变电所接地网优化与低压配电系统接地

合集下载

关于某变电站低压侧中性点接地方式的选择概述

关于某变电站低压侧中性点接地方式的选择概述

关于某变电站低压侧中性点接地方式的选择概述摘要:电力系统中性点接地方式是配电网设计、规划和运行中的一个重要的综合性技术课题。

它对电力系统许多方面都有影响,不仅涉及到电网本身的安全可靠性、设备和线路的绝缘水平,而且对通讯干扰、人身安全有重要影响。

中性点接地方式的选择也是一个复杂的问题,要考虑电网结构、系统运行情况、线路的设备状况和周围自然环境等因素,还必须考虑人身安全、通信的干扰和供电可靠性的要求。

本文依托此现状就某新建变电站35千伏配电装置中性点接地方式的选择进行简要分析。

0背景根据某地电网规划,35千伏电网将逐渐退出电网,未来不新建35千伏变电站,投运的110千伏变电站和220千伏变电站将无35千伏电压等级。

但为某地北部大部分乡镇供电的35千伏变电站扔将运行十年或更久,目前为乡镇提供35千伏电源的上级变电站目前仅有两座,其站内主变长期保持重载,大负荷方式下一旦出现线路或设备故障就有可能导致某地北部大面积停电。

为暂时缓解供电压力,提高35千伏电网转供能力,同时优化35千伏网架结构,需要部分新建变电站在建设初期考虑35千伏电压等级配电设备,远期拆除。

因规划均以高压电缆通过城市综合管廊联络出线,而35千伏电网以架空线为主,此现状导致未来新建35千伏出线存在电缆线路+架空线路并存的情况。

1.1国内外现状综述对于中压配电网的中性点接地方式问题,世界各国有着不同的观点及运行经验。

因此,世界各个国家,甚至一个国家中的不同城市中,中压配电网的中性点接地方式都不尽相同,主要根据各自中压配电网的运行经验和传统来确定。

1.1.1 国外发展现状(1)前苏联及东欧前苏联规定在下列情况下采用中性点不接地方式:6kV电网单相接地电流小于30A;10kV电网单相接地电流小于20A;15~20kV电网单相接地电流小于15A;35kV电网单相接地电流小于10A。

如果单相接地电流超过上述各值,则需采用中性点消弧线圈接地方式。

(2)西欧地区德国是世界上最早使用消弧线圈的国家,白1916年发明消弧线圈、1917年在Pleidelshein电厂首次投运,至今已有90多年的历史。

论低压电力系统的接地

论低压电力系统的接地

论低压电力系统的接地摘要:确保电力系统的安全、稳定、经济运行需要一个良好、合格的接地网,而接地网的设计对其安全运转有着至关重要的作用。

在低压电力系统中,tn系统、tt系统、it系统都有着各自的适用范围,只有在设计时根据不同场所选择合适的接地型式,才能切实提高接地的安全性。

关键词:电力系统、接地、安全用电中图分类号: f406 文献标识码: a 文章编号:接地网作为设备接地及防雷保护接地,对系统的安全运行起着重要的作用。

但由于接地网作为隐形工程往往容易被人忽视。

随着电力系统电压等级升高及容量的增加,如果没有选取合适的接地形式,会有各种事故发生。

为保证电力系统的安全运行,本文从设计角度浅谈低压电力系统的接地形式。

tn系统电源端有一点直接接地(通常是中性点),电气装置的外漏可导电部分通过保护中性导体或保护导体连接到此接地点。

根据中性导体(n)和保护导体(pe)的组合情况,tn系统的型式有一下三种:tn-s系统:整个系统的n线和pe线是分开的tn-c系统:整个系统的n线和pe线是合一的(pen线)tn-c-s系统:系统中一部分线路的n线和pe线是合一tt系统电源端有一点直接接地,电气装置的外漏可导电部分直接接地,此接地点在电气上独立于电源端的接地点it系统电源端带电部分不接地或有一点通过阻抗接地。

电气装置的外漏可导电部分直接接地系统接地型式的选用整个tn-s配电系统的中性线与保护线是分开的,具有tn-c系统的优点。

但用线多,价格较贵。

正常运行时pe线中没有任何电流流过,因此与pe线相连接的电气设备的金属外壳正常工作时没有电位,所以tn-s系统适用于对数据处理和精密电子仪器设备供电。

tn-s系统还适用于设有变电所的公共建筑、医院、有爆炸和火灾危险的厂房和场所、单项负荷比较集中的场所,数据处理设备、半导体整流设备和晶闸管设备比较集中的场所,洁净厂房,办公楼与科研楼,计算机站,通信局、站以及一般住宅、商店等民用建筑电气装置。

配电变压器及低压开关柜的接地方案探讨

配电变压器及低压开关柜的接地方案探讨

配电变压器及低压开关柜的接地方案探讨作者:付正义来源:《科学导报·科学工程与电力》2019年第16期关于地铁变电所中配电变压器及低压开关柜的接地做法不尽相同,本文主要对现存的几种做法进行分析比较,并给出推荐做法。

地铁的低压系统接地方式采用TN-S ,根据GB14050《系统接地的型式及安全技术要求》,系统的中性导体(N )与保护导体(PE )在电源处是连在一起的,其它部位是完全分开的,N 线和PE 线在在电源处统一接地,其它部分两者是分开的。

TN-S 系统正常运行时,N 线上有三相不平衡电流,PE 线上没有电流,PE 线上也没有电压,外露可导电部分接到PE线上,安全可靠。

在发生故障时,短路电流通过PE线流回电源中性点,由于PE线为铜排,阻抗很小,短路电流足够大,可以使开关的过流保护动作而切断故障,从而保护了设备和人身的安全。

注:GB14050-2008的第5.1.1条轨规定:“凡可被人体同时触及的外漏可导电部分,应连接到同一接地系统”。

地铁的配电系统设两台配电变压器,分列运行,设置母联开关,正常運行时,母联开关分闸。

当一台配电变压器退出运行时,进线开关分闸,母联开关合闸,由另一台配电变压器带一、二级负荷。

系统的理想的接线型式如下图,图中,N线和PE线在配电变压器中性点接地。

用电设备产生的三相不平衡电流要通过N线返回配电变中性点。

发生单相接地短路时,短路电流流过PE线直接返回配电变压器中性点,这时的短路电流是最大的,可启动断路器跳闸。

不宜通过其它导体返回中性点,因为会使回路电阻增大,短路电流减小,断路器可能不会跳闸。

除正常做法外,目前发现另外的三种接法,一种是:这种接法是配电变压器N线通过电缆接到接地母排,低压开关柜内的PE线通过接地支线接至接地干线,接地干线再接至接地母排。

