAE中定义分析步General proceduresL1.6Linear proceduresAbaqus/Explicit proceduresIntroduction to Abaqus/CAEL1.7分析步分析步替换任何分析步都可以用其它分析步替换? 必需满足分析步的先后顺序。

? Abaqus/CAE将保留载荷、边界条件、接触等属性Introduction to Abaqus/CAEL1.8分析步分析步抑制任何分析步都可以抑制 ? 可以灵活的分析模型 (比如可以评估不同模型设置) ? 在此分析步创建的属性不参与分析Introduction to Abaqus/CAE输出输出输出到结果文件? Abaqus/Viewer将使用输出数据库。

? 对于Python和C++保留了API接口,可以用于外部的后处理(比如,在Abaqus/Viewer中添加显示数据) ? 两种类型的输出数据:场和历程数据。

ABAQUS中的约束和接触

ABAQUS中的约束和接触
模型区域之间或模型区域同它的周围的模型之间的力 学的和热的接触
约束(constraint) 绑定约束(Tie) 刚体(Rigid Body) 显示体(Display Body) 耦合(Coupling) 多点约束(MPC Constraint) 力学接触(contact) 一般接触(General Contact) 面面接触(Surface-to-Surface contact) 自接触(Self-contact) 循环对称(Cyclic symmetry) 弹性基底(Elastic foundation) 热接触 热接触 热膜条件 (Film Condition) 空腔辐射(Cavity radiation) …
从属节点的状态(张开或接触)将打印在输出(.dat)文 件中
• 在打印输出文件中,对于捆绑约束中没有与主控表面接触的从 属节点将给出警告信息
默认情况下,平动和转动自由度将都被约束
• 如果不需要约束旋转自由度,可以使用NO ROTATION参数
北京怡格明思工程技术有限公司


7.2.1 绑定约束(Tie)
绑定约束(Tie)
允许将两个区域绑定,即使两个区域的网格不协调
绑定约束用于连接包含六面体和四面体单元的网格
北京怡格明思工程技术有限公司

7.2.1 绑定约束(Tie)
在Abaqus中,通过捆绑约束定义完全的约束行为 捆绑约束可以以简单的方式,将表面永久的捆绑在一 起
7.2.1 绑定约束(Tie)
对捆绑约束中的从属节点不要使用边界条件、约束方 程或多点约束。 因为这将引起从属节点的过渡约束,并导致分析过程 中的错误。 症状:
• Abaqus/Standard信息(.msg)文件中零主元警告 • Abaqus/Explicit中变形波速错误

abaqus接触分析的常见问题

abaqus接触分析的常见问题

CAE(计算机辅助工程)是一门复杂的工程科学,涉及仿真技术、软件、产品设计和力学等众多领域。

世界上几大CAE公司各自以其独到的技术占领着相应的市场。

ABAQUS有限元分析软件拥有世界上最大的非线性力学用户群,是国际上公认的最先进的大型通用非线性有限元分析软件之一。

它广泛应用于机械制造、石油化工、航空航天、汽车交通、土木工程、国防军工、水利水电、生物医学、电子工程、能源、地矿、造船以及日用家电等工业和科学研究领域.ABAQUS在技术、品质和可靠性等方面具有卓越的声誉,可以对工程中各种复杂的线性和非线性问题进行分析计算。

《ABAQUS有限元分析常见问题解答》以问答的形式,详细介绍了使用ABAQUS建模分析过程中的各种常见问题,并以实例的形式教给读者如何分析问题、查找错误原因和尝试解决办法,帮助读者提高解决问题的能力。

《ABAQUS有限元分析常见问题解答》一书由机械工业出版社出版。

16.1。

1点对面离散与面对面离散【常见问题16-1】在ABAQUS/Standard分析中定义接触时,可以选择点对面离散方法(node-to-surf ace—dis—cre-tization)和面对面离散方法(surface-to—surfacediscretization),二者有何差别?『解答』在点对面离散方法中,从面(slavesurface)上的每个节点与该节点在主面(maste rsurface)上的投影点建立接触关系,每个接触条件都包含一个从面节点和它的投影点附近的一组主面节点.使用点对面离散方法时,从面节点不会穿透(penetrate)主面,但是主面节点可以穿透从面。

