高频模拟乘法器的综合应用设计实验

高频模拟乘法器的综合应用设计实验
高频模拟乘法器的综合应用设计实验

学生学号实验课成绩

学生实验报告书

实验课程名称高频电子线路实验

开课学院信息工程学院

指导教师姓名

学生姓名

学生专业班级

20014-- 20015学年第一学期

实验课程名称:_高频电子线路

实验项目名称模拟乘法器的综合应用设计实验实验成绩

实验者专业班级组别25

同组者无实验日期2014年12月 13日一、实验目的、意义

1.了解模拟乘法器(MC1496)的电路组成结构与工作原理。

2.掌握利用乘法器实现振幅调制、同步检波、倍频与混频等几种频率变换电路的原理及设计方法。

3.学会综合地、系统地应用已学到模、数字电与高频电子线路技术的知识,掌握对振幅调制、同步检波、混频和倍频电路的制作与仿真技术,提高独立设计高频单元电路和解决问题的能力。

二.设计任务与要求

(1)设计任务:

用模拟乘法器实现振幅调制(含AM与DSB)、同步检波、混频、倍频等频率变换电路的设计,已知:模拟乘法器为1496,采用双电源供电,Vcc=12V Vee=-8V.

(2)设计要求:

①全载波振幅调制与抑制载波振幅调制电路的设计与仿真:

基本条件:1MHz/100mV,调制信号:1-3KHz/200mV,模拟乘法器采用LM1496。

并按信号流程记录各级信号波形。计算此条件时的AM调制信号的调制度m= ? , 分析AM 与DSB信号m>100%时,过零点的特性。

②同步检波器电路设计与仿真

实现对DSB信号的解调。

基本条件;载波信号UX:f=1MHZ /50-100mV,调制信号Uy:f=2KHz/200mV,并按信号流程记录各级信号波形。

③混频器电路设计与仿真

实现对信号的混频。

基本条件:AM信号条件:(载波信号UX:f=1MHZ /50mV ,调制信号Uy:f=2KHz/200mV,M=30%)中频信号:465KHZ,本地载波:按接收机制式自定。记录各级信号波形。

④倍频器电路设计与仿真

实现对信号的倍频。

基本条件:Ux=Uy(载波信号UX:f=1MHZ /50mV),并记录各级信号波形。推证输入、输出信号的关系。

⑤整理所测数据及波形,认真分析各种频率变换电路工作原理,画出所测波形,写出符合规范的综合设计性实验报告,并谈谈自己的体会。

三.实验原理与电路设计仿真

1、集成模拟乘法器1496的内部结构

集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。所以目前在无线通信、广播电视等方面应用较多。集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。下面介绍MC1496集成模拟乘法器。

(1)MC1496的内部结构

(a)1496内部电路 (b)1496引脚图

图1 MC1496的内部电路及引脚图

MC1496 是目前常用的平衡调制/解调器。它的典型应用包括乘、除、平方、开方、倍频、

调制、混频、检波、鉴相、鉴频、动态增益控制等。MC1496 的和内部电路与外部引脚图如图1(a)(b)所示。

它内部电路含有 8 个有源晶体管,引脚 8 与 10 接输入电压 VX、1与 4接另一输入电压VY,6 与12 接输出电压 VO。一个理想乘法器的输出为VO=KVXVY,而实际上输出存在着各种误差,其输出的关系为:VO=K(VX +VXOS)(VY+VYOS)+VZOX。为了得到好的精度,必须消除 VXOS、VYOS与 VZOX三项失调电压。引脚 2 与 3 之间需外接电阻,对差分放大器 T5与 T6产生交流负反馈,可调节乘法器的信号增益,扩展输入电压的线性动态范围。

各引脚功能如下:

表1 MC1496引脚功能

引脚功能引脚功能

1 SIG+ 信号输入正端

2 GADJ 增益调节端

3 GADJ 增益调节端

4 SIG- 信号输入负端

5 BIAS 偏置端

6 OUT+ 正电流输出端

7 NC 空脚8 CAR+ 载波信号输入

正端

9 NC 空脚10 CAR- 载波信号输入

负端

11 NC 空脚12 OUT- 负电流输出端

13 NC 空脚14 V- 负电源

(2)Multisim建立MC1496电路模块

启动multisim11程序,Ctrl+N新建电路图文件,按照MC1496内部结构图,将元器件放到电子工作平台的电路窗口上,按住鼠标左键拖动,全部选中。被选择的电路部分由周围的方框标示,表示完成子电路的选择。为了能对子电路进行外部连接,需要对子电路添加输入/输出。单击Place / HB/SB Connecter 命令或使用Ctrl+I 快捷操作,屏幕上出现输入/输出符号,将其与子电路的输入/输出信号端进行连接。带有输入/输出符号的子电路才能与外电路连接。单击Place/Replace by Subcircuit命令,屏幕上出现Subcircuit Name对话框,在对话框中输入MC1496,单击OK,完成子电路的创建选择电路复制到用户器件库,同时给出子电路图标。双击子电路模块,在出现的对话框中单击Edit Subcircuit 命令,屏幕显示子电路的电路图,可直接修改该电路图。MC1496内部结构multisim电路图和电路模块如图2所示。

图2 MC1496的内部电路及电路模块引脚图

2、AM与DSB电路的设计与仿真

调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使高频振荡的振幅按调制信号的规律变化。把调制信号和载波同时加到一个非线性元件上(例如晶体二极管或晶体三体管),经过非线性变换电路,就可以产生新的频率成分,再利用一定带宽的谐振回路选出所需的频率成分就可实现调幅。幅度调制信号按其不同频谱结构分为普通调幅(AM)信号,抑制载波的双边带(DSB)信号,抑制载波和一个边带的单边带(SSB)信号。

利用模拟乘法器相乘原理实现调幅是很方便的,工作原理如下:在乘法器的一个输入端输入载波信号另一输入端输入调制信号,则经乘法器相乘,可得输出抑制载波的双边带调幅信号的表达为:

若要输出普通调幅信号,只要调节外部电路的平衡电位器,使输出信号中有载波即可。输出信号表达式为:

普通振幅调制电路的原理框图与抑制载波双边带振幅调制电路的原理框图如图3所示

图3 普通振幅调制电路与抑制载波双边带振幅调制电路原理框图

① AM与DSB电路的设计

查集成模拟乘法器MC1496 应用资料(附录1),得典型应用电路如图4所示。

图4 1496构成的振幅调制电路电原理图

图中载波信号经高频耦合电容C1输入到Uc⑩端,C3为高频旁路电容,使⑧交流接地。调

制信号经高频耦合电容C2输入到U Ω④端,C5为高频旁路电容,使①交流接地。调制信号U AM 从⑿脚单端输出。电路采用双电源供电,所以⑤脚接Rb 到地。因此,改变R 5也可以调节I 0的大小,即:

则:当VEE=-8V ,I 5=1mA 时,可算得:(MC1496器件的静态电流一般取I 0=I 5=1mA 左右)