这种情况下,发生单相接地短路,短路电流流过PE线-接地支线-接地干线-接地母排-接地电缆,最后返回配电变压器中性点。

浅谈配电变压器接地优化

浅谈配电变压器接地优化
j ÷留 f fff} f l|§ | j.. §| §|4々l 《。一 々 .≯|| j|| ,∥ .
_ ∞ t F t
l珏 t
% 龆 % 蕾 % t 一 # at
}# % “ 0


0一 囊
∞ t

囊 》
≯ ¨¨ F & }
g 摩

t ,
Байду номын сангаас
}| ≯
浅 谈 配 电 变 压 器 接 地 优 -fP.
郑 伟 梅 俊 伟 (信 阳 供 电 公 司 配 电 服 务 中 心 河南 信 阳 464000)
中 图 分 类 号 :TB
文 献标 识码 :A
文 章 编 号 :10O8—925X(2O12)O8—0137-02
器 容 量 为 100 kV·A 及 以 下 时 ,接 地 电 阻 不 得 大 于 10n:当 配 200 m 的 分 支 处 以及 沿 线 每 1 km 处 零 线 均 应 重 复 接 地 :高 低
电变 压 器 容 量 大 于 100 kV.A 时 ,接 地 电 阻 不 得 大 于 4 Q。配 电 压 线 路 同 杆 敷 设 时 .共 同 敷 设 段 的 两 端 低 压 零 线 应 重 复 接 地 :
f1)计 算 :Re=p(1/4 R 1/L)(1)式 中 Re— — 工 频 接
统 等 .但 应 保 证 接 头 处 有 可 靠 的 电 气 连 接 。
地 电 阻 .Q:
1.3人 工 接 地 极 连 接 的要 求 :水 平 接 地 极 的 连 接 宜 采 用 焊
R — — 接 地 网 的 等 效 半 径 .133:
摘 要 :对 于 配 变 变 压 器 的接 地 方 式,电 力 设备 接 地 设计 技 术 ,低 压 电力 设 备 接 地 装 置 的接 地 电 阻,不 宜超 过 4 Q。 架 空 配 电线 路 及 设 备 运 行 总如 容 量 在 1O0 kVA 及 以上 的 变 压 器 其 接 地 装 置 的接 地 电 阻 不 应 大 于 4 Q 每 个 重 复接 地 装 置 的 接 地 电 阻不 应 大 于 10 Q:总容 量 在 100 kVA 以 下的 变压 器,其 接 地 装 置 的接 地 电 阻不 应 大 于 10 n ,且 重 复接 地 不 应 少于 3 处 。中性 点 直 接 接 地 的低 压 电 力 网 中的 中性 线 ,应 在 电源 点 接 地 ,在 配 电 线 路 的 干 线 和 分 干 线 (支线 )终 端 处应 重 复 接 地 :在 线 路 引入 车 间 或 大 型 建 筑 物 处 .也 应 将 中性 线重 复接 地 。 配 电 变压 器低 压侧 中性 点 的 工作 接 地 电 阻 ,一 般 不 大 于 4 Q .1OO kvA 以 下 配 变可 不 大 于 10 n ,并 要 求 在 一 年 四 季 中均 符 合 这 个 要 求 ..城 镇 、电 力用 户 宜采 用 TN~c 系统 。 由此 可 见 配 变的接 地 重要 问题 。 关 键 词 :配 变 接 地 优 化

低压配电系统IT、TT和TN接地方式的详细图文详解分析

低压配电系统IT、TT和TN接地方式的详细图文详解分析

低压配电系统IT、TT和TN接地方式的详细图文详解分析仪表人对仪表接地并不陌生,在本文讲讲低压配电IT系统、TT系统、TN系统的接地方式。

这三种接地方式容易混淆,它们的原理、特点和适用范围各有不同,希望能对广大的仪表人有所帮助。

定义根据现行的国家标准《低压配电设计规范》(GB 50054-2011),低压配电系统有IT系统、TT系统、TN系统三种接地形式。

①IT、TT、TN的第一个字母表示电源端与地的关系T表示电源变压器中性点直接接地;I标志电源变压器中性点不接地,或通过高阻抗接地。

②IT、TT、TN的第二个字母表示电气装置的外露可导电部分与地的关系T标志电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点;N表示电气装置的外露可导电部分与电源端接地点有直接电气连接。

低压配电系统IT、TT和TN全面剖析1、IT系统IT系统就是电源中性点不接地,用电设备外露可导电部分直接接地的系统。

IT系统可以有中性线,但IEC强烈建议不设置中性线。

因为如果设置中性线,在IT系统中N线任何一点发生接地故障,该系统将不再是IT系统。

IT系统特点①IT系统发生第一次接地故障时,仅为非故障相对地的电容电流,其值很小,外露导电部分对地电压不超过50V,不需要立即切断故障回路,保证供电的连续性;②发生接地故障时,对地电压升高1.73倍;③220V负载需配降压变压器,或由系统外电源专供;④安装绝缘监察器。

使用场所:供电连续性要求较高,如应急电源、医院手术室等。

⑤IT方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。

一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。

地下矿井内供电条件比较差,电缆易受潮。

⑥运用IT方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。

但是,如果用在供电距离很长的情况下,供电线路对大地的分布电容就不能忽视了。

低压配电系统的接地安全基础知识范本

低压配电系统的接地安全基础知识范本

低压配电系统的接地安全基础知识范本一、引言低压配电系统的接地安全是电力系统重要组成部分,起着保护人身安全、防止设备损伤的重要作用。

正确的接地设计和维护可以减少地电压、故障电流等对人员与设备的伤害风险。

本文将介绍低压配电系统接地的基础知识,包括接地标准、接地类型、接地电阻、接地装置等相关内容。

二、接地标准根据国家标准和行业规范,低压配电系统的接地应符合以下标准:1. GB 50054-2011《建筑电气设计规范》2. GB 50057-2010《智能建筑电气设计规范》3. GB 50254-2015《建筑电气装置设计规范》4. DL/T 874-2004《电力系统接地设计准则》5. DL/T 746-2009《电力系统接地测试技术导则》三、接地类型低压配电系统的接地类型主要有以下几种:1. TN 系统:即电源的中性点直接接地,用户与电源之间的导体通过低阻抗连接。

