2017年黑龙江省各市中考数学试题汇总(6套)

合集下载

黑龙江鸡西、黑河、齐齐哈尔、大兴安岭市2017年中考数学试题(解析版)

黑龙江鸡西、黑河、齐齐哈尔、大兴安岭市2017年中考数学试题(解析版)

2017年中考数学试题解析(黑龙江黑河、齐齐哈尔、大兴安岭、鸡西卷)(本试卷满分120分,考试时间120分钟)一、单项选择题(每题3分,满分30分)1.(2017黑龙江黑河、齐齐哈尔、大兴安岭、鸡西3分)下列各式:①x 2+x 3=x 5;②a 2·a 3=a 6;2=-;④(11()33-=⑤0(1)1π-=,其中正确的是【 】 A .④⑤ B .③④ C .②③ D .①④【答案】A 。

【考点】合并同类项,同底数幂的乘法,二次根式的性质与化简,负整数指数幂,零指数幂。

【分析】根据合并同类项、同底数幂的乘法、二次根式的化简、负指数幂与零指数幂的性质求解即可求得答案:①x 2和x 3不是同类项,不可以合并 ,故错误;②a 3•a 2=a 5,故错误;22=-=,故错误;④11()33-=,故正确;⑤0(1)1π-=,故正确。

故正确的是:④⑤。

故选A 。

2.(2017黑龙江黑河、齐齐哈尔、大兴安岭、鸡西3分)下列图形既是轴对称图形,又是中心对称图形的是【 】A .B .C .D .【答案】D 。

【考点】轴对称图形,中心对称图形。

【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,A 、不是轴对称图形,是中心对称图形,故本选项错误;B 、是轴对称图形,但不是中心对称图形,故本选项错误;C 、是轴对称图形,但不是中心对称图形,故本选项错误;D 、既是轴对称图形,又是中心对称图形,故本选项正确。

故选D。

3.(2017黑龙江齐齐哈尔、大兴安岭、鸡西3分)小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图),六个面上各有一个字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是【】【注:此题黑河卷没有】A.B.C.D.【答案】C。

【考点】正方体的展开,正方体相对两个面上的文字。

历年黑龙江省齐齐哈尔市中考数学试卷(含答案)

历年黑龙江省齐齐哈尔市中考数学试卷(含答案)

2017年黑龙江省齐齐哈尔市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣2017的绝对值是()A.﹣2017 B.﹣C.2017 D.2.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.3.(3分)作为“一带一路”倡议的重大先行项目,中国,巴基斯坦经济走廊建设进展快、成效显著,两年来,已有18个项目在建或建成,总投资额达185亿美元,185亿用科学记数法表示为()A.1.85×109B.1.85×1010C.1.85×1011D.1.85×10124.(3分)下列算式运算结果正确的是()A.(2x5)2=2x10 B.(﹣3)﹣2= C.(a+1)2=a2+1 D.a﹣(a﹣b)=﹣b 5.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个6.(3分)若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣17.(3分)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B.C.D.8.(3分)一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b等于()A.10 B.11 C.12 D.139.(3分)一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角度数为()A.120°B.180°C.240° D.300°10.(3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有()A.4个 B.3个 C.2个 D.1个二、填空题(本大题共9小题,每小题3分,共27分)11.(3分)在某次七年级期末测试中,甲、乙两个班的数学平均成绩都是89.5分,且方差分别为S甲2=0.15,S乙2=0.2,则成绩比较稳定的是班.12.(3分)在函数y=+x﹣2中,自变量x的取值范围是.13.(3分)矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件,使其成为正方形(只填一个即可)14.(3分)因式分解:4m2﹣36=.15.(3分)如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为.16.(3分)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.17.(3分)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为.18.(3分)如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于.19.(3分)如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为.三、解答题(共63分)20.(7分)先化简,再求值:•﹣(+1),其中x=2cos60°﹣3.21.(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC关于y轴对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3)求(2)中线段OA扫过的图形面积.22.(8分)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;=4S△COE,求P点坐标.(3)若点P在第一象限内的抛物线上,且S△ABP注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)23.(8分)如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.24.(10分)为养成学生课外阅读的习惯,各学校普遍开展了“我的梦中国梦”课外阅读活动,某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:(1)表中a=,b=;(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第组;(4)请估计该校七年级学生日阅读量不足1小时的人数.25.(10分)“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人再次选择自行车作为出行工具,小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:(1)a=,b=,m=;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.26.(12分)如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA的长是关于x的一元二次方程x2﹣12x+32=0的两个根,且OA>OC.(1)求线段OA,OC的长;(2)求证:△ADE≌△COE,并求出线段OE的长;(3)直接写出点D的坐标;(4)若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.2017年黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•齐齐哈尔)﹣2017的绝对值是()A.﹣2017 B.﹣C.2017 D.【分析】根据绝对值的定义即可解题.【解答】解:∵|﹣2017|=2017,∴答案C正确,故选C.【点评】本题考查了绝对值的定义,绝对值是指一个数在数轴上所对应点到原点的距离.2.(3分)(2017•齐齐哈尔)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(3分)(2017•齐齐哈尔)作为“一带一路”倡议的重大先行项目,中国,巴基斯坦经济走廊建设进展快、成效显著,两年来,已有18个项目在建或建成,总投资额达185亿美元,185亿用科学记数法表示为()A.1.85×109B.1.85×1010C.1.85×1011D.1.85×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:185亿=1.85×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•齐齐哈尔)下列算式运算结果正确的是()A.(2x5)2=2x10 B.(﹣3)﹣2= C.(a+1)2=a2+1 D.a﹣(a﹣b)=﹣b【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,即可解题.【解答】解:A、(2x5)2=4x10,故A错误;B、(﹣3)﹣2==,故B正确;C、(a+1)2=a2+2a+1,故C错误;D、a﹣(a﹣b)=a﹣a+b=b,故D错误;故选:B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.5.(3分)(2017•齐齐哈尔)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个【分析】设买篮球m个,则买足球(50﹣m)个,根据购买足球和篮球的总费用不超过3000元建立不等式求出其解即可.【解答】解:设买篮球m个,则买足球(50﹣m)个,根据题意得:80m+50(50﹣m)≤3000,解得:m≤16,∵m为整数,∴m最大取16,∴最多可以买16个篮球.故选:A.【点评】本题考查了列一元一次不等式解实际问题的运用,解答本题时找到建立不等式的不等关系是解答本题的关键.6.(3分)(2017•齐齐哈尔)若关于x的方程kx2﹣3x﹣=0有实数根,则实数k 的取值范围是()A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣1【分析】讨论:当k=0时,方程化为﹣3x﹣=0,方程有一个实数解;当k≠0时,△=(﹣3)2﹣4k•(﹣)≥0,然后求出两个中情况下的k的公共部分即可.【解答】解:当k=0时,方程化为﹣3x﹣=0,解得x=;当k≠0时,△=(﹣3)2﹣4k•(﹣)≥0,解得k≥﹣1,所以k的范围为k≥﹣1.故选C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•齐齐哈尔)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B.C.D.【分析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.【解答】解:由题意得,2x+y=10,所以,y=﹣2x+10,由三角形的三边关系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式组的解集是2.5<x<5,正确反映y与x之间函数关系的图象是D选项图象.故选D.【点评】本题考查了一次函数图象,三角形的三边关系,等腰三角形的性质,难点在于利用三角形的三边关系求自变量的取值范围.8.(3分)(2017•齐齐哈尔)一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b等于()A.10 B.11 C.12 D.13【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,左边后排最多有3个,左边前排最多有3个,右边只有一层,且只有1个,所以图中的小正方体最多7块,结合主视图和俯视图可知,左边后排最少有1个,左边前排最多有3个,右边只有一层,且只有1个,所以图中的小正方体最少5块,a+b=12,故选:C.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.9.(3分)(2017•齐齐哈尔)一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角度数为()A.120°B.180°C.240° D.300°【分析】根据圆锥的侧面积是底面积的3倍得到圆锥底面半径和母线长的关系,根据圆锥侧面展开图的弧长=底面周长即可求得圆锥侧面展开图的圆心角度数.【解答】解:设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.由题意得S=πr2,底面面积l底面周长=2πr,S扇形=3S底面面积=3πr2,l扇形弧长=l底面周长=2πr.由S扇形=l扇形弧长×R得3πr2=×2πr×R,故R=3r.由l扇形弧长=得:2πr=解得n=120°.故选A.【点评】本题考查了圆锥的计算,通过圆锥的底面和侧面,结合有关圆、扇形的一些计算公式,重点考查空间想象能力、综合应用能力.熟记圆的面积和周长公式、扇形的面积和两个弧长公式并灵活应用是解答本题的关键.10.(3分)(2017•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有()A.4个 B.3个 C.2个 D.1个【分析】根据抛物线的对称轴可判断①,由抛物线与x轴的交点及抛物线的对称性可判断②,由x=﹣1时y>0可判断③,由x=﹣2时函数取得最大值可判断④,根据抛物线的开口向下且对称轴为直线x=﹣2知图象上离对称轴水平距离越小函数值越大,可判断⑤.【解答】解:∵抛物线的对称轴为直线x=﹣=﹣2,∴4a﹣b=0,所以①正确;∵与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴抛物线与y轴的交点在y轴的负半轴,即c<0,故②正确;∵由②知,x=﹣1时y>0,且b=4a,即a﹣b+c=a﹣4a+c=﹣3a+c>0,所以③正确;由函数图象知当x=﹣2时,函数取得最大值,∴4a﹣2b+c≥at2+bt+c,即4a﹣2b≥at2+bt(t为实数),故④错误;∵抛物线的开口向下,且对称轴为直线x=﹣2,∴抛物线上离对称轴水平距离越小,函数值越大,∴y1<y3<y2,故⑤错误;故选:B.【点评】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本大题共9小题,每小题3分,共27分)11.(3分)(2017•齐齐哈尔)在某次七年级期末测试中,甲、乙两个班的数学平均成绩都是89.5分,且方差分别为S甲2=0.15,S乙2=0.2,则成绩比较稳定的是甲班.【分析】根据方差的意义判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立【解答】解:∵s甲2<s乙2,∴成绩相对稳定的是甲,故答案为:甲.【点评】本题考查方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.(3分)(2017•齐齐哈尔)在函数y=+x﹣2中,自变量x的取值范围是x ≥﹣4且x≠0.【分析】根据二次根是有意义的条件:被开方数大于等于0进行解答即可.【解答】解:由x+4≥0且x≠0,得x≥﹣4且x≠0;故答案为x≥﹣4且x≠0.【点评】本题考查了函数自变量的取值范围问题,掌握二次根是有意义的条件:被开方数大于等于0是解题的关键.13.(3分)(2017•齐齐哈尔)矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AB=BC(答案不唯一),使其成为正方形(只填一个即可)【分析】此题是一道开放型的题目答案不唯一,证出四边形ABCD是菱形,由正方形的判定方法即可得出结论.【解答】解:添加条件:AB=BC,理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是菱形,∴四边形ABCD是正方形,故答案为:AB=BC(答案不唯一).【点评】本题考查了矩形的性质,菱形的判定,正方形的判定的应用,能熟记正方形的判定定理是解此题的关键,注意:有一组邻边相等的矩形是正方形,对角线互相垂直的矩形是正方形.14.(3分)(2017•齐齐哈尔)因式分解:4m2﹣36=4(m+3)(m﹣3).【分析】原式提取4,再利用平方差公式计算即可得到结果.【解答】解:原式=4(m2﹣9)=4(m+3)(m﹣3),故答案为:4(m+3)(m﹣3)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.(3分)(2017•齐齐哈尔)如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为80°.【分析】根据切线的性质得出∠C=90°,再由已知得出∠ABC,由外角的性质得出∠COD的度数.【解答】解:∵AC是⊙O的切线,∴∠C=90°,∵∠A=50°,∴∠B=40°,∵OB=OD,∴∠B=∠ODB=40°,∴∠COD=2×40°=80°,故答案为80°.【点评】本题考查了切线的性质,掌握切线的性质、直角三角形的性质以及外角的性质是解题的关键.16.(3分)(2017•齐齐哈尔)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是10cm,2cm,4cm.【分析】利用等腰三角形的性质,进而重新组合得出平行四边形,进而利用勾股定理求出对角线的长.【解答】解:如图:,过点A作AD⊥BC于点D,∵△ABC边AB=AC=10cm,BC=12cm,∴BD=DC=6cm,∴AD=8cm,如图①所示:可得四边形ACBD是矩形,则其对角线长为:10cm,如图②所示:AD=8cm,连接BC,过点C作CE⊥BD于点E,则EC=8cm,BE=2BD=12cm,则BC=4cm,如图③所示:BD=6cm,由题意可得:AE=6cm,EC=2BE=16cm,故AC==2cm,故答案为:10cm,2cm,4cm.【点评】此题主要考查了图形的剪拼以及勾股定理和等腰三角形的性质等知识,利用分类讨论得出是解题关键.17.(3分)(2017•齐齐哈尔)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为113°或92°.【分析】由△ACD是等腰三角形,∠ADC>∠BCD,推出∠ADC>∠A,即AC≠CD,分两种情形讨论①当AC=AD时,②当DA=DC时,分别求解即可.【解答】解:∵△BCD∽△BAC,∴∠BCD=∠A=46°,∵△ACD是等腰三角形,∵∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD,①当AC=AD时,∠ACD=∠ADC=(180°﹣46°)=67°,∴∠ACB=67°+46°=113°,②当DA=DC时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°,故答案为113°或92°.【点评】本题考查相似三角形的性质、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.18.(3分)(2017•齐齐哈尔)如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于﹣24.=2S△CDO,再根据tan∠AOC的值即可求得菱形的边长,即【分析】易证S菱形ABCO可求得点C的坐标,代入反比例函数即可解题.【解答】解:作DE∥AO,CF⊥AO,设CF=4x,∵四边形OABC为菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴S=S△DEO,△ADO=S△CDE,同理S△BCD=S△ADO+S△DEO+S△BCD+S△CDE,∵S菱形ABCO∴S=2(S△DEO+S△CDE)=2S△CDO=40,菱形ABCO∵tan∠AOC=,∴OF=3x,∴OC==5x,∴OA=OC=5x,=AO•CF=20x2,解得:x=,∵S菱形ABCO∴OF=,CF=,∴点C坐标为(﹣,),∵反比例函数y=的图象经过点C,∴代入点C得:k=﹣24,故答案为﹣24.=2S 【点评】本题考查了菱形的性质,考查了菱形面积的计算,本题中求得S菱形ABCO是解题的关键.△CDO19.(3分)(2017•齐齐哈尔)如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为(0,()2016)或(0,21008).【分析】根据等腰直角三角形的性质得到OA1=1,OA2=,OA3=()2,…,OA2017=()2016,再利用A1、A2、A3、…,每8个一循环,再回到y轴的正半轴的特点可得到点A2017在y轴的正半轴上,即可确定点A2017的坐标.【解答】解:∵等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,∴OA1=1,OA2=,OA3=()2,…,OA2017=()2016,∵A1、A2、A3、…,每8个一循环,再回到y轴的正半轴,2017÷8=252…1,∴点A2017在第一象限,∵OA2017=()2016,∴点A2017的坐标为(0,()2016)即(0,21008).故答案为(0,()2016)或(0,21008).【点评】本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的倍.也考查了直角坐标系中各象限内点的坐标特征.三、解答题(共63分)20.(7分)(2017•齐齐哈尔)先化简,再求值:•﹣(+1),其中x=2cos60°﹣3.【分析】根据分式的乘法和减法可以化简题目中的式子,然后将x的值代入即可解答本题.【解答】解:•﹣(+1)===,当x=2cos60°﹣3=2×﹣3=1﹣3=﹣2时,原式=.【点评】本题考查分式的化简求值、特殊角的三角函数值,解答本题的关键是明确分式化简求值的方法.21.(8分)(2017•齐齐哈尔)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C (﹣2,1).(1)画出△ABC关于y轴对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3)求(2)中线段OA扫过的图形面积.【分析】(1)分别作出各点关于y轴的对称点,再顺次连接即可;(2)根据图形旋转的性质画出旋转后的图形△A2B2C2即可;(3)利用扇形的面积公式即可得出结论.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)∵OA==5,∴线段OA扫过的图形面积==π.【点评】本题考查的是作图﹣旋转变换,熟知图形旋转不变性的性质是解答此题的关键.22.(8分)(2017•齐齐哈尔)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D 是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;=4S△COE,求P点坐标.(3)若点P在第一象限内的抛物线上,且S△ABP注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)【分析】(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数b、c 的值,进而可得到抛物线的对称轴方程;(2)令x=0,可得C点坐标,将函数解析式配方即得抛物线的顶点C的坐标;(3)设P(x,y)(x>0,y>0),根据题意列出方程即可求得y,即得D点坐标.【解答】解:(1)由点A(﹣1,0)和点B(3,0)得,解得:,∴抛物线的解析式为y=﹣x2+2x+3;(2)令x=0,则y=3,∴C(0,3),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4);(3)设P(x,y)(x>0,y>0),S△COE=×1×3=,S△ABP=×4y=2y,∵S=4S△COE,∴2y=4×,△ABP∴y=3,∴﹣x2+2x+3=3,解得:x1=0(不合题意,舍去),x2=2,∴P(2,3).【点评】此题主要考查了二次函数解析式的确定、抛物线的顶点坐标求法,图形=4S△COE列出方程是解决问题的关键.面积的求法等知识,根据S△ABP23.(8分)(2017•齐齐哈尔)如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.【分析】(1)证明△BDG≌△ADC,根据全等三角形的性质、直角三角形的性质证明;(2)根据直角三角形的性质分别求出DE、DF,根据勾股定理计算即可.【解答】(1)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°,在△BDG和△ADC中,,∴△BDG≌△ADC,∴BG=AC,∠BGD=∠C,∵∠ADB=∠ADC=90°,E,F分别是BG,AC的中点,∴DE=BG=EG,DF=AC=AF,∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,∴∠EDG+∠FDA=90°,∴DE⊥DF;(2)解:∵AC=10,∴DE=DF=5,由勾股定理得,EF==5.【点评】本题考查的是全等三角形的判定和性质、直角三角形的性质以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.24.(10分)(2017•齐齐哈尔)为养成学生课外阅读的习惯,各学校普遍开展了“我的梦中国梦”课外阅读活动,某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:(1)表中a=70,b=0.40;(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第3组;(4)请估计该校七年级学生日阅读量不足1小时的人数.【分析】(1)根据“频数÷百分比=数据总数”先计算总数为200人,再根据表中的数分别求a和b;(2)补全直方图;(3)第100和第101个学生读书时间都在第3组;(4)前两组的读书时间不足1小时,用总数2000乘以这两组的百分比的和即可.【解答】解:(1)10÷0.05=200,∴a=200×0.35=70,b=80÷200=0.40,故答案为:70,0.40;(2)补全直方图,如下图:(3)样本中一共有200人,中位数是第100和101人的读书时间的平均数,即第3组:1~1.5小时;故答案为:3;(4)1200×(0.05+0.1)=1200×0.15=180(人),答:估计该校七年级学生日阅读量不足1小时的人数为180人.【点评】本题主要考查频率分布直方图和频率分布表的知识和分析问题以及解决问题的能力,解题的关键是能够读懂统计图,并从中读出有关信息.25.(10分)(2017•齐齐哈尔)“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人再次选择自行车作为出行工具,小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:(1)a=10,b=15,m=200;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.【分析】(1)根据时间=路程÷速度,即可求出a值,结合休息的时间为5分钟,即可得出b值,再根据速度=路程÷时间,即可求出m的值;(2)根据数量关系找出线段BC、OD所在直线的函数解析式,联立两函数解析式成方程组,通过解方程组求出交点的坐标,再用3000去减交点的纵坐标,即可得出结论;(3)根据(2)结论结合二者之间相距100米,即可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(4)分别求出当OD过点B、C时,小军的速度,结合图形,利用数形结合即可得出结论.【解答】解:(1)1500÷150=10(分钟),10+5=15(分钟),(3000﹣1500)÷(22.5﹣15)=200(米/分).故答案为:10;15;200.(2)线段BC所在直线的函数解析式为y=1500+200(x﹣15)=200x﹣1500;线段OD所在的直线的函数解析式为y=120x.联立两函数解析式成方程组,,解得:,∴3000﹣2250=750(米).答:小军在途中与爸爸第二次相遇时,距图书馆的距离是750米.(3)根据题意得:|200x﹣1500﹣120x|=100,解得:x1==17.5,x2=20.答:爸爸自第二次出发至到达图书馆前,17.5分钟时和20分钟时与小军相距100米.(4)当线段OD过点B时,小军的速度为1500÷15=100(米/分钟);当线段OD过点C时,小军的速度为3000÷22.5=(米/分钟).结合图形可知,当100<v<时,小军在途中与爸爸恰好相遇两次(不包括家、图书馆两地).【点评】本题考查了一次函数的应用、解含绝对值符号的一元一次方程以及解二元一次方程组,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系找出线段BC、OD所在直线的函数解析式;(3)结合(2)找出关于x的含绝对值符号的一元一次方程;(4)画出图形,利用数形结合解决问题.26.(12分)(2017•齐齐哈尔)如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA的长是关于x的一元二次方程x2﹣12x+32=0的两个根,且OA>OC.(1)求线段OA,OC的长;。