面对面离散方法会为整个从面(而不是单个节点)建立接触条件,在接触分析过程中同时考虑主面和从面的形状变化.可能在某些节点上出现穿透现象,但是穿透的程度不会很严重。

在如图16—l和图16—2所示的实例中,比较了两种情况。

1)从面网格比主面网格细:点对面离散(图16—1a)和面对面离散(图16-2a)的分析结果都很好,没有发生穿透,从面和主面都发生了正常的变形。

abaqus第七讲:abaqus接触分析

abaqus第七讲:abaqus接触分析
第七讲
王慎平
接触非线性
北京怡格明思软件技术有限公司
北京怡格明思工程技术有限公司
Innovating through simulation
概述
• 简介 • 主/从方法和隐含假设 • 定义双面接触概述 • 定义面的规则 • 局部表面行为 • 接触问题中点的相对滑动 • 接触问题中调整初始节点位置
• 接触输出
*SURFACE, NAME=SURF1 BOTTOM, SPOS TOP, SNEG
北京怡格明思工程技术有限公司
Innovating through simulation
• 解析刚体表面
所有的刚体表面将被作为主控表面;刚体表面的自由度与刚体的参 考节点相关联,而不是表面上的点。 使用*SURFACE选项,有三种可用的解析表面: • 使用TYPE=SEGMENTS定义二维刚体表面。 • 使用TYPE=CYLINDER定义三维刚体表面,在垂直于平面方向 无限延伸。 • 使用TYPE=REVOLUTION定义旋转的三维表面。
• 两次应用单纯的主-从接触算法,并平均化。在第二次施加接触 约束时,交换主/从表面。 • 使接触物体之间的侵彻达到最小化。
北京怡格明思工程技术有限公司
Innovating through simulation
接触方向总是与主控表面垂直。
• 沿主控表面的法向检查接触条件。 • 沿主控表面的法向传递接触力。 • 沿接触表面的切向传递摩擦力。
北京怡格明思工程技术有限公司
Innovating through simulation
定义双面接触概述
北京怡格明思工程技术有限公司
Innovating through simulation
定义接触的三个步骤:

abaqus接触分析

abaqus接触分析

abaqus—接触分析(转)已有 264 次阅读2010-8-24 19:39|1、塑性材料和接触面上都不能用C3D20R和C3D20单元,这可能是你收敛问题的主要原因。

如果需要得到应力,可以使用C3D8I (在所关心的部位要让单元角度尽量接近90度),如果只关心应变和位移,可以使用C3D8R, 几何形状复杂时,可以使用C3D10M。

2、接触对中的slave surface应该是材料较软,网格较细的面。

3、接触面之间有微小的距离,定义接触时要设定“Adjust=位置误差限度”,此误差限度要大于接触面之间的距离,否则ABAQUS会认为两个面没有接触:*Contact Pair, interaction="SOIL PILE SIDE CONTACT", small sliding, adjust=0.2.4、定义tie时也应该设定类似的position tolerance:*Tie, name=ShaftBottom, adjust=yes, position tolerance=0.15、 msg文件中出现zero pivot说明ABAQUS无法自动解决过约束问题,例如在桩底部的最外一圈节点上即定义了tie,又定义了contact, 出现过约束。

解决方法是在选择tie或contact的slave surface时,将类型设为node region, 然后选择区域时不要包含这一圈节点(我附上的文件中没有做这样的修改)。

6、接触定义在哪个分析步取决于你模型的实际物理背景,如果从一开始两个面就是相接触的,就定义在initial或你的第一个分析步中;如果是后来才开始接触的,就定义在后面的分析步中。

边界条件也是这样。

7、我在前面上传的文件里用*CONTROL设了允许的迭代次数18,意思是18次迭代不收敛时,才减小时间增量步(ABAQUS默认的值是12)。

一般情况下不必设置此参数,如果在msg文件中看到opening和closure的数目不断减小(即迭代的趋势是收敛的),但12次迭代仍不足以完全达到收敛,就可以用*CONTROL来增大允许的迭代次数。