TN-C、TN-S、TN-C-S 分别代表了共同中性线接地、单独中性线接地和中性线中有一段共地。

2. TT 系统:用户与电源之间的导体通过绝缘进行连接,用户与地之间的导体通过低阻抗连接。

3. IT 系统:即电源的中性点不接地,用户与电源之间的导体通过绝缘进行连接,用户与地之间的导体不直接连接,而是通过绝缘监护装置进行监护。

四、接地电阻接地电阻是评价接地装置性能的重要指标,它反映了接地系统的可靠性和安全性。

接地电阻的大小直接影响到接地电流和接地电压的大小。

接地电阻的测量方法主要有“其它法”和“电压降法”,其中“电压降法”是应用比较广泛的方法。

在进行接地电阻测量时,需要注意以下几个方面:1. 测量点要选择在接地装置附近,避免测量引线的电阻干扰。

2. 测量点要选择在整个接地系统的有效接地区域,并保证测量点与其它金属物体的距离。

3. 在测量过程中需要关闭其它与被测接地系统相连接的设备,避免电流造成的干扰。

五、接地装置1. 接地棒:接地棒是低压配电系统中常用的接地装置之一,它通过将电气设备与地之间的电流导入地中,减少因电气设备发生故障而导致的电压升高。

中、低压配电系统中性点接地方式

中、低压配电系统中性点接地方式

网单相接地故障电流小,对通信干扰小 ,电磁兼容好 。
1 1 4 绝 缘 水 平 ..
关 于绝缘水平 ,一种观点认为 :中压 电网采用 低 电阻接地方式时 ,可快速切除接地故障 ,过 电压水 平
低 ,能消 除谐 振 过 电压 ,因此 可 采 用 绝 缘 水 平 较 低 的 电缆 和 电气 设 备 。而 研 究 与 实 践 证 明 ,降 低 绝 缘 水 平
-— ——●—● ●—_—_ —__—一 BU I LDI NG
2 0 12 年 第 2 期 l EL ECTRl TY CI
的 统 计 方 法 是 以一 个 1 V ( 大 于 1 V) 配 电 变 0k 或 0k
静 电耦合 、地 中电流传 导和 高频 电磁 辐射 4种原 因 .
Ke wo ds y r 1 V p we rd 0k o r g i
S bsain u tto
Ne ta p i t ur l on
Gr u d n p te n o n i g atr
电压 等级进 行讨论 。
电 力 系 统 中 性 点 接 地 方 式 基 本 上 可 以 划 分 为 两 大 类 :凡 是 需 要 断 路 器 切 断 单 相 接 地 故 障 的 ,属 于 大 电 流 接 地 方 式 :凡 是 单 相 接 地 电 弧 能 够 瞬 间 自行
行 I i { } i l f f } 业 学 术 组 织 推 荐 论 文
中 、低压 配 电系统 中性 点接地 方式
容 浩 ( 南建 筑 设 计 院 股 份 有 限公 司 ,武 汉 市 中 407) 3 0 1
Ne ta i tG r u d n te n n LV /M V srb t n S se url Po n o n i g Pa tr si Diti u i y tm o

变电所接地-跨步电压和接触电压

变电所接地-跨步电压和接触电压

变电所接地-跨步电压和接触电压计算公式变电所的高压系统的接地与低压系统的接地,可共用接地系统或分立接地系统。

涉及人身与设备的安全。

1 10kV系统中性点接地可分为:中性点非有效接地系统(小电流接地系统)-中性点不接地系统;-经消弧线圈接地系统;-高电阻接地系统。

中性点有效接地系统(大电流接地系统)-中性点直接接地系统;-经低电阻接地系统。

1.1 10kV系统中性点不接地系统(1) 接地故障特点配电系统在正常运行时,三相基本平衡电压作用下,各相对地电容电流I CL1、I CL2、I CL3相等,分别超前相电压90°,I CL1=I CL2=I CL3=UΦωC,其I CL1+I CL2+I CL3=0,系统中性点与地有相同电位。

L1相发生接地故障,忽略接地过渡电阻,视为金属性接地,10kV系统各支路的电容电流的流向如图图1-1所示:图1-1 10kV系统接地故障示意从10kV系统接地故障示意图可以得出结论:a)全系统所有非故障的各支路,故障相的电容电流均为零,非故障相均有电容电流;b)在故障支路,故障相流过所有各支路的电容电流的总和;c)故障支路的电容电流其方向由负载流向电源,非故障各支路的电容电流其方向由电源流向负载;d)故障支路检测的零序电流为各非故障支路电容电流总和;e)接地故障电流大小与接地故障点的位置无关,只与接地故障点的过渡电阻有关。

10kV系统接地故障,电压与电流矢量关系如图1-2所示:图1-2 10kV系统接地故障矢量图L1相发生接地故障,相当于在L1相上加上U0=-U L1,L2相L3相也加上U0=-U L1,非故障相对地电压升高3倍,其夹角由120°变成60°,合成的电容电流增大3倍,接地故障电流为单相电容电流的3倍,I d=3UΦωC。

(2) 优缺点a)接地故障引起系统内部过电压可达3.5倍相电压,易使设备和线路绝缘被击穿。

b)油浸纸绝缘电力电缆达20A,聚乙烯绝缘电力电缆达15A,交联聚乙烯绝缘电力电缆达10A,接地故障电流引燃电弧则不能自熄,引起间歇性电弧,产生过电压易产生相间短路或火灾;c)非故障相对地电压升高3倍。

低压配电系统保护接地安全运行的不同方式

低压配电系统保护接地安全运行的不同方式

低压配电系统保护接地安全运行的不同方式低压配电系统是指电压等级较低的电力配电系统,一般为380V和220V的配电系统。

为了确保低压配电系统的安全运行,必须采取一系列的保护措施,其中包括接地保护。

接地保护是指将电气设备的金属外壳等非电性部分与地地之间连通,以便当设备发生漏流或漏电时,通过接地装置将漏电流迅速导入地下,保护人身安全和设备的正常工作。

根据国家相关标准和规范,低压配电系统保护接地安全运行的方式主要有以下几种:1. 金属防护接地:金属防护接地是指将低压配电系统中的金属设备的金属外壳接地,形成一个安全的接地网。