2017年黑龙江省哈尔滨市中考数学试卷及答案

2017年黑龙江省哈尔滨市中考数学试卷及答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前黑龙江省哈尔滨市2017年初中升学考试数学 ...................................................................... 1 黑龙江省哈尔滨市2017年初中升学考试数学答案解析 (4)黑龙江省哈尔滨市2017年初中升学考试数学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.7-的倒数是( ) A .7B .7-C .17D .17- 2.下列运算正确的是( ) A .632a a a ÷= B .336235a a a += C .326()a a -=D .222()a b a b +=+3.下列图形中,既是轴对称图形又是中心对称图形的是( )ABC D 4.抛物线231()352y x =-+-的顶点坐标是( ) A .1(,3)2-B .1(,3)2--C .1(,3)2D .1(,3)2- 5.五个大小相同的正方体搭成的几何体如图所示,其左视图是( )A B C D6.方程2131x x =+-的解为( ) A .3x =B .4x =C .5x =D .5x =-7.如图,O 中,弦AB ,CD 相交于点P ,42A ∠=,77APD ∠=,则B ∠的大小是 ( )A .43B .35C .34D .448.在Rt ABC △中,90C ∠=,4AB =,1AC =,则cos B 的值为( )AB .14CD9.如图,在ABC △中,D ,E 分别为AB ,AC 边上的点,DE BC ∥,点F 为BC 边上一点,连接AF 交DE 于点G .则下列结论中一定正确的是)A .AD AEAB EC =B .AG GF =C .BD CE AD AE=D .AG AF EC= 10.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中.小涛离家的距离y (单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的是( )毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)A .小涛家离报亭的距离是900mB .小涛从家去报亭的平均速度是60m/minC .小涛从报亭返回家中的平均速度是80m/minD .小涛在报亭看报用了15min第Ⅱ卷(非选择题 共90分)二、填空题(本大题共10小题,每小题3分,共30分.把答案填写在题中的横线上) 11.将57600000用科学记数法表示为 .12.函数212x y x +=-中,自变量x 的取值范围是 . 13.把多项式2249ax ay -分解因式的结果是 .14.的结果是 . 15.已知反比例函数31k y x-=的图象经过点(1,2),则k 的值为 .16.不等式组521,30x x -⎧⎨-⎩≤<的解集是 .17.一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率为 . 18.已知扇形的弧长为4π,半径为48,则此扇形的圆心角为 度.19.四边形ABCD 是菱形,60BAD ∠=,6AB =,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE =,则CE 的长为 . 20.如图,在矩形ABCD 中,M 为BC 边上一点,连接AM ,过点D 作DE AM ⊥,垂足为E ,若1DE DC ==,2AE EM =,则BM 的长为 .三、解答题(本大题共7题,共60分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分7分)先化简,再求代数式212121+2x xx x x x +÷---+的值,其中4sin602x =-. 22.(本小题满分7分)如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.(1)在图中画出以AB 为底、面积为12的等腰ABC △,且点C 在小正方形的顶点上; (2)在图中画出平行四边形ABDE ,且点D 和点E 均在小正方形的顶点上,3tan 2EAB ∠=.连接CD ,请直接写出线段CD 的长.23.(本小题满分8分)随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚.洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图.请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.24.(本小题满分8分)已知:ACB △和DCE △都是等腰直角三角形,90ACB DCE ∠=∠=,连接AE ,BD 交于点O .AE 与DC 交于点M ,BD 与AC 交于点N.数学试卷 第5页(共18页) 数学试卷 第6页(共18页)(1)如图1,求证:AE BD =;(2)如图2,若AC DC =,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.25.(本小题满分10分)威丽商场销售,A B 两种商品,售出1件A 种商品和4件B 种商品所得利润为600元;售出3件A 种商品和5件B 种商品所得利润为1100元.(1)求每件A 种商品和每件B 种商品售出后所得利润分别为多少元;(2)由于需求量大,,A B 两种商品很快售完,威丽商场决定再一次购进,A B 两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A 种商品?26.(本小题满分10分)已知:AB 是O 的弦,点C 是AB 的中点,连接OB ,OC ,OC 交AB 于点D .(1)如图1,求证:AD BD =;(2)如图2,过点B 作O 的切线交OC 的延长线于点M ,点P 是AC 上一点,连接AP ,BP ,求证:90APB OMB ∠-∠=;(3)如图3,在(2)的条件下,连接DP ,MP ,延长MP 交O 于点Q ,若6MQ DP =,3sin 5ABO ∠=,求MPMQ 的值.27.(本小题满分10分)如图,在平面直角坐标系中,点O 为坐标原点,抛物线2y x bx c =++交x 轴于A ,B 两点,交y 轴于点C ,直线3y x =-经过B ,C 两点.(1)求抛物线的解析式;(2)过点C 作直线CD y ⊥轴交抛物线于另一点D ,点P 是直线CD 下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P 作PE x ⊥轴于点E ,PE 交CD 于点F ,交BC 于点M ,连接AC ,过点M 作MN AC ⊥于点N ,设点P 的横坐标为t ,线段MN 的长为d ,求d 与t 之间的函数关系式(不要求写出自变量t 的取值范围); (3)在(2)的条件下,连接PC ,过点B 作BQ PC ⊥于点Q (点Q 在线段PC 上),BQ 交CD 于点T ,连接OQ 交CD 于点S ,当ST TD =时,求线段MN 的长.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。

黑龙江省哈尔滨市2017年中考数学真题试题(含解析)

黑龙江省哈尔滨市2017年中考数学真题试题(含解析)

黑龙江省哈尔滨市2017年中考数学真题试题第Ⅰ卷(共30分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.7-的倒数是( )A.7B.7-C.17D.17- 【答案】D【解答】试题分析:﹣7的倒数是﹣17,故选D . 考点:倒数.2. 下列运算正确的是( )A.632a a a ? B.336235a a a += C.()236a a -= D.()222a b a b +=+ 【答案】C考点:整式的混合运算.3. 下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】D【解析】 试题分析:A 、是轴对称图形,不是中心对称图形,不符题意;B 、是轴对称图形,不是中心对称图形,不符题意;C 、不是轴对称图形,是中心对称图形,不符题意;D 、是轴对称图形,也是中心对称图形,符合题意.故选D.考点:1.中心对称图形;2.轴对称图形.4. 抛物线231352y x骣琪=-+-琪桫的顶点坐标是( )A.1,32骣琪-琪桫B.1,32骣琪--琪桫C.1,32骣琪琪桫D.1,32骣琪-琪桫【答案】B考点:二次函数的性质.5. 五个大小相同的正方体搭成的几何体如图所示,其左视图是( )A.B.C.D.【答案】C【解析】试题分析:从左边看第一层是两个小正方形,第二层左边是一个小正方形,故选C.考点:三视图.6. 方程2131x x=+-的解为( )A.3x= B.4x= C.5x= D.5x=-【答案】C【解析】试题分析:方程两边同乘(x+3)(x-1)得,2(x﹣1)=x+3,2x﹣2=x+3,x=5,检验:当x=5时(x+3)(x﹣1)≠0,所以x=5是原方程的根;故选C.考点:解分式方程.7. 如图,O ⊙中,弦AB ,CD 相交于点P ,42A =∠°,77APD =∠°,则B ∠的大小是( )A.43°B.35°C.34°D.44° 【答案】B【解析】试题分析:∵∠D=∠A=42°,∴∠B=∠APD ﹣∠D=35°,故选B .考点:圆周角定理.8. 在Rt ABC △中,90C =∠°,4AB =,1AC =,则cos B 的值为( )B.14 【答案】A考点:锐角三角函数的定义.9. 如图,在ABC △中,,D E 分别为,AB AC 边上的点,DE BC ∥,点F 为BC 边上一点,连接AF 交DE 于点E ,则下列结论中一定正确的是( )A.AD AE AB EC =B.AC AE GF BD =C.BD CE AD AE =D.AG AC AF EC= 【答案】C。

2017年各地中考试卷2017年黑龙江省七台河市中考数学试卷(农垦、森工用)

2017年各地中考试卷2017年黑龙江省七台河市中考数学试卷(农垦、森工用)

2017年黑龙江省七台河市中考数学试卷(农垦、森工用)一、填空题(每题3分,满分30分)1.(3分)在2017年的“双11”网上促销活动中,淘宝网的交易额突破了3200000000元,将数字3200000000用科学记数法表示.2.(3分)函数y=中,自变量x的取值范围是.3.(3分)如图,BC∥EF,AC∥DF,添加一个条件,使得△ABC≌△DEF.4.(3分)在一个不透明的袋子中装有除颜色外完全相同的3个红球、3个黄球、2个绿球,任意摸出一球,摸到红球的概率是.5.(3分)不等式组的解集是x>﹣1,则a的取值范围是.6.(3分)原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为.7.(3分)如图,边长为4的正方形ABCD,点P是对角线BD上一动点,点E在边CD上,EC=1,则PC+PE的最小值是.8.(3分)圆锥底面半径为3cm,母线长3cm则圆锥的侧面积为cm2.9.(3分)△ABC中,AB=12,AC=,∠B=30°,则△ABC的面积是.10.(3分)观察下列图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;….则第2017个图形中有个三角形.二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.(x﹣2)2=x2﹣4 B.(3a2)3=9a6C.x6÷x2=x3D.x3•x2=x512.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.13.(3分)几个相同的小正方体所搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小正方体的个数最多是()俯视图左视图A.5个 B.7个 C.8个 D.9个14.(3分)一组从小到大排列的数据:a,3,4,4,6(a为正整数),唯一的众数是4,则该组数据的平均数是()A.3.6 B.3.8 C.3.6或3.8 D.4.215.(3分)如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C. D.16.(3分)若关于x 的分式方程的解为非负数,则a 的取值范围是( ) A .a ≥1 B .a >1 C .a ≥1且a ≠4D .a >1且a ≠4 17.(3分)在平行四边形ABCD 中,∠A 的平分线把BC 边分成长度是3和4的两部分,则平行四边形ABCD 周长是( )A .22B .20C .22或20D .1818.(3分)如图,是反比例函数y 1=和一次函数y 2=mx +n 的图象,若y 1<y 2,则相应的x 的取值范围是( )A .1<x <6B .x <1C .x <6D .x >119.(3分)某企业决定投资不超过20万元建造A 、B 两种类型的温室大棚.经测算,投资A 种类型的大棚6万元/个、B 种类型的大棚7万元/个,那么建造方案有( )A .2种B .3种C .4种D .5种20.(3分)如图,在边长为4的正方形ABCD 中,E 、F 是AD 边上的两个动点,且AE=FD ,连接BE 、CF 、BD ,CF 与BD 交于点G ,连接AG 交BE 于点H ,连接DH ,下列结论正确的个数是( )①△ABG ∽△FDG ②HD 平分∠EHG ③AG ⊥BE ④S △HDG :S △HBG =tan ∠DAG ⑤线段DH 的最小值是2﹣2.A .2B .3C .4D .5三、解答题(满分60分)21.(5分)先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.22.(6分)如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣1,3),B(﹣3,1),C(﹣1,1).请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出B1的坐标.(2)画出△A1B1C1绕点C1顺时针旋转90°后得到的△A2B2C1,并求出点A1走过的路径长.23.(6分)如图,已知抛物线y=﹣x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=﹣x+3交于C、D两点.连接BD、AD.(1)求m的值.=4S△ABD,求点P的坐标.(2)抛物线上有一点P,满足S△ABP24.(7分)某校在艺术节选拔节目过程中,从备选的“街舞”、“爵士”、“民族”、“拉丁”四种类型舞蹈中,选择一种学生最喜爱的舞蹈,为此,随机调查了本校的部分学生,并将调查结果绘制成如下统计图表(每位学生只选择一种类型),根据统计图表的信息,解答下列问题:(1)本次抽样调查的学生人数及a、b的值.(2)将条形统计图补充完整.(3)若该校共有1500名学生,试估计全校喜欢“拉丁舞蹈”的学生人数.25.(8分)为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6分钟忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知单车的速度是步行速度的3倍,如图是小亮和姐姐距家的路程y(米)与出发的时间x(分钟)的函数图象,根据图象解答下列问题:(1)小亮在家停留了分钟.(2)求小亮骑单车从家出发去图书馆时距家的路程y(米)与出发时间x(分钟)之间的函数关系式.(3)若小亮和姐姐到图书馆的实际时间为m分钟,原计划步行到达图书馆的时间为n分钟,则n﹣m=分钟.26.(8分)在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.27.(10分)由于雾霾天气频发,市场上防护口罩出现热销.某药店准备购进一批口罩,已知1个A型口罩和3个B型口罩共需26元;3个A型口罩和2个B 型口罩共需29元.(1)求一个A型口罩和一个B型口罩的售价各是多少元?(2)药店准备购进这两种型号的口罩共50个,其中A型口罩数量不少于35个,且不多于B型口罩的3倍,有哪几种购买方案,哪种方案最省钱?28.(10分)如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x 轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=(1)求点B的坐标;(2)求直线BN的解析式;(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.2017年黑龙江省七台河市中考数学试卷(农垦、森工用)参考答案与试题解析一、填空题(每题3分,满分30分)1.(3分)(2017•黑龙江)在2017年的“双11”网上促销活动中,淘宝网的交易额突破了3200000000元,将数字3200000000用科学记数法表示 3.2×109.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:3200000000=3.2×109.故答案为:3.2×109.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.2.(3分)(2017•黑龙江)函数y=中,自变量x的取值范围是x>1.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0可求出自变量x的取值范围.【解答】解:根据题意得:x﹣1>0,解得:x>1.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)(2017•黑龙江)如图,BC∥EF,AC∥DF,添加一个条件AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可),使得△ABC≌△DEF.【分析】本题要判定△ABC≌△DEF,易证∠A=∠EDF,∠ABC=∠E,故添加AB=DE、BC=EF或AC=DF根据ASA、AAS即可解题.【解答】解:∵BC∥EF,∴∠ABC=∠E,∵AC∥DF,∴∠A=∠EDF,∵在△ABC和△DEF中,,∴△ABC≌△DEF,同理,BC=EF或AC=DF也可证△ABC≌△DEF.故答案为AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.(3分)(2017•黑龙江)在一个不透明的袋子中装有除颜色外完全相同的3个红球、3个黄球、2个绿球,任意摸出一球,摸到红球的概率是.【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,用红球的个数除以总个数,求出恰好摸到红球的概率是多少即可.【解答】解:∵袋子中共有8个球,其中红球有3个,∴任意摸出一球,摸到红球的概率是,故答案为:.【点评】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5.(3分)(2017•黑龙江)不等式组的解集是x>﹣1,则a的取值范围是a≤﹣.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,结合不等式组的解集即可确定a的范围.【解答】解:解不等式x+1>0,得:x>﹣1,解不等式a﹣x<0,得:x>3a,∵不等式组的解集为x>﹣1,则3a≤﹣1,∴a≤﹣,故答案为:a≤﹣.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(3分)(2017•黑龙江)原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为10%.【分析】先设平均每次降价的百分率为x,得出第一次降价后的售价是原来的(1﹣x),第二次降价后的售价是原来的(1﹣x)2,再根据题意列出方程解答即可.【解答】解:设这两次的百分率是x,根据题意列方程得100×(1﹣x)2=81,解得x1=0.1=10%,x2=1.9(不符合题意,舍去).答:这两次的百分率是10%.故答案为:10%.【点评】本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7.(3分)(2017•黑龙江)如图,边长为4的正方形ABCD,点P是对角线BD上一动点,点E在边CD上,EC=1,则PC+PE的最小值是5.【分析】连接AC、AE,由正方形的性质可知A、C关于直线BD对称,则AE的长即为PC+PE的最小值,再根据勾股定理求出AE的长即可.【解答】解:连接AC、AE,∵四边形ABCD是正方形,∴A、C关于直线BD对称,∴AE的长即为PC+PE的最小值,∵CD=4,CE=1,∴DE=3,在Rt△ADE中,∵AE===5,∴PC+PE的最小值为5.故答案为:5.【点评】本题考查的是轴对称﹣最短路线问题及正方形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.8.(3分)(2017•黑龙江)圆锥底面半径为3cm,母线长3cm则圆锥的侧面积为9πcm2.【分析】根据题意可求出圆锥底面周长,然后利用扇形面积公式即可求出圆锥的侧面积.【解答】解:圆锥的底面周长为:2π×3=6π,∴圆锥侧面展开图的弧长为:6π,∵圆锥的母线长3,∴圆锥侧面展开图的半径为:3∴圆锥侧面积为:×3×6π=9π;故答案为:9π;【点评】本题考查圆锥的计算,解题的关键是熟练运用圆锥的相关计算公式,本题属于基础题型.9.(3分)(2017•黑龙江)△ABC中,AB=12,AC=,∠B=30°,则△ABC的面积是21或15.【分析】过A作AD⊥BC于D(或延长线于D),根据含30度角的直角三角形的性质得到AD的长,再根据勾股定理得到BD,CD的长,再分两种情况:如图1,当AD在△ABC内部时、如图2,当AD在△ABC外部时,进行讨论即可求解.【解答】解:①如图1,作AD⊥BC,垂足为点D,在Rt△ABD中,∵AB=12、∠B=30°,∴AD=AB=6,BD=ABcosB=12×=6,在Rt△ACD中,CD===,∴BC=BD+CD=6+=7,=×BC×AD=×7×6=21;则S△ABC②如图2,作AD⊥BC,交BC延长线于点D,由①知,AD=6、BD=6、CD=,则BC=BD﹣CD=5,=×BC×AD=×5×6=15,∴S△ABC故答案为:21或15.【点评】本题主要考查了解直角三角形,勾股定理,本题关键是得到BC和AD 的长,同时注意分类思想的运用.10.(3分)(2017•黑龙江)观察下列图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;….则第2017个图形中有8065个三角形.【分析】结合图形数出前三个图形中三角形的个数,发现规律:后一个图形中三角形的个数总比前一个三角形的个数多4.【解答】解:第1个图形中一共有1个三角形,第2个图形中一共有1+4=5个三角形,第3个图形中一共有1+4+4=9个三角形,…第n个图形中三角形的个数是1+4(n﹣1)=4n﹣3,当n=2017时,4n﹣3=8065,故答案为:8065.【点评】此题考查图形的变化规律,由特殊到一般的归纳方法,找出规律:后一个图形中三角形的个数总比前一个三角形的个数多4解决问题.二、选择题(每题3分,满分30分)11.(3分)(2017•黑龙江)下列各运算中,计算正确的是()A.(x﹣2)2=x2﹣4 B.(3a2)3=9a6C.x6÷x2=x3D.x3•x2=x5【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=x2﹣4x+4,故A错误;(B)原式=27a6,故B错误;(C)原式=x4,故C错误;故选(D)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.12.(3分)(2017•黑龙江)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,也不是中心对称图形,故本选项错误;C、既是轴对称图形,又是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.(3分)(2017•黑龙江)几个相同的小正方体所搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小正方体的个数最多是()俯视图左视图A.5个 B.7个 C.8个 D.9个【分析】根据俯视图知几何体的底层有4个小正方形组成,而左视图是由3个小正方形组成,故这个几何体的后排最有1个小正方体,前排最多有2×3=6个小正方体,即可解答.【解答】解:由俯视图及左视图知,构成该几何体的小正方形体个数最多的情况如下:故选:B.【点评】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.14.(3分)(2017•黑龙江)一组从小到大排列的数据:a,3,4,4,6(a为正整数),唯一的众数是4,则该组数据的平均数是()A.3.6 B.3.8 C.3.6或3.8 D.4.2【分析】根据众数的定义得出正整数a的值,再根据平均数的定义求解可得.【解答】解:∵数据:a,3,4,4,6(a为正整数),唯一的众数是4,∴a=1或2,当a=1时,平均数为=3.6;当a=2时,平均数为=3.8;故选:C.【点评】本题主要考查了众数与平均数的定义,根据众数是一组数据中出现次数最多的数得出a的值是解题的关键.15.(3分)(2017•黑龙江)如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C. D.【分析】根据特殊点的实际意义即可求出答案.【解答】解:先注甲池水未达连接地方时,乙水池中的水面高度没变化;当甲池中水到达连接的地方,乙水池中水面上升比较快;当两水池水面持平时,乙水池的水面持续增长较慢,最后两池水面持平后继续快速上升,故选:D.【点评】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.16.(3分)(2017•黑龙江)若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为0求出a的范围即可.【解答】解:去分母得:2(2x﹣a)=x﹣2,解得:x=,由题意得:≥0且≠2,解得:a≥1且a≠4,故选:C.【点评】此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.17.(3分)(2017•黑龙江)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是()A.22 B.20 C.22或20 D.18【分析】根据AE平分∠BAD及AD∥BC可得出AB=BE,BC=BE+EC,从而根据AB、AD的长可求出平行四边形的周长.【解答】解:在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB.∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,BC=BE+EC,①当BE=3,EC=4时,平行四边形ABCD的周长为:2(AB+AD)=2(3+3+4)=20.②当BE=4,EC=3时,平行四边形ABCD的周长为:2(AB+AD)=2(4+4+3)=22.故选:C.【点评】本题考查平行四边形的性质、等腰三角形的判定;根据题意判断出AB=BE 是解答本题的关键.18.(3分)(2017•黑龙江)如图,是反比例函数y1=和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是()A .1<x <6B .x <1C .x <6D .x >1【分析】观察图象得到:当1<x <6时,一次函数y 2的图象都在反比例函数y 1的图象的上方,即满足y 1<y 2.【解答】解:由图形可知:若y 1<y 2,则相应的x 的取值范围是:1<x <6; 故选A .【点评】本题考查了反比例函数与一次函数的交点问题,利用数形结合的思想解决此类问题.19.(3分)(2017•黑龙江)某企业决定投资不超过20万元建造A 、B 两种类型的温室大棚.经测算,投资A 种类型的大棚6万元/个、B 种类型的大棚7万元/个,那么建造方案有( )A .2种B .3种C .4种D .5种【分析】直接根据题意假设出未知数,进而得出不等式进而分析得出答案.【解答】解:设建造A 种类型的温室大棚x 个,建造B 种类型的温室大棚y 个,根据题意可得:6x +7y ≤20,当x=1,y=2符合题意;当x=2,y=1符合题意;当x=3,y=0符合题意;故建造方案有3种.故选:B .【点评】此题主要考查了二元一次方程的应用,正确表示出建造两种大棚的费用是解题关键.20.(3分)(2017•黑龙江)如图,在边长为4的正方形ABCD 中,E 、F 是AD 边上的两个动点,且AE=FD ,连接BE 、CF 、BD ,CF 与BD 交于点G ,连接AG 交BE 于点H ,连接DH ,下列结论正确的个数是( )①△ABG ∽△FDG ②HD 平分∠EHG ③AG ⊥BE ④S △HDG :S △HBG =tan ∠DAG ⑤线段DH 的最小值是2﹣2.A .2B .3C .4D .5【分析】首先证明△ABE ≌△DCF ,△ADG ≌△CDG (SAS ),△AGB ≌△CGB ,利用全等三角形的性质,等高模型、三边关系一一判断即可.【解答】解:∵四边形ABCD 是正方形,∴AB=CD ,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE 和△DCF 中,,∴△ABE ≌△DCF (SAS ),∴∠ABE=∠DCF ,在△ADG 和△CDG 中,,∴△ADG ≌△CDG (SAS ),∴∠DAG=∠DCF ,∴∠ABE=∠DAG ,∵∠DAG +∠BAH=90°,∴∠BAE +∠BAH=90°,∴∠AHB=90°,∴AG ⊥BE ,故③正确,同法可证:△AGB ≌△CGB ,∵DF ∥CB ,∴△CBG ∽△FDG ,∴△ABG ∽△FDG ,故①正确,∵S △HDG :S △HBG =DG :BG=DF :BC=DF :CD=tan ∠FCD ,又∵∠DAG=∠FCD ,∴S △HDG :S △HBG =tan ∠FCD ,tan ∠DAG ,故④正确取AB 的中点O ,连接OD 、OH ,∵正方形的边长为4,∴AO=OH=×4=2,由勾股定理得,OD==2 ,由三角形的三边关系得,O 、D 、H 三点共线时,DH 最小,DH 最小=2 ﹣2.无法证明DH 平分∠EHG ,故②错误,故①③④⑤正确,故选C .【点评】本题考查了正方形的性质,全等三角形的判定与性质,三角形的三边关系,勾股定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,难点在于⑤作辅助线并确定出DH 最小时的情况.三、解答题(满分60分)21.(5分)(2017•黑龙江)先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.【分析】先化简分式,然后根据分式有意义的条件即可求出m 的值,从而可求出原式的值.【解答】解:原式=(﹣)×=×﹣×=﹣=,∵m≠±2,0,∴当m=3时,原式=3【点评】本题考查分式的化简求值,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(6分)(2017•黑龙江)如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣1,3),B(﹣3,1),C(﹣1,1).请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出B1的坐标.(2)画出△A1B1C1绕点C1顺时针旋转90°后得到的△A2B2C1,并求出点A1走过的路径长.【分析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据弧长公式列式计算即可得解.【解答】解:(1)如图,B1(3,1);(2)如图,A1走过的路径长:×2×π×2=π【点评】本题考查了利用轴对称变换作图,利用旋转变换作图,以及弧长的计算,熟练掌握网格结构,准确找出对应顶点的位置是解题的关键.23.(6分)(2017•黑龙江)如图,已知抛物线y=﹣x2+mx+3与x轴交于点A、B 两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=﹣x+3交于C、D两点.连接BD、AD.(1)求m的值.=4S△ABD,求点P的坐标.(2)抛物线上有一点P,满足S△ABP【分析】(1)利用待定系数法即可解决问题;(2)利用方程组首先求出点D坐标.由面积关系,推出点P的纵坐标,再利用待定系数法求出点P的坐标即可;【解答】解:(1)∵抛物线y=﹣x2+mx+3过(3,0),∴0=﹣9+3m+3,∴m=2(2)由,得,,∴D (,﹣),∵S △ABP =4S △ABD , ∴AB ×|y P |=4×AB ×,∴|y P |=9,y P =±9,当y=9时,﹣x 2+2x +3=9,无实数解,当y=﹣9时,﹣x 2+2x +3=﹣9,x 1=1+,x 2=1﹣, ∴P (1+,﹣9)或P (1﹣,﹣9).【点评】本题考查抛物线与x 轴的交点、二次函数的图象上的点的特征,解题的关键是熟练掌握待定系数法解决问题,学会利用方程组确定两个函数的交点坐标,属于中考常考题型.24.(7分)(2017•黑龙江)某校在艺术节选拔节目过程中,从备选的“街舞”、“爵士”、“民族”、“拉丁”四种类型舞蹈中,选择一种学生最喜爱的舞蹈,为此,随机调查了本校的部分学生,并将调查结果绘制成如下统计图表(每位学生只选择一种类型),根据统计图表的信息,解答下列问题:(1)本次抽样调查的学生人数及a 、b 的值.(2)将条形统计图补充完整.(3)若该校共有1500名学生,试估计全校喜欢“拉丁舞蹈”的学生人数.【分析】(1)由“拉丁”的人数及所占百分比可得总人数,由条形统计图可直接得a、b的值;(2)由(1)中各种类型舞蹈的人数即可补全条形图;(3)用样本中“拉丁舞蹈”的百分比乘以总人数可得.【解答】解:(1)总人数:60÷30%=200(人),a=50÷200=25%,b=(200﹣50﹣60﹣30)÷200=30%;(2)如图所示:(3)1500×30%=450(人).答:约有450人喜欢“拉丁舞蹈”.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.25.(8分)(2017•黑龙江)为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6分钟忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知单车的速度是步行速度的3倍,如图是小亮和姐姐距家的路程y(米)与出发的时间x(分钟)的函数图象,根据图象解答下列问题:(1)小亮在家停留了2分钟.(2)求小亮骑单车从家出发去图书馆时距家的路程y(米)与出发时间x(分钟)之间的函数关系式.(3)若小亮和姐姐到图书馆的实际时间为m分钟,原计划步行到达图书馆的时间为n分钟,则n﹣m=30分钟.【分析】(1)根据路程与速度、时间的关系,首先求出C、B两点的坐标,即可解决问题;(2)根据C、D两点坐标,利用待定系数法即可解决问题;(3)求出原计划步行到达图书馆的时间为n,即可解决问题.【解答】解:(1)步行速度:300÷6=50m/min,单车速度:3×50=150m/min,单车时间:3000÷150=20min,30﹣20=10,∴C(10,0),∴A到B是时间==2min,∴B(8,0),∴BC=2,∴小亮在家停留了2分钟.故答案为2.(2)设y=kx+b,过C、D(30,3000),∴,解得,∴y=150x﹣1500(10≤x≤30)(3)原计划步行到达图书馆的时间为n分钟,n==60n﹣m=60﹣30=30分钟,故答案为30.【点评】本题考查一次函数的应用、路程、速度、时间之间的关系等知识,解题的关键是理解题意,读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.26.(8分)(2017•黑龙江)在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.【分析】图2:根据四边形ABCD是正方形,得到AO=OC,BO=OD,AC⊥BD,根据旋转的性质得到OD′=OD,OC′=O C,∠D′OD=∠C′OC,等量代换得到AO=BO,OC′=OD′,∠AOC′=∠BOD′,根据全等三角形的性质得到AC′=BD′,∠OAC′=∠OBD′,于是得到结论;图3:根据四边形ABCD是菱形,得到AC⊥BD,AO=CO,BO=DO,求得OB=OA,OD=OC,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,求得OD′=OC′,∠AOC′=∠BOD′,根据相似三角形的性质得到BD′=AC′,于是得到结论.【解答】解:图2结论:AC′=BD′,AC′⊥BD′,理由:∵四边形ABCD是正方形,∴AO=OC,BO=OD,AC⊥BD,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴AO=BO,OC′=OD′,∠AOC′=∠BOD′,在△AOC′与△BOD′中,,∴△AOC′≌△BOD′,∴AC′=BD′,∠OAC′=∠OBD′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′;图3结论:BD′=AC′,AC′⊥BD’理由:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∵∠ABC=60°,∴∠ABO=30°,∴OB=OA,OD=OC,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴OD′=OC′,∠AOC′=∠BOD′,∴=,∴△AOC′∽△BOD′,∴==,∠OAC′=∠OBD′,∴BD′=AC′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′.【点评】本题考查了正方形的性质,菱形的性质,全等三角形的判定和性质,相似三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.27.(10分)(2017•黑龙江)由于雾霾天气频发,市场上防护口罩出现热销.某药店准备购进一批口罩,已知1个A型口罩和3个B型口罩共需26元;3个A 型口罩和2个B型口罩共需29元.(1)求一个A型口罩和一个B型口罩的售价各是多少元?(2)药店准备购进这两种型号的口罩共50个,其中A型口罩数量不少于35个,且不多于B型口罩的3倍,有哪几种购买方案,哪种方案最省钱?【分析】(1)设一个A型口罩的售价是a元,一个B型口罩的售价是b元,根据:“1个A型口罩和3个B型口罩共需26元;3个A型口罩和2个B型口罩共需29元”列方程组求解即可;(2)设A型口罩x个,根据“A型口罩数量不少于35个,且不多于B型口罩的3倍”确定x的取值范围,然后得到有关总费用和A型口罩之间的关系得到函数解析式,确定函数的最值即可.【解答】解:(1)设一个A型口罩的售价是a元,一个B型口罩的售价是b元,依题意有:,解得:.答:一个A型口罩的售价是5元,一个B型口罩的售价是7元.(2)设A型口罩x个,依题意有:,解得35≤x≤37.5,∵x为整数,∴x=35,36,37.方案如下:。