R95={(8-0.75)/(1X10-3

)}-500=6.75K Ω 取标称电阻,则R9=6.8K Ω

MC1496的②③脚外接电阻RB ,对差分放大器T5、T6产生电流负回授,可调节乘法器的增益,扩展输入信号U Ω动态范围。因为:U Ω≤I 5RB

式中 I 5为5脚的电流,当选I 5=1mA ,Uy=1V(峰值)时,由上式可确定RB :

RB ≥U Ω/I5=1/1X10-3

=1K Ω,即R11=1K Ω。

负载电阻RC 的选择

由于共模静态输出电压为:U 6=U 12=V CC -I 5R L

式中U 6、U 12是6脚与12脚的静态电压。当选U 6=U 12=8V ,V CC =12V ,I 5=1mA 时, R L =(V CC -U 6)/I 5=(12-8)/(1X10-3

)=4K Ω,取标称电阻RL=3.9K Ω。

电阻R1、R2、R3与RC1、RC2提供芯片内晶体管的静态偏置电压,保证各管工作在放大状态。阻值的选取应满足如下关系:12641108,,v v v v v v ===

V

v v V 2)(1586≥-≥, V v v V 7.2)(1518≥-≥, V v v V 7.2)(1551≥-≥

所以取:R5=R6=1K Ω R3=51Ω R7=R8=R10=51Ω,R4=R14=1K Ω,WR1=50 K Ω

电阻R5、R6、WR1、R7和R8用于将直流负电源电压分压后供给MC1496的1、4脚内部的差分对三极管基极偏置电压。通过调节RP ,可使MC1496的1、4端的直流电位差为零,即U Ω输入端只有调制信号输入而没有直流分量,则调幅电路的输出为抑制载波的双边带调幅波;若调节RP ,使MC1496的1、4端的直流电位差不为零,则电路有载波分量输出,为普通调幅波。 耦合电容与高频电容的选择

电容C1与C2应选择得使其电抗在载波频率上低于5Ω,即:

1/ωC1=1/ωC2≤5Ω 所以取C1=C3=0.1uf,C2=C5=4.7uf,

由此得到实际的模拟乘法器1496构成的振幅调制电路与测量系统电原理图,如图5。

图5 1496构成的振幅调制电路电原理图

② AM 与DSB 电路的仿真

1) 全载波振幅调制(AM )

(1)按设计电路设置元件参数并用Multisim 完成电路连接。

(2)当电路平衡时,即U Ω=0,Uo=0 , 模拟乘法器1496的静态特性数据如表12。

表2 静态数据

(3)调R15(99%),使模拟乘法器③④脚间电压为+200mV,即电路不平衡。按设计要求加入信号,载波信号UX :f=1MHZ /100mV 调制信号Uy :f=2KHz/2000mV ,此时实现AM 调制。信号时域波形和频域图形如图6所示。求出此条件时的M=70%

引脚 ⑧ ⑩ ① ④ ⑤ ⑿ ② ③ ⑥ ⒁ 电压(V ) 5.99 5.99 -0.01

6

-0.016

-6.85 7.95 -0.64 -0.64 7.95

-8

%100?+-=

B

A B

A m a

图6 AM波形及频谱

(4)调R15使AM信号过调制,即使M>100%。当M>100%时,过零点为一条直线。实验测得信号波形如图7所示。

图7 AM过调制过零点波形

2) 抑制载波振幅调制(DSB)

(1) 令UΩ=0,调WR1,使模拟乘法器①④脚间电压为0V,即电路平衡。

按设计要求加入信号,载波信号UX:f=1MHZ /100mV 调制信号Uy:f=2KHz/200mV,此时实现DSB调制。信号的时域和频域波形如图8所示。

图8 DSB波形及频谱

实验测得DSB过零点信号波形如图9所示。为M曲线。

图9 DSB过调制过零点波形

(2)同步检波器电路设计与仿真

①同步检波器电路设计

振幅调制信号的解调过程称为检波。常用方法有包络检波和同步检波两种。由于普通调幅波(AM)信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。而双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,所以无法用包络检波进行解调,必须采用同步检波方法。

MC1496模拟乘法器构成的同步检波解调器电路原理框图10所示。

图10 同步检波解调器电路原理框图

其中y端输入同步载波信号U C,x端输入已调波信号U S。解调器输出信号经低通后输出解调信号。其1496构成的同步检波电路与外接元件参数与AM调制电路无异,仅需接一低通滤波器实际设计电路如图11所示。

图11 同步检波器电路

②同步检波器电路仿真

1、按设计电路设置元件参数并用EWB完成电路连接。

2、调RW1使电路平衡时,即Uc=UΩ=0,Uo=0

3、按设计要求加入信号,(载波信号UX:f=1MHZ /50mV 调制信号Uy:f=2KHz/200mV), a.按已知条件产生DSB信号

b. 按同步检波工作原理加入信号,得实验数据如图12所示。

图12 同步检波器电路仿真波形

(3)混频器电路设计与仿真

混频电路的作用是在本地振荡电压的作用下,将载频为fc的高频已调信号不失真地变换为载频为f的中频已调信号。

由于乘法器可以产生只包含两个输入信号之和频及差频分量的输出信号,所以用模拟乘法器和带通滤波器可以方便地实现混频功能。其原理框图如图13所示:

图13 乘法器混频原理框图

用模拟乘法器实现混频,就是在Ux端和Uy端分别加上两个不同频率的信号,相差一中频,再经过带通滤波器取出中频信号。

①混频器电路设计

由1496模拟乘法器构成混频电路和外接元件参数与AM调制电路无异,仅输出端需接465KHZ谐振回路,其设计的电路如图14所示。但必须保证模拟乘法器工作在平衡状态。

图14 乘法器混频电路

正弦波由10端(X输入端)注入,高频信号源输出的正弦波由1端(Y输入端)输入,混频后的中频电压由6端经带通滤波器输出,其中8C﹑2L﹑5C﹑17R构成一选频滤波回路,调节可变电阻12R能使1﹑4脚直流电位差为零,可以减小输出信号的波形失真,使电路平衡。在2﹑3脚之间加接电阻,可扩展输入信号su的线性范围。

②混频器电路仿真

1、按设计电路设置元件参数并完成电路连接。

2、调RW1使电路平衡时,即Uc=UΩ=0,Uo=0

3、按设计要求加入信号,得实验数据如图15所示

图15 乘法器混频电路波形

(4)倍频器电路设计与仿真

①倍频器电路设计

由模拟相乘器构成的倍频器电路原理框图如图16所示:

图16 倍频器电路原理框图

当输入信号为: x y i u u u == ,即模拟相乘器接成如图16所示, 就构成了平方运算电路, 其输出与输入的关系是:

2o x y i u Ku u Ku == 如果 sin x y i im u u u u wt ===

则有 22

(sin )[(1cos 2)]2o im im u K u wt Ku wt ==+

因此, 只要在图14的输出端加一隔直电容, 便可实现正弦波的二倍频。 其输出电压即为 2(s)cos2)2o im u K u wt =

依据以上原理,设计出的实际倍频电路如图17所示:

图17 倍频器电路

②倍频器电路仿真

1、按设计电路设置元件参数并完成电路连接。

2、调RW1使电路平衡时,即Uc=U Ω=0,Uo=0

3、按设计要求加入信号,得实验数据如图18所示。

图18 倍频器电路波形

四.体会与建议

通过本次设计性实验的操作及报告的撰写,我对Multisim仿真软件的使用更加熟悉了,同时也领略到了该软件强大的仿真能力。在设计及仿真的过程中,我对模拟乘法器的原理以及应用有了更深刻的理解和记忆,再动手进行设计仿真时,真正认识到了自己理论知识的不足,并将自己的短板弥补回来,真是受益匪浅。

附录1:MC1496资料

序号元器件名称型号规格数量

1 电阻500Ω 3

2 三极管2N2222 8

3 二极管1N5719 1

4 IO接口/ 10

教师签名 ______________

实验设计报告

创新思维实践 实验设计报告 实验名称萃取实验 实验报告人学号 13 班级 090233 同组人 实验日期年月日 室温大气压 指导老师 评分

实验名称:萃取实验 一、实验目的 1.了解转盘萃取塔的结构和特点; 2.掌握液—液萃取塔的操作; 3.掌握传质单元高度的测定方法,并分析外加能量对液液萃取塔传质单元 高度和通量的影响。 二、基本原理 萃取是利用原料液中各组分在两个液相中的溶解度不同而使原料液混合物得以分离。将一定量萃取剂加入原料液中,然后加以搅拌使原料液与萃取剂充分混合,溶质通过相界面由原料液向萃取剂中扩散,所以萃取操作与精馏、吸收等过程一样,也属于两相间的传质过程。 与精馏,吸收过程类似,由于过程的复杂性,萃取过程也被分解为理论级和级效率;或传质单元数和传质单元高度,对于转盘塔,振动塔这类微分接触的萃取塔,一般采用传质单元数和传质单元高度来处理。传质单元数表示过程分离难易的程度。 对于稀溶液,传质单元数可近似用下式表示: ?-=1 2 x x *OR x x dx N (1) 式中: N OR ——萃余相为基准的总传质单元数; X ——萃余相中的溶质的浓度,以摩尔分率表示; x*——与相应萃取浓度成平衡的萃余相中溶质的浓度,以摩尔分率表示。 x 1、x 2——分别表示两相进塔和出塔的萃余相浓度 传质单元高度表示设备传质性能的好坏,可由下式表示: OR OR N H H = (2) Ω =OR x H L a K (3) 式中: H OR ——以萃余相为基准的传质单元高度,m; H —— 萃取塔的有效接触高度,m; K x a ——萃余相为基准的总传质系数,kg/(m 3?h ?△x); L ——萃余相的质量流量,kg/h; Ω——塔的截面积,m 2 ; 已知塔高度H 和传质单元数N OR 可由上式取得H OR 的数值。H OR 反映萃取设备传质性 能的好坏,H OR 越大,设备效率越低。影响萃取设备传质性能H OR 的因素很多,主

模拟乘法器实验

3.12模拟乘法器 一.实验目的 1. 了解模拟乘法器的构成和工作原理。 2. 掌握模拟乘法器在运算电路中的运用。 二.实验原理 集成模拟乘法器是实现两个模拟信号相乘的器件,它广泛用于乘法、除法、乘方和开方等模拟运算,同时也广泛用于信息传输系统作为调幅、解调、混频、鉴相和自动增益控制电路,是一种通用性很强的非线性电子器件,目前已有多种形式、多品种的单片集成电路,同时它也是现代一些专用模拟集成系统中的重要单元。 1. 模拟乘法器的基本特性 模拟乘法器是一种完成两个模拟信号(连续变化的电压或电流)相乘作用的电子器件,通常具有两个输入端和一个输出端,电路符号如图3-12-1所示。 u x u y o 图3-12-1 模拟乘法器的电路符号 若输入信号为x u , y u ,则输出信号o u 为: o u =k y u x u 式中: k 为乘法器的增益系数或标尺因子,单位为V 1 . 根据两个输入电压的不同极性,乘法输出的极性有四种组合,用图3-12-2所示的工作象限来说明。 图 3-12-2 模拟乘法器的工作象限 若信号x u 、y u 均限定为某一极性的电压时才能正常工作,该乘法器称为单象限乘法器;若信号x u 、y u 中一个能适应正、负两种极性电压,而另一个只能适应单极性电压,则为二象限乘法器;若两个输入信号能适应四种极性组合,称为四象限乘法器。

2. 集成模拟乘法器 集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。下面介绍BG314集成模拟乘法器。 (1) BG314内部结构如图3-12-3所示,外部电路如图3-12-4所示: 1 8 43 7 6 5142+ 9 121110 13 7 图3-12-3 BG314内部电路

模拟乘法器及其应用

模拟乘法器及其应用

摘要 模拟乘法器是一种普遍应用的非线性模拟集成电路。模拟乘法器能实现两个互不相关的模拟信号间的相乘功能。它不仅应用于模拟运算方面,而且广泛地应用于无线电广播、电视、通信、测量仪表、医疗仪器以及控制系统,进行模拟信号的变换及处理。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。 Analog multiplier is a kind of widely used nonlinear analog integrated multiplier can be achieved between two unrelated analog multiplication is not only applied in the simulation operation aspect, and widely used in radio, television, communications, measuring instruments, medical equipment and control system, the analog signal conversion and the high frequency electronic circuit, amplitude modulation, synchronous detection, mixing, frequency doubling, frequency, modulation and demodulation process, the same as can be seen as two signal multiplication or contain multiplication function is realized by using integrated analog multiplier than using discrete components such as diodes and transistors are much more simple, and superior performance.

mfc实验设计报告Word版

《面向对象程序设计》数学与计算机学院 VC++课程设计 设计题目:学生信息管理系统 学生学号:1007020304 学生姓名:刘正 学生专业:信息与计算科学 学生班级:10级信计三班 指导老师:李建湘 制作时间:2011年12月14日

目录 一、前言 (2) 二、系统需求分析 (3) 三、程序设计思路 (3) 四、模块分析 (5) 五、主要功能图示及代码 (9) 六、创新内容 (17) 七、存在的问题与不足 (17) 八、收获与感想 (18) 九、程序其它重要源代码 (19) 十、后记 (27) 十一、参考文献 (28)

前言 作为大二的一名学生,我们已经学习汇编语言快一年了,但是自己从来没有做过一个有实用价值的程序。总是怀疑我们学的c语言,c++以后会有用吗?几乎都是编写一些数学计算题。直到老是教我们MFC编程后,才知道应用程序的设计过程。说实话,在课程设计之前,我没有听过什么MFC编程,所以在设计的过程中也是困难重重,每走一步都是相当艰难的。从开始设计到完成设计,我花了两个多星期,中间重做了无数次。真的难以想象爱迪生发明电灯时是怎么熬过来的。这个程序虽然不完美,但是花了我不少的心血。这将是我程序生涯的开始! 学习MFC编程,最重要的就是自学。刚开始,什么都不懂,为什么要这么做?好多函数都不不知道是干什么用的,更不用说使用它们。因此,不得不借助图书馆和网络了解它们。MFC函数库很庞大,我这次用到的微乎其微,以后还得不断的学习和熟悉。一个那么庞大的函数库,我们该如何掌握它呢?通过这半个多月的学习,我个人觉得最重要的就是多练习,只有不断的练习,才能掌握它们的规律,帮助我们学好MFC函数库。 接下来,我将把这些天的成果在这里展现出来,与大家一起分享这份来之不易的喜悦!