这种接地方式适用于如电流互感器、电力电缆金属护套等金属设备。

金属防护接地的目的是保证设备的工作安全,防止操作人员电击伤害。

2. 保护零线接地:保护零线接地是指将低压配电系统中的零线接地,以便在系统发生漏电时能够及时引入接地线,使系统短路,起到保护作用。

保护零线接地适用于需要检测和切断漏电故障的低压配电系统。

3. 中性点接地:中性点接地是指将低压配电系统的中性点接地,形成一个接地网。

中性点接地的作用是确保系统中的中性点电位趋于稳定,并能够提供接地故障电流的得到及时的切除,避免对系统其他部分的影响。

中性点接地适用于需要保护系统中的中性点安全运行的低压配电系统。

4. 感应式接地:感应式接地是一种无电极接地方式,通过感应作用将漏电线圈装置与大地之间形成一个感应环。

当系统发生漏电时,感应环感应到漏电,进而产生感应电流,切断漏电线路。

感应式接地适用于需要切断漏电故障的低压配电系统。

5. 电源接地:电源接地是指将低压配电系统的电源进行接地。

电源接地的作用是保护电源设备,防止外界电压的干扰。

同时,电源接地还可以保证电源设备的正常运行,减少故障发生的概率。

以上是低压配电系统保护接地安全运行的主要方式,每种方式都有其适用的范围和具体的保护目的。

在实际应用中,根据不同的电气设备和工作环境,可以选择合适的接地方式,确保低压配电系统的安全运行。

低压配电的接地系统课件

低压配电的接地系统课件

稳定系统运行:接地系统可以消除电气 设备的电位差,确保系统稳定运行。
保护设备:接地系统可以泄放故障电流, 减轻设备绝缘压力,保护电气设备免受 损坏。
功能
保护人身安全:通过接地系统,可以将 电气设备的外露可导电部分与大地连接, 避免人体触电事故。
接地系统的分类
TT系统
电源端有一点直接接地,电气装置的外露可 导电部分直接接地,此接地点独立于电源端 的接地点。
解决策略
采用耐腐蚀、耐老化的材料,延 长接地系统的使用寿命。
问题描述:接地系统长时间运行 后,可能出现老化现象,如接地 线断裂、接地极腐蚀等,导致接 地效果降低。
定期对接地系统进行检查,及时 发现并更换损坏的接地线和接地极。
对接地系统进行预防性维护,如 定期清洗、涂防锈漆等。
接地系统故障诊断与修复方法
未来接地系统技术的发展趋势
智能化发展
借助物联网、大数据等技 术手段,实现接地系统的 远程监控、故障诊断和预 测性维护。
绿色化发展
推广环保型接地材料,降 低接地系统对环境的影响。
高可靠性发展
研发具有更高导电性能、 更耐腐蚀的接地导体材料, 提高接地系统的可靠性和 使用寿命。
05
低压配电接地系统常见问题与解决 策略
实践操作:接地电阻现场检测与数据分析
现场检测
对接地电阻进行现场检测时,可以采用四线 法或三线法进行检测。检测前应确保检测仪 器完好,并按照规范要求进行接线和操作。 检测过程中应注意观察检测数据的变化,确 保数据的准确性和可靠性。
数据分析
在完成现场检测后,需要对检测数据进行整 理和分析。通过对比设计值和实际检测值, 可以评估接地系统的性能。如果检测数据与 设计值存在较大偏差,需要分析原因并采取 相应措施进行整改。同时,通过对历史检测 数据的分析,可以掌握接地系统性能的变化

低压施工配电系统三种接地形式:IT、TT、TN解析

低压施工配电系统三种接地形式:IT、TT、TN解析

低压施工配电系统三种接地形式:IT、TT、TN解析根据现行的国家标准《低压配电设计规范》(GB50054),低压配电系统有三种接地形式,即IT系统、TT系统、TN系统。

(1)第一个字母表示电源端与地的关系T-电源变压器中性点直接接地。

I-电源变压器中性点不接地,或通过高阻抗接地。

(2)第二个字母表示电气装置的外露可导电部分与地的关系T-电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点。

N-电气装置的外露可导电部分与电源端接地点有直接电气连接。

下面分别对IT系统、TT系统、TN系统进行全面剖析。

一、IT系统IT系统就是电源中性点不接地,用电设备外露可导电部分直接接地的系统。

IT系统可以有中性线,但IEC强烈建议不设置中性线。

因为如果设置中性线,在IT系统中N线任何一点发生接地故障,该系统将不再是IT系统。

IT系统接线图如图1所示。

低压施工配电系统三种接地形式:IT、TT、TN解析图1 IT系统接线图IT系统特点IT系统发生第一次接地故障时,接地故障电流仅为非故障相对地的电容电流,其值很小,外露导电部分对地电压不超过50V,不需要立即切断故障回路,保证供电的连续性;-发生接地故障时,对地电压升高1.73倍;-220V负载需配降压变压器,或由系统外电源专供;-安装绝缘监察器。

使用场所:供电连续性要求较高,如应急电源、医院手术室等。

IT 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。

一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。

地下矿井内供电条件比较差,电缆易受潮。

运用IT 方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。

但是,如果用在供电距离很长时,供电线路对大地的分布电容就不能忽视了。

在负载发生短路故障或漏电使设备外壳带电时,漏电电流经大地形成架路,保护设备不一定动作,这是危险的。

高低压系统接地方式比较分析

高低压系统接地方式比较分析
接地电阻的选择
接地电阻的大小直接影响到接地系统的性能和电力系统的稳定性。在选择接地电 阻时,需要考虑系统的运行方式、故障电流的大小和持续时间等因素。合理的接 地电阻选择能够提高系统的稳定性和可靠性。
THANKS
感谢观看
条件较差的场所。
接地方式应用案例分析
1 2
案例一
某110kV变电站采用中性点直接接地方式,降低 了设备绝缘水平,简化了继电保护,提高了系统 运行的稳定性。
案例二
某工厂380V低压配电系统采用TN-S接地方式, 即三相五线制,提高了系统的安全性和可靠性。
3
案例三
某医院重要医疗设备采用IT系统接地方式,确保 了供电连续性和设备运行的稳定性,提高了医疗 质量。
保护装置简单
由于接地故障时短路电流 较大,可以采用简单的过 电流保护装置来切除故障 。
对通信干扰较大
大电流接地方式在发生接 地故障时会产生较大的地 电位升,对通信线路造成 干扰。
小电流接地方式
接地电阻大
小电流接地方式通过增加接地电 阻,限制接地故障时的短路电流

保护装置复杂
由于接地故障时短路电流较小,需 要采用复杂的保护装置来实现故障 的定位和切除。
对通信干扰较小
小电流接地方式在发生接地故障时 地电位升较小,对通信线路的干扰 较小。
高阻接地方式
接地电阻极大
对通信干扰最小
高阻接地方式通过极大的增加接地电 阻,使得系统发生接地故障时短路电 流非常小。
高阻接地方式在发生接地故障时地电 位升非常小,对通信线路的干扰最小 。
保护装置特殊
由于接地故障时短路电流非常小,需 要采用特殊的保护装置来实现故障的 定位和切除。
高低压系统接地方式比较分 析

配电系统接地保护技术

配电系统接地保护技术

配电系统接地保护技术随着电力系统规模的不断扩大和用电设备的广泛普及,电力安全问题日益引起人们的重视。

配电系统接地保护技术是保障电力系统运行安全的重要手段之一。

本文将从接地保护的定义、接地保护的作用、接地方式和接地保护的技术措施等方面进行详细论述。

一、接地保护的定义接地保护是指通过连接可靠的接地装置,使电力系统中的金属设备和电气设备零电位与地电位相等,以防止电气设备和人体接触到高电压,保障人身安全和设备运行的技术手段。