2017年黑龙江省哈尔滨市中考数学试卷含答案

2017年黑龙江省哈尔滨市中考数学试卷含答案

52
()
A. (1 , 3) 2
B. ( 1 , 3) 2
C. (1 ,3) 2
D. ( 1 ,3) 2
5.五个大小相同的正方体搭成的几何体如图所示,其左视图是

()

数学试卷 第 1页(共 18页)
A
B
C
D
6.方程 2 1 的解为 x 3 x 1
()
A. x 3
B. x 4
E ,若 DE DC 1 , AE 2EM ,则 BM 的长为
.
三、解答题(本大题共 7 题,共 60 分.解答应写出文字说明、证明过程或演算步骤)
21.(本小题满分 7 分)
先化简,再求代数式
1 x 1

x2
x2 2x 1
x x+2
的值,其中
x

4sin 60

2.
22.(本小题满分 7 分)
C. x 5
D. x 5
7.如图, O 中,弦 AB , CD 相交于点 P , A 42 , APD 77 ,则
B 的大小是 A. 43 C. 34
B. 35 D. 44
()
8.在 Rt△ABC 中, C 90 , AB 4 , AC 1 ,则 cos B 的值为
8.【答案】A 【解析】由勾股定理得 BC AB2 AC 2 15 ,cos B BC 15 ,故选 A.
AB 4 【考点】解直角三角形的应用。
9.【答案】C 【解析】因为 DE //BC ,所以 AD AE , AG AE , BD CE , AG AE ,所以
(1)本次调查共抽取了多少名学生? (2)通过计算补全条形统计图; (3)若洪祥中学共有1350 名学生,请你估计最喜欢太阳岛风景区的学生有多少名.

2017年黑龙江省哈尔滨市中考数学试卷和答案解析

2017年黑龙江省哈尔滨市中考数学试卷和答案解析

E ,若 DE DC 1 , AE 2EM ,则 BM 的长为
三、解答题(本大题共 7 题,共 60 分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分 7 分) 24.(本小题满分 8 分) 已知: △ACB 和 △DCE 都是等腰直角三角形, ACB DCE 90 ,连接 AE , BD 交于点 O . AE 与 DC 交于点 M , BD 与 AC 交于点 N .
3.下列图形中,既是轴对称图形又是中心对称图形的是

-------------------A B C D ( C. ( ,3) ) A.小涛家离报亭的距离是 900 m B.小涛从家去报亭的平均速度是 60 m/min ( ) C.小涛从报亭返回家中的平均速度是 80 m/min D.小涛在报亭看报用了 15 min
1 x2 x 先化简,再求代数式 的值,其中 x 4sin 60 2 . 2 x 1 x 2 x 1 x+2 22.(本小题满分 7 分)
如图,方格纸中每个小正方形的边长均为 1,线段 AB 的两个端点均在小正方形的顶点 上. (1)在图中画出以 AB 为底、面积为 12 的等腰 △ABC ,且点 C 在小正方形的顶点 上; (2) 在 图 中 画 出 平 行 四 边 形 ABDE , 且 点 D 和 点 E 均 在 小 正 方 形 的 顶 点 上 ,
17.一个不透明的袋子中装有 17 个小球,其中 6 个红球、 11 个绿球,这些小球除颜色外无 其他差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率为 18.已知扇形的弧长为 4 π ,半径为 48,则此扇形的圆心角为 度. .
19.四边形 ABCD 是菱形, BAD 60 , AB 6 ,对角线 AC 与 BD 相交于点 O ,点 E 在

2017年黑龙江省齐齐哈尔市中考数学试卷及答案

2017年黑龙江省齐齐哈尔市中考数学试卷及答案

-21-3=9B.()941-2017二O 一七年黑龙江省齐齐哈尔市初中学业考试数 学 试 卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣2017的绝对值是( ) A .﹣2017 B . C .2017 D . 2.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( ) A . B . C . D .3.作为“一带一路”倡议的重大先行项目,中国,巴基斯坦经济走廊建设进展快、成效显著,两年来,已有18个项目在建或建成,总投资额达185亿美元,185亿用科学记数法表示为( )A .1.85×109B .1.85×1010C .1.85×1011D .1.85×10124.下列算式运算结果正确的是( )A .(2x 5)2=2x 10 C .(a +1)2=a 2+1 D .a ﹣(a ﹣b )=﹣b5.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买( )A .16个B .17个C .33个D .34个6.若关于x 的方程kx 2﹣3x ﹣ =0有实数根,则实数k 的取值范围是( )A .k=0B .k ≥﹣1且k ≠0C .k ≥﹣1D .k >﹣17.已知等腰三角形的周长是10,底边长y 是腰长x 的函数,则12017123951(,y ),(,y ),(,y )222---下列图象中,能正确反映y 与x 之间函数关系的图象是( )A .B .C .D .8.一个几何体的主视图和俯视图如图所示,若这个几何体最多有a 个小正方体组成,最少有b 个小正方体组成,则a +b 等于( )A .10B .11C .12D .139.一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角度数为( )A .120°B .180°C .240°D .300°10.如图,抛物线y=ax 2+bx +c (a ≠0)的对称轴为直线x=﹣2,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a ﹣b=0;②c <0;③﹣3a +c >0;④4a ﹣2b >at 2+bt (t 为24x y x -=+实数);⑤点 是该抛物线上点,则y 1<y 2<y 3,正确的个数( )A .4个B .3个C .2个D .1个二、填空题(本大题共9小题,每小题3分,共27分)11.在某次七年级期末测试中,甲、乙两个班的数学平均成绩都是89.5分,且方差分别为S 甲2=0.15,S 乙2=0.2,则成绩比较稳定的是 班.12.在函数 中,自变量x 的取值范围是 .13.矩形ABCD 的对角线AC ,BD 相交于点O ,请你添加一个适当的条件 ,使其成为正方形(只填一个即可)14.因式分解:4m 2﹣36= .15.如图,AC 是⊙O 的切线,切点为C ,BC 是⊙O 的直径,AB 交⊙O 于点D ,连接OD ,若∠A=50°,则∠COD 的度数为 .16.如图,在等腰三角形纸片ABC 中,AB=AC=10,BC=12,沿底边BC 上的高AD 剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是 .17.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是△ABC 的“和谐分割线”,△ACD 为4tan AOC 3∠=k y x=222131.(1)311x x x x x x ++--+---等腰三角形,△CBD 和△ABC 相似,∠A=46°,则∠ACB 的度数为 .18.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点 ,反比例函数 的图象经过点C ,与AB 交于点D , 若△COD 的面积为20,则k 的值等于 .19.如图,在平面直角坐标系中,等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,依此规律,得到等腰直角三角形OA 2017A 2018,则点A 2017的坐标为 .三、解答题(共63分)20.(7分)先化简,再求值: 其中x=2cos60°﹣3.21.(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC 的三个顶点的坐标分别为A (﹣3,4),B (﹣5,2),C (﹣2,1).(1)画出△ABC 关于y 轴对称图形△A 1B 1C 1;(2)画出将△ABC 绕原点O 逆时针方向旋转90°得到的△A 2B 2C 2;24(,)24b ac b a a--(3)求(2)中线段OA 扫过的图形面积.22.(8分)如图,已知抛物线y=﹣x 2+bx +c 与x 轴交于点A (﹣1,0)和点B (3,0),与y 轴交于点C ,连接BC 交抛物线的对称轴于点E ,D 是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C 和点D 的坐标;(3)若点P 在第一象限内的抛物线上,且S △ABP =4S △COE ,求P 点坐标.注:二次函数y=ax 2+bx +c (a ≠0)的顶点坐标为23.(8分)如图,在△ABC 中,AD ⊥BC 于D ,BD=AD ,DG=DC ,E ,F 分别是BG ,AC 的中点.(1)求证:DE=DF ,DE ⊥DF ;(2)连接EF ,若AC=10,求EF 的长.24.(10分)为养成学生课外阅读的习惯,各学校普遍开展了“我的梦中国梦”课外阅读活动,某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:(1)表中a=,b=;(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第组;(4)请估计该校七年级学生日阅读量不足1小时的人数.组别时间段(小时)频数频率10≤x<0.5100.0520.5≤x<1.0200.103 1.0≤x<1.580b4 1.5≤x<2.0a0.355 2.0≤x<2.5120.066 2.5≤x<3.080.0425.(10分)“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人再次选择自行车作为出行工具,小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:(1)a=,b=,m=;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.26.(12分)如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA的长是关于x的一元二次方程x2﹣12x+32=0的两个根,且OA>OC.(1)求线段OA,OC的长;(2)求证:△ADE≌△COE,并求出线段OE的长;(3)直接写出点D的坐标;(4)若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.)2x-3x+1)1+x-1=-x+1)x-1)x-3x-1x+1=-x-1x-11x 2cos603=-21=-3x x ⨯==︒(((﹣原式29025=3604ππ⨯52017年黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.C .2.D .3.B .4.B .5.A .6.C .7.D .8.C .9.A .10.B .二、填空题(本大题共9小题,每小题3分,共27分)11.甲.12.x ≥﹣4且x ≠0.13.AB=BC (答案不唯一)14.4(m +3)(m ﹣3)15.80°.16.10cm ,2cm ,4cm .17.113°或92°.18.﹣24.19.(0,21008)或 三、解答题(共63分)20.解:原式当21.解:(1)如图,△A 1B 1C 1即为所求三角形;(2)如图,△A 2B 2C 2即为所求作的三角形; (3)∵OA==5,∴线段OA 扫过的图形面积=-1-b+c=022.解:(1)由点A (﹣1,0)和点B (3,0)得,解得: -9+3b+c=0 ,∴b=2,c=3 ∴抛物线的解析式为y=﹣x2+2x+3;(2)令x=0,则y=3,∴C(0,3),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4);(3)设P(x,y)(x>0,y>0),S△COE =1/2×1×3=3/2,S△ABP=1/2×4y=2y,∵S△ABP =4S△COE,∴2y=4×2/3,∴y=3,∴﹣x2+2x+3=3,解得:x1=0(不合题意,舍去),x2=2,∴P(2,3).23.(1)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°,BD=AD在△BDG和△ADC中,∠ADB=∠ADC=90°,DG=DC∴△BDG≌△ADC,∴BG=AC,∠BGD=∠C,∵∠ADB=∠ADC=90°,E,F分别是BG,AC的中点,∴DE=BG=EG,DF=AC=AF,∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,∴∠EDG+∠FDA=90°,∴DE⊥DF;(2)解:∵AC=10,∴DE=DF=5,由勾股定理得,EF24.解:(1)10÷0.05=200,∴a=200×0.35=70,b=80÷200=0.40,故答案为:70,0.40;(2)补全直方图,如下图:(3)样本中一共有200人,中位数是第100和101人的读书时间的平均数,即第3组:1~1.5小时;故答案为:3;(4)1200×(0.05+0.1)=1200×0.15=180(人),答:估计该校七年级学生日阅读量不足1小时的人数为180人.25.解:(1)1500÷150=10(分钟),10+5=15(分钟),(3000﹣1500)÷(22.5﹣15)=200(米/分).故答案为:10;15;200.(2)线段BC所在直线的函数解析式为y=1500+200(x﹣15)=200x﹣1500;线段OD所在的直线的函数解析式为y=120x.120x=-1500+200x,解得:X=75/4,∴3000﹣120 ×75/4=750(米).答:小军在途中与爸爸第二次相遇时,距图书馆的距离是750米.(3)根据题意得:|200x﹣1500﹣120x|=100,解得:x1==17.5,x2=20.答:爸爸自第二次出发至到达图书馆前,17.5分钟时和20分钟时与小军相距100米.(4)当线段OD过点B时,小军的速度为1500÷15=100(米/分钟);当线段OD过点C时,小军的速度为3000÷22.5= 400/3 (米/分钟).结合图形可知,当100<v<400/3时,小军在途中与爸爸恰好相遇两次(不包括家、图书馆两地).26.解:(1)解方程x2﹣12x+32=0得,x1=8,x2=4,∵OA>OC,∴OA=8,OC=4;(2)∵四边形ABCO是矩形,∴AB=OC,∠ABC=∠AOC=90°,∵把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,∴AD=AB,∠ADE=∠ABC=90°,∴AD=OC,∠ADE=∠COE,在△ADE与△COE中,∴△ADE≌△COE;∵CE2=OE2+OC2,即(8﹣OE)2=OE2+42,∴OE=3;(3)过D作DM⊥x轴于M,则OE∥DM,∴△OCE∽△MCD,∴,∴CM= ,DM= ,∴OM= ,∴D(-12/5,24/5);(4)存在;∵OE=3,OC=4,∴CE=5,过P 1作P 1H ⊥AO 于H ,∵四边形P 1ECF 1是菱形,∴P 1E=CE=5,P 1E ∥AC ,∴∠P 1EH=∠OAC ,∴ = = ,∴设P 1H=k ,HE=2k ,∴P 1E=k=5,∴P 1H=,HE=2,∴OH=2+3,∴P 1( ﹣,2+3),同理P 3( ,3﹣2), 当A 与F 重合时,四边形F 2ECP 2是菱形,∴EF 2∥CP 2,EF 2,=CP 2=5,∴P 2(4,5);当CE 是菱形EP 4CF 4的对角线时,四边形EP 4CF 4是菱形,∴EP 4=5,EP 4∥AC ,如图2,过P 4作P 4G ⊥x 轴于G ,过P 4作P 4N ⊥OE 于N ,则P 4N=OG ,P 4G=ON ,EP 4∥AC ,∴ = ,设P 4N=x ,EN=2x ,∴P 4E=CP 4=x ,∴P 4G=ON=3﹣2x ,CG=4﹣x ,∴(3﹣2x )2+(4﹣x )2=(x )2, ∴ x= ,∴3﹣2x= , ∴P 4( , ),综上所述:存在以点E ,C ,P ,F 为顶点的四边形是菱形,123451p (,),p (4,5),p (42-+。

2017年黑龙江省齐齐哈尔市中考数学试卷(含详细答案及方法总结)

2017年黑龙江省齐齐哈尔市中考数学试卷(含详细答案及方法总结)