模拟乘法器AD834的原理与应用

模拟乘法器AD834的原理与应用 1.AD834的主要特性 AD834是美国ADI公司推出的宽频带、四象限、高性能乘法器,其主要特性如下: ●带符号差分输入方式,输出按四象限乘法结果表示;输出端为集电极开路差分电流结构,可以保证宽频率响应特性;当两输入X=Y=±1V时,输出电流为±4mA; ●频率响应范围为DC~500MHz; ●乘方计算误差小于0.5%; ●工作稳定,受温度、电源电压波动的影响小; ●低失真,在输入为0dB时,失真小于0.05%; ●低功耗,在±5V供电条件下,功耗为280mW; ●对直通信号的衰减大于65dB; ●采用8脚DIP和SOIC封装形式。 2.AD834的工作原理 AD834的引脚排列如图1所示。它有三个差分信号端口:电压输入端口X=X1-X2和Y=Y1-Y2,电流输出端口W=W1-W2;W1、W2的静态电流均为8.5mA。在芯片内部,输入电压先转换为差分电流(V-I转换电阻约为280Ω),目的是降低噪声和漂移;然而,输入电压较低时将导致V-I转换线性度变差,为此芯片内含失真校正电路,以改善小信号V-I转换时的线性特性。电流放大器用于对乘法运算电路输出的电流进行放大,然后以差分电流形式输出。 AD834的传递函数为: W=4XY (X、Y的单位为伏特,W的单位为mA) 3.应用考虑 3.1 输入端连接

尽管AD834的输入电阻较高(20kΩ),但输入端仍有45μA的偏置电流。当输入采用单端方式时,假如信号源的内阻为50Ω,就会在输入端产生1.125mV的失调电压。为消除该失调电压,可在另一输入端到地之间接一个与信号源内阻等值的电阻,或加一个大小、极性可调的直流电压,以使差分输入端的静态电压相等;此外,在单端输入方式下,最好使用远离输出端的X2、Y1作为输入端,以减小输入直接耦合到输出的直通分量。 应当注意的是,当输入差分电压超过AD834的限幅电平(±1.3V)时,系统将会出现较大的失真。 3.2 输出端连接 采用差分输出,可有效地抑制输入直接耦合到输出的直通分量。差分输出端的耦合方式,可用RC耦合到下一级运算放大器,进而转换为单端输出,也可用初级带中心抽头的变压器将差分信号转换为单端输出。 3.3 电源的连接 AD834的电源电压允许范围为±4V~±9V,一般采用±5V。要求VW1和VW2的静态电压略高于引脚+VS上的电压,也就是+VS引脚上的电去耦电阻RS应大于W1和W2上的集电极负载电阻RW1、RW2。例如,RS为62Ω,RW1和RW2可选为49.9Ω,而+V=4.4V,VW1=VW2=4.6V,乘法器的满量程输出为±400mV。 引脚-VS到负电源之间应串接一个小电阻,以消除引脚电感以及去耦电容可能产生的寄生振荡;较大的电阻对抑制寄生振荡有利,但也会使VW1和VW2的静态工作电压降低;该电阻也可用高频电感来代替。 4.应用实例 AD834主要用于高频信号的运算与处理,如宽带调制、功率测量、真有效值测量、倍频等。在某航空通信设备扩频终端机(如图2所示)的研制中,笔者应用AD834设计了扩频信号调制器和扩频信号接收AGC电路。

辉光盘实验报告设计

辉光盘实验报告设计 一、实验目的 观察平板晶体中的高压辉光放电现象。 二、实验仪器 辉光盘演示仪 三、实验原理 闪电盘是在两层玻璃盘中密封了涂有荧光材料的玻璃珠,玻璃珠间充有稀薄的惰性气体(如氩气等)。控制器中有一块振荡电路板,通过电源变换器,将12V低压直流电转变为高压高频电压加在电极上。 通电后,振荡电路产生高频电压电场,由于稀薄气体受到高频电场的电离作用二产生紫外辐射,玻璃珠上的荧光材料受到紫外辐射激发而发出可见光,其颜色由玻璃珠上涂敷的荧光材料决定。由于电极上电压很高,故所发生的光是一些辐射状的辉光,绚丽多彩,光芒四射,在黑暗中非常好看。 四、实验步骤 1.将闪电盘后控制器上的电位器调节到最小; 2.插上220V电源,打开开关; 3.调高电位器,观察闪电盘上图像变化,当电压超过一定域值后,盘上出现闪光; 4.用手触摸玻璃表面,观察闪光随手指移动变化; 5.缓慢调低电位器到闪光恰好消失,对闪电盘拍手或说话,观察辉光岁声音的变化。 五、注意事项 1.闪电盘为玻璃质地,注意轻拿轻放; 2.移动闪电盘时请勿在控制器上用力,避免控制器与盘面连接断裂; 3.闪电盘不可悬空吊挂。

实验报告要求: 学生在完成实验报告时,需要写出所观察到的实验现象及实验感悟。 个人对演示实验的认识: 演示实验形象直观,能够引起学生的学习兴趣,同时演示实验能激发学生对实验的思考。学生学习的特点就是好奇心强,所以作为老师应根据学生这一认知特点,在物理教学中恰当进行演示实验,激发学生学习的好奇心和兴趣。演示实验留下的印象远比单纯的讲解要深得多。比如这个辉光盘实验能使学生了解平板晶体中的高压辉光放电的原理,通电后,由于稀薄气体受到高频电场的电离作用二产生紫外辐射,玻璃珠上的荧光材料受到紫外辐射激发而发出可见光,其颜色由玻璃珠上涂敷的荧光材料决定,由于电极上电压很高,故所发生的光是一些辐射状的辉光,绚丽多彩,光芒四射,在黑暗中非常好看。

模拟乘法器设计____模拟电路课程设计

乘法运算电路 1、课程设计的目的 模拟电子技术基础课程设计是学习模拟电子技术基础课程之后的实践教学环节。其目的是训练学生综合运用学过的模拟电子技术的基础知识。独立完成查找资料,选择方案,设计电路,撰写报告等工作。使学生进一步理解所学本课程的内容。并理论联系实际提高和培养学生的创新能力,为后续课程的学习毕业设计。毕业后的工作打下基础。 2、设计方案论证 理想模拟乘法器具备的条件:1.r i1和r i2为无穷大;2.r o为零; 3. k值不随信号幅值而变化,且不随频率而变化; 4.当u X或u Y为零时u o为零,电路没有失调电压、噪声。 由乘法电路的输出电压正比于其两个输入电压的乘积,即 u o = u I1u I2 求对数,得: 再求指数,得: 所以可以利用对数电路、求和电路和指数电路,得到乘法运算电路,其方块图1为: 对数电路 对数电路 u I1 u I2 ln u I1 ln u I2 求和电路 ln u I1+ ln u I2 指数电路