第七讲 abaqus接触分析分解

第七讲 abaqus接触分析分解

北京怡格明思工程技术有限公司
Innovating through simulation
• 基于节点的表面 • 与指定单元表面定义接触表面的方法不同,基于节点 的表面只包含节点。 • 基于节点的表面一般被用作从属表面。
北京怡格明思工程技术有限公司
Innovating through simulation
北京怡格明思工程技术有限公司
Innovating through simulation
定义表面
• 利用*SURFACE选项定义表面。 • 利用每个单元集的表面标识符 指定面。 • 可以用单元集的名字或单元号 指定表面。 *SURFACE, NAME=ASURF
SLIDER, S1 *SURFACE, NAME=BSURF BLOCK, S3
Innovating through simulation
• ABAQUS/Standard中使 用的严格的主/从接触算法。 • 从属表面的节点不能 穿透到主控表面。 • 主控表面的节点可以 穿透到从属表面。
北京怡格明思工程技术有限公司
Innovating through simulation
在多数情况下,ABAQUS/Explicit使用平衡的主/从算法。
接触发生在单元集SLIDER的底部 (S1) 接触发生在单元集的BLOCK顶部 (S3)
北京怡格明思工程技术有限公司
Innovating through simulation
定义表面接触属性
*SURFACE INTERACTION选项定义表面接触属性。
• 定义表面行为属性,比如摩擦。 • 对于二维问题,定义接触面在垂直平面方向的厚度。
Innovating through simulation

Abaqus中的分析步、接触和载荷

Abaqus中的分析步、接触和载荷
Introduction to Abaqus/CAE
输出
输出
• 输出到结果文件 • Abaqus/Viewer将使用输出数据库。 • 对于Python和C++保留了API接 口,可以用于外部的后处理(比 如,在 Abaqus/Viewer中添加显 示数据) • 两种类型的输出数据:场和历程数据。 • 场数据用于绘制模型的变形、云 图和X–Y绘图 • 历程数据用于X–Y 绘图
L1.27
Introduction to Abaqus/CAE
接触
3. Edit Interaction对话框中完 成接触定义(比如,为接触 定义摩擦模型)。
L1.28
Create Interaction Property 对话框
Edit Interaction 对话框
Introduction to Abaqus/CAE
Introduction to Abaqus/CAE
载荷、边界条件和初始条件
• 载荷的例子
P
L1.34
p
集中力
载荷 大小
载荷的幅值随时间变化
压力载荷或分布热流
时间
Introduction to Abaqus/CAE
载荷、边界条件和初始条件
• 边界条件
机械 固定的平移或转动 指定的平移或转动 指定的平动速度或角速度 连接器位移和速度
热 指定的温度
L1.35
• 指定边界条件可以随着时间相关的幅值定义变化。 • 机械边界条件即可以参考总体坐标系,也可以参考局部坐标系或基准坐标系。
Introduction to Abaqus/CAE
载荷、边界条件和初始条件
• 边界条件例子
L1.36
固定的平移和转动

ABAQUS中的分析步和接触

ABAQUS中的分析步和接触

ABAQUS中的分析步和接触一、 ABAQUS中的分析步模拟计算的加载过程包含单个或多个步骤,所以要定义分析步。

它一般包含分析过程选择,载荷选择,和输出要求选择。

而且每个分析步都可以采用不同的载荷、边界条件、分析过程和输出要求。

例如:步骤一:将板材夹于刚性夹具上。

步骤二:加载使板材变形。

步骤三:确定变形板材的自然频率。

增量步是分析步的一部分。

在非线性分析中,一个分析步中施加的总载荷被分解为许多小的增量,这样就可以按照非线性求解步骤来进行计算。

当提出初始增量的大小后,ABAQUS会自动选择后继的增量大小。

每个增量步结束时,结构处于(近似)平衡状态,结果可以写入输出数据库文件、重启动文件、数据文件或结果文件中。

选择某一增量步的计算结果写入输出数据库文件的数据称为帧。

迭代步是在一增量步中找到平衡解的一种尝试。

如果模型在迭代结束时不是处于平衡状态,ABAQUS将进行另一轮迭代。

随着每一次迭代,ABAQUS得到的解将更接近平衡状态;有时ABAQUS需要进行许多次迭代才能得到一平衡解。

当平衡解得到以后一个增量步才完成,即结果只能在一个增量步的末尾才能获得。

step,increment,attempt,iteration,的关系1)step 分析步2)increment 时间增量步3)attempt 减小增量步的尝试,即“cutback”4)iteration 迭代在一个计算中有可能用到多步分析,比如建一个土石坝,每激活(add)一个填筑层就是一个分析步step;在每个step中,如果考虑非线性,step就会分成几个增量步(increment)进行计算;在每个increment中,会有减小增量步的尝试(attempt),在每个attemp中,要进行迭代计算(iteration)。