2017年黑龙江省齐齐哈尔市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣2017的绝对值是()A.﹣2017 B.﹣C.2017 D.2.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C.D.3.(3分)作为“一带一路”倡议的重大先行项目,中国、巴基斯坦经济走廊建设进展快、成效显著.两年来,已有18个项目在建或建成,总投资额达185亿美元.185亿用科学记数法表示为()A.1.85×109B.1.85×1010C.1.85×1011D.1.85×10124.(3分)下列算式运算结果正确的是()A.(2x5)2=2x10 B.(﹣3)﹣2= C.(a+1)2=a2+1 D.a﹣(a﹣b)=﹣b 5.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个6.(3分)若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣17.(3分)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B.C.D.8.(3分)一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b等于()A.10 B.11 C.12 D.139.(3分)一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形的圆心角是()A.120°B.180°C.240° D.300°10.(3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示.则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有()A.4个 B.3个 C.2个 D.1个二、填空题(本大题共9小题,每小题3分,共27分)11.(3分)在某次七年级期末测试中,甲、乙两个班的数学平均成绩都是89.5分,且方差分别为S甲2=0.15,S乙2=0.2,则成绩比较稳定的是班.12.(3分)在函数y=+x﹣2中,自变量x的取值范围是.13.(3分)矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件,使其成为正方形(只填一个即可)14.(3分)因式分解:4m2﹣36=.15.(3分)如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为.16.(3分)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.17.(3分)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为.18.(3分)如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan ∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于.19.(3分)如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为.三、解答题(共63分)20.(7分)先化简,再求值:•﹣(+1),其中x=2cos60°﹣3.21.(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3)求(2)中线段OA扫过的图形面积.22.(8分)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;=4S△COE,求P点坐标.(3)若点P在第一象限内的抛物线上,且S△ABP注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)23.(8分)如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.24.(10分)为养成学生课外阅读的习惯,各学校普遍开展了“我的梦中国梦”课外阅读活动.某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:(1)表中a=,b=;(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第组;(4)请估计该校七年级学生日阅读量不足1小时的人数.25.(10分)“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人喜欢选择自行车作为出行工具.小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:(1)a=,b=,m=;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.26.(12分)如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA的长是关于x的一元二次方程x2﹣12x+32=0的两个根,且OA>OC.(1)求线段OA,OC的长;(2)求证:△ADE≌△COE,并求出线段OE的长;(3)直接写出点D的坐标;(4)若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.2017年黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣2017的绝对值是()A.﹣2017 B.﹣C.2017 D.【分析】根据绝对值的定义即可解题.【解答】解:∵|﹣2017|=2017,∴答案C正确,故选:C.【点评】本题考查了绝对值的定义,绝对值是指一个数在数轴上所对应点到原点的距离.2.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(3分)作为“一带一路”倡议的重大先行项目,中国、巴基斯坦经济走廊建设进展快、成效显著.两年来,已有18个项目在建或建成,总投资额达185亿美元.185亿用科学记数法表示为()A.1.85×109B.1.85×1010C.1.85×1011D.1.85×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:185亿=1.85×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)下列算式运算结果正确的是()A.(2x5)2=2x10 B.(﹣3)﹣2= C.(a+1)2=a2+1 D.a﹣(a﹣b)=﹣b【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,即可解题.【解答】解:A、(2x5)2=4x10,故A错误;B、(﹣3)﹣2==,故B正确;C、(a+1)2=a2+2a+1,故C错误;D、a﹣(a﹣b)=a﹣a+b=b,故D错误;故选:B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.5.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个【分析】设买篮球m个,则买足球(50﹣m)个,根据购买足球和篮球的总费用不超过3000元建立不等式求出其解即可.【解答】解:设买篮球m个,则买足球(50﹣m)个,根据题意得:80m+50(50﹣m)≤3000,解得:m≤16,∵m为整数,∴m最大取16,∴最多可以买16个篮球.故选:A.【点评】本题考查了列一元一次不等式解实际问题的运用,解答本题时找到建立不等式的不等关系是解答本题的关键.6.(3分)若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣1【分析】讨论:当k=0时,方程化为﹣3x﹣=0,方程有一个实数解;当k≠0时,△=(﹣3)2﹣4k•(﹣)≥0,然后求出两个中情况下的k的公共部分即可.【解答】解:当k=0时,方程化为﹣3x﹣=0,解得x=﹣;当k≠0时,△=(﹣3)2﹣4k•(﹣)≥0,解得k≥﹣1,所以k的范围为k≥﹣1.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B.C.D.【分析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.【解答】解:由题意得,2x+y=10,所以,y=﹣2x+10,由三角形的三边关系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式组的解集是2.5<x<5,正确反映y与x之间函数关系的图象是D选项图象.故选:D.【点评】本题考查了一次函数图象,三角形的三边关系,等腰三角形的性质,难点在于利用三角形的三边关系求自变量的取值范围.8.(3分)一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b等于()A.10 B.11 C.12 D.13【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,左边后排最多有3个,左边前排最多有3个,右边只有一层,且只有1个,所以图中的小正方体最多7块,结合主视图和俯视图可知,左边后排最少有1个,左边前排最多有3个,右边只有一层,且只有1个,所以图中的小正方体最少5块,a+b=12,故选:C.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.9.(3分)一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形的圆心角是()A.120°B.180°C.240° D.300°【分析】根据圆锥的侧面积是底面积的3倍得到圆锥底面半径和母线长的关系,根据圆锥侧面展开图的弧长=底面周长即可求得圆锥侧面展开图的圆心角度数.【解答】解:设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.由题意得S=πr2,底面面积l底面周长=2πr,S扇形=3S底面面积=3πr2,l扇形弧长=l底面周长=2πr.由S扇形=l扇形弧长×R得3πr2=×2πr×R,故R=3r.由l扇形弧长=得:2πr=解得n=120°.故选:A.【点评】本题考查了圆锥的计算,通过圆锥的底面和侧面,结合有关圆、扇形的一些计算公式,重点考查空间想象能力、综合应用能力.熟记圆的面积和周长公式、扇形的面积和两个弧长公式并灵活应用是解答本题的关键.10.(3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示.则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有()A.4个 B.3个 C.2个 D.1个【分析】根据抛物线的对称轴可判断①,由抛物线与x轴的交点及抛物线的对称性可判断②,由x=﹣1时y>0可判断③,由x=﹣2时函数取得最大值可判断④,根据抛物线的开口向下且对称轴为直线x=﹣2知图象上离对称轴水平距离越小函数值越大,可判断⑤.【解答】解:∵抛物线的对称轴为直线x=﹣=﹣2,∴4a﹣b=0,所以①正确;∵与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴抛物线与y轴的交点在y轴的负半轴,即c<0,故②正确;∵由②知,x=﹣1时y>0,且b=4a,即a﹣b+c=a﹣4a+c=﹣3a+c>0,所以③正确;由函数图象知当x=﹣2时,函数取得最大值,∴4a﹣2b+c≥at2+bt+c,即4a﹣2b≥at2+bt(t为实数),故④错误;∵抛物线的开口向下,且对称轴为直线x=﹣2,∴抛物线上离对称轴水平距离越小,函数值越大,∴y1<y3<y2,故⑤错误;故选:B.【点评】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本大题共9小题,每小题3分,共27分)11.(3分)在某次七年级期末测试中,甲、乙两个班的数学平均成绩都是89.5分,且方差分别为S甲2=0.15,S乙2=0.2,则成绩比较稳定的是甲班.【分析】根据方差的意义判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立【解答】解:∵s甲2<s乙2,∴成绩相对稳定的是甲,故答案为:甲.【点评】本题考查方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.(3分)在函数y=+x﹣2中,自变量x的取值范围是x≥﹣4且x≠0.【分析】根据二次根是有意义的条件:被开方数大于等于0进行解答即可.【解答】解:由x+4≥0且x≠0,得x≥﹣4且x≠0;故答案为x≥﹣4且x≠0.【点评】本题考查了函数自变量的取值范围问题,掌握二次根是有意义的条件:被开方数大于等于0是解题的关键.13.(3分)矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AB=BC(答案不唯一),使其成为正方形(只填一个即可)【分析】此题是一道开放型的题目答案不唯一,证出四边形ABCD是菱形,由正方形的判定方法即可得出结论.【解答】解:添加条件:AB=BC,理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是菱形,∴四边形ABCD是正方形,故答案为:AB=BC(答案不唯一).【点评】本题考查了矩形的性质,菱形的判定,正方形的判定的应用,能熟记正方形的判定定理是解此题的关键,注意:有一组邻边相等的矩形是正方形,对角线互相垂直的矩形是正方形.14.(3分)因式分解:4m2﹣36=4(m+3)(m﹣3).【分析】原式提取4,再利用平方差公式计算即可得到结果.【解答】解:原式=4(m2﹣9)=4(m+3)(m﹣3),故答案为:4(m+3)(m﹣3)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.(3分)如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为80°.【分析】根据切线的性质得出∠C=90°,再由已知得出∠ABC,由外角的性质得出∠COD的度数.【解答】解:∵AC是⊙O的切线,∴∠C=90°,∵∠A=50°,∴∠B=40°,∵OB=OD,∴∠B=∠ODB=40°,∴∠COD=2×40°=80°,故答案为80°.【点评】本题考查了切线的性质,掌握切线的性质、直角三角形的性质以及外角的性质是解题的关键.16.(3分)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是10,2,4.【分析】利用等腰三角形的性质,进而重新组合得出平行四边形,进而利用勾股定理求出对角线的长.【解答】解:如图:,过点A作AD⊥BC于点D,∵△ABC边AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如图①所示:可得四边形ACBD是矩形,则其对角线长为:10,如图②所示:AD=8,连接BC,过点C作CE⊥BD于点E,则EC=8,BE=2BD=12,则BC=4,如图③所示:BD=6,由题意可得:AE=6,EC=2BE=16,故AC==2,故答案为:10,2,4.【点评】此题主要考查了图形的剪拼以及勾股定理和等腰三角形的性质等知识,利用分类讨论得出是解题关键.17.(3分)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为113°或92°.【分析】由△ACD是等腰三角形,∠ADC>∠BCD,推出∠ADC>∠A,即AC≠CD,分两种情形讨论①当AC=AD时,②当DA=DC时,分别求解即可.【解答】解:∵△BCD∽△BAC,∴∠BCD=∠A=46°,∵△ACD是等腰三角形,∵∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD,①当AC=AD时,∠ACD=∠ADC=(180°﹣46°)=67°,∴∠ACB=67°+46°=113°,②当DA=DC时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°,故答案为113°或92°.【点评】本题考查相似三角形的性质、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.18.(3分)如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan ∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于﹣24.=2S△CDO,再根据tan∠AOC的值即可求得菱形的边长,即【分析】易证S菱形ABCO可求得点C的坐标,代入反比例函数即可解题.【解答】解:作DE∥AO,CF⊥AO,设CF=4x,∵四边形OABC为菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴S=S△DEO,△ADO=S△CDE,同理S△BCD=S△ADO+S△DEO+S△BCD+S△CDE,∵S菱形ABCO∴S=2(S△DEO+S△CDE)=2S△CDO=40,菱形ABCO∵tan∠AOC=,∴OF=3x,∴OC==5x,∴OA=OC=5x,∵S=AO•CF=20x2,解得:x=,菱形ABCO∴OF=,CF=,∴点C坐标为(﹣,),∵反比例函数y=的图象经过点C,∴代入点C得:k=﹣24,故答案为﹣24.=2S 【点评】本题考查了菱形的性质,考查了菱形面积的计算,本题中求得S菱形ABCO是解题的关键.△CDO19.(3分)如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为(0,()2016)或(0,21008).【分析】根据等腰直角三角形的性质得到OA1=1,OA2=,OA3=()2,…,OA2017=()2016,再利用A1、A2、A3、…,每8个一循环,再回到y轴的正半轴的特点可得到点A2017在y轴的正半轴上,即可确定点A2017的坐标.【解答】解:∵等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,∴OA1=1,OA2=,OA3=()2,…,OA2017=()2016,∵A1、A2、A3、…,每8个一循环,再回到y轴的正半轴,2017÷8=252…1,∴点A2017在y轴正半轴上,∵OA2017=()2016,∴点A2017的坐标为(0,()2016)即(0,21008).故答案为(0,()2016)或(0,21008).【点评】本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的倍.也考查了直角坐标系中各象限内点的坐标特征.三、解答题(共63分)20.(7分)先化简,再求值:•﹣(+1),其中x=2cos60°﹣3.【分析】根据分式的乘法和减法可以化简题目中的式子,然后将x的值代入即可解答本题.【解答】解:•﹣(+1)===,当x=2cos60°﹣3=2×﹣3=1﹣3=﹣2时,原式=.【点评】本题考查分式的化简求值、特殊角的三角函数值,解答本题的关键是明确分式化简求值的方法.21.(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3)求(2)中线段OA扫过的图形面积.【分析】(1)分别作出各点关于y轴的对称点,再顺次连接即可;(2)根据图形旋转的性质画出旋转后的图形△A2B2C2即可;(3)利用扇形的面积公式即可得出结论.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)∵OA==5,∴线段OA扫过的图形面积==π.【点评】本题考查的是作图﹣旋转变换,熟知图形旋转不变性的性质是解答此题的关键.22.(8分)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;(3)若点P在第一象限内的抛物线上,且S=4S△COE,求P点坐标.△ABP注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)【分析】(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数b、c 的值,进而可得到抛物线的对称轴方程;(2)令x=0,可得C点坐标,将函数解析式配方即得抛物线的顶点C的坐标;(3)设P(x,y)(x>0,y>0),根据题意列出方程即可求得y,即得D点坐标.【解答】解:(1)由点A(﹣1,0)和点B(3,0)得,解得:,∴抛物线的解析式为y=﹣x2+2x+3;(2)令x=0,则y=3,∴C(0,3),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4);(3)设P(x,y)(x>0,y>0),S△COE=×1×3=,S△ABP=×4y=2y,∵S=4S△COE,∴2y=4×,△ABP∴y=3,∴﹣x2+2x+3=3,解得:x1=0(不合题意,舍去),x2=2,∴P(2,3).【点评】此题主要考查了二次函数解析式的确定、抛物线的顶点坐标求法,图形面积的求法等知识,根据S=4S△COE列出方程是解决问题的关键.△ABP23.(8分)如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.【分析】(1)证明△BDG≌△ADC,根据全等三角形的性质、直角三角形的性质证明;(2)根据直角三角形的性质分别求出DE、DF,根据勾股定理计算即可.【解答】(1)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°,在△BDG和△ADC中,,∴△BDG≌△ADC,∴BG=AC,∠BGD=∠C,∵∠ADB=∠ADC=90°,E,F分别是BG,AC的中点,∴DE=BG=EG,DF=AC=AF,∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,∴∠EDG+∠FDA=90°,∴DE⊥DF;(2)解:∵AC=10,∴DE=DF=5,由勾股定理得,EF==5.【点评】本题考查的是全等三角形的判定和性质、直角三角形的性质以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.24.(10分)为养成学生课外阅读的习惯,各学校普遍开展了“我的梦中国梦”课外阅读活动.某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:(1)表中a=70,b=0.40;(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第3组;(4)请估计该校七年级学生日阅读量不足1小时的人数.【分析】(1)根据“频数÷百分比=数据总数”先计算总数为200人,再根据表中的数分别求a和b;(2)补全直方图;(3)第100和第101个学生读书时间都在第3组;(4)前两组的读书时间不足1小时,用总数2000乘以这两组的百分比的和即可.【解答】解:(1)10÷0.05=200,∴a=200×0.35=70,b=80÷200=0.40,故答案为:70,0.40;(2)补全直方图,如下图:(3)样本中一共有200人,中位数是第100和101人的读书时间的平均数,即第3组:1~1.5小时;故答案为:3;(4)1200×(0.05+0.1)=1200×0.15=180(人),答:估计该校七年级学生日阅读量不足1小时的人数为180人.【点评】本题主要考查频率分布直方图和频率分布表的知识和分析问题以及解决问题的能力,解题的关键是能够读懂统计图,并从中读出有关信息.25.(10分)“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人喜欢选择自行车作为出行工具.小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:(1)a=10,b=15,m=200;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.【分析】(1)根据时间=路程÷速度,即可求出a值,结合休息的时间为5分钟,即可得出b值,再根据速度=路程÷时间,即可求出m的值;(2)根据数量关系找出线段BC、OD所在直线的函数解析式,联立两函数解析式成方程组,通过解方程组求出交点的坐标,再用3000去减交点的纵坐标,即可得出结论;(3)根据(2)结论结合二者之间相距100米,即可得出关于x的含绝对值符号的一元一次方程,解之即可得出x的值,用其减去15即可得出结论;(4)分别求出当OD过点B、C时,小军的速度,结合图形,利用数形结合即可得出结论.【解答】解:(1)1500÷150=10(分钟),10+5=15(分钟),(3000﹣1500)÷(22.5﹣15)=200(米/分).故答案为:10;15;200.(2)线段BC所在直线的函数解析式为y=1500+200(x﹣15)=200x﹣1500;线段OD所在的直线的函数解析式为y=120x.联立两函数解析式成方程组,,解得:,∴3000﹣2250=750(米).答:小军在途中与爸爸第二次相遇时,距图书馆的距离是750米.(3)根据题意得:|200x﹣1500﹣120x|=100,解得:x1==17.5,x2=20,17.5﹣15=2.5(分钟),20﹣15=5(分钟).答:爸爸自第二次出发至到达图书馆前,2.5分钟和5分钟时与小军相距100米.(4)当线段OD过点B时,小军的速度为1500÷15=100(米/分钟);当线段OD过点C时,小军的速度为3000÷22.5=(米/分钟).结合图形可知,当100<v<时,小军在途中与爸爸恰好相遇两次(不包括家、图书馆两地).【点评】本题考查了一次函数的应用、解含绝对值符号的一元一次方程以及解二元一次方程组,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系找出线段BC、OD所在直线的函数解析式;(3)结合(2)找出关于x的含绝对值符号的一元一次方程;(4)画出图形,利用数形结合解决问题.26.(12分)如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA的长是关于x的一元二次方程x2﹣12x+32=0的两个根,且OA>OC.(1)求线段OA,OC的长;(2)求证:△ADE≌△COE,并求出线段OE的长;(3)直接写出点D的坐标;。

2017黑龙江中考数学试题及答案

2017黑龙江中考数学试题及答案

2017黑龙江中考数学试题及答案2017年黑龙江省中考数学试卷于6月17日举行,考试内容涵盖了初中数学的各个知识点。

以下是该试卷的题目及答案。

一、选择题(共30小题,每小题2分,共60分)1.已知函数f(x) = x + 2, g(x) = 2x - 3,若f(x) = g(x),则x的值为多少?解:由题意可得:x + 2 = 2x - 3,整理得:x = 5。

答案:x = 5。

2.在等边三角形ABC中,BC = 5cm,角A = 60°,则三角形ABC的面积为多少?解:由等边三角形的性质可知,三角形ABC为等边三角形,AB = AC = BC = 5cm。

又由正弦定理的推论可得,三角形ABC的面积为S = 1/2 * AB^2 * sinA = 1/2 * 5^2 * sin60° = 1/2 * 25 * √3/2 = 25/4 * √3 cm^2。

答案:25/4 * √3 cm^2。

3.在立方体ABCDEFGH中,点M、N分别是BF、CG的中点,连接线MN的中点为P。

若AB = 8cm,则线段BP的长度为多少?解:由题意可知,MN为平行于BC的线段,所以MN的中点P也是线段BC的中点。

又由立方体的性质可知,BM = MF = BG/2 = AB/2 = 8/2 = 4cm。

所以BP = BM + MP = 4cm + 4cm = 8cm。

答案:8cm。

4.根据题意写出方程组:①x + y = 15②2x - y = -5解:根据第一题的题意可得方程组为:①x + y = 15②2x - y = -5答案:①x + y = 15②2x - y = -55.已知三角形ABC,角B = 90°,D为BC上一点,且角ACD = 45°,若BC = 8cm,则AC的长度为多少?解:由题意可知,三角形ABC为直角三角形,所以角ACB = 90°。

再由三角形的性质可得,角ACD + 角ACB = 180°,所以角ACB = 180° - 45° = 135°。

2017年黑龙江省哈尔滨市中考数学试卷(含答案)

2017年黑龙江省哈尔滨市中考数学试卷(含答案)