u O = u I1u I2 图1 乘法运算电路方块图 2.1 Multisim介绍 Multisim是加拿大图像交互技术公司(Interactive Image Technoligics 简称IIT公司)推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。它的前身为 EWB(Electronics Workbench)软件。它以界面形象直观、操作方便、分析功能强大、易学易用等突出优点,早在20世纪90年代初就在我国得到迅速推广,并作为电子类专业课程教学和实验的一种辅助手段。21世纪初,EWB 5.0更新换代推出EWB 6.0,并更名为Multisim 2001;2003年升级为Multisim 7.0;2005年发布Multisim 8.0时其功能已十分强大,能胜任电路分析、模拟电路、数字电路、高频电路、RF电路、电力电子及自动控制原理等个方面的虚拟仿真,并提供多达18种基本分析方法。 工程师们可以使用Multisim交互式地搭建电路原理图,并对电路行为进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。2.1.1破解版Multisim7安装方法注:电脑第一次安装Multisim7,须安装两遍;第二次及以后安装均会将跳过第一遍步骤,直接从第二遍步骤开始。第一遍安装步骤:(1)双击Multisim7破解版文件夹/双击Electronics Workbench MULTISMv7.0文件夹/Setup/Next/ 接受协议/Next安装DAO3.5。(2)第一遍安装结束,问是否现在重起计算机?选择“NO”/Finish。第二遍安装步骤:(1)仍双击Electronics Workbench MULTISMv7.0文件夹下的Setup/Next/接受协议/在Serial栏输入任意密码,Next/要求第二次输入密

6个单片机实验设计报告

实验一:流水灯 程序: #include sbit d0=P0^0; sbit d1=P0^1; sbit d2=P0^2; sbit d3=P0^3; sbit d4=P0^4; sbit d5=P0^5; sbit d6=P0^6; sbit d7=P0^7; void delay(unsigned int x); void main() { while(1) { d0=1; delay(250); d0=0; d1=1; delay(250); d1=0; d2=1; delay(250); d2=0; d3=0; delay(250); d3=1; d4=0; delay(250); d4=1; d5=0; delay(250); d5=1; d6=0; delay(250); d6=1; d7=0; delay(250); d7=1; } } void delay(unsigned int x) {

unsigned int y; for(;x>0;x--) for(y=500;y>0;y--); }

实验二:单个数码管显示0~9循环 #include unsigned int dulatable[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; void delay(unsigned int z); void main() { unsigned int x; while(1) { for(x=0;x<10;x++) { P1=dulatable[x]; delay(250); } } } void delay(unsigned int z) { unsigned int y; for(;z>0;z--) for(y=1000;y>0;y--); }

高频模拟乘法器的综合应用设计实验

学生学号实验课成绩 学生实验报告书 实验课程名称高频电子线路实验 开课学院信息工程学院 指导教师姓名 学生姓名 学生专业班级 20014-- 20015学年第一学期

实验课程名称:_高频电子线路

④倍频器电路设计与仿真 实现对信号的倍频。 基本条件:Ux=Uy(载波信号UX:f=1MHZ /50mV),并记录各级信号波形。推证输入、输出信号的关系。 ⑤整理所测数据及波形,认真分析各种频率变换电路工作原理,画出所测波形,写出符合规范的综合设计性实验报告,并谈谈自己的体会。 三.实验原理与电路设计仿真 1、集成模拟乘法器1496的内部结构 集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。所以目前在无线通信、广播电视等方面应用较多。集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。下面介绍MC1496集成模拟乘法器。 (1)MC1496的内部结构 (a)1496内部电路 (b)1496引脚图 图1 MC1496的内部电路及引脚图 MC1496 是目前常用的平衡调制/解调器。它的典型应用包括乘、除、平方、开方、倍频、

图2 MC1496的内部电路及电路模块引脚图 2、AM与DSB电路的设计与仿真 调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使高频振荡的振幅按调制信号的规律变化。把调制信号和载波同时加到一个非线性元件上(例如晶体二极管或晶体三体管),经过非线性变换电路,就可以产生新的频率成分,再利用一定带宽的谐振回路选出所需的频率成分就可实现调幅。幅度调制信号按其不同频谱结构分为普通调幅(AM)信号,抑制载波的双边带(DSB)信号,抑制载波和一个边带的单边带(SSB)信号。

模拟乘法器1496实验报告

实验课程名称:_高频电子线路

五.实验原理与电路设计仿真 1、集成模拟乘法器1496的内部结构 集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。所以目前在无线通信、广播电视等方面应用较多。集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。下面介绍MC1496集成模拟乘法器。 (1)MC1496的内部结构 MC1496 是目前常用的平衡调制/解调器。它的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频、动态增益控制等。MC1496 的和内部电路与外部引脚图如图1(a)(b)所示。 (a)1496内部电路 (b)1496引脚图 图1 MC1496的内部电路及引脚图 它内部电路含有 8 个有源晶体管,引脚 8 与 10 接输入电压 VX、1与 4接另一输入电压VY,6 与12 接输出电压 VO。一个理想乘法器的输出为VO=KVXVY,而实际上输出存在着各种误差,其输出的关系为:VO=K(VX +VXOS)(VY+VYOS)+VZOX。为了得到好的精度,必须消除 VXOS、VYOS与 VZOX三项失调电压。引脚 2 与 3 之间需外接电阻,对差分放大器 T5与 T6产生交流负反馈,可调节乘法器的信号增益,扩展输入电压的线性动态范围。 各引脚功能如下: 1:SIG+ 信号输入正端 2: GADJ 增益调节端 3:GADJ 增益调节端 4: SIG- 信号输入负端 5:BIAS 偏置端 6: OUT+ 正电流输出端 7: NC 空脚 8: CAR+ 载波信号输入正端 9: NC 空脚 10: CAR- 载波信号输入负端11: NC 空脚 12: OUT- 负电流输出端 13: NC 空脚 14: V- 负电源 (2)Multisim建立MC1496电路模块 启动multisim11程序,Ctrl+N新建电路图文件,按照MC1496内部结构图,将元器件放到电子工作平台的电路窗口上,按住鼠标左键拖动,全部选中。被选择的电路部分由周围的方框标示,表示完成子电路的选择。为了能对子电路进行外部连接,需要对子电路添加输入/输出。单击Place / HB/SB Connecter 命令或使用Ctrl+I 快捷操作,屏幕上出现输入/输出符号,

试验设计与数据处理试验报告

试验设计与数据处理试验报告 正交试验设计 1.为了通过正交试验寻找从某矿物中提取稀土元素的最优工艺条件,使稀土元素提取率最高,选取的水平如下:

需要考虑交互作用有A×B,A×C,B×C,如果将A,B,C分别安排在正交表L8(2)的 1,2,4列上,试验结果(提取量/ml)依次是1.01,,1,33,1,13,1.06,,1.03,0.08,,0.76,0.56. 试用方差分析法(α=0.05)分析实验结果,确定较优工艺条件 解:(1)列出正交表L8(27)和实验结果,进行方差分析。 试验号 A B A×B C A×C B×C 空号提取量(ml) 1 1 1 1 1 1 1 1 1.01 2 1 1 1 2 2 2 2 1.33 3 1 2 2 1 1 2 2 1.13 4 1 2 2 2 2 1 1 1.06 5 2 1 2 1 2 1 2 1.03 6 2 1 2 2 1 2 1 0.8 7 2 2 1 1 2 2 1 0.76 8 2 2 1 2 1 1 2 0.56 K1 4.53 4.17 3.66 3.93 3.5 3.66 3.63 K2 3.15 3.51 4.02 3.75 4.18 4.02 4.05 k1 2.265 2.085 1.83 1.965 1.75 1.83 1.815 k2 1.575 1.755 2.01 1.875 2.09 2.01 2.025 极差R 1.38 0.66 0.36 0.18 0.68 0.36 0.42 因素主次 A A×C B A×B B×C 优选方案 A1B1C1 SS J 0.23805 0.05445 0.0162 0.00405 0.0578 0.0162 0.02205 Q 7.7816 总和T 7.68 P=T^2/n 7.3728 SS T 0.4088 差异源SS df MS F 显著性 A 0.23805 1 0.23805 19.5925 9259 * B 0.05445 1 0.05445 4.48148 1481 A*B 0.0162 1 0.0162 1.33333 3333 C 0.00405 1 0.00405 0.33333 3333 A*C 0.0578 1 0.0578 4.75720 1646

实验设计报告心得体会大全

实验设计报告心得 体会大全

实验心得体会 这个学期我们学习了测试技术这门课程,它是一门综合应用相关课程的知识和内容来解决科研、生产、国防建设乃至人类生活所面临的测试问题的课程。测试技术是测量和实验的技术,涉及到测试方法的分类和选择,传感器的选择、标定、安装及信号获取,信号调理、变换、信号分析和特征识别、诊断等,涉及到测试系统静动态性能、测试动力学方面的考虑和自动化程度的提高,涉及到计算机技术基础和基于LabVIEW的虚拟测试技术的运用等。 课程知识的实用性很强,因此实验就显得非常重要,我们做了金属箔式应变片:单臂、半桥、全桥比较,回转机构振动测量及谱分析,悬臂梁一阶固有频率及阻尼系数测试三个实验。刚开始做实验的时候,由于自己的理论知识基础不好,在实验过程遇到了许多的难题,也使我感到理论知识的重要性。可是我并没有气垒,在实验中发现问题,自己看书,独立思考,最终解决问题,从而也就加深我对课本理论知识的理解,达到了“双赢”的效果。 实验中我学会了单臂单桥、半桥、全桥的性能的验证;用振动测试的方法,识别一小阻尼结构的(悬臂梁)一阶固有频率和阻尼系数;掌握压电加速度传感器的性能与使用方法;了解并掌握机械振动信号测量的基本方法;掌握测试信号的频率域分析方法;还有了解虚拟仪器的使用方法等等。实验过程中培养了我在

实践中研究问题,分析问题和解决问题的能力以及培养了良好的工程素质和科学道德,例如团队精神、交流能力、独立思考、测试前沿信息的捕获能力等;提高了自己动手能力,培养理论联系实际的作风,增强创新意识。 实验体会 这次的实验一共做了三个,包括:金属箔式应变片:单臂、半桥、全桥比较;回转机构振动测量及谱分析;悬臂梁一阶固有频率及阻尼系数测试。各有特点。 经过这次实验,我大开眼界,因为这次实验特别是回转机构振动测量及谱分析和悬臂梁一阶固有频率及阻尼系数测试,需要用软件编程,而且用电脑显示输出。能够说是半自动化。因此在实验过程中我受易非浅:它让我深刻体会到实验前的理论知识准备,也就是要事前了解将要做的实验的有关质料,如:实验要求,实验内容,实验步骤,最重要的是要记录什么数据和怎样做数据处理,等等。虽然做实验时,指导老师会讲解一下实验步骤和怎样记录数据,可是如果自己没有一些基础知识,那时是很难作得下去的,惟有胡乱按老师指使做,其实自己也不知道做什么。 在这次实验中,我学到很多东西,加强了我的动手能力,而且培养了我的独立思考能力。特别是在做实验报告时,因为在做

实验四 集成电路模拟乘法器的应用

实验四集成电路模拟乘法器的应用 模拟乘法器是利用晶体管的非线性特性,经过电路上的巧妙设计,在输出中仅保留两路输入信号中由非线性部分产生的信号的乘积项,从而获得良好的乘积特性的集成器件。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。所以目前在无线通信、广播电视等方面应用较多。集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。本实验仅介绍MC1496集成模拟乘法器。 一、实验目的 1.了解模拟乘法器(MC1496)的组成结构与工作原理,掌握其调整与特性参数的测量方法。 2.掌握利用乘法器实现振幅调制(AM与DSB)、同步检波、混频、倍频等几种频率变换电路的原理及设计方法。 3.学会综合地、系统地应用已学到模电、数电与高频电子线路的知识,掌握对振幅调制、同步检波、鉴频、混频和倍频电路的设计与仿真技能,提高独立解决问题的能力。二、实验设备与仪器 高频实验箱 WHLG-2 一台 数字双踪示波器 TDS-1002 一台 高频信号发生器 WY-1052 一台 数字万用表一块 三、实验任务与要求 1、模拟乘法器1496的构成、基本原理说明 ①集成模拟乘法器的内部结构 MC1496集成模拟乘法器的内部电路结构和引脚排列如图4-1所示。 图4-1 MC1496的内部电路及引脚图

MC1496是双平衡四象限模拟乘法器。其中V1、V2与V3、V4组成双差分放大器,V5、V6组成的单差分放大器用以激励V1~V4。V7、V8及其偏置电路组成差分放大器V5、V6的恒流源。引脚8与10接输入电压C u ,1与4接另一输入电压t u ,输出电压o u 从引脚6与12输出。引脚2与3外接电阻R E ,对差分放大器V5、V6产生串联电流负反馈,以扩展输入电压y u 的线性动态范围。引脚14为负电源端(双电源供电时)或接地端(单电源供电时),引脚5外接电阻R5。用来调节偏置电流I 5及镜像电流I 0的值。 ② 集成模拟乘法器的1496偏置电压与电流的确定 ● 静态偏置电压的确定 静态偏置电压的设置应保证各个晶体管工作在放大状态,即晶体管的集—基极间的电压应大于或等于2V ,小于或等于最大允许工作电压。根据MC1496的特性参数,对于图4-1所示的内部电路,应用时,静态偏置电压(输入电压为0时)应满足下列关系,即: 12641108,,u u u u u u === ?? ? ?? ≥-≥≥-≥≥-≥V u u u V V u u u u V V u u u u V 7.2),(157.2),(),(152),(),(1554141108108126 ● 静态偏置电流的确定 一般情况下,晶体管的基极电流很小,对于图4-1,三对差分放大器的基极电流I 8、I 10、I 1和I 4可以忽略不计,因此器件的静态偏置电流主要由恒流源的值确定。当器件为单电源工作时,引脚14接地,5脚通过一电阻R 5接正电源(+U CC 的典型值为+12V ),由于I 0是I 5的镜像电流,所以改变电阻R 5可以调节I 0的大小,即: 当器件为双电源工作时,引脚14接负电源-U EE (一般接-8V),5脚通过一电阻R 5接地,因此,改变R 5也可以调节I 0的大小,即: 则: 当V EE =-8V ,I 5=1mA 时,可算得: R 5={(8-0.75)/(1X10-3 )}-500=6.75K Ω 取标称电阻,则R5=6.8K Ω 根据MC1496的性能参数,器件的静态电流小于4mA ,一般取mA I I 150==左右。 此时,器件的总耗散功率可由下式估算: ) ()(214551465u u I u u I P D -+-= PD 应小于器件的最大允许耗散功率(33mW )。 ● 负载电阻RC 的选择 Ω +-= ≈5007.0550R V u I I CC Ω +--= ≈5007.0550R V u I I EE Ω--= 5007 .05 5I V R EE