如果迭代收敛,则在下一个increment中会增大时间增量步(比如第一个increment=0.2,则下一个会增大为0.3)如果迭代无法达到收敛,则ABAQUS会自动减小时间增量步(减小increment),即所谓的“cutback”,如果仍然不能收敛,则会继续减小时间增量步,默认的cutback最大次数为5次,也就是attempt最大=5,如果5次之后仍不能收敛则ABAQUS会停止分析,显示错误:too many attempts made for this increment:analysis terminated.increment时间增量步有最小值,默认的是1e-5,如果increment减小到比这还小,ABAQUS就会停止分析,出现错误:time increment required is less than the minimum specified. increment的值可以在关键字*static 中修改:*static 1., 1., 1e-05, 1.分别为初始增量步,分析时间步,最小增量步,最大增量步可以用关键字*Step设定一个分析步中increment的最大步数,如:*Step,INC=600 (the maximum number of increments in a step,默认的是100 )*static和*Step中的increment是相同的,*Step,INC默认为100,而*static中默认为1e-5,并不是100* (1e-5)=1,这两个数都是限值,即number of increments最大为100,而increment最小为1e-5。

abaqus接触分析的常见问题

abaqus接触分析的常见问题

CAE(计算机辅助工程)是一门复杂的工程科学,涉及仿真技术、软件、产品设计和力学等众多领域。

世界上几大CAE公司各自以其独到的技术占领着相应的市场。

ABAQUS有限元分析软件拥有世界上最大的非线性力学用户群,是国际上公认的最先进的大型通用非线性有限元分析软件之一。

它广泛应用于机械制造、石油化工、航空航天、汽车交通、土木工程、国防军工、水利水电、生物医学、电子工程、能源、地矿、造船以及日用家电等工业和科学研究领域.ABAQUS在技术、品质和可靠性等方面具有卓越的声誉,可以对工程中各种复杂的线性和非线性问题进行分析计算。

《ABAQUS有限元分析常见问题解答》以问答的形式,详细介绍了使用ABAQUS建模分析过程中的各种常见问题,并以实例的形式教给读者如何分析问题、查找错误原因和尝试解决办法,帮助读者提高解决问题的能力。

《ABAQUS有限元分析常见问题解答》一书由机械工业出版社出版。

16.1。

1点对面离散与面对面离散【常见问题16-1】在ABAQUS/Standard分析中定义接触时,可以选择点对面离散方法(node-to-surf ace—dis—cre-tization)和面对面离散方法(surface-to—surfacediscretization),二者有何差别?『解答』在点对面离散方法中,从面(slavesurface)上的每个节点与该节点在主面(maste rsurface)上的投影点建立接触关系,每个接触条件都包含一个从面节点和它的投影点附近的一组主面节点.使用点对面离散方法时,从面节点不会穿透(penetrate)主面,但是主面节点可以穿透从面。

面对面离散方法会为整个从面(而不是单个节点)建立接触条件,在接触分析过程中同时考虑主面和从面的形状变化.可能在某些节点上出现穿透现象,但是穿透的程度不会很严重。

在如图16—l和图16—2所示的实例中,比较了两种情况。

1)从面网格比主面网格细:点对面离散(图16—1a)和面对面离散(图16-2a)的分析结果都很好,没有发生穿透,从面和主面都发生了正常的变形。

ABAQUS螺栓接触分析

ABAQUS螺栓接触分析

ABAQUS螺栓接触分析螺栓连接是结构连接的一种主要方式,在CAE分析中经常遇到,针对不同的情况,通常我们会采取不同的方法来处理。

如果仿真的重点在于模拟螺栓,要求输出螺栓的应力、变形数据等,则将其创建为三维部件进行精细建模;如果螺栓在仿真过程中是次要的,只起简单的连接和紧固作用,则可以使用MPC约束和梁单元对螺栓进行简化建模。

作为一款功能强大的通用CAE软件,ABAQUS处理普通螺栓连接的方式有三种:带螺纹的实体螺栓、不带螺纹的实体螺栓和MPC与梁单元组合的螺栓简化模型。

1.带螺纹的实体螺栓对于带螺纹的实体螺栓仿真,只需在ABAQUS中定义适当的接触关系,选择合适的摩擦系数即可,通常使用通用接触即可满足计算的要求。

采用这种实体螺栓的仿真计算,虽然得到的结果很精确,但却大大增加了螺栓模型前处理的工作量(螺栓和螺纹均用六面体网格建模),且计算量大,计算过程中接触收敛困难。

因此,在精度要求不高的情况下,不采用这种实体螺栓模型。

2.不带螺纹的实体螺栓为了简化模型,提高计算的效率,可以创建不带螺纹的实体螺栓模型。

这种情况下,只需在ABAQUS的接触定义中设置跟实际螺纹形状有关联的参数,如牙角、螺距、螺栓小径等,即可以模拟真实的螺栓连接接触状况,得到足够精确的结果,同时节省了分析的时间,提高分析效率。