黑龙江省哈尔滨市2017年中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2017年黑龙江哈尔滨)哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃分析:根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.解答:解:28﹣21=28+(﹣21)=7,故选:C.点评:本题考查了有理数的减法,减去一个数等于加上这个数的相反数.2.(3分)(2017年黑龙江哈尔滨)用科学记数法表示927 000正确的是()A.9.27×106B.9.27×105C.9.27×104D.927×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于927 000有6位,所以可以确定n=6﹣1=5.解答:解:927 000=9.27×105.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(2017年黑龙江哈尔滨)下列计算正确的是()A.3a﹣2a=1 B.a2+a5=a7C.a2•a4=a6D.(ab)3=ab3考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据合并同类项,可判断A、B,根据同底数幂的乘法,可判断C,根据积的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、不是同底数幂的乘法,指数不能相加,故B错误;C、底数不变指数相加,故C正确;D、积的乘方等于每个因式分别乘方,再把所得的幂相乘;故D错误;故选:C.点评:本题考查了积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.4.(3分)(2017年黑龙江哈尔滨)下列图形中,不是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选B.点评:本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(3分)(2017年黑龙江哈尔滨)在反比例函数的图象的每一条曲线上,y都随x 的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<1考点:反比例函数的性质.分析:根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.解答:解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.故选A.点评:本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.6.(3分)(2017年黑龙江哈尔滨)如图的几何体是由一些小正方形组合而成的,则这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从几何体的上面看共有3列小正方形,右边有2个,左边有2个,中间上面有1个,故选:D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.7.(3分)(2017年黑龙江哈尔滨)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°考点:切线的性质.分析:根据切线的性质求出∠OAC,求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.解答:解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故选B.点评:本题考查了切线的性质,三角形外角性质,三角形内角和定理,等腰三角形性质的应用,解此题的关键是求出∠AOC的度数,题目比较好,难度适中.8.(3分)(2017年黑龙江哈尔滨)将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.y=﹣2(x+1)2﹣1 B.y﹣2(x+1)2+3 C.y=﹣2(x﹣1)2+1 D.y=﹣2(x﹣1)2+3考点:二次函数图象与几何变换.分析:根据图象右移减,上移加,可得答案.解答:解;将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为y=﹣2(x﹣1)2+3,故选:D.点评:本题考查了二次函数图象与几何变换,函数图象平移的规律是:左加右减,上加下减.9.(3分)(2017年黑龙江哈尔滨)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6 B.4C.3D.3考点:旋转的性质.分析:利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.解答:解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B 是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选:A.点评:此题主要考查了旋转的性质以及直角三角形的性质等知识,得出AB′=B′C=2是解题关键.10.(3分)(2017年黑龙江哈尔滨)早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的个数是()A.1个B.2个C.3个D.4个考点:一次函数的应用.分析:根据函数的图象和已知条件分别分析探讨其正确性,进一步判定得出答案即可.解答:解:①由图可知打电话时,小刚和妈妈的距离为1250米是正确的;②因为打完电话后5分钟两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,经过5+15+3=23分钟小刚到达学校,所以是正确的;③打完电话后5分钟两人相遇后,妈妈的速度是1250÷5﹣100=150米/分,走的路程为150×5=750米,回家的速度是750÷15=50米/分,所以回家的速度为150米/分是错误的;④小刚家与学校的距离为750+(15+3)×100=2550米,所以是正确的.正确的答案有①②④.故选:C.点评:此题考查了函数的图象的实际意义,结合题意正确理解函数图象,利用基本行程问题解决问题.二、填空题(共10小题,每小题3分,共计30分)11.(3分)(2017年黑龙江哈尔滨)计算:=.考点:二次根式的加减法.分析:先化简=2,再合并同类二次根式即可.解答:解:=2﹣=.故应填:.点评:本题主要考查了二次根式的加减,属于基础题型.12.(3分)(2017年黑龙江哈尔滨)在函数y=中,自变量x的取值范围是x≠﹣2.考点:函数自变量的取值范围.分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,2x+4≠0,解得x≠﹣2.故答案为:x≠﹣2.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.(3分)(2017年黑龙江哈尔滨)把多项式3m2﹣6mn+3n2分解因式的结果是3(m﹣n)2.考点:提公因式法与公式法的综合运用.分析:首先提取公因式3,再利用完全平方公式进行二次分解.解答:解:3m2﹣6mn+3n2=3(m2﹣2mn+n2)=3(m﹣n)2.故答案为:3(m﹣n)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2017年黑龙江哈尔滨)不等式组的解集是﹣1<x≤1.考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x≤1,由②得,x>﹣1,故此不等式组的解集为:﹣1<x≤1.故答案为:﹣1<x≤1.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(3分)(2017年黑龙江哈尔滨)若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为1.考点:一元二次方程的解.专题:计算题.分析:根据x=﹣1是已知方程的解,将x=﹣1代入方程即可求出m的值.解答:解:将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.故答案为:1点评:此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.(3分)(2017年黑龙江哈尔滨)在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为.考点:列表法与树状图法.专题:计算题.分析:列表得出所有等可能的情况数,找出两次摸取的小球标号都是1的情况数,即可求出所求的概率.解答:解:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两次摸取的小球标号都是1的情况有1种,则P=.故答案为:点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(2017年黑龙江哈尔滨)如图,在矩形ABCD中,AB=4,BC=6,若点P在AD 边上,连接BP、PC,△BPC是以PB为腰的等腰三角形,则PB的长为5或6.考点:矩形的性质;等腰三角形的判定;勾股定理.专题:分类讨论.分析:需要分类讨论:PB=PC和PB=BC两种情况.解答:解:如图,在矩形ABCD中,AB=CD=4,BC=AD=6.如图1,当PB=PC时,点P是BC的中垂线与AD的交点,则AP=DP=AD=3.在Rt△ABP中,由勾股定理得PB===5;如图2,当BP=BC=6时,△BPC也是以PB为腰的等腰三角形.综上所述,PB的长度是5或6.点评:本题考查了矩形的性质、等腰三角形的判定和勾股定理.解题时,要分类讨论,以防漏解.18.(3分)(2017年黑龙江哈尔滨)一个底面直径为10cm,母线长为15cm的圆锥,它的侧面展开图圆心角是120度.考点:圆锥的计算.分析:利用底面周长=展开图的弧长可得.解答:解:∵底面直径为10cm,∴底面周长为10π,根据题意得10π=,解得n=120.故答案为120.点评:考查了圆锥的计算,解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.19.(3分)(2017年黑龙江哈尔滨)如图,在正方形ABCD中,AC为对角线,点E在AB 边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为5.考点:正方形的性质;勾股定理;等腰直角三角形.分析:由四边形ABCD是正方形,AC为对角线,得出∠AFE=45°,又因为EF⊥AC,得到∠AFE=90°得出EF=AF=3,由△EFC的周长为12,得出线段FC=12﹣3﹣EC=9﹣EC,在RT△EFC中,运用勾股定理EC2=EF2+FC2,求出EC=5.解答:解:∵四边形ABCD是正方形,AC为对角线,∴∠AFE=45°,又∵EF⊥AC,∴∠AFE=90°,∠AEF=45°,∴EF=AF=3,∵△EFC的周长为12,∴FC=12﹣3﹣EC=9﹣EC,在RT△EFC中,EC2=EF2+FC2,∴EC2=9+(9﹣EC)2,解得EC=5.故答案为:5.点评:本题主要考查了正方形的性质及等腰直角三角形,解题的关键是找出线段的关系.运用勾股定理列出方程.20.(3分)(2017年黑龙江哈尔滨)如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则的值为.考点:相似三角形的判定与性质;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质;平行四边形的判定与性质.分析:解题关键是作出辅助线,如解答图所示:第1步:利用角平分线的性质,得到BD=CD;第2步:延长AC,构造一对全等三角形△ABD≌△AMD;第3步:过点M作MN∥AD,构造平行四边形DMNG.由MD=BD=KD=CD,得到等腰△DMK;然后利用角之间关系证明DM∥GN,从而推出四边形DMNG为平行四边形;第4步:由MN∥AD,列出比例式,求出的值.解答:解:已知AD为角平分线,则点D到AB、AC的距离相等,设为h.∵====,∴BD=CD.如右图,延长AC,在AC的延长线上截取AM=AB,则有AC=4CM.连接DM.在△ABD与△AMD中,∴△ABD≌△AMD(SAS),∴MD=BD=5m.过点M作MN∥AD,交EG于点N,交DE于点K.∵MN∥AD,∴==,∴CK=CD,∴KD=CD.∴MD=KD,即△DMK为等腰三角形,∴∠DMK=∠DKM.由题意,易知△EDG为等腰三角形,且∠1=∠2;∵MN∥AD,∴∠3=∠4=∠1=∠2,又∵∠DKM=∠3(对顶角)∴∠DMK=∠4,∴DM∥GN,∴四边形DMNG为平行四边形,∴MN=DG=2FD.∵点H为AC中点,AC=4CM,∴=.∵MN∥AD,∴=,即,∴=.点评:本题是几何综合题,难度较大,正确作出辅助线是解题关键.在解题过程中,需要综合利用各种几何知识,例如相似、全等、平行四边形、等腰三角形、角平分线性质等,对考生能力要求较高.三、解答题(共8小题,其中21-24题各6分,25-26题各8分,27-28题各10分,共计10分)21.(6分)(2017年黑龙江哈尔滨)先化简,再求代数式﹣的值,其中x=2cos45°+2,y=2.考点:分式的化简求值;特殊角的三角函数值.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分得到最简结果,将x与y的值代入计算即可求出值.解答:解:原式===,当x=2×+2=+2,y=2时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.(6分)(2017年黑龙江哈尔滨)如图,方格纸中每个小正方形的边长均为1,四边形ABCD 的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积.考点:作图-轴对称变换.专题:作图题.分析:(1)根据AE为网格正方形的对角线,作出点B关于AE的对称点F,然后连接AF、EF即可;(2)根据图象,重叠部分为两个直角三角形的面积的差,列式计算即可得解.解答:解:(1)△AEF如图所示;(2)重叠部分的面积=×4×4﹣×2×2=8﹣2=6.点评:本题考查了利用轴对称变换作图,熟练掌握网格结构并观察出AE为网格正方形的对角线是解题的关键.23.(6分)(2017年黑龙江哈尔滨)君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校满园内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?考点:条形统计图;用样本估计总体;扇形统计图.专题:计算题.分析:(1)由最需要直尺的学生数除以占的百分比求出总人数,确定出最需要圆规的学生数,补全条形统计图即可;(2)求出最需要钢笔的学生占的百分比,乘以970即可得到结果.解答:解:(1)根据题意得:18÷30%=60(名),60﹣(21+18+6)=15(名),则本次调查中,最需要圆规的学生有15名,补全条形统计图,如图所示:(2)根据题意得:970×=97(名),则估计全校学生中最需要钢笔的学生有97名.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.24.(6分)(2017年黑龙江哈尔滨)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).考点:解直角三角形的应用-仰角俯角问题.分析:(1)根据题意得:BD∥AE,从而得到∠BAD=∠ADB=45°,利用BD=AB=60,求得两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,根据AF=BD=DF=60,在Rt△AFC中利用∠FAC=30°求得CF,然后即可求得CD的长.解答:解:(1)根据题意得:BD∥AE,∴∠ADB=∠EAD=45°,∵∠ABD=90°,∴∠BAD=∠ADB=45°,∴BD=AB=60,∴两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,∴AF=BD=DF=60,在Rt△AFC中,∠FAC=30°,∴CF=AF•tan∠FAC=60×=20,又∵FD=60,∴CD=60﹣20,∴建筑物CD的高度为(60﹣20)米.点评:考查解直角三角形的应用;得到以AF为公共边的2个直角三角形是解决本题的突破点.25.(8分)(2017年黑龙江哈尔滨)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.考点:三角形的外接圆与外心;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理.分析:(1)首先得出△AEB≌△DEC,进而得出△EBC为等边三角形,即可得出答案;(2)由已知得出EF,BC的长,进而得出CM,BM的长,再求出AM的长,再由勾股定理求出AB的长.解答:(1)证明:在△AEB和△DEC中,∴△AEB≌△DEC(ASA),∴EB=EC,又∵BC=CE,∴BE=CE=BC,∴△EBC为等边三角形,∴∠ACB=60°;(2)解:∵OF⊥AC,∴AF=CF,∵△EBC为等边三角形,∴∠GEF=60°,∴∠EGF=30°,∵EG=2,∴EF=1,又∵AE=ED=3,∴CF=AF=4,∴AC=8,EC=5,∴BC=5,作BM⊥AC于点M,∵∠BCM=60°,∴∠MBC=30°,∴CM=,BM==,∴AM=AC﹣CM=,∴AB==7.点评:此题主要考查了全等三角形的判定与性质以及等边三角形的性质和勾股定理以及锐角三角函数关系等知识,得出CM,BM的长是解题关键.26.(8分)(2017年黑龙江哈尔滨)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?考点:分式方程的应用;一元一次不等式的应用.分析:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.则根据等量关系:购买台灯的个数是购买手电筒个数的一半,列出方程;(2)设公司购买台灯的个数为a各,则还需要购买手电筒的个数是(2a+8)个,则根据“该公司购买台灯和手电筒的总费用不超过670元”列出不等式.解答:解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得x=5经检验,x=5是原方程的解.所以x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8)由题意得25a+5(2a+8)≤670解得a≤21所以荣庆公司最多可购买21个该品牌的台灯.点评:本题考查了一元一次不等式和分式方程的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量(不等量)关系.27.(10分)(2017年黑龙江哈尔滨)如图,在平面直角坐标中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B 的横坐标为1.(1)求a,b的值;(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PM∥OB交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,过点P作PF⊥MC于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,当S△ACN=S△PMN时,连接ON,点Q在线段BP上,过点Q作QR∥MN交ON于点R,连接MQ、BR,当∠MQR﹣∠BRN=45°时,求点R的坐标.考点:二次函数综合题.分析:(1)利用已知得出A,B点坐标,进而利用待定系数法得出a,b的值;(2)利用已知得出AD=BD则∠BAD=∠ABD=45°,进而得出tan∠BOD=tan∠MPF,故==3,MF=3PF=3t,即可得出d与t的函数关系;(3)首先利用S△ACN=S△PMN,则AC2=2t2,得出AC=2t,CN=2t,则M(4﹣2t,6t),求出t的值,进而得出△PMQ∽△NBR,求出R点坐标.解答:解:(1)∵y=﹣x+4与x轴交于点A,∴A(4,0),∵点B的横坐标为1,且直线y=﹣x+4经过点B,∴B(1,3),∵抛物线y=ax2+bx经过A(4,0),B(1,3),∴,解得:,∴a=﹣1,b=4;(2)如图,作BD⊥x轴于点D,延长MP交x轴于点E,∵B(1,3),A(4,0),∴OD=1,BD=3,OA=4,∴AD=3,∴AD=BD,∵∠BDA=90°,∠BAD=∠ABD=45°,∵MC⊥x轴,∴∠ANC=∠BAD=45°,∴∠PNF=∠ANC=45°,∵PF⊥MC,∴∠FPN=∠PNF=45°,∴NF=PF=t,∵∠DFM=∠ECM=90°,∴PF∥EC,∴∠MPF=∠MEC,∵ME∥OB,∴∠MEC=∠BOD,∴∠MPF=∠BOD,∴tan∠BOD=tan∠MPF,∴==3,∴MF=3PF=3t,∵MN=MF+FN,∴d=3t+t=4t;(3)如备用图,由(2)知,PF=t,MN=4t,∴S△PMN=MN×PF=×4t×t=2t2,∵∠CAN=∠ANC,∴CN=AC,∴S△ACN=AC2,∵S△ACN=S△PMN,∴AC2=2t2,∴AC=2t,∴CN=2t,∴MC=MN+CN=6t,∴OC=OA﹣AC=4﹣2t,∴M(4﹣2t,6t),由(1)知抛物线的解析式为:y=﹣x2+4x,将M(4﹣2t,6t)代入y=﹣x2+4x得:﹣(4﹣2t)2+4(4﹣2t)=6t,解得:t1=0(舍),t2=,∴PF=NF=,AC=CN=1,OC=3,MF=,PN=,PM=,AN=,∵AB=3,∴BN=2,作NH⊥RQ于点H,∵QR∥MN,∴∠MNH=∠RHN=90°,∠RQN=∠QNM=45°,∴∠MNH=∠NCO,∴NH∥OC,∴∠HNR=∠NOC,∴tan∠HNR=tan∠NOC,∴==,设RH=n,则HN=3n,∴RN=n,QN=3n,∴PQ=QN﹣PN=3n﹣,∵ON==,OB==,∴OB=ON,∴∠OBN=∠BNO,∵PM∥OB,∴∠OBN=∠MPB,∴∠MPB=∠BNO,∵∠MQR﹣∠BRN=45°,∠MQR=∠MQP+∠RQN=∠MQP+45°,∴∠BRN=∠MQP,∴△PMQ∽△NBR,∴=,∴=,解得:n=,∴R的横坐标为:3﹣=,R的纵坐标为:1﹣=,∴R(,).点评:此题主要考查了待定系数法求二次函数解析式以及相似三角形的判定与性质和勾股定理等知识,得出△PMQ∽△NBR,进而得出n的值是解题关键.28.(10分)(2017年黑龙江哈尔滨)如图,在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,∠ADB=∠CAD+∠ABD,∠BAD=3∠CBD.(1)求证:△ABC为等腰三角形;(2)M是线段BD上一点,BM:AB=3:4,点F在BA的延长线上,连接FM,∠BFM的平分线FN交BD于点N,交AD于点G,点H为BF中点,连接MH,当GN=GD时,探究线段CD、FM、MH之间的数量关系,并证明你的结论.考点:相似形综合题.分析:(1)根据等式的性质,可得∠APE=∠ADE,根据等腰三角形的性质,可得∠PAD=2β,根据直角三角形的性质,可得∠AEB+∠CBE=90°,根据等式的性质,可得∠ABC=∠ACB,根据等腰三角形的判定,可得答案;(2)根据相似三角形的判定与性质,可得∠ABE=∠ACD,根据等腰三角形的性质,可得∠GND=∠GDN,根据对顶角的性质,可得∠AGF的度数,根据三角形外角的性质,∠AFG 的度数,根据直角三角形的性质,可得BF与MH的关系,根据等腰三角形的性质,可得∠FRM=∠FMR,根据平行线的判定与性质,可得∠CBD=∠RMB,根据相似三角形的判定与性质,可得,根据线段的和差,可得BR=BF﹣FR,根据等量代换,可得答案.解答:(1)证明:如图1,作∠BAP=∠DAE=β,AP交BD于P,设∠CBD=α,∠CAD=β,∵∠ADB=∠CAD+∠ABD,∠APE=∠BAP+∠ABD,∴∠APE=∠ADE,AP=AD.∵AC⊥BD∴∠PAE=∠DAE=β,∴∠PAD=2β,∠BAD=3β.∵∠BAD=3∠CBD,∴3β=3α,β=α.∵AC⊥BD,∴∠ACB=90°﹣∠CBE=90°﹣α=90°﹣β.∵∠ABC=180°﹣∠BAC﹣∠ACB=90°﹣β,∴∠ACB=∠ABC,∴△ABC为等腰三角形;(2)2MH=FM+CD.证明:如图2,由(1)知AP=AD,AB=AC,∠BAP=∠CAD=β,∴△ABP∽△ACD,∴∠ABE=∠ACD.∵AC⊥BD,∴∠GDN=90°﹣β,∵GN=GD,∴∠GND=∠GDN=90°﹣β,∴∠NGD=180°﹣∠GND﹣∠GDN=2β.∴∠AGF=∠NGD=2β.∴∠AFG=∠BAD﹣∠AGF=3β﹣2β=β.∵FN平分∠BFM,∴∠NFM=∠AFG=β,∴FM∥AE,∴∠FMN=90°.∵H为BF的中点,∴BF=2MH.在FB上截取FR=FM,连接RM,∴∠FRM=∠FMR=90°﹣β.∵∠ABC=90°﹣β,∴∠FRM=∠ABC,∴RM∥BC,∴∠CBD=∠RMB.∵∠CAD=∠CBD=β,∴∠RMB=∠CAD.∵∠RBM=∠ACD,∴△RMB∽△DAC,∴,∴BR=CD.∵BR=BF﹣FR,∴FB﹣FM=BR=CD,FB=FM+CD.∴2MH=FM+CD.点评:本题考查了相似形综合题,(1)利用了等腰三角形的性质,等腰三角形的判定,直角三角形的性质;(2)相似三角形的判定与性质,直角三角形的性质,三角形外角的性质,平行线的判定与性质,利用的知识点多,题目稍有难度,相似三角形的判定与性质是解题关键.21。

2017年黑龙江省大庆市中考数学试卷(含答案解析版)

2017年黑龙江省大庆市中考数学试卷(含答案解析版)