电子科技大学 实验设计方法 实验报告

电子科技大学 实 验 报 告 学生姓名:黎超群 学号: 20 指导教师:王守绪、何为 日期: 2014年5月13日

一、实验室名称: 211大楼 二、实验项目名称: 统计分析应用软件在优化试验设计中的应用 三、实验原理: 统计分析应用软件可以应用在优化试验设计中以简化运算,提高工作效率 四、实验目的: 1. 掌握“正交助手”应用软件在正交试验统计分析法中的应用 2. 熟悉Minitab、DPS统计分析应用软件在多元回归分析中的应用 3. 熟悉“均匀设计”应用软件在均匀试验设计以及分析方法中的应用 4. 加深对理论教学知识的理解 5. 更深刻理解试验设计方法在实际工作中的应用 五、实验内容: 1、用“正交设计助手”进行正交实验的极差分析和方差分析 2、用“正交设计助手”处理带交互作用的正交试验问题 3、minitab进行正交实验的方差分析 4、minitab处理多元回归分析问题 5、“均匀设计”软件解决均匀设计问题的一般流程 6、用DPS数据处理系统处理正交实验及回归分析 六、实验器材(设备、元器件): 计算机、正交设计助手软件、Minitab软件、均匀设计软件、DPS数据处理系统

七、实验步骤: Ⅰ. 用“正交设计助手”进行正交实验的极差分析和方差分析 1.点击文件→新建工程→右击未命名工程→修改工程→键入用户名→点击实验 34)→再点→新建实验→填写实验名称和描述→点击旁边选项卡选择正交表(L 9 击“因素与水平”选项卡填写实验因素和水平(图1)→软件自动完成实验安排(图2)→填写实验结果(图3)→点击分析→“直观分析”得到极差分析结果(图4)→点击“因素指标”得到各因素二元图(图5)→点击“方差分析”→选择误差列为空白列得到方差分析结果(图6)→实验Ⅰ结束 图1 图2 图3 图4 图5 图6Ⅱ. 用“正交设计助手”处理带交互作用的正交试验问题 27)→填写因素、交互作点击新建实验→填写实验名称和描述→选择正交表(L 8 用和水平(图1)→软件自动安排实验(图2)→输入实验结果(图3)→点击“直观分析”得到极差分析结果(图4)→点击“交互作用”→选择发生交互作用的A、B得到交互作用表(图5)→点击“方差分析”得到方差分析结果(图6)

高频实验五 模拟乘法器幅度调制实验报告

实验五 模拟乘法器幅度调制实验 实验六 调幅波同步解调实验 实验五 模拟乘法器幅度调制实验 一.实验目的 1. 通过实验了解集成模拟乘法器MC1496的典型应用电路工作原理,通过调整外部电路的元件参数,得到AM 波和DSB-SC 波。 2. 通过实验,验证普通调幅波(AM )和抑制载波双边带调幅波(AM SC DSB -/)的相关理论,并研究调制信号、载波信号与已调波之间的关系。 3.掌握在示波器上观察调幅波和测量调幅指数的方法。 二、实验使用仪器 1.集成模拟乘法调幅实验板 2.100MH 泰克双踪示波器 3. FLUKE 万用表 4.低频双通道信号源 5.高频信号源 三、实验基本原理与电路 1.调幅信号的分析 (一) 普通调幅波(AM )(表达式、波形、频谱、功率) (1).普通调幅波(AM )的数学表达式、波形 设调制信号为单一频率的余弦波: t U u m Ω=ΩΩcos , 载波信号为 :t U u c cm c ωcos = 普通调幅波(AM )的表达式为: AM u =t t U c AM ωcos )()cos 1(t m U a cm Ω+=t c ωcos 式中,a m 称为调幅系数或调幅指数。 由于调幅系数a m 与调制电压的振幅成正比,即m U Ω越大,a m 越大,调幅波包络的变化速度越大。 一般a m 小于或等于1。如果a m >1,调幅波产生失真,这种情况称为过调幅。

未调制状态调制状态 m a Ucm ω0 Ω 图5-1 调幅波的波形 (2). 普通调幅波(AM )的频谱 普通调幅波(AM )的表达式展开得: t U m t U m t U u c cm a c cm a c cm AM )cos(2 1 )cos(21cos Ω-+Ω++ =ωωω (5-2) 它由三个高频分量组成。将这三个频率分量用图画出,便可得到图5-2所示的频谱图,在这个图上调幅波的每一个正弦分量用一个线段表示,线段的长度代表其幅度,线段在横轴上的位置代表其频率。 图1-2 普通调幅波的频谱图 调幅的过程就是在频谱上将低频调制信号搬移到高频载波分量两侧的过程。在单频调制时,其调幅波的频带宽度为调制信号频谱的两倍,即F B 2= (二) 抑制载波双边带调幅(AM SC DSB -/) 由以上讨论可以看出AM SC DSB -/调制信号有如下的特点: (a )AM SC DSB -/信号的幅值仍随调制信号而变化,但与普通调幅波不同, AM SC DSB -/的包络不再反映调制信号的形状,仍保持调幅波频谱搬移的特征。 (b )在调制信号的正负半周,载波的相位反相,即高频振荡的相位在0)(=t f 瞬间有0180的突变。 (3)AM SC DSB -/调制,信号仍集中在载频0ω附近,所占频带为 max 2F B D SB = 由于AM SC DSB -/调制抑制了载波,输出功率是有用信号,它比普通调幅经济。但在频带利用率上没有什么改进。

集成模拟乘法器及其应用-集成电路

第6章 集成模拟乘法器及其应用 6.1集成模拟乘法器 教学要求: 1.掌握集成模拟乘法器的基本工作原理; 2.理解变跨导模拟乘法器的基本原理; 3.了解单片集成模拟乘法器的外部管脚排列及外接电路特点。 一、集成模拟乘法器的工作原理 (一)模拟乘法器的基本特性 模拟乘法器是实现两个模拟量相乘功能的器件,理想乘法器的输出电压与同一时刻两个输入电压瞬时值的乘积成正比,而且输入电压的波形、幅度、极性和频率可以是任意的。其符号如下图所示,K 为乘法器的增益系数。 1.模拟乘法器的类型 理想乘法器—对输入电压没有限制, u x = 0 或 u y = 0 时,u O = 0,输入电压的波形、幅度、极性和频率可以是任意的 。 实际乘法器—u x = 0 , u y = 0 时,u O 1 0,此时的输出电压称为输出输出失调电压。u x = 0,u y 1 0 (或 u y = 0,u x 1 0)时,u O 1 0,这是由于u y (u x )信号直接流通到输出端而形成的,此时 的输出电压为u y (u x )的输出馈通电压。 (二)变跨导模拟乘法器的基本工作原理 变跨导模拟乘法器是在带电流源差分放大电路的基础上发展起来的,其基本原理电路如下图所示。