若对结果的精度要求不高,或螺栓并不是分析的重点,则直接对不带螺纹的实体螺栓进行接触关系设置即可满足计算要求。

3.使用MPC约束和梁单元模拟螺栓一般在螺栓只起连接和紧固作用,且不设置相应输出时使用这种模拟螺栓的方式。

这种方式需要预先在Part功能模块中创建一维(wire)部件,并为其设置相应的梁单元截面属性,之后才能在Interaction功能模块中创建MPC约束,完成螺栓的模拟。

这种模拟方式下,MPC单元只在Interaction功能模块中可见,但是其不影响计算的结果,且在后续的后处理模块中可以打开一维单元显示开关将其显示出来。

ABAQUS接触问题分析

ABAQUS接触问题分析

ctrlectrle /zn1125 2012-03-26 10:56:261、 塑性材料和接触面上都不能用C3D20R和C3D20单元,这可能是你收敛问题的主要原因。

如果需要得到应力,可以使用C3D8I (在所关心的部位要让单元角度尽量接近90度),如果只关心应变和位移,可以使用C3D8R, 几何形状复杂时,可以使用C3D10M。

2、 接触对中的slave surface应该是材料较软,网格较细的面。

3、 接触面之间有微小的距离,定义接触时要设定“Adjust=位置误差限度”,此误差限度要大于接触面之间的距离,否则ABAQUS会认为两个面没有接触:*Contact Pair, interaction="SOIL PILE SIDE CONTACT", small sliding, adjust=0.2.4、 定义tie时也应该设定类似的position tolerance:*Tie, name=ShaftBottom, adjust=yes, position tolerance=0.15、 msg文件中出现zero pivot说明ABAQUS无法自动解决过约束问题,例如在桩底部的最外一圈节点上即定义了tie,又定义了contact, 出现过约束。

解决方法是在选择tie或contact的slave surface时,将类型设为node region, 然后选择区域时不要包含这一圈节点(我附上的文件中没有做这样的修改)。

6、 接触定义在哪个分析步取决于你模型的实际物理背景,如果从一开始两个面就是相接触的,就定义在initial或你的第一个分析步中;如果是后来才开始接触的,就定义在后面的分析步中。