接地保护的重要性不言而喻,它不仅能确保人们在操作电力设备时的人身安全,还能保护电气设备不受到过电压的损害。

二、接地保护的作用1. 保护人身安全:通过接地保护,避免了人体接触到高电压带来的触电危险,减少了人员伤害事故的发生。

2. 保护设备安全:合理的接地保护措施能够降低设备的漏电流,避免电气设备因过电压而受损。

3. 提高电力系统可靠性:接地保护能够减少接地故障的发生,提高电力系统的稳定性和可靠性。

三、接地方式1. 单点接地:将电力系统的一个相位接地,适用于低压配电系统,但不能用于中高压系统。

2. 多点接地:将电力系统多个相位分别接地,可采用星形接地、等效接地等方式,适用于中、高压配电系统。

3. 养护接地:利用可靠的第三线路接地设备,对主要设备进行接地,减小设备接地电流,适用于需要断电操作的设备。

四、接地保护的技术措施1. 接地电阻:通过合理设计接地体和接地网结构,降低接地电阻,提高接地导纳。

减小接地电阻能够减小系统的接地故障电流,提高接地保护的可靠性。

2. 接地开关:将电力系统接地与非接地状态进行切换,可在发生接地故障时迅速切除故障点,保护设备和人身安全。

3. 接地故障检测:采用接地故障监测器和接地保护装置,实时监测电力系统的接地状态,一旦发现接地故障,自动切除故障电路,保护系统和设备安全。

4. 接地电阻测试:定期对接地电阻进行测试,确保接地装置的可靠性和安全性。

测试结果可用于判断接地系统的健康程度,及时采取措施维护接地装置。

低压配电系统接地形式的选择

低压配电系统接地形式的选择

低压配电系统接地形式的选择一、低压接地系统的基本方式及特点现低压接地系统常用有五种形式为; TN-C、TN-S、TN-C-S、IT、TT,其各自的特点如下。

1、TN 方式供电系统1) TN 方式供电系统是将电气设备的外露导电部分与工作中性线相接的保护系统,称作接零保护系统,用 TN 表示。

它的特点如下:1)当电气设备的相线碰壳或设备绝缘损坏而漏电时,实际上就是单相对地短路故障,理想状态下电源侧熔断器会熔断,低压断路器会立即跳闸使故障设备断电,产生危险接触电压的时间较短,比较安全。

2) TN 系统节省材料、工时,应用广泛。

3)TN 方式供电系统中,国际标准IEC60364规定,根据中性线与保护线是否合并的情况,TN系统分为如下三种:□TN-C□TN-S□TN-C-STN-C 方式供电系统本系统中,保护线与中性线合二为一,称为PEN线。

如图 2-1 所示。

图 1-1 TN—C系统,整个系统的中性线与保护线是合一的优点:TN-C方案易于实现,节省了一根导线,且保护电器可节省一极,降低设保护电器瞬时切断电源,保证人员生命和财产安全缺点:线路中有单相负荷,或三相负荷不平衡,及电网中有谐波电流时,由于PEN中有电流,电气设备的外壳和线路金属套管间有压降,对敏感性电子设备不利;PEN线中的电流在有爆炸危险的环境中会引起爆炸;PEN线断线或相线对地短路时,会呈现相当高的对地故障电压,可能扩大事故范围;TN-C系统电源处上使用漏电保护器时,接地点后工作中性线不得重复接地,否则无法可靠供电。

TN-S 方式供电系统本系统中,保护线(PE)和中性线(N)严格分开,称作 TN-S 供电系统。

如图2-2所示。

图1-2TN—S系统,整个系统的中性线与保护线是分开的优点:正常时即使工作中性线上有不平衡电流,专用保护线上也不会有电流。

适用于数据处理和精密电子仪器设备,也可用于爆炸危险场合;民用建筑中,如果回路阻抗太高或者电源短路容量较小,需采用剩余电流保护装置RCD 对人身安全和设备进行保护,防止火灾危险;TN-S 系统供电干线上也可以安装漏电保护器,前提是工作中性线N线不得有重复接地。

地铁110kV变电站低压侧接地方式的选择

地铁110kV变电站低压侧接地方式的选择

地铁110kV变电站低压侧接地方式的选择摘要:近年来随着城市低压配电网电缆化程度的提高,单相接地短路电容电流不断增长,导致消弧线圈容量不断增大,其应用受到一定的局限。

由于地铁供电系统供电方式的特殊性,其接地系统的方案一直存在争议。

因此文章就地铁110KV变电站低压侧接地方式的选择进行论述。

关键词:地铁110kv变电站;低压侧;接地方式;选择目前国内地铁变电所接地基本按综合接地概念设计,包括变电所设备的系统接地、保护接地、防雷接地和信息技术接地,共用所在车站结构底板下方的人工接地网,以期使全线形成统一的、高低压兼容、强弱电合一的接地系统,满足车站内各类设备的系统接地、保护接地、防雷接地及信息技术接地要求。

由于地铁供电系统供电方式的特殊性,其接地系统的方案一直存在争议。

探讨适宜的接地方式十分重要。

一、低压侧接地方式中存在的问题地铁供车站动力照明用的变压器多为35/0.4kV配电变压器,35kV侧的保护接地和0.4kV侧的系统及保护接地共用同一个接地网。

出于供电可靠性、人身和设备的安全性以及电磁兼容等方面的要求,目前国内低压配电基本采用TN-S(三相四线制)系统。

当35kV设备出现单相对壳短路时,低压设备外壳电压将由0提升为Uf=IdRB(式中,Uf为预期接触电压;Id为故障电流)。

35kV侧多采用小电阻接地系统,将单相接地故障电流限制在1000A以内,假设Id=600A,RB=0.5Ω,则Uf=300V。

据了解,目前车站设备用房,虽然在重要的房间(环控室、0.4kV开关柜室)做了等电位联结,如将设备外壳接在房间内沿墙敷设的一圈接地扁钢上,但又要求扁钢和结构钢筋绝缘,故人触碰外壳时将直接接触300V的电压,产生足以致命的电流,而该电流又非低压回路产生的接地故障电流,其剩余电流保护无法动作。

因此亟待对地铁110KV变电站低压侧接地方式进行优化选择。

二、地铁110KV变电站低压侧2种接地方式的比较及选择(一)系统发展需要及中性点设备选型地铁110kV变电站规模如下:主变压器容量2×40MVA。

电力系统的中性点运行方式及低压配电系统的接地型式

电力系统的中性点运行方式及低压配电系统的接地型式

电力系统的中性点运行方式及低压配电系统的接地型式一、电力系统的中性点运行方式电力系统中的电源(含发电机和电力变压器)中性点有下三种运行方式:一种是中性点不接地;一种是中性点经阻抗接地;再一种是中性点直接接地.前两种一般合称为小电流接地;后一种称为电流接地。

(一)、中性点不接地的电力系统分布电容及相间电容发生单相接地故障时的中性点不接地系统分析见教材原件(二)、中性点经消弧线圈接地的电力系统对消弧线圈“消除弧光接地过电压”的异议(三)、中性点直接接地或经低阻接地的电力系统二、低压配电系统接地型式按保护接地的型式,分为(一)TN系统、中性点直接接地系统,且都引出有中性线(N 线),因此都称为三相四线制系统。