2017年黑龙江省大庆市中考数学试卷一、选择题:(每小题3分,共30分)1.(3分)若a 的相反数是﹣3,则a 的值为( )A .1B .2C .3D .42.(3分)数字150000用科学记数法表示为( )A .1.5×104B .0.15×106C .15×104D .1.5×1053.(3分)下列说法中,正确的是( )A .若a ≠b ,则a 2≠b 2B .若a >|b|,则a >bC .若|a|=|b|,则a=bD .若|a|>|b|,则a >b4.(3分)对于函数y=2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >05.(3分)在△ABC 中,∠A ,∠B ,∠C 的度数之比为2:3:4,则∠B 的度数为( )A .120°B .80°C .60°D .40°6.(3分)将一枚质地均匀的硬币先后抛掷两次,则至少出现一次正面向上的概率为( )A .41B .21C .43D .32 7.(3分)由若干个相同的正方体组成的几何体,如图(1)所示,其左视图如图(2)所示,则这个几何体的俯视图为( )A .B .C .D .8.(3分)如图,△ABD 是以BD 为斜边的等腰直角三角形,△BCD 中,∠DBC=90°,∠BCD=60°,DC 中点为E ,AD 与BE 的延长线交于点F ,则∠AFB 的度数为( )A .30°B .15°C .45°D .25°9.(3分)若实数3是不等式2x ﹣a ﹣2<0的一个解,则a 可取的最小正整数为( )A .2B .3C .4D .510.(3分)如图,AD ∥BC ,AD ⊥AB ,点A ,B 在y 轴上,CD 与x 轴交于点E (2,0),且AD=DE ,BC=2CE ,则BD 与x 轴交点F 的横坐标为( )A .32B .43C .54D .65二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)计算:2sin60°= .12.(3分)分解因式:x 3﹣4x= .13.(3分)已知一组数据:3,5,x ,7,9的平均数为6,则x= .14.(3分)△ABC 中,∠C 为直角,AB=2,则这个三角形的外接圆半径为 .15.(3分)若点M (3,a ﹣2),N (b ,a )关于原点对称,则a+b= .16.(3分)如图,点M ,N 在半圆的直径AB 上,点P ,Q 在上,四边形MNPQ 为正方形.若半圆的半径为 ,则正方形的边长为 .17.(3分)圆锥的底面半径为1,它的侧面展开图的圆心角为180°,则这个圆锥的侧面积为 .18.(3分)如图,已知一条东西走向的河流,在河流对岸有一点A ,小明在岸边点B 处测得点A 在点B 的北偏东30°方向上,小明沿河岸向东走80m 后到达点C ,测得点A 在点C 的北偏西60°方向上,则点A 到河岸BC 的距离为 .三、解答题(本大题共10小题,共66分)19.(4分)计算:(﹣1)2017+tan45°++|3﹣π|.20.(4分)解方程: + =1.21.(5分)已知非零实数a,b满足a+b=3,+=,求代数式a2b+ab2的值.22.(6分)某快递公司的每位“快递小哥”日收入与每日的派送量成一次函数关系,如图所示.(1)求每位“快递小哥”的日收入y(元)与日派送量x(件)之间的函数关系式;(2)已知某“快递小哥”的日收入不少于110元,则他至少要派送多少件?23.(7分)某校为了解学生平均每天课外阅读的时间,随机调查了该校部分学生一周内平均每天课外阅读的时间(以分钟为单位,并取整数),将有关数据统计整理并绘制成尚未完成的频率分布表和频数分布直方图.请你根据图表中所提供的信息,解答下列问题.(1)求被调查的学生人数;(2)直接写出频率分布表中的a和b的值,并补全频数分布直方图;(3)若该校共有学生500名,则平均每天课外阅读的时间不少于35分钟的学生大约有多少名?24.(7分)如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=45°,BD=2时,求D,F两点间的距离.25.(7分)如图,反比例函数y=的图象与一次函数y=x+b的图象交于A,B两点,点A和点B的横坐标分别为1和﹣2,这两点的纵坐标之和为1.(1)求反比例函数的表达式与一次函数的表达式;(2)当点C的坐标为(0,﹣1)时,求△ABC的面积.26.(8分)已知二次函数的表达式为y=x2+mx+n.(1)若这个二次函数的图象与x轴交于点A(1,0),点B(3,0),求实数m,n的值;(2)若△ABC是有一个内角为30°的直角三角形,∠C为直角,sinA,cosB是方程x2+mx+n=0的两个根,求实数m,n的值.27.(9分)如图,四边形ABCD内接于圆O,∠BAD=90°,AC为直径,过点A作圆O的切线交CB的延长线于点E,过AC的三等分点F(靠近点C)作CE的平行线交AB于点G,连结CG.(1)求证:AB=CD;(2)求证:CD2=BE•BC;(3)当CG=,BE=时,求CD的长.28.(9分)如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P,Q,R分别在AB,BC,CA 边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,在运动过程中:(1)求证:△APR,△BPQ,△CQR的面积相等;(2)求△PQR面积的最小值;(3)用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=90°?若存在,请直接写出t的值;若不存在,请说明理由.2017年黑龙江省大庆市中考数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)1.(3分)(2017•大庆)若a的相反数是﹣3,则a的值为()A.1 B.2 C.3 D.4【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:a的相反数是﹣3,则a的值为3,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)(2017•大庆)数字150000用科学记数法表示为()A.1.5×104B.0.15×106C.15×104D.1.5×105【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数字150000用科学记数法表示为1.5×105.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•大庆)下列说法中,正确的是()A.若a≠b,则a2≠b2 B.若a>|b|,则a>bC.若|a|=|b|,则a=b D.若|a|>|b|,则a>b【考点】1E:有理数的乘方;15:绝对值.【分析】根据有理数的乘方和绝对值的性质对各选项分析判断即可得解.【解答】解:A、若a=2,b=﹣2,a≠b,但a2=b2,故本选项错误;B、若a>|b|,则a>b,故本选项正确;C、若|a|=|b|,则a=b或a=﹣b,故本选项错误;D、若a=﹣2,b=1,|a|>|b|,但a<b,故本选项错误.故选B.【点评】本题考查了有理数的乘方,绝对值的性质,理解有理数乘方的意义是解题的关键.4.(3分)(2017•大庆)对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0) B.y值随着x值增大而减小C.它的图象经过第二象限 D.当x>1时,y>0【考点】F5:一次函数的性质.【分析】根据一次函数的性质进行计算即可.【解答】解:A、把x=1代入解析式得到y=1,即函数图象经过(1,1),不经过点(1,0),故本选项错误;B、函数y=2x﹣1中,k=2>0,则该函数图象y值随着x值增大而增大,故本选项错误;C、函数y=2x﹣1中,k=2>0,b=﹣1<0,则该函数图象经过第一、三、四象限,故本选项错误;D、当x>1时,2x﹣1>1,则y>1,故y>0正确,故本选项正确.故选:D.【点评】本题考查了一次函数的性质,掌握一次函数的性质是解题的关键.5.(3分)(2017•大庆)在△ABC中,∠A,∠B,∠C的度数之比为2:3:4,则∠B的度数为()A.120°B.80° C.60° D.40°【考点】K7:三角形内角和定理.【分析】直接用一个未知数表示出∠A,∠B,∠C的度数,再利用三角形内角和定理得出答案.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠B的度数为:60°.故选C.【点评】此题主要考查了三角形内角和定理,正确表示出各角度数是解题关键.6.(3分)(2017•大庆)将一枚质地均匀的硬币先后抛掷两次,则至少出现一次正面向上的概率为()A.B.C.D.【考点】X6:列表法与树状图法.【分析】根据题意可以写出所有的可能性,从而可以得到至少出现一次正面向上的概率.【解答】解:由题意可得,出现的所有可能性是:(正,正)、(正,反)、(反,正)、(反,反),∴至少一次正面向上的概率为:,故选C.【点评】本题考查列表法与树状图法,解答本题的关键是明确题意,写出所有的可能性.7.(3分)(2017•大庆)由若干个相同的正方体组成的几何体,如图(1)所示,其左视图如图(2)所示,则这个几何体的俯视图为()A.B.C.D.【考点】U3:由三视图判断几何体.【分析】根据题目中的几何体,可以得到它的俯视图,从而可以解答本题.【解答】解:由图可得,这个几何体的俯视图是:故选A.【点评】本题考查由三视图判断几何体,解答本题的关键是明确题意,画出几何体的俯视图.(2017•大庆)如图,△ABD是以BD为斜边的等腰直角三角形,△BCD中,∠DBC=90°,8.(3分)∠BCD=60°,DC中点为E,AD与BE的延长线交于点F,则∠AFB的度数为()A.30° B.15° C.45° D.25°【考点】KP:直角三角形斜边上的中线;KW:等腰直角三角形.【分析】根据直角三角形的性质得到BE=CE,求得∠CBE=60°,得到∠DBF=30°,根据等腰直角三角形的性质得到∠ABD=45°,求得∠ABF=75°,根据三角形的内角和即可得到结论.【解答】解:∵∠DBC=90°,E为DC中点,∴BE=CE=CD,∵∠BCD=60°,∴∠CBE=60°,∴∠DBF=30°,∵△ABD是等腰直角三角形,∴∠ABD=45°,∴∠ABF=75°,∴∠AFB=180°﹣90°﹣75°=15°,故选B.【点评】本题考查了直角三角形的性质,等腰直角三角形的性质,熟练掌握直角三角形的性质是解题的关键.9.(3分)(2017•大庆)若实数3是不等式2x﹣a﹣2<0的一个解,则a可取的最小正整数为()A.2 B.3 C.4 D.5【考点】C7:一元一次不等式的整数解.【分析】将x=3代入不等式得到关于a的不等式,解之求得a的范围即可.【解答】解:根据题意,x=3是不等式的一个解,∴将x=3代入不等式,得:6﹣a﹣2<0,解得:a>4,则a可取的最小正整数为5,故选:D.【点评】本题主要考查不等式的整数解,熟练掌握不等式解得定义及解不等式的能力是解题的关键.10.(3分)(2017•大庆)如图,AD∥BC,AD⊥AB,点A,B在y轴上,CD与x轴交于点E(2,0),且AD=DE,BC=2CE,则BD与x轴交点F的横坐标为()A.B.C.D.【考点】KD:全等三角形的判定与性质;D5:坐标与图形性质.【分析】如图,设OF=a,AD=DE=x,CE=y,则BC=2y,根据平行线分线段成比例可得xy=a(x+y),2xy=(2﹣a)(x+y),联立得到2a(x+y)=(2﹣a)(x+y)且x+y≠0,即2a=(2﹣a),解方程求得a,从而求解.【解答】解:如图,设OF=a,AD=DE=x,CE=y,则BC=2y,则==,即=,xy=a(x+y),又∵=,即=,2xy=(2﹣a)(x+y),∴2a(x+y)=(2﹣a)(x+y)且x+y≠0,∴2a=(2﹣a),解得a=.故点F的横坐标为.故选:A.【点评】考查了坐标与图形性质,平行线分线段成比例,关键是熟练掌握平行线分线段成比例的性质,注意方程思想的运用.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2017•大庆)计算:2sin60°= .【考点】T5:特殊角的三角函数值.【分析】根据特殊角的三角函数值计算.【解答】解:2sin60°=2×=.【点评】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【相关链接】特殊角三角函数值:sin30°=,cos30°=,tan30°=,cot30°=;sin45°=,cos45°=,tan45°=1,cot45°=1;sin60°=,cos60°=,tan60°=,cot60°=.12.(3分)(2017•大庆)分解因式:x3﹣4x= x(x+2)(x﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.13.(3分)(2017•大庆)已知一组数据:3,5,x,7,9的平均数为6,则x= 6 .【考点】W1:算术平均数.【分析】根据算术平均数的定义列式计算即可得解.【解答】解:由题意知,(3+5+x+7+9)÷5=6,解得:x=6.故答案为6.【点评】本题考查的是算术平均数的求法.熟记公式是解决本题的关键.14.(3分)(2017•大庆)△ABC中,∠C为直角,AB=2,则这个三角形的外接圆半径为 1 .【考点】MA:三角形的外接圆与外心.【分析】这个直角三角形的外接圆直径是斜边长,把斜边长除以2可求这个三角形的外接圆半径.【解答】解:∵△ABC中,∠C为直角,AB=2,∴这个三角形的外接圆半径为2÷2=1.故答案为:1.【点评】本题考查的是直角三角形的外接圆半径,重点在于理解直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆.15.(3分)(2017•大庆)若点M(3,a﹣2),N(b,a)关于原点对称,则a+b= ﹣2 .【考点】R6:关于原点对称的点的坐标.【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【解答】解:由题意,得b=﹣3,a﹣2+a=0,解得a=1,a+b=﹣3+1=﹣2,故答案为:﹣2.【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.16.(3分)(2017•大庆)如图,点M,N在半圆的直径AB上,点P,Q在上,四边形MNPQ 为正方形.若半圆的半径为,则正方形的边长为 2 .【考点】LE:正方形的性质;KQ:勾股定理;M1:圆的认识.【分析】连接OP,设正方形的边长为a,则ON=,PN=a,再由勾股定理求出a的值即可.【解答】解:连接OP,设正方形的边长为a,则ON=,PN=a,在Rt△OPN中,ON2+PN2=OP2,即()2+a2=()2,解得a=2.故答案为:2.【点评】本题考查的是正方形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17.(3分)(2017•大庆)圆锥的底面半径为1,它的侧面展开图的圆心角为180°,则这个圆锥的侧面积为2π.【考点】MP:圆锥的计算.【分析】设圆锥的母线长为R,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2π•1=,解得R=2,然后利用扇形的面积公式计算圆锥的侧面积.【解答】解:设圆锥的母线长为R,根据题意得2π•1=,解得R=2,所以圆锥的侧面积=•2π•1•2=2π.故答案为2π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.18.(3分)(2017•大庆)如图,已知一条东西走向的河流,在河流对岸有一点A,小明在岸边点B处测得点A在点B的北偏东30°方向上,小明沿河岸向东走80m后到达点C,测得点A在点C的北偏西60°方向上,则点A到河岸BC的距离为20米.【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【分析】方法1、作AD⊥BC于点D,设出AD=x米,在Rt△ACD中,得出CD=x,在Rt△ABD中,得出BD=x,最后用CD+BD=80建立方程即可得出结论;方法2、先判断出△ABC是直角三角形,利用含30°的直角三角形的性质得出AB,AC,再利用同一个直角三角形,两直角边的积的一半和斜边乘以斜边上的高的一半建立方程求解即可.【解答】解:方法1、过点A作AD⊥BC于点D.根据题意,∠ABC=90°﹣30°=60°,∠ACD=30°,设AD=x米,在Rt△ACD中,tan∠ACD=,∴CD=∠=°=x,在Rt△ABD中,tan∠ABC=,∴BD=∠=°=x,∴BC=CD+BD=x+x=80∴x=20答:该河段的宽度为20米.故答案是:20方法2、过点A作AD⊥BC于点D.根据题意,∠ABC=90°﹣30°=60°,∠ACD=30°,∴∠BAC=180°﹣∠ABC﹣∠ACB=90°,在Rt△ABC中,BC=80m,∠ACB=30°,∴AB=40m,AC=40m,∴S△ABC=AB×AC=×40×40=800,∵S△ABC=BC×AD=×80×AD=40AD=800,∴AD=20米答:该河段的宽度为20米.故答案是:20米.【点评】此题考查了解直角三角形及勾股定理的应用,用到的知识点是方向角,关键是根据题意画出图形,作出辅助线,构造直角三角形,“化斜为直”是解三角形的基本思路,常需作垂线(高),原则上不破坏特殊角.三、解答题(本大题共10小题,共66分)19.(4分)(2017•大庆)计算:(﹣1)2017+tan45°++|3﹣π|.【考点】2C:实数的运算;T5:特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及立方根的性质和绝对值的性质分别化简求出答案.【解答】解:原式=﹣1+1+3+π﹣3=π.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(4分)(2017•大庆)解方程:+=1.【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2+x+2=x2+2x,解得:x=2,经检验x=2是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.(5分)(2017•大庆)已知非零实数a,b满足a+b=3,+=,求代数式a2b+ab2的值.【考点】59:因式分解的应用;6B:分式的加减法.【分析】将a+b=3代入+==求得ab的值,然后将其代入所求的代数式进行求值.【解答】解:∵+==,a+b=3,∴ab=2,∴a2b+ab2=ab(a+b)=2×3=6.【点评】本题考查了因式分解的应用,分式的加减运算,熟练掌握因式分解的方法是解题的关键.22.(6分)(2017•大庆)某快递公司的每位“快递小哥”日收入与每日的派送量成一次函数关系,如图所示.(1)求每位“快递小哥”的日收入y(元)与日派送量x(件)之间的函数关系式;(2)已知某“快递小哥”的日收入不少于110元,则他至少要派送多少件?【考点】FH:一次函数的应用;C9:一元一次不等式的应用.【分析】(1)观察函数图象,找出点的坐标,再利用待定系数法求出y与x之间的函数关系式;(2)由日收入不少于110元,可得出关于x的一元一次不等式,解之即可得出结论.【解答】解:(1)设每位“快递小哥”的日收入y(元)与日派送量x(件)之间的函数关系式为y=kx+b,将(0,70)、(30,100)代入y=kx+b,,解得:,∴每位“快递小哥”的日收入y(元)与日派送量x(件)之间的函数关系式为y=x+70.(2)根据题意得:x+70≥110,解得:x≥40.答:某“快递小哥”的日收入不少于110元,则他至少要派送40件.【点评】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一元一次不等式的应用,解题的关键是:(1)根据点的坐标,利用待定系数法求出y与x之间的函数关系式;(2)根据日收入不少于110元,列出关于x的一元一次不等式.23.(7分)(2017•大庆)某校为了解学生平均每天课外阅读的时间,随机调查了该校部分学生一周内平均每天课外阅读的时间(以分钟为单位,并取整数),将有关数据统计整理并绘制成尚未完成的频率分布表和频数分布直方图.请你根据图表中所提供的信息,解答下列问题.(1)求被调查的学生人数;(2)直接写出频率分布表中的a和b的值,并补全频数分布直方图;(3)若该校共有学生500名,则平均每天课外阅读的时间不少于35分钟的学生大约有多少名?【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据第一组频数是7,频率是0.14即可求得被调查的人数;(2)利用频率公式即可求得a和b的值,再补全频数分布直方图;(3)利用总人数500乘以对应的频率即可求解.【解答】解:(1)被调查的人数是7÷0.14=50;(2)a=50×0.24=12,b==0.12,如图所示:(3)平均每天课外阅读的时间不少于35分钟的学生大约有500×(0.40+0.12+0.10)=310(人).【点评】本题考查了频率分布直方图的知识,解题的关键是弄清频数、频率及样本容量的关系.24.(7分)(2017•大庆)如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC 上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=45°,BD=2时,求D,F两点间的距离.【考点】L7:平行四边形的判定与性质;KH:等腰三角形的性质.【分析】(1)由等腰三角形的性质得出∠ABC=∠C,证出∠AEG=∠ABC=∠C,四边形CDEG是平行四边形,得出∠DEG=∠C,证出∠F=∠DEG,得出BF∥DE,即可得出结论;(2)证出△BDE、△BEF是等腰直角三角形,由勾股定理得出BF=BE=BD=FM⊥BD 于M,连接DF,则△BFM是等腰直角三角形,由勾股定理得出FM=BM=BF=1,得出DM=3,在Rt△DFM中,由勾股定理求出DF即可.【解答】(1)证明:∵△ABC是等腰三角形,∴∠ABC=∠C,∵EG∥BC,DE∥AC,∴∠AEG=∠ABC=∠C,四边形CDEG是平行四边形,∴∠DEG=∠C,∵BE=BF,∴∠BFE=∠BEF=∠AEG=∠ABC,∴∠F=∠DEG,∴BF∥DE,∴四边形BDEF为平行四边形;(2)解:∵∠C=45°,∴∠ABC=∠BFE=∠BEF=45°,∴△BDE、△BEF是等腰直角三角形,∴BF=BE=BD=,作FM⊥BD于M,连接DF,如图所示:则△BFM是等腰直角三角形,∴FM=BM=BF=1,∴DM=3,在Rt△DFM中,由勾股定理得:DF==,即D,F两点间的距离为.【点评】本题考查了平行四边形的判定与性质、等腰三角形的性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握平行四边形的判定与性质和勾股定理是解决问题的关键.25.(7分)(2017•大庆)如图,反比例函数y=的图象与一次函数y=x+b的图象交于A,B两点,点A和点B的横坐标分别为1和﹣2,这两点的纵坐标之和为1.(1)求反比例函数的表达式与一次函数的表达式;(2)当点C的坐标为(0,﹣1)时,求△ABC的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)根据两点纵坐标的和,可得b的值,根据自变量与函数的值得对关系,可得A 点坐标,根据待定系数法,可得反比例函数的解析式;(2)根据自变量与函数值的对应关系,可得B点坐标,根据三角形的面积公式,可得答案.【解答】解:(1)由题意,得1+b+(﹣2)+b=1,解得b=1,一次函数的解析式为y=x+1,当x=1时,y=x+1=2,即A(1,2),将A点坐标代入,得=2,即k=2,反比例函数的解析式为y=;(2)当x=﹣2时,y=﹣1,即B(﹣2,﹣1).BC=2,S△ABC=BC•(y A﹣y C)=×2×[2﹣(﹣1)]=3.【点评】本题考查了反比例函数与一次函数的交点问题,利用纵坐标的和得出b的值是解(1)题关键;利用三角形的面积公式是解(2)的关键.26.(8分)(2017•大庆)已知二次函数的表达式为y=x2+mx+n.(1)若这个二次函数的图象与x轴交于点A(1,0),点B(3,0),求实数m,n的值;(2)若△ABC是有一个内角为30°的直角三角形,∠C为直角,sinA,cosB是方程x2+mx+n=0的两个根,求实数m,n的值.【考点】HA:抛物线与x轴的交点;T7:解直角三角形.【分析】(1)根据点A、B的坐标,利用待定系数法即可求出m、n的值;(2)分∠A=30°或∠B=30°两种情况考虑:当∠A=30°时,求出sinA、cosB的值,利用根与系数的关系即可求出m、n的值;当∠B=30°时,求出sinA、cosB的值,利用根与系数的关系即可求出m、n的值.【解答】解:(1)将A(1,0)、B(3,0)代入y=x2+mx+n中,,解得:,∴实数m=﹣4、n=3.(2)当∠A=30°时,sinA=cosB=,∴﹣m=+,n=×,∴m=﹣1,n=;当∠B=30°时,sinA=cosB=,∴﹣m=+,n=×,∴m=﹣,n=.综上所述:m=﹣1、n=或m=﹣、n=.【点评】本题考查了抛物线与x轴的交点、待定系数法求二次函数解析式、解直角三角形以及根与系数的关系,解题的关键是:(1)根据点的坐标,利用待定系数法求出m、n的值;(2)分∠A=30°或∠B=30°两种情况,求出m、n的值.27.(9分)(2017•大庆)如图,四边形ABCD内接于圆O,∠BAD=90°,AC为直径,过点A 作圆O的切线交CB的延长线于点E,过AC的三等分点F(靠近点C)作CE的平行线交AB 于点G,连结CG.(1)求证:AB=CD;(2)求证:CD2=BE•BC;(3)当CG=,BE=时,求CD的长.【考点】MR:圆的综合题.【分析】(1)根据三个角是直角的四边形是矩形证明四边形ABCD是矩形,可得结论;(2)证明△ABE∽△CBA,列比例式可得结论;(3)根据F是AC的三等分点得:AG=2BG,设BG=x,则AG=2x,代入(2)的结论解出x的值,可得CD的长.【解答】证明:(1)∵AC为⊙O的直径,∴∠ABC=∠ADC=90°,∵∠BAD=90°,∴四边形ABCD是矩形,∴AB=CD;(2)∵AE为⊙O的切线,∴AE⊥AC,∴∠EAB+∠BAC=90°,∵∠BAC+∠ACB=90°,∴∠EAB=∠ACB,∵∠ABC=90°,∴△ABE∽△CBA,∴,∴AB2=BE•BC,由(1)知:AB=CD,∴CD2=BE•BC;(3)∵F是AC的三等分点,∴AF=2FC,∵FG∥BE,∴△AFG∽△ACB,∴=2,设BG=x,则AG=2x,∴AB=3x,在Rt△BCG中,CG=,∴BC2=()2﹣x2,BC=由(2)得:AB2=BE•BC,(3x)2=4x4+x2﹣3=0,(x2+1)(4x2﹣3)=0,x=±,∵x>0,∴x=,∴CD=AB=3x=.【点评】本题是圆和四边形的综合题,难度适中,考查了矩形的性质和判定、平行相似的判定、三角形相似的性质、圆周角定理、切线的性质、勾股定理等知识,注意第2和3问都应用了上一问的结论,与方程相结合,熟练掌握一元高次方程的解法.28.(9分)(2017•大庆)如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P,Q,R分别在AB,BC,CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R 由点C出发以每秒4个单位的速度向点A运动,在运动过程中:(1)求证:△APR,△BPQ,△CQR的面积相等;(2)求△PQR面积的最小值;(3)用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=90°?若存在,请直接写出t的值;若不存在,请说明理由.【考点】KY:三角形综合题.【分析】(1)先利用锐角三角函数表示出QE=4t,QD=3(2﹣t),再由运动得出AP=3t,CR=4t,BP=3(2﹣t),AR=4(2﹣t),最后用三角形的面积公式即可得出结论;(2)借助(1)得出的结论,利用面积差得出S△PQR=18(t﹣1)2+6,即可得出结论;(3)先判断出∠DQR=∠EQP,用此两角的正切值建立方程求解即可.【解答】解:(1)如图,在Rt△ABC中,AB=6,AC=8,根据勾股定理得,BC=10,sin∠B===,sin ∠C=,过点Q作QE⊥AB于E,在Rt△BQE中,BQ=5t,∴sin∠B==,∴QE=4t,过点Q作QD⊥AC于D,在Rt△CDQ中,CQ=BC﹣BQ=10﹣5t,∴QD=CQ•sin∠C=(10﹣5t)=3(2﹣t),由运动知,AP=3t,CR=4t,∴BP=AB﹣AP=6﹣3t=3(2﹣t),AR=AC﹣CR=8﹣4t=4(2﹣t),∴S△APR=AP•AR=×3t×4(2﹣t)=6t(2﹣t),S△BPQ=BP•QE=×3(2﹣t)×4t=6t(2﹣t),S△CQR=CR•QD=×4t×3(2﹣t)=6t(2﹣t),∴S△APR=S△BPQ=S△CQR,∴△APR,△BPQ,△CQR的面积相等;(2)由(1)知,S△APR=S△BPQ=S△CQR=6t(2﹣t),∵AB=6,AC=8,∴S△PQR=S△ABC﹣(S△APR+S△BPQ+S△CQR)=×6×8﹣3×6t(2﹣t)=24﹣18(2t﹣t2)=18(t﹣1)2+6,∵0≤t≤2,∴当t=1时,S△PQR最小=6;(3)存在,由点P,Q,R的运动速度知,运动1秒时,点P,Q,R分别在AB,BC,AC的中点,此时,四边形APQR是矩形,即:t=1秒时,∠PQR=90°,由(1)知,QE=4t,QD=3(2﹣t),AP=3t,CR=4t,AR=4(2﹣t),∴BP=AB﹣AP=6﹣3t=3(2﹣t),AR=AC﹣CR=8﹣4t=4(2﹣t),过点Q作QD⊥AC于D,作QE⊥AB于E,∵∠A=90°,∴四边形APQD是矩形,∴AE=DQ=3(2﹣t),AD=QE=4t,∴DR=|AD﹣AR|=|4t﹣4(2﹣t)|=4|2t﹣2|,PE=|AP﹣AE|=|3t﹣3(2﹣t)|=3|2t﹣2|∵∠DQE=90°,∠PQR=90°,∴∠DQR=∠EQP,∴tan∠DQR=tan∠EQP,在Rt△DQR中,tan∠DQR==,在Rt△EQP中,tan∠EQP==,∴,∴16t=9(2﹣t),∴t=.即:t=1或秒时,∠PQR=90°.【点评】此题是三角形综合题,主要考查了勾股定理,锐角三角函数,矩形的判定和性质,三角形的面积公式,解(1)的关键是求出QD,QE,解(2)的关键是建立函数关系式,解(3)的关键是用tan∠DQR=tan∠EQP建立方程,是一道中等难度的题目.。

2017年黑龙江省齐齐哈尔市中考数学试卷

2017年黑龙江省齐齐哈尔市中考数学试卷

2017年黑龙江省齐齐哈尔市中考数学试卷、选择题(本大题共10小题,每小题3分,共30 分)1. ( 3分)-2017的绝对值是() A. - 2017 B .- C. 2017 D .2017 2017 2. (3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标 志中,是轴对称图形的是(3. (3分)作为一带一路”昌议的重大先行项目,中国,巴基斯坦经济走廊建设 进展快、成效显著,两年来,已有18个项目在建或建成,总投资额达185亿美 元,185亿用科学记数法表示为( ) A. 1.85 X 109 B. 1.85 X 1010 C. 1.85X 1011 D . 1.85X 10124. (3分)下列算式运算结果正确的是( )A . (2x 5) 2=2x 10 B. (- 3) -2= C . (a+1) 2=a 2+1 D . a -(a - b ) =- b 95.(3分)为有效开展 阳光体育”活动,某校计划购买篮球和足球共 50个,购 买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买 ( )A . 16 个B . 17 个 C. 33 个 D . 34 个6. (3分)若关于x 的方程kx 2- 3x -^=0有实数根,则实数k 的取值范围是() A . k=0 B. k >- 1 且心0 C . k >- 1 D . k >- 1C. D .7. (3分)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()C8. (3分)一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小9. (3分)一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角度数为()A. 120°B. 180°C. 240°D. 300°10. (3分)如图,抛物线y=ax2+bx+c (a^0)的对称轴为直线x=-2,与x轴的一个交点在(-3, 0)和(-4, 0)之间,其部分图象如图所示,贝U下列结论:①4a- b=0;②c v 0;③-3a+c>0;④4a- 2b>at2+bt (t 为实数);⑤点(--,厶y i),(-春y2),(-*,y3)是该抛物线上的点,贝U y i V y2< y,正确的个数有二、填空题(本大题共9小题,每小题3分,共27分)11. (3分)在某次七年级期末测试中,甲、乙两个班的数学平均成绩都是89.5分,且方差分别为S甲2=0.15,S乙2=0.2,贝U成绩比较稳定的是____ 班.12. ____________________________________________________ (3分)在函数y=.;门+x「2中,自变量x的取值范围是 _______________________ .1个13. (3分)矩形ABCD的对角线AC, BD相交于点0,请你添加一个适当的条件______ ,使其成为正方形(只填一个即可)14. (3 分)因式分解:4m2- 36= ______ .15. (3分)如图,AC是。

2017年黑龙江省哈尔滨市中考数学试卷 (1)

2017年黑龙江省哈尔滨市中考数学试卷 (1)

1 x2 x 先化简,再求代数式 的值,其中 x 4sin 60 2 . 2 x 1 x 2 x 1 x+2 22.(本小题满分 7 分)
如图,方格纸中每个小正方形的边长均为 1,线段 AB 的两个端点均在小正方形的顶点 上. (1)在图中画出以 AB 为底、面积为 12 的等腰 △ABC ,且点 C 在小正方形的顶点 上; (2) 在 图 中 画 出 平 行 四 边 形 ABDE , 且 点 D 和 点 E 均 在 小 正 方 形 的 顶 点 上 ,
毕业学校_____________
4.抛物线 y ( x )2 3 的顶点坐标是 A. ( , 3)
3 5
1 2

--------------------
1 2
B. ( , 3)
1 2
1 2
D. ( ,3)
1 2
5.五个大小相同的正方体搭成的几何体如图所示,其左视图是
第Ⅱ卷(非选择题 共 90 分)
A B C D ( C. x 5 D. x 5 ) 二、填空题(本大题共 10 小题,每小题 3 分,共 30 分.把答案填写在题中的横线上) 11.将 57 600 000 用科学记数法表示为 . . .