在室温下,K为常数,可见输出电压u 与输入电压u y、u x的乘积成正比,所以差分放大电路具有乘法功 O 能。但u y必须为正才能正常工作,故为二象限乘法器。当u Y较小时,相乘结果误差较大,因I C3随u Y而变,其比值为电导量,称变跨导乘法器 . 二、单片集成模拟乘法器 实用变跨导模拟乘法器由两个具有压控电流源的差分电路组成,称为双差分对模拟乘法器,也称为双平 衡模拟乘法器。属于这一类的单片集成模拟乘法器有MC1496、MC1595等。MC1496内部电路如下图所示。

实验报告设计

测量小灯泡电功率实验报告 实验小组:第组成员签名: [题目]测量小灯泡的电功率。 [实验目的]测量小灯泡在不同电压下工作时的电功率。 [实验原理]: [实验电路]根据实验的目的和原理设计如下电路。 。 [说明]用电流表和电压表分别测出通过小灯泡的电流和其两端电压,因为要测量不同电压下的功率,所以电路中要接入滑动变阻器,用来改变小灯泡两端电压。[实验器材]小灯泡、电压表、电流表、滑动变阻器、电源、开关各一只,导线若干。[说明]电源的选择应考虑小灯泡的额定电压,选择大于小灯泡额定电压的1.2倍,但不能过大。 实验数据(记录)表格: 实验要求 电流(A)电压(V)电功率(W)发光情况 1 小灯泡在额定电压下工作 2 小灯泡两端电压是额定电压的1.2倍 3 小灯泡两端电压低于额定电压 [实验步骤] 1.按电路图连接实物电路。 2.合上开关,调节滑动变阻器,使小灯泡两端电压为额定电压,观察小灯泡发光情况,记

录电流表、电压表示数。 3.调节滑动变阻器,使小灯泡两端电压为额定电压值的1.2倍,观察灯泡发光情况,记录电流表、电压表示数。 4.调节滑动变阻器,使小灯泡两端电压低于额定电压,观察并做记录。 5.断开开关,整理实验器材。[说明] 1.按电路图连接实物电路时注意: (1)连接过程中开关应始终处于断开状态。 (2)根据小灯泡的额定电压值,估计电路中电流、电压的最大值,选择合适的量程,并注意正负接线柱的连接及滑动变阻器正确接法。 (3)连接好以后,每个同样检查一遍,保证电路连接正确。 2.合上开关前,应检查滑动变阻器滑片是否在最大值的位置上,若不是,要弄清楚什么位置是最大位置并调整。 3.调节滑动变阻器的过程中,要首先明白向什么方向可以使变阻器阻值变大或变小,怎么调能使小灯泡两端电压变大或变小。[实验结论] 由公式P=IU计算小灯泡的功率。(将计算结果填入表中,通过分析和比较得出)[结论]不同电压下,小灯泡的功率不同。实际电压越大,小灯泡功率越大。(2)小灯泡的亮度由小灯泡的实际功率决定,实际功率越大,小灯泡越亮。 [评估]

模拟乘法器实验

模拟乘法器的应用 ——低电平调幅 姓名: 学号: 实验台号: 一、 实验目的 1、掌握集成模拟乘法器的工作原理及其特点 2、进一步掌握集成模拟乘法器(MC1596/1496)实现振幅调制、同步检波、混频、倍频的电路调整与测试方法 二、实验仪器 低频信号发生器 高频信号发生器频率计 稳压电源 万用表 示波器 三、实验原理 1、MC1496/1596 集成模拟相乘器 集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。可用作宽带、抑制载波双边带平衡调制器,不需要耦合变压器或调谐电路,还可作为高性能的SSB 乘法检波器、AM 调制解调器、FM 解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多数学运算,如乘法、除法、乘方、开放等。 MC1496 的内部电路继引脚排列如图所示 MC1496型模拟乘法器只适用于频率较低的场合,一般工作在1MHz 以下的频率。双差分对模拟乘法器MC1496/1596的差值输出电流为 1 21 562()( )( ) 22T y T i i i th th V R V υυυ=-≈

MC1595是差值输出电流为 式中,错误!未找到引用源。为乘法器的乘法系数。MC1496/1596使用时,VT1至VT6的基极均需外加偏置电压。 2.乘法器振幅调制原理 X通道两输入端8和10脚直流电位均为6V,可作为载波输入通道;Y通道两输入端1和4脚之间有外接调零电路;输出端6和12脚外可接调谐于载频的带通滤波器;2和3脚 之间外接Y通道负反馈电阻R 8。若实现普通调幅,可通过调节10kΩ电位器RP 1 使1脚电位 比4脚高错误!未找到引用源。,调制信号错误!未找到引用源。与直流电压错误!未找到引用源。叠加后输入Y通道,调节电位器可改变错误!未找到引用源。的大小,即改变调 制指数M a ;若实现DSB调制,通过调节10kΩ电位器RP 1 使1、4脚之间直流等电位,即Y通 道输入信号仅为交流调制信号。为了减小流经电位器的电流,便于调零准确,可加大两个750Ω电阻的阻值,比如各增大10Ω。 MC1496线性区好饱和区的临界点在15-20mV左右,仅当输入信号电压均小于26mV时,器件才有良好的相乘作用,否则输出电压中会出现较大的非线性误差。显然,输入线性动态范围的上限值太小,不适应实际需要。为此,可在发射极引出端2脚和3脚之间根据需要接 入反馈电阻R 8 =1kΩ,从而扩大调制信号的输入线性动态范围,该反馈电阻同时也影响调制器增益。增大反馈电阻,会使器件增益下降,但能改善调制信号输入的动态范围。 MC1496可采用单电源,也可采用双电源供电,其直流偏置由外接元器件来实现。 1脚和4脚所接对地电阻R 5、R 6 决定于温度性能的设计要求。若要在较大的温度变化 范围内得到较好的载波抑制效果(如全温度范围-55至+125),R 5、R 6 一般不超过51Ω;当 工作环境温度变化范围较小时,可以使用稍大的电阻。 R 1-R 4 及RP 1 为调零电路。在实现双边带调制时,R 1 和R 2 接入,以使载漏减小;在实现 普通调幅时,将R 1及R 2 短路(关闭开关S 1 、S 2 ),以获得足够大的直流补偿电压调节范围, 由于直流补偿电压与调制信号相加后作用到乘法器上,故输出端产生的将是普通调幅波,并 且可以利用RP 1 来调节调制系数的大小。 5脚电阻R 7决定于偏置电流I 5 的设计。I 5 的最大额定值为10mA,通常取1mA。由图可 看出,当取I 5=1mA,双电源(+12V,-8V)供电时,R 7 可近似取6.8kΩ。 输出负载为R 15,亦可用L 2 与C 7 组成的并联谐振回路作负载,其谐振频率等于载频,

相关文档
最新文档