边界条件也是这样。

7、 我在前面上传的文件里用*CONTROL设了允许的迭代次数18,意思是18次迭代不收敛时,才减小时间增量步(ABAQUS默认的值是12)。

一般情况下不必设置此参数,如果在msg文件中看到opening和closure的数目不断减小(即迭代的趋势是收敛的),但12次迭代仍不足以完全达到收敛,就可以用*CONTROL来增大允许的迭代次数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 通过指定单元表面标识符定义表面。
• 让ABAQUS自动确定连续体单元的“自由表面”。 ➢使用*SURFACE, TYPE=[SEGMENTS | CYLINDER | REVOLUTION]
选项和*RIGID BODY选项定义解析刚体表面。 ➢使用*SURFACE, TYPE=NODE选项,定义可能接触的节点表面。
接触发生在单元集SLIDER的底部 (S1) 接触发生在单元URFACE INTERACTION选项定义表面接触属性。 • 定义表面行为属性,比如摩擦。 • 对于二维问题,定义接触面在垂直平面方向的厚度。
*CONTACT PAIR,
INTERACTION=FRIC1
ASURF, BSURF
*SURFACE INTERACTION,
NAME=FRIC1
1.0,
接触面在垂直平面方向的厚度
*FRICTION 0.4,
*SURFACE INTERACTION的子选项,列出表面的基本属性
定义接触对
定义表面和接触属性之后,就可以 定义“接触对”。
在分析过程中,接触对指定了两个 相互接触的表面。
定义双面接触概述
定义接触的三个步骤:
1 定义接触表面。 2 定义接触对。 3 定义接触属性。
输入文件中,完整定义接 触句法的例子:
*SURFACE, NAME=ASURF SLIDER, S1 *SURFACE, NAME=BSURF BLOCK, S3 *CONTACT PAIR,
INTERACTION=FRIC1 ASURF, BSURF *SURFACE INTERACTION,
最小主应力云图
例子:橡胶垫片的压缩 (选自 “Self-contact in rubber/foam components: rubber gasket,” ABAQUS例子手册1.1.17 节)
变形体与刚体的接触:
表面之间的有限滑动(大位移)。 变形组件之间的有限应变。
典型例子: 成型模拟 (刚体砧/模具、可变形组件。)
体(一般刚体功能)。 写用户子程序(RSURFU)定义表面 (只有ABAQUS/Standard可用)。
主/从方法和隐含假设
• 因为接触表面下面的 实体被离散化,接触 表面也必须被离散化。
接触表面分为: 主面
从面
• ABAQUS/Standard中使 用的严格的主/从接触算法。
• 从属表面的节点不能 穿透到主控表面。
接触是严重不连续形式的非线性行为,是一类特殊的不连续约束。 • 或者施加约束(表面不可以互相穿透),或者忽略约束。
• 为什么要定义接触?
除非用户指定可能会接触的表面和/或节
点,ABAQUS现在还不能检测接触。
• 接触例子-间隙接触
用节点与节点接触的方式为 点接触建模。
“Detroit Edison pipe whip experiment,” ABAQUS例子手 册2.1.2节
概述
• 简介 • 主/从方法和隐含假设 • 定义双面接触概述 • 定义面的规则 • 局部表面行为 • 接触问题中点的相对滑动 • 接触问题中调整初始节点位置 • 接触输出 • 完全约束的接触行为 • 刚体
简介
• 什么是接触?
当两个实体接触时,力通过它们的接触表面传递。 • 在某些情况下,只传递垂直接触表面的力。 • 如果存在摩擦,沿接触表面的切向传递切向力。 • 一般目标: 确定接触面积和传递的应力。
在实体单元上定义表面
• 使用表面标识符
例子: 4-节点四面体单元 (CPE4, CAX4, 等等)
*SURFACE, NAME=EXAMPLE1
例子:金属成型模拟
使用刚体表面减少计算时间
对于两个相互接触的物体,如果其中一个物体比另外的物体刚硬许多, 可以将较为刚硬的物体指定为刚体;如,金属成型过程中的砧。
ABAQUS不需要求解刚体的变形。 在参考点,最多利用六个自由度就可以模拟刚体的运动。
有三种方法,可以以几何的方式定义刚体表面:
定义解析刚体表面。 使用单元类型组合定义刚体(包括刚体单元),并将物体声明为刚
• 在ABAQUS/Standard中,第 一个表面为从属表面,第二个 表面为主控表面。
• 在ABAQUS/Explicit中,表面 的顺序一般不影响接触计算。
*CONTACT PAIR, INTERACTION=FRIC1 ASURF, BSURF
定义面的规则
定义面的规则
➢在变形体或划分网格的刚体上,使用*SURFACE, TYPE=ELEMENT 选项定义表面。
赫兹接触
接触面之间的相对位移很 小。 分布表面的接触。
例子选自 “Coolant manifold cover gasketed joint,” ABAQUS 例子手册5.1.3 节
变形体之间的有限滑动接触 这是最一般类型的接触。
例子:螺纹连接。 • 这些问题一般包含初始的过盈配合
由于过盈精度引起的 接触压力的分布
自接触
单个表面与它自身接触称为自接 触。在ABAQUS的二维和三维模 型中可用。
在分析过中,当表面严重变形时, 使用自接触将非常方便。对于某 些问题,在分析之前不可能确定 单个的接触区域,或者确定接触 区域是非常困难的。
把单个接触表面作为接触对定义 自接触,而不是通过两个不同的 表面定义。
SURF1 (刚体) SURF2
• 主控表面的节点可以 穿透到从属表面。
在多数情况下,ABAQUS/Explicit使用平衡的主/从算法。
• 两次应用单纯的主-从接触算法,并平均化。在第二次施加接触 约束时,交换主/从表面。
• 使接触物体之间的侵彻达到最小化。
接触方向总是与主控表面垂直。
• 沿主控表面的法向检查接触条件。 • 沿主控表面的法向传递接触力。 • 沿接触表面的切向传递摩擦力。
NAME=FRIC1 1.0, *FRICTION 0.4,
定义表面
• 利用*SURFACE选项定义表面。
• 利用每个单元集的表面标识符 指定面。
• 可以用单元集的名字或单元号 指定表面。
*SURFACE, NAME=ASURF
SLIDER, S1 *SURFACE, NAME=BSURF BLOCK, S3
相关文档
最新文档