--------------------
2 1 6.方程 的解为 x 3 x 1 A. x 3 B. x 4
3.下列图形中,既是轴对称图形又是中心对称图形的是

-------------------A B C D ( C. ( ,3) ) A.小涛家离报亭的距离是 900 m B.小涛从家去报亭的平均速度是 60 m/min ( ) C.小涛从报亭返回家中的平均速度是 80 m/min D.小涛在报亭看报用了 15 min

2017年各地中考真题-2017年黑龙江省齐齐哈尔市中考数学试卷 (3)

2017年各地中考真题-2017年黑龙江省齐齐哈尔市中考数学试卷 (3)

2017年黑龙江省齐齐哈尔市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣2017的绝对值是()A.﹣2017 B.﹣C.2017 D.2.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.3.(3分)作为“一带一路”倡议的重大先行项目,中国,巴基斯坦经济走廊建设进展快、成效显著,两年来,已有18个项目在建或建成,总投资额达185亿美元,185亿用科学记数法表示为()A.1.85×109B.1.85×1010C.1.85×1011D.1.85×10124.(3分)下列算式运算结果正确的是()A.(2x5)2=2x10 B.(﹣3)﹣2= C.(a+1)2=a2+1 D.a﹣(a﹣b)=﹣b5.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个6.(3分)若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣17.(3分)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B.C.D.8.(3分)一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b等于()A.10 B.11 C.12 D.139.(3分)一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角度数为()A.120°B.180°C.240° D.300°10.(3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有()A.4个 B.3个 C.2个 D.1个二、填空题(本大题共9小题,每小题3分,共27分)11.(3分)在某次七年级期末测试中,甲、乙两个班的数学平均成绩都是89.5分,且方差分别为S甲2=0.15,S乙2=0.2,则成绩比较稳定的是班.12.(3分)在函数y=+x﹣2中,自变量x的取值范围是.13.(3分)矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件,使其成为正方形(只填一个即可)14.(3分)因式分解:4m2﹣36=.15.(3分)如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为.16.(3分)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.17.(3分)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为.18.(3分)如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于.19.(3分)如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为.三、解答题(共63分)20.(7分)先化简,再求值:•﹣(+1),其中x=2cos60°﹣3.21.(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC 的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC关于y轴对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3)求(2)中线段OA扫过的图形面积.22.(8分)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;=4S△COE,求P点坐标.(3)若点P在第一象限内的抛物线上,且S△ABP注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)23.(8分)如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC 的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.24.(10分)为养成学生课外阅读的习惯,各学校普遍开展了“我的梦中国梦”课外阅读活动,某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:(1)表中a=,b=;(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第组;(4)请估计该校七年级学生日阅读量不足1小时的人数.25.(10分)“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人再次选择自行车作为出行工具,小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:(1)a=,b=,m=;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.26.(12分)如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA的长是关于x的一元二次方程x2﹣12x+32=0的两个根,且OA>OC.(1)求线段OA,OC的长;(2)求证:△ADE≌△COE,并求出线段OE的长;(3)直接写出点D的坐标;(4)若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.2017年黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•齐齐哈尔)﹣2017的绝对值是()A.﹣2017 B.﹣C.2017 D.【分析】根据绝对值的定义即可解题.【解答】解:∵|﹣2017|=2017,∴答案C正确,故选C.【点评】本题考查了绝对值的定义,绝对值是指一个数在数轴上所对应点到原点的距离.2.(3分)(2017•齐齐哈尔)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(3分)(2017•齐齐哈尔)作为“一带一路”倡议的重大先行项目,中国,巴基斯坦经济走廊建设进展快、成效显著,两年来,已有18个项目在建或建成,总投资额达185亿美元,185亿用科学记数法表示为()A.1.85×109B.1.85×1010C.1.85×1011D.1.85×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:185亿=1.85×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•齐齐哈尔)下列算式运算结果正确的是()A.(2x5)2=2x10 B.(﹣3)﹣2= C.(a+1)2=a2+1 D.a﹣(a﹣b)=﹣b【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,即可解题.【解答】解:A、(2x5)2=4x10,故A错误;B、(﹣3)﹣2==,故B正确;C、(a+1)2=a2+2a+1,故C错误;D、a﹣(a﹣b)=a﹣a+b=b,故D错误;故选:B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.5.(3分)(2017•齐齐哈尔)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个【分析】设买篮球m个,则买足球(50﹣m)个,根据购买足球和篮球的总费用不超过3000元建立不等式求出其解即可.【解答】解:设买篮球m个,则买足球(50﹣m)个,根据题意得:80m+50(50﹣m)≤3000,解得:m≤16,∵m为整数,∴m最大取16,∴最多可以买16个篮球.故选:A.【点评】本题考查了列一元一次不等式解实际问题的运用,解答本题时找到建立不等式的不等关系是解答本题的关键.6.(3分)(2017•齐齐哈尔)若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣1【分析】讨论:当k=0时,方程化为﹣3x﹣=0,方程有一个实数解;当k≠0时,△=(﹣3)2﹣4k•(﹣)≥0,然后求出两个中情况下的k的公共部分即可.【解答】解:当k=0时,方程化为﹣3x﹣=0,解得x=;当k≠0时,△=(﹣3)2﹣4k•(﹣)≥0,解得k≥﹣1,所以k的范围为k≥﹣1.故选C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•齐齐哈尔)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B.C.D.【分析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.【解答】解:由题意得,2x+y=10,所以,y=﹣2x+10,由三角形的三边关系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式组的解集是2.5<x<5,正确反映y与x之间函数关系的图象是D选项图象.故选D.【点评】本题考查了一次函数图象,三角形的三边关系,等腰三角形的性质,难点在于利用三角形的三边关系求自变量的取值范围.8.(3分)(2017•齐齐哈尔)一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b等于()A .10B .11C .12D .13【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,左边后排最多有3个,左边前排最多有3个,右边只有一层,且只有1个,所以图中的小正方体最多7块,结合主视图和俯视图可知,左边后排最少有1个,左边前排最多有3个,右边只有一层,且只有1个,所以图中的小正方体最少5块,a +b=12,故选:C .【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.9.(3分)(2017•齐齐哈尔)一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角度数为( )A .120°B .180°C .240°D .300°【分析】根据圆锥的侧面积是底面积的3倍得到圆锥底面半径和母线长的关系,根据圆锥侧面展开图的弧长=底面周长即可求得圆锥侧面展开图的圆心角度数.【解答】解:设底面圆的半径为r ,侧面展开扇形的半径为R ,扇形的圆心角为n 度. 由题意得S 底面面积=πr 2,l 底面周长=2πr ,S 扇形=3S 底面面积=3πr 2,l 扇形弧长=l 底面周长=2πr .由S 扇形=l 扇形弧长×R 得3πr 2=×2πr ×R ,故R=3r .由l=得:扇形弧长2πr=解得n=120°.故选A.【点评】本题考查了圆锥的计算,通过圆锥的底面和侧面,结合有关圆、扇形的一些计算公式,重点考查空间想象能力、综合应用能力.熟记圆的面积和周长公式、扇形的面积和两个弧长公式并灵活应用是解答本题的关键.10.(3分)(2017•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有()A.4个 B.3个 C.2个 D.1个【分析】根据抛物线的对称轴可判断①,由抛物线与x轴的交点及抛物线的对称性可判断②,由x=﹣1时y>0可判断③,由x=﹣2时函数取得最大值可判断④,根据抛物线的开口向下且对称轴为直线x=﹣2知图象上离对称轴水平距离越小函数值越大,可判断⑤.【解答】解:∵抛物线的对称轴为直线x=﹣=﹣2,∴4a﹣b=0,所以①正确;∵与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴抛物线与y轴的交点在y轴的负半轴,即c<0,故②正确;∵由②知,x=﹣1时y>0,且b=4a,即a﹣b+c=a﹣4a+c=﹣3a+c>0,所以③正确;由函数图象知当x=﹣2时,函数取得最大值,∴4a﹣2b+c≥at2+bt+c,即4a﹣2b≥at2+bt(t为实数),故④错误;∵抛物线的开口向下,且对称轴为直线x=﹣2,∴抛物线上离对称轴水平距离越小,函数值越大,∴y1<y3<y2,故⑤错误;故选:B.【点评】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x 轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本大题共9小题,每小题3分,共27分)11.(3分)(2017•齐齐哈尔)在某次七年级期末测试中,甲、乙两个班的数学平均成绩都是89.5分,且方差分别为S甲2=0.15,S乙2=0.2,则成绩比较稳定的是甲班.【分析】根据方差的意义判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立【解答】解:∵s甲2<s乙2,∴成绩相对稳定的是甲,故答案为:甲.【点评】本题考查方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.(3分)(2017•齐齐哈尔)在函数y=+x﹣2中,自变量x的取值范围是x≥﹣4且x≠0.【分析】根据二次根是有意义的条件:被开方数大于等于0进行解答即可.【解答】解:由x+4≥0且x≠0,得x≥﹣4且x≠0;故答案为x≥﹣4且x≠0.【点评】本题考查了函数自变量的取值范围问题,掌握二次根是有意义的条件:被开方数大于等于0是解题的关键.13.(3分)(2017•齐齐哈尔)矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AB=BC(答案不唯一),使其成为正方形(只填一个即可)【分析】此题是一道开放型的题目答案不唯一,证出四边形ABCD是菱形,由正方形的判定方法即可得出结论.【解答】解:添加条件:AB=BC,理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是菱形,∴四边形ABCD是正方形,故答案为:AB=BC(答案不唯一).【点评】本题考查了矩形的性质,菱形的判定,正方形的判定的应用,能熟记正方形的判定定理是解此题的关键,注意:有一组邻边相等的矩形是正方形,对角线互相垂直的矩形是正方形.14.(3分)(2017•齐齐哈尔)因式分解:4m2﹣36=4(m+3)(m﹣3).【分析】原式提取4,再利用平方差公式计算即可得到结果.【解答】解:原式=4(m2﹣9)=4(m+3)(m﹣3),故答案为:4(m+3)(m﹣3)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.(3分)(2017•齐齐哈尔)如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为80°.【分析】根据切线的性质得出∠C=90°,再由已知得出∠ABC,由外角的性质得出∠COD 的度数.【解答】解:∵AC是⊙O的切线,∴∠C=90°,∵∠A=50°,∴∠B=40°,∵OB=OD,∴∠B=∠ODB=40°,∴∠COD=2×40°=80°,故答案为80°.【点评】本题考查了切线的性质,掌握切线的性质、直角三角形的性质以及外角的性质是解题的关键.16.(3分)(2017•齐齐哈尔)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是10cm,2cm,4cm.【分析】利用等腰三角形的性质,进而重新组合得出平行四边形,进而利用勾股定理求出对角线的长.【解答】解:如图:,过点A作AD⊥BC于点D,∵△ABC边AB=AC=10cm,BC=12cm,∴BD=DC=6cm,∴AD=8cm,如图①所示:可得四边形ACBD是矩形,则其对角线长为:10cm,如图②所示:AD=8cm,连接BC,过点C作CE⊥BD于点E,则EC=8cm,BE=2BD=12cm,则BC=4cm,如图③所示:BD=6cm,由题意可得:AE=6cm,EC=2BE=16cm,故AC==2cm,故答案为:10cm,2cm,4cm.【点评】此题主要考查了图形的剪拼以及勾股定理和等腰三角形的性质等知识,利用分类讨论得出是解题关键.17.(3分)(2017•齐齐哈尔)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为113°或92°.【分析】由△ACD是等腰三角形,∠ADC>∠BCD,推出∠ADC>∠A,即AC≠CD,分两种情形讨论①当AC=AD时,②当DA=DC时,分别求解即可.【解答】解:∵△BCD∽△BAC,∴∠BCD=∠A=46°,∵△ACD是等腰三角形,∵∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD,①当AC=AD时,∠ACD=∠ADC=(180°﹣46°)=67°,∴∠ACB=67°+46°=113°,②当DA=DC时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°,故答案为113°或92°.【点评】本题考查相似三角形的性质、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.18.(3分)(2017•齐齐哈尔)如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于﹣24.【分析】易证S=2S△CDO,再根据tan∠AOC的值即可求得菱形的边长,即可求得菱形ABCO点C的坐标,代入反比例函数即可解题.【解答】解:作DE∥AO,CF⊥AO,设CF=4x,∵四边形OABC为菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴S=S△DEO,△ADO=S△CDE,同理S△BCD=S△ADO+S△DEO+S△BCD+S△CDE,∵S菱形ABCO=2(S△DEO+S△CDE)=2S△CDO=40,∴S菱形ABCO∵tan∠AOC=,∴OF=3x,∴OC==5x,∴OA=OC=5x,=AO•CF=20x2,解得:x=,∵S菱形ABCO∴OF=,CF=,∴点C坐标为(﹣,),∵反比例函数y=的图象经过点C,∴代入点C得:k=﹣24,故答案为﹣24.=2S△CDO 【点评】本题考查了菱形的性质,考查了菱形面积的计算,本题中求得S菱形ABCO是解题的关键.19.(3分)(2017•齐齐哈尔)如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为(0,()2016)或(0,21008).【分析】根据等腰直角三角形的性质得到OA1=1,OA2=,OA3=()2,…,OA2017=()2016,再利用A1、A2、A3、…,每8个一循环,再回到y轴的正半轴的特点可得到点A2017在y轴的正半轴上,即可确定点A2017的坐标.【解答】解:∵等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,∴OA1=1,OA2=,OA3=()2,…,OA2017=()2016,∵A1、A2、A3、…,每8个一循环,再回到y轴的正半轴,2017÷8=252…1,∴点A2017在第一象限,∵OA2017=()2016,∴点A2017的坐标为(0,()2016)即(0,21008).故答案为(0,()2016)或(0,21008).【点评】本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的倍.也考查了直角坐标系中各象限内点的坐标特征.三、解答题(共63分)20.(7分)(2017•齐齐哈尔)先化简,再求值:•﹣(+1),其中x=2cos60°﹣3.【分析】根据分式的乘法和减法可以化简题目中的式子,然后将x的值代入即可解答本题.【解答】解:•﹣(+1)===,当x=2cos60°﹣3=2×﹣3=1﹣3=﹣2时,原式=.【点评】本题考查分式的化简求值、特殊角的三角函数值,解答本题的关键是明确分式化简求值的方法.21.(8分)(2017•齐齐哈尔)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC关于y轴对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3)求(2)中线段OA扫过的图形面积.【分析】(1)分别作出各点关于y轴的对称点,再顺次连接即可;(2)根据图形旋转的性质画出旋转后的图形△A2B2C2即可;(3)利用扇形的面积公式即可得出结论.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)∵OA==5,∴线段OA扫过的图形面积==π.【点评】本题考查的是作图﹣旋转变换,熟知图形旋转不变性的性质是解答此题的关键.22.(8分)(2017•齐齐哈尔)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;=4S△COE,求P点坐标.(3)若点P在第一象限内的抛物线上,且S△ABP注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)【分析】(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数b、c的值,进而可得到抛物线的对称轴方程;(2)令x=0,可得C点坐标,将函数解析式配方即得抛物线的顶点C的坐标;(3)设P(x,y)(x>0,y>0),根据题意列出方程即可求得y,即得D点坐标.【解答】解:(1)由点A(﹣1,0)和点B(3,0)得,解得:,∴抛物线的解析式为y=﹣x2+2x+3;(2)令x=0,则y=3,∴C(0,3),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4);(3)设P(x,y)(x>0,y>0),S△COE=×1×3=,S△ABP=×4y=2y,=4S△COE,∴2y=4×,∵S△ABP∴y=3,∴﹣x2+2x+3=3,解得:x1=0(不合题意,舍去),x2=2,∴P(2,3).【点评】此题主要考查了二次函数解析式的确定、抛物线的顶点坐标求法,图形面积=4S△COE列出方程是解决问题的关键.的求法等知识,根据S△ABP23.(8分)(2017•齐齐哈尔)如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.【分析】(1)证明△BDG≌△ADC,根据全等三角形的性质、直角三角形的性质证明;(2)根据直角三角形的性质分别求出DE、DF,根据勾股定理计算即可.【解答】(1)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°,在△BDG和△ADC中,,∴△BDG≌△ADC,∴BG=AC,∠BGD=∠C,∵∠ADB=∠ADC=90°,E,F分别是BG,AC的中点,∴DE=BG=EG,DF=AC=AF,∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,∴∠EDG+∠FDA=90°,∴DE⊥DF;(2)解:∵AC=10,∴DE=DF=5,由勾股定理得,EF==5.【点评】本题考查的是全等三角形的判定和性质、直角三角形的性质以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.24.(10分)(2017•齐齐哈尔)为养成学生课外阅读的习惯,各学校普遍开展了“我的梦中国梦”课外阅读活动,某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:(1)表中a=70,b=0.40;(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第3组;(4)请估计该校七年级学生日阅读量不足1小时的人数.【分析】(1)根据“频数÷百分比=数据总数”先计算总数为200人,再根据表中的数分别求a和b;(2)补全直方图;(3)第100和第101个学生读书时间都在第3组;(4)前两组的读书时间不足1小时,用总数2000乘以这两组的百分比的和即可.【解答】解:(1)10÷0.05=200,∴a=200×0.35=70,b=80÷200=0.40,故答案为:70,0.40;(2)补全直方图,如下图:(3)样本中一共有200人,中位数是第100和101人的读书时间的平均数,即第3组:1~1.5小时;故答案为:3;(4)1200×(0.05+0.1)=1200×0.15=180(人),答:估计该校七年级学生日阅读量不足1小时的人数为180人.【点评】本题主要考查频率分布直方图和频率分布表的知识和分析问题以及解决问题的能力,解题的关键是能够读懂统计图,并从中读出有关信息.25.(10分)(2017•齐齐哈尔)“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人再次选择自行车作为出行工具,小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:(1)a=10,b=15,m=200;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.【分析】(1)根据时间=路程÷速度,即可求出a值,结合休息的时间为5分钟,即可得出b值,再根据速度=路程÷时间,即可求出m的值;(2)根据数量关系找出线段BC、OD所在直线的函数解析式,联立两函数解析式成方程组,通过解方程组求出交点的坐标,再用3000去减交点的纵坐标,即可得出结论;(3)根据(2)结论结合二者之间相距100米,即可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(4)分别求出当OD过点B、C时,小军的速度,结合图形,利用数形结合即可得出结论.【解答】解:(1)1500÷150=10(分钟),10+5=15(分钟),(3000﹣1500)÷(22.5﹣15)=200(米/分).故答案为:10;15;200.(2)线段BC所在直线的函数解析式为y=1500+200(x﹣15)=200x﹣1500;线段OD所在的直线的函数解析式为y=120x.联立两函数解析式成方程组,,解得:,∴3000﹣2250=750(米).答:小军在途中与爸爸第二次相遇时,距图书馆的距离是750米.(3)根据题意得:|200x﹣1500﹣120x|=100,解得:x1==17.5,x2=20.答:爸爸自第二次出发至到达图书馆前,17.5分钟时和20分钟时与小军相距100米.(4)当线段OD过点B时,小军的速度为1500÷15=100(米/分钟);当线段OD过点C时,小军的速度为3000÷22.5=(米/分钟).结合图形可知,当100<v<时,小军在途中与爸爸恰好相遇两次(不包括家、图书馆两地).【点评】本题考查了一次函数的应用、解含绝对值符号的一元一次方程以及解二元一次方程组,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系找出线段BC、OD所在直线的函数解析式;(3)结合(2)找出关于x的含绝对值符号的一元一次方程;(4)画出图形,利用数形结合解决问题.。

2017年黑龙江省绥化市中考数学试题(含解析)

2017年黑龙江省绥化市中考数学试题(含解析)