1、TN—C2、TN—S3、TN-C—S(二) TT系统(三) IT系统中性点不接地或经阻抗(约1000欧)接地,且通常不引出中性线,因此它一般为三相三线制系统。

第四节供电质量要求及用电企业供配电电压的选择一、供电质量电压对电器设备运行的影响:电压和频率被认为是衡量电力系统电能质量的两个基本参数。

二、供电频率、频率偏差及其改善措施三、供电电压、电压偏差及其调整措施电力系统的电压1.三相交流电网和电力设备的额定电压我国标准规定的三相交流电网和电力设备的额定电压1.电网(电力线路)的额定电压我国根据国民经济发展的需要及电力工业的水平,经全面的技术经济分析后确定的。

它是确定各类电力设备额定电压的其本依据.2.用电设备的额定电压由于电压损耗,线路上各点电压略有不同,用电设备,其额定电压只能按线路首端与末端的平均电压即电网的额定电压Un来制造.所以,用电设备的额定电压规定与供电电网的额定电压相同。

3.发电机的额定电压发电机是接在线路首端的,所以,规定发电机额定电压高于所供电网额定电压的5%。

三个电压的关系4。

电力变压器一次绕组额定电压如变压器直接与发电机相连,则其一次绕组额定电压应与电机额定电压相同,即高于供电电网额定电压的5%。

低压配电系统的接地安全基础知识(三篇)

低压配电系统的接地安全基础知识(三篇)

低压配电系统的接地安全基础知识什么是工作接地、保护接地和保护接零?为满足电气装置和系统的工作特性和安全防护的要求,而将电气装置和系统的任何部分与土壤间做良好的电气连接,称为接地。

接地按用途不同有工作接地和保护接地之分。

(1)工作接地。

根据电力系统运行工作的需要而进行的接地(如系统中变压器中性点的接地),称为工作接地。

(2)保护接地。

将电气装置的金属外壳和架构(在正常情况下不带电的金属部分)与接地体之间作良好的金属连接,因为他对间接触点有防护作用,故称作保护接地。

如TT系统和IT系统。

(3)保护接零。

为对间接触点进行防护,将电气装置的外壳和架构与电力系统的接地点(如接地中性点)直接进行电气连接,称作保护接零。

如TN系统。

低压配电网是怎样实现绝缘监视的?用三只电压表分别接在线路三相和接地装置之间。

电压表的要求如下:①三只电压表的规格相同;②电压表量程选择适当;③选用高内阻的电压表。

配电网对地绝缘正常时,三相平衡,三只电压表读数均为相电压。

当配电网单相接地时,接地相电压表读数降低,另两相电压表读数显著升高。

如果不是接地,只是绝缘劣化时,三只电压表的读数会出现不同,提醒巡检人员的注意。

不接地配电网是怎样实现过电压防护的?不接地配电网,由于配电网与大地之间没有直接的电气连接,在意外情况下可能会使整个低压系统产生很高的过电压,将给低压系统的安全运行造成极大的威胁。

为了减轻过电压的危险,在不接地低压配电网中,应当如图3—2所示的那样,把低压配电网的中性点或者一相经击穿保险器接地。

正常情况下,击穿保险器处于绝缘状态,配电网仍为不接地系统;故障时,保险器击穿,配电网变成接地系统,只要RE≤4Ω,就能控制低压各相电压的过分升高,也可能引起高压系统的过流装置动作,切断电源。

两只相同的内阻电压表是用来监视击穿保险器的绝缘状态的。

为什么要采取保护接地和保护接零措施?在电力系统中,由于电气装置绝缘老化、磨损或被过电压击穿等原因,都会使原来不带电的部分(如金属底座、金属外壳、金属框架等)带电,或者使原来带低压电的部分带上高压电,这些意外的不正常带电将会引起电气设备损坏和人身触电伤亡事故。

新型电力系统下低压直流配网的接地故障保护方法

新型电力系统下低压直流配网的接地故障保护方法

新型电力系统下低压直流配网的接地故障保护方法摘要:我国“碳达峰、碳中和”的发展将我国发展新型能源体系提到了一个新的高度,这对于我国实现“双碳”的目标至关重要。

为加速我国新一代电网的发展,我国配电网络的发展趋势是多元化。

本文认为,随着蓄能技术的发展,以蓄能为主的低压直流微网将成为我国电力系统的主流。

本文从常规配网出发,采用直接电力分配技术,对现有的交流、直流混联配网进行了改造。

通过对未来配网结构特点的综合分析与对比,指出以“集中式”形式为主的配网结构与以“单元”形式为主的配网结构将是未来配网结构的主流形式。

基于此,对新型电力系统下低压直流配网的接地故障保护方法进行研究,以供参考。

关键词:新型电力系统;低压直流配网;旁路投切;分级保护新能源快速发展,大量的化石燃料已经无法满足环境和环境保护的需求,清洁高效可再生的新能源为电网优化配置提供了一个新的发展趋势。

新能源并网时,采用多台变流机构成的电力系统,其所带来的电能损耗直接关系到新能源并网后的电力系统的整体性能。

为此,为实现直接接入电力系统中的分布式电源,降低电力系统中变压器的消耗,提升电力系统的整体运营效能,国内外学者纷纷开展直流配电系统的研究。

1低压直流配网概述低压直流输电网络是近几年逐渐发展起来的,根据其发展形态,可以划分为如下类型。

DC网络可以按照变流器类型,电压等级,接地方式,网络拓扑结构等不同类型进行分类。

在低压配电网络中,如何正确地进行故障诊断与定位是一个很大的问题。

低压直流配电系统中最重要的装置就是把交流网络的输入信号整流为直流信号的换流器件。

随着分布式能源的逐步进入,配电系统中负荷种类的增多,网络结构的动态演化,以及出现的故障特性的复杂性,给配电系统的故障诊断与定位带来了新的挑战。

随着配电系统向智能化方向发展,与分布式能源、智能终端等技术相结合,配电系统的智能化程度将不断提升。

直流配电网采用的是一个时间序列, BESS代表的是一个蓄电池储能系统, EV代表的是电动汽车负载, PV代表的是光伏太阳能板,并画出了各个节点之间直流线路的主保护和备用保护。

变电所接地规范

变电所接地规范

变电所接地规范篇一:保护接地规范标准保护接地标准细则一、保护接地概念:电气设备的金属外壳在绝缘损坏时有可能带电。

漏电危及人身安全,将电气设备的金属外壳通过接地装置与大地连接称为保护接地。

二、保护接地要求:电压在36V以上和由于绝缘损坏可能带有危险电压的电气设备的金属外壳、构架、铠装电缆的钢带(钢丝)、铅皮或屏蔽护套等必须有保护接地。

接地网上任一保护接地点的接地电阻不得超过2Ω。

三、保护接地标准: 1、主接地:(1)、所有电气设备的保护接地装置(包括电缆的铠装、铅皮、接地芯线)和局部接地装置,应与主接地极连成1个接地网。

主接地极应在主、副水仓中各埋设1块。

主接地极应用耐腐蚀的钢板制成,其面积不得小于0.75㎡、厚度不小于5mm。

在钻孔中敷设的电缆不能与主接地极连接时,应单独形成以分区接地网,其接地电阻值不得超过2Ω。

(2)、连接主接地极的接地母线及变电所的辅助接地母线,应采用断面不小于50mm2的裸铜线、断面不小于100mm2的镀锌铁线或厚度不小于4mm、断面不小于100mm2的镀锌扁钢。

2、局部接地:在下列地点应装设局部接地极:(1)、每个采区变电所(包括移动变电站和移动变压器)。

(2)、每个装有电气设备的硐室和单独装设的高压电气设备。

(3)、每个低压配电点或装有3台以上电气设备的地点。

(4)、无低压配电点的采煤工作面的机巷、回风巷、集中运输巷(胶带运输巷)以及由变电所单独供电的掘进工作面,至少要分别装设一个局部接地极。

(5)、连接动力铠装电缆的每个接线盒以及高压电缆连接装置。

要求:埋设在巷道水沟或潮湿地方的局部接地极,可采用面积不小于0.6m2、厚度不小于 3mm的钢板。

埋设在其它地点的局部接地极,可采用镀锌铁管。

铁管直径不得小于35mm,长度不得小于1.5m。

管子上至少要钻20个直径不小于5mm的透眼,铁管垂直于地面(偏差不大于15o),并必须埋设于潮湿的地方。

如果埋设有困难时,可用两根长度不得小于0.75m、直径不得小22mm的镀锌铁管。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章概述随着电力工业的发展,变电站一次设备二次保护对接地装置的要求在不断提高。

接地装置是确保电力设备安全运行及其工作人员人身安全的重要设备。

电力系统中对接地装置的要求越来越严格,变电所接地系统直接关系到变电所的正常运行,更涉及到人身与设备的安全。

然而由于接地网设计考虑不全面、施工不精细、测试不准确等原因,近年来,发生了多起地网引起的事故,有的不仅烧毁了一次设备,而且还通过二次控制电缆窜入主控室,造成了事故扩大,故接地网对电力系统的安全稳定运行起到非常重要的作用。

变电所的接地好坏直接关系到设备和人身的安全,因而愈来愈受到人们的重视,因变电所的接地网不但要满足工频短路电流的要求,还要满足雷电冲击电流的要求,以前由于接地网的缺陷,曾发生了不少事故,其原因既有地网接地电阻方面问题,又有地网均压方面的问题。

随着电网的发展,变电所内微机保护综合自动化装置的大量应用、这些弱电元件对接地网的要求更高,地电位的干扰对监控和自动化装置的影响不得不引起人们的重视,因此,为了保证变电所接地网的可靠性,必须对接地网存在的问题进行改进,并对今后在接地设计与改造方面应该注意的问题进行深入探讨。

第二章变电所接地网存在的问题及改造2.1 变电所接地网存在的问题2.1.1 接地网均压问题1、在接地网设计时只注意了工频接地电阻而忽略了地网的均压和散流问题,所以有些运行多年变电所接地网的均压不好,特别是横向电位分布不均,电位梯度较大。

2、对于有些变电所接地设计,设备到哪里,水平接地带立连到哪里,或只用长孔地网而很少用方孔地网,再加上敷设接地网的施工单位存在偷工减料,不按图施工等问题,造成接地网很不完善。

3、接地网在施工中水平接地极埋深大部分不足,有的甚至浮在地表面,因此,由于地网均压不好,一旦发生接地短路就有可能引起局部电位升高产生高压向控制和保护电缆反击,使低压元件烧坏。

2.1.2 接地网与设备连接问题1、设备的接地引下线截面偏小或在地下与地网的连接处经过长时间腐蚀造成被锈蚀断;设备没有明显的接地引下线,而是通过混凝土构架的内部的钢筋接地,而混凝土构架的内部钢筋不是在上部就是在下部开路;设备接地短路时因满足不了短路电流的热稳定而被熔断。

2、在厂区扩建时没有扩建新的地网,而是把新增设备的接地通过电缆沟内的接地带与原地网连接,而电缆沟内的接地带又连接不可靠或长期运行在潮湿和有腐蚀气体的环境中,因腐蚀而造成开路;3、通过螺丝连接的接地线经过长期的锈蚀或松动造成电气上的开路;由于设备的接地与地网通常发生在设备的接地短路时,设备外壳所带高压容易让低压二次回路反击,烧坏二次电缆元件和元器件,使二次保护和控制失灵,使故障线路不能及时切除,使事故扩大,在使用微机保护和综合自动化系统的场所会造成严重的地电位干扰而使微机保护和综合自动化系统失灵,造成保护的吴动或拒动,而使事故扩大。

设备外壳所带较高的接触电势还将威胁运行人员的安全。

防雷设备的接地不良,要么会影响防雷设备的正常动作,要么会在雷电流入地时产生较高的反击过电压危及设备和人身安全。

2.1.3 接地网的腐蚀问题腐蚀的原因归纳起来有以下几种:1、接地网的水平接地体预埋深不够,按相关国标和行业规定水平接地体的埋深至少应达到0.6m,而在实际工程中发现有的水平接地体的埋深不够,有的甚至浮在地表,由于上层土壤含氧量高,加速了接地体的氧化,且上层土壤易受气候的影响,接地电阻值不稳定。

2、在扩建时,不扩建地网把电缆沟内的均压带作为设备接地的主要干线,由于电缆沟内的均压带长期运行在阴暗潮湿的环境中,特别是有些电缆沟长期积水,再加上未能定期的进行防腐维护,这就加速连接地的腐蚀,是造成设备或设备单元“失地”的主要原因;3、在施工过程冲地网接头焊接质量差,有虚焊假焊或气泡存在;4、丘陵地区的变电所,风化石或沙石土壤透气性好,土壤中含氧量高,加速了接地体的腐蚀;5、有害气体腐蚀,以及对设备接地引下线和接头没有采取防腐保护措施或没有定期进行维护。

2.1.4 接地网接地电阻问题水平接地体或接地装置埋深不够,、工频接地电阻普遍满足不了R≤2000/I的要求,且未采取任何均压和隔离措施,这在多年运行的变电站中尤其突出.其主要原因有:1、在原设计时电网容量较小,当随着电网的发展,电网容量迅速增大接地短路电流也迅速增大,接地网没有随之进行相应的降阻改造;2、接地网在施工时没有按要求铺设足够的水平和垂直接地体;3、接地体在地下经过长期的腐蚀,在接地体表面产生了一层铁锈层,影响了接地体与周围土壤的有效接触,使接触电阻增大;4、变电所扩建时没有对接地网进行扩建。

2.2 变电所接地网改进措施1、对于运行10年以上的接地网,宜用工频大电流法进行接地电阻、地面电位分布、设备接触电压试验和设备与地网的连通情况试验;对试验发现有问题的地网,应进行开挖检查,检查接地网的埋深,锈蚀和焊接头的连接情况,要重点检查设备接地引下线与地网的连接,因为这些地方由于腐蚀电位差的存在,最易发生电化学腐蚀,2、对设备接地引下线及地网水平接地体的截面进行热稳定校核,不满足要求的要及时进行整改。

35KV及以上电压等级的设备接地线要用明线引下,不能通过混凝土构架接地,对充油设备,主设备要进行“双接地”,双接地要从设备的两边引下,并与地网不同点相连,以加强设备连接的可靠性和改善散流情况。

3、在设计新的地网和改造老地网时,宜考虑电网以后5―10年的发展,留有适当的发展余地。

接地网的使用寿命应大于地面设备的使用寿命,因地面电气设备可能更新得较快,而接地网不存在更新的问题。

4、接地网的水平接地体预埋深度应达60CM以下,有些特殊的地方预埋深度应达0.8 M或1M以下,用细土回填并分层夯实,严禁用砂石或建筑垃圾回填。

5、设备接地引下线和电缆沟内的均压带要定期进行防腐处理和维护。

6、在电缆附近辅设与电缆沟平行的水平接地体,每隔6―8M与电缆沟内的接地带连接一次,以保证电缆沟内的均压带接地和均压的可靠性。

7、在主变中性点、油开关、避雷器和构架避雷针的接地处和地网的各交叉点设置垂直接地极加强集中接地,改善地网的冲击特性。

8、变电所扩建时要把接地网一并考虑在内,扩建的地网与原地网应多点可靠连接,不能简单地接进电缆沟的接地带了事。

地网的各焊接头焊口质量要严格把关,对焊口要进行相应的防腐处理。

2.3 接地网接地设计与改造1、在接地设计时一定要勘测了解变电所处在位置的地质结构和土壤电阻率,土壤电阻率ρ值是接地设计和计算的重要参数,在接地装置设计之前应认真进行勘测,因大多数情况下土壤都是不均匀土壤,即土壤的电阻率沿水平和垂直方向不均匀分布,这时就需要在水平方向上多测一些点以测出沿水平方向上的不同分布,同时还要测出不同深度的土壤电阻率,如采用“四极测量法”。

可改变不同的测试距离α。

即可算出不同深度的土壤电阻率。

因为测试结果基本上保持着0.75α深层土壤电阻率的关系,对于新建变电所可在变电所接地装置布置地点进行测量,对于老站改造可在旁边类似的土质地方测试。

而实际中却发现,有些在原地网上面测试时,结果测试值严重偏小,这是因为如在接地装置上方测量,则因下方有接地体的影响而使结果偏小,这样就会使接地设计产生很大的偏差。

测试一定要到现场实测,不要凭资料介绍的土质进行估算,因为同样土质在南方和北方相差甚远,如不现场实测则会由于取值和实际值相差较大而达不到设计目的。

2、根据变电所的规模,应用电网的接地短路电流来计算通过接地网的入地短路电流值,从而确定接地网的接地电阻值和接地线热容量。

关于流经接地装置的入地短路电流,因为这个电流直接关系到接地电阻,接地线的热稳定计算及设备接触电压和跨步电压的计算。

所以正确计算流经变电所接地装置的电流非常重要。

计算流经接地装置的入地短路电流,采用在接地装置内、外短路时经接地装置流入地中的最大短路电流对称分量的最大值,该电流应按5—10年发展后的系统最大运行方式确定,并考虑系统各中性点的短路电流分配,以及避雷线的分流。

计算时首先应按系统最大运行方式时的短路阻抗算出在单相接地短路电流值,然后根据内、外短路电流计算流过接地装置的电流I=(Imax-IN)(I-Ke1)I=In(I-Ke2)式中I—流经接地装置的陆地电流。

A;Imax——接地短路时的最大接地短路电流。

A;In——发生最大接地短路时,流经发电厂、变电所接地中性点的最大接地短路电流。

A;Ke1 ——厂或所内外短路时、避雷线的工频分流系数;3、对接地网的均压主要考虑接地网地面的电位分布要均匀,跨步电压要合格,关于接地装置的跨步电压和设备接触电压,接地装置的地面跨步电压UK和设备接触电压Uj 是接地装置的主要参数,它直接关系到人身和设备的安全,特别是在采用外延接地时,必须保证外延部分的跨步电压UK在安全值以下,只有这样才能保证在接地装置流过大的接地短路电流时不会造成人身安全事故,因而在接地设计时应该认真计算校核这两个参数,在工程完工后还要进行试验验证。

但是在工程实际中发现有的设计人员只是按下式进行Uj=174+0.17ρf/UK=174+0.7ρf/式中:Uj——接触电位差。

V;ρf——地表土壤电阻率。

Ω·mUk——跨步电位差。

V;t—接地短路故障电流持续时间4、变电所接地装置的工频接地电阻应符合的要求,如若达不到该要求,在做充分的技术经济分析后可适当放宽,但要采取严格的均压、隔离措施。

降低变电所接地装置的工频接地电阻的措施可以采用:1)外延接地降阻法;2)深井式接地极降阻法;3)降阻剂法;4)水下地网法;5)等离子接地极降阻法。

在实际工程中究竟采用何种方法降阻,要根据具体的情况、现场地质、地势情况,并做认真的技术分析后,采用切实可行的降阻措施。

要充分利用自然接地体和接地装置所在处的有利地形条件达到用较少的投资来获得最好的降阻效果。

对位于山区、丘陵地区一边开挖、一边回填的变电所,为了达到接地网与大地的快速亲合,可在回填前在底层先铺一层地网加强与大地融合,然后在上层再铺一层均压网与设备连接。

5、关于接地装置的防腐措施,应首先调查勘测接地装置所在处土壤对钢接地体的腐蚀率和酸碱度,先进行接地体的腐蚀寿命计算,热稳定计算,接地装置的使用寿命应大于地面设备的使用寿命,即在寿命内接地体的截面都要满足接地短路电流热稳定的要求。

防止接地体腐蚀的措施有:1)高效膨润土降阻防腐剂法;2)阴极保护法。

高效膨润土降阻剂法具有降阻、防腐和稳定接地参数等多项功能,适用于既需要降阻又需要防腐的场所;阴极保护法主要是保护接地体免遭腐蚀。

第三章低压配电系统的保护接地系统与接地接零3.1 低压配电系统的接地在三相四线制中接地和接零是一个概念,而在三相五线制中,系统接地和接零是分离的。

变压器中性点N线直接接变压器的接地网上,是功能性接地。

相关文档
最新文档