2017年黑龙江省绥化市中考数学试卷满分:120分 版本:人教版一、选择题(每小题3分,共10小题,合计30分)1.(2017黑龙江绥化,1,3分)如图,直线AB ,CD 被直线EF 所截,∠1=550,下列条件中能判定AB ∥CD 的是( )A .∠2=350B .∠2=450C .∠2=550D .∠2=1250答案:C ,解析:∠1与∠2的对顶角是同位角,根据“两直线被第三直线所截,同位角相等两直线平行”,所以∠2=550时,两直线平行 .故选C.2.(2017黑龙江绥化,2,3分)某企业的年收入约为700000,用科学记数法可表示为( )A .0.7×106B .7×105C .7×104D .70×104答案:B ,解析:把一个数用科学记数法表示时,a 的取值必须满足1≤a <10,所以可以排除A 、D 选项,大于1的数n 的值是整数数位减去1;小于1的数,n 的值是负整数且绝对值是第一个非零数前面零的个数,故n =5,故选B .3.(2017黑龙江绥化,3,3分)下列运算正确的是( )A .3a +2a=5a 2B .3a +3b =3abC .2a 2bc -a 2bc =a 2bcD .a 5-a 2=a 3答案:C ,解析:A 、B 、D 不是同类项不能合并,所以错误;C 是同类项,合并时,字母及字母的指数都不变,系数直接加减,C 正确;故选C .4.(2017黑龙江绥化,4,3分)正方形的正投影不可能是( )A .线段B .矩形C .正方形D .梯形答案:D ,解析:正方形平面与投射光线平行时,正投影是线段,A 正确;正方形平面与投射光线有夹角时或垂直时,投影是矩形或正方形,B 、C 正确;正方形的正投影不能是梯形.故选D.5.(2017黑龙江绥化,5,3分)不等组⎩⎨⎧+≤-3131φx x 的解集是( ) A .x ≤4 B .2<x ≤4 C .2≤x ≤4 D .x >2答案:B ,解析:解不等式(1)得x ≤4;解不等式(2)得x >2;故原不等式组的解集为2<x ≤4.故选B.6.(2017黑龙江绥化,6,3分)△A /B /C /是△ABC 以点O 为位似中心经过位似变换得到的,若△A /B /C /是的面积与△ABC 的面积比是4:9,则OB /:OB 为( )A .2:3B .3:2C .4:5D .4:9答案:A ,解析:位似三角形一定是相似三角形,所以两个相似三角形的面积比为4:9,其相似比是面积比的算术平方根,所以OB /:OB 是2:3,故选A .7.(2017黑龙江绥化,7,3分)从一副洗匀的普通扑克牌中随机抽取一张,则抽出红桃的概率是( )A .541B .5413C .131D .41 答案:B ,解析:一副扑克牌54张,红桃有13张,每张牌补抽上的可能性一样大,所以抽出一张牌是红桃的概率为5413,故选B . 8.(2017黑龙江绥化,8,3分)在同一平面直角坐标系中,直线y =4x +1与直线y =-x +b 的交点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限答案:D ,解析:因为直线y =4x +1只通过第一、二、三象限,所以其与直线y =-x +b 的交点不可能在第四象限.故选D9.(2017黑龙江绥化,9,3分)某楼梯的侧面如图所示,已那我们就得BC 的长约为3.5米,∠BCA 约为290,则该楼梯的高度AB 可表示为( )A .3.5sin290米B . 3.5cos290米C .3.5tan290米D .ο29cos 5.3米答案:A ,解析:在直角三角形ABC 中,已知斜边BC 和锐角,求锐角的对边,故用正弦,所以ο29sin =BC AB,所以AB =3.5sin290米,故选A .10.(2017黑龙江绥化,10,3分)如图,在平行四边形ABCD 中,AC 、BD 相交于点O ,点E 是OA 的中点,连接 BE 并延长交AD 于点F ,已知S △AEF =4,则下列结论:①21=FD AF ,②S △BCE =36,③S △AB E =12,④△AEF ∽△ACD ,其中一定正确的是( ) A .①②③④B .①④C .②③④D .①②③答案:,解析:因ABCD 是平行四边形,所以31==EC AE BC AF ,AD =BC ,所以AF =2FD ,①正确;91)(2==∆∆BC AF S S BCE AEF ,所以S △BCE =36,②正确;△ABE 与△BCE 等高,所以面积之比等于底的比,所以有31==∆∆CE AE S S BCE ABE ,所以S △ABE =12,③正确;没有条件能证明△AEF ∽△ACD ,④不正确,故选D . 二、填空题:(每小题3分,共11小题,合计33分)11.(2017黑龙江绥化,11,3分)31-的绝对值是 . 答案:31,解析:正数的绝对值是它的本身,负数的绝对值是它的相反数,故填 31. 12.(2017黑龙江绥化,12,3分)函数y=x -2中,自变量x 的取值范围是 。

2017年黑龙江省哈尔滨市中考数学试卷含答案解析

2017年黑龙江省哈尔滨市中考数学试卷含答案解析

2017年黑龙江省哈尔滨市中考数学试卷含答案解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣7的倒数是()A.7B.﹣7C.D.﹣2.(3分)下列运算正确的是()A.a6÷a3=a2B.2a3+3a3=5a6C.(﹣a3)2=a6D.(a+b)2=a2+b23.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)抛物线y=﹣(x+)2﹣3的顶点坐标是()A.(,﹣3)B.(﹣,﹣3)C.(,3)D.(﹣,3)5.(3分)五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.6.(3分)方程=的解为()A.x=3B.x=4C.x=5D.x=﹣57.(3分)如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B 的大小是()A.43°B.35°C.34°D.44°8.(3分)在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=10.(3分)周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)将57600000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)把多项式4ax2﹣9ay2分解因式的结果是.14.(3分)计算﹣6的结果是.15.(3分)已知反比例函数y=的图象经过点(1,2),则k的值为.16.(3分)不等式组的解集是.17.(3分)一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为.18.(3分)已知扇形的弧长为4π,半径为48,则此扇形的圆心角为度.19.(3分)四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=,则CE的长为.20.(3分)如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE ⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.三、解答题(本大题共60分)21.(7分)先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan∠EAB=,连接CD,请直接写出线段CD的长.23.(8分)随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.24.(8分)已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.25.(10分)威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?26.(10分)已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB 于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.27.(10分)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c 交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.(1)求抛物线的解析式;(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD 于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.2017年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•哈尔滨)﹣7的倒数是()A.7B.﹣7C.D.﹣【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣7的倒数是﹣,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)(2017•哈尔滨)下列运算正确的是()A.a6÷a3=a2B.2a3+3a3=5a6C.(﹣a3)2=a6D.(a+b)2=a2+b2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a3,不符合题意;B、原式=5a3,不符合题意;C、原式=a6,符合题意;D、原式=a2+2ab+b2,不符合题意,故选C【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.(3分)(2017•哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(2017•哈尔滨)抛物线y=﹣(x+)2﹣3的顶点坐标是()A.(,﹣3)B.(﹣,﹣3)C.(,3)D.(﹣,3)【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标.【解答】解:y=﹣(x+)2﹣3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣,﹣3).故选B.【点评】此题主要考查了二次函数的性质,关键是熟记:抛物线y=a(x﹣h)2+k 的顶点坐标是(h,k),对称轴是x=h.5.(3分)(2017•哈尔滨)五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边是一个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.(3分)(2017•哈尔滨)方程=的解为()A.x=3B.x=4C.x=5D.x=﹣5【分析】根据分式方程的解法即可求出答案.【解答】解:2(x﹣1)=x+3,2x﹣2=x+3,x=5,令x=5代入(x+3)(x﹣1)≠0,故选(C)【点评】本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型.7.(3分)(2017•哈尔滨)如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43°B.35°C.34°D.44°【分析】由同弧所对的圆周角相等求得∠A=∠D=42°,然后根据三角形外角的性质即可得到结论.【解答】解:∵∠D=∠A=42°,∴∠B=∠APD﹣∠D=35°,故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等是解答此题的关键.8.(3分)(2017•哈尔滨)在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.【分析】利用锐角三角函数定义求出cosB的值即可.【解答】解:∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,则cosB==,故选A【点评】此题考查了锐角三角函数定义,熟练掌握锐角三角函数定义是解本题的关键.9.(3分)(2017•哈尔滨)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=【分析】根据相似三角形的判定与性质即可求出答案.【解答】解:(A)∵DE∥BC,∴△ADE∽△ABC,∴,故A错误;(B)∵DE∥BC,∴,故B错误;(C)∵DE∥BC,,故C正确;(D))∵DE∥BC,∴△AGE∽△AFC,∴=,故D错误;故选(C)【点评】本题考查相似三角形的判定与性质,解题的关键是熟练运用相似三角形的性质,本题属于中等题型10.(3分)(2017•哈尔滨)周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min【分析】根据特殊点的实际意义即可求出答案.【解答】解:A、由纵坐标看出小涛家离报亭的距离是1200m,故A不符合题意;B、由纵坐标看出小涛家离报亭的距离是1200m,由横坐标看出小涛去报亭用了15分钟,小涛从家去报亭的平均速度是80m/min,故B不符合题意;C、返回时的解析式为y=﹣60x+3000,当y=1200时,x=30,由横坐标看出返回时的时间是50﹣30=20min,返回时的速度是1200÷20=60m/min,故C不符合题意;D、由横坐标看出小涛在报亭看报用了30﹣15=15min,故D符合题意;故选:D.【点评】本题考查由图象理解对应函数关系及其实际意义,应把所有可能出现的情况考虑清楚.二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)(2017•哈尔滨)将57600000用科学记数法表示为 5.76×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:57600000用科学记数法表示为5.76×107,故答案为:5.76×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2017•哈尔滨)函数y=中,自变量x的取值范围是x≠2.【分析】根据分式有意义的条件:分母不为0进行解答即可.【解答】解:由x﹣2≠0得,x≠2,故答案为x≠2.【点评】本题考查了函数自变量的取值范围问题,掌握分式有意义的条件:分母不为0是解题的关键.13.(3分)(2017•哈尔滨)把多项式4ax2﹣9ay2分解因式的结果是a(2x+3y)(2x﹣3y).【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=a(4x2﹣9y2)=a(2x+3y)(2x﹣3y),故答案为:a(2x+3y)(2x﹣3y)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(3分)(2017•哈尔滨)计算﹣6的结果是.【分析】先将二次根式化简即可求出答案.【解答】解:原式=3﹣6×=3﹣2=故答案为:【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.15.(3分)(2017•哈尔滨)已知反比例函数y=的图象经过点(1,2),则k 的值为1.【分析】直接把点(1,2)代入反比例函数y=,求出k的值即可.【解答】解:∵反比例函数y=的图象经过点(1,2),∴2=3k﹣1,解得k=1.故答案为:1.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16.(3分)(2017•哈尔滨)不等式组的解集是2≤x<3.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x≥2,由②得:x<3,则不等式组的解集为2≤x<3.故答案为2≤x<3.【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.17.(3分)(2017•哈尔滨)一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵不透明的袋子中装有17个小球,其中6个红球、11个绿球,∴摸出的小球是红球的概率为;故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18.(3分)(2017•哈尔滨)已知扇形的弧长为4π,半径为48,则此扇形的圆心角为15度.【分析】利用扇形的弧长公式计算即可.【解答】解:设扇形的圆心角为n°,则=4π,解得,n=15,故答案为:15.【点评】本题考查的是弧长的计算,掌握弧长公式l=是解题的关键.19.(3分)(2017•哈尔滨)四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC 与BD相交于点O,点E在AC上,若OE=,则CE的长为4或2.【分析】由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,OB=BD=3,由勾股定理得出OC=OA==3,即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∠BAD=60°,∴△ABD是等边三角形,∴OB=BD=3,∴OC=OA==3,∴AC=2OA=6,∵点E在AC上,OE=,∴CE=OC+或CE=OC﹣,∴CE=4或CE=2;故答案为:4或2.【点评】本题考查了菱形的性质、勾股定理、等边三角形的判定与性质;熟练掌握菱形的性质,由勾股定理求出OA是解决问题的关键.20.(3分)(2017•哈尔滨)如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.【分析】由AAS证明△ABM≌△DEA,得出AM=AD,证出BC=AD=3EM,连接DM,由HL证明Rt△DEM≌Rt△DCM,得出EM=CM,因此BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴AB=DC=1,∠B=∠C=90°,AD∥BC,AD=BC,∴∠AMB=∠DAE,∵DE=DC,∵DE⊥AM,∴∠DEA=∠DEM=90°,在△ABM和△DEA中,,∴△ABM≌△DEA(AAS),∴AM=AD,∵AE=2EM,∴BC=AD=3EM,连接DM,如图所示:在Rt△DEM和Rt△DCM中,,∴Rt△DEM≌Rt△DCM(HL),∴EM=CM,∴BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得:12+(2x)2=(3x)2,解得:x=,∴BM=;故答案为:.【点评】本题考查了矩形的性质、全等三角形的判定与性质、勾股定理;熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问题的关键.三、解答题(本大题共60分)21.(7分)(2017•哈尔滨)先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:÷﹣===,当x=4sin60°﹣2=4×=﹣2时,原式=.【点评】本题考查分式的化简求值、特殊角的三角函数值,解答本题的关键是明确分式化简求值的方法.22.(7分)(2017•哈尔滨)如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan ∠EAB=,连接CD,请直接写出线段CD的长.【分析】(1)因为AB为底、面积为12的等腰△ABC,所以高为4,点C在线段AB的垂直平分线上,由此即可画出图形;(2)首先根据tan∠EAB=的值确定点E的位置,由此即可解决问题,利用勾股定理计算CD的长;【解答】解:(1)△ABC如图所示;(2)平行四边形ABDE如图所示,CD==.【点评】本题考查﹣应用与作图设计、勾股定理、等腰三角形的性质和判定、平行四边形的判定和性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,利用数形结合的思想思考问题,属于中考常考题型.23.(8分)(2017•哈尔滨)随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.【分析】(1)根据条形统计图与扇形统计图求出总人数即可;(2)根据题意作出图形即可;(3)根据题意列出算式,计算即可得到结果.【解答】解:(1)10÷20%=50(名),答:本次调查共抽取了50名学生;(2)50﹣10﹣20﹣12=8(名),补全条形统计图如图所示,(3)1350×=540(名),答:估计最喜欢太阳岛风景区的学生有540名.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8分)(2017•哈尔滨)已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【分析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形;【解答】解:(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL)【点评】本题考查全等三角形,解题的关键是熟练运用全等三角形的判定条件,本题属于基础题型.25.(10分)(2017•哈尔滨)威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?【分析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y 元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解就可以了.【解答】解:(1)设每件A种商品售出后所得利润为x元,每件B种商品售出后所得利润为y元.由题意,得,解得:答:每件A种商品售出后所得利润为200元,每件B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.【点评】本题考查了列二元一次方程组解实际问题的运用及二元一次方程组的解法,列一元一次不等式解实际问题的运用及解法,在解答过程中寻找能够反映整个题意的等量关系是解答本题的关键.26.(10分)(2017•哈尔滨)已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.【分析】(1)如图1,连接OA,利用垂径定理和圆周角定理可得结论;(2)如图2,延长BO交⊙O于点T,连接PT,由圆周角定理可得∠BPT=90°,易得∠APT=∠APB﹣∠BPT=∠APB﹣90°,利用切线的性质定理和垂径定理可得∠ABO=∠OMB,等量代换可得∠ABO=∠APT,易得结论;(3)如图3,连接MA,利用垂直平分线的性质可得MA=MB,易得∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,易得△APM ≌△BNM,由全等三角形的性质可得AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,易得四边形APBK是平行四边形,由平行四边形的性质和平行线的性质可得∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,易得∠NBP=∠KBP,可得△PBN≌△PBK,PN=2PH,利用三角函数的定义可得sin∠PMH=,sin∠ABO=,设DP=3a,则PM=5a,可得结果.【解答】(1)证明:如图1,连接OA,∵C是的中点,∴,∴∠AOC=∠BOC,∵OA=OB,∴OD⊥AB,AD=BD;(2)证明:如图2,延长BO交⊙O于点T,连接PT∵BT是⊙O的直径∴∠BPT=90°,∴∠APT=∠APB﹣∠BPT=∠APB﹣90°,∵BM是⊙O的切线,∴OB⊥BM,又∠OBA+∠MBA=90°,∴∠ABO=∠OMB又∠ABO=∠APT∴∠APB﹣90°=∠OMB,∴∠APB﹣∠OMB=90°;(3)解:如图3,连接MA,∵MO垂直平分AB,∴MA=MB,∴∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,则∠AMP=∠BMN,∴△APM≌△BNM,∴AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,∴四边形APBK是平行四边形;AP∥BK,∴∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,∴∠APB+∠MBA=180°∴∠PBK=∠MBA,∴∠MBP=∠ABK=∠PAB,∴∠MAP=∠PBA=∠MBN,∴∠NBP=∠KBP,∵PB=PB,∴△PBN≌△PBK,∴PN=PK=2PD,过点M作MH⊥PN于点H,∴PN=2PH,∴PH=DP,∠PMH=∠ABO,∵sin∠PMH=,sin∠ABO=,∴,∴,设DP=3a,则PM=5a,∴MQ=6DP=18a,∴.【点评】本题主要考查了垂径定理,圆周角定理,全等三角形的判定与性质定理,三角函数的定义等相关知识,作出恰当的辅助线构建全等三角形是解答此题的关键.27.(10分)(2017•哈尔滨)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.(1)求抛物线的解析式;(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD 于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.【分析】(1)首先求出点B、C的坐标,然后利用待定系数法求出抛物线的解析式;(2)根据S△ABC =S△AMC+S△AMB,由三角形面积公式可求y与m之间的函数关系式;(3)如图2,由抛物线对称性可得D(2,﹣3),过点B作BK⊥CD交直线CD于点K,OG⊥OS交KB于G,可得四边形OCKB为正方形,过点O作OH⊥PC交PC 延长线于点H,OR⊥BQ交BQ于点I交BK于点R,可得四边形OHQI为矩形,可证△OBG≌△OCS,△OSR≌△OGR,得到tan∠QCT=tan∠TBK,设ST=TD=m,可得SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,在Rt△SKR中,根据勾股定理求得m,可得tan∠PCD=,过点P作PE′⊥x轴于E′交CD于点F′,得到P(t,﹣t﹣3),可得﹣t﹣3=t2﹣2t﹣3,求得t,再根据MN=d求解即可.【解答】解:(1)∵直线y=x﹣3经过B、C两点,∴B(3,0),C(0,﹣3),∵y=x2+bx+c经过B、C两点,∴,解得,故抛物线的解析式为y=x2﹣2x﹣3;(2)如图1,y=x2﹣2x﹣3,y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),∴OA=1,OB=OC=3,∴∠ABC=45°,AC=,AB=4,∵PE⊥x轴,∴∠EMB=∠EBM=45°,∵点P的横坐标为1,∴EM=EB=3﹣t,连结AM,∵S△ABC =S△AMC+S△AMB,∴AB•OC=AC•MN+AB•EM,∴×4×3=×d+×4(3﹣t),∴d=t;(3)如图2,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴为x=1,∴由抛物线对称性可得D(2,﹣3),∴CD=2,过点B作BK⊥CD交直线CD于点K,∴四边形OCKB为正方形,∴∠OBK=90°,CK=OB=BK=3,∴DK=1,∵BQ⊥CP,∴∠CQB=90°,过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I交BK于点R,OG ⊥OS交KB于G,∴∠OHC=∠OIQ=∠OIB=90°,∴四边形OHQI为矩形,∵∠OCQ+∠OBQ=180°,∴∠OBG=∠OCS,∵OB=OC,∠BOG=∠COS,∴△OBG≌△OCS,∴QG=OS,∠GOB=∠SOC,∴∠SOG=90°,∴∠ROG=45°,∵OR=OR,∴△OSR≌△OGR,∴SR=GR,∴SR=CS+BR,∵∠BOR+∠OBI=90°,∠IBO+∠TBK=90°,∴∠BOR=∠TBK,∴tan∠BOR=tan∠TBK,∴=,∴BR=TK,∵∠CTQ=∠BTK,∴∠QCT=∠TBK,∴tan∠QCT=tan∠TBK,设ST=TD=m,∴SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,在Rt△SKR中,∵SK2+RK2=SR2,∴(2m+1)2+(2﹣m)2=(3﹣m)2,解得m1=﹣2(舍去),m2=;∴ST=TD=,TK=,∴tan∠TBK==÷3=,∴tan∠PCD=,过点P作PE′⊥x轴于E′交CD于点F′,∵CF′=OE′=t,∴PF′=t,∴PE′=t+3,∴P(t,﹣t﹣3),∴﹣t﹣3=t2﹣2t﹣3,解得t1=0(舍去),t2=.∴MN=d=t=×=.【点评】本题是二次函数综合题型,考查了二次函数的图象与性质、一次函数的图象与性质、解方程(方程组)、相似三角形(或三角函数)、勾股定理等重要知识点.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文件清单:2017年黑龙江省佳木斯市中考数学试卷(含答案)2017年黑龙江省哈尔滨市中考数学试题(含答案)2017年黑龙江省鹤岗市中考数学试卷(农垦、森工用)(含答案)2017年黑龙江省齐齐哈尔市中考数学试题(含答案)黑龙江省绥化市2017年中考数学试题(含答案)黑龙江省龙东地区2017年中考数学试卷及答案(含答案)2017年黑龙江省佳木斯市中考数学试卷一、填空题(每题3分,满分30分)1.“可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿吨用科学记数法可表示为吨.2.在函数y=中,自变量x的取值范围是.3.如图,BC∥EF,AC∥DF,添加一个条件,使得△ABC≌△DEF.4.在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取1个球,摸到红球的概率是,则这个袋子中有红球个.5.若关于x的一元一次不等式组无解,则a的取值范围是.6.为了鼓励居民节约用水,某自来水公司采取分段计费,每月每户用水不超过10吨,每吨2.2元;超过10吨的部分,每吨加收1.3元.小明家4月份用水15吨,应交水费元.7.如图,BD是⊙O的切线,B为切点,连接DO与⊙O交于点C,AB为⊙O的直径,连接CA,若∠D=30°,⊙O的半径为4,则图中阴影部分的面积为.8.圆锥的底面半径为2cm,圆锥高为3cm,则此圆锥侧面展开图的周长为cm.9.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为.10.如图,四条直线l 1:y1=x,l2:y2=x,l3:y3=﹣x,l4:y4=﹣x,OA1=1,过点A1作A1A2⊥x轴,交l1于点A2,再过点A1作A1A2⊥l1交l2于点A2,再过点A2作A2A3⊥l3交y轴于点A3…,则点A2017坐标为.二、选择题(每题3分,满分30分)11.下列运算中,计算正确的是()A.(a2b)3=a5b3B.(3a2)3=27a6C.x6÷x2=x3D.(a+b)2=a2+b2 12.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C.D.13.如图,是由若干个相同的小立方体搭成的几何体体俯视图和左视图.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或714.某市4月份日平均气温统计图情况如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.13,13 B.13,13.5 C.13,14 D.16,1315.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C.D.16.反比例函数y=图象上三个点的坐标为(x1,y1)、(x2,y2)、(x3,y3),若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y1<y3<y217.已知关于x的分式方程=的解是非负数,那么a的取值范围是()A.a>1 B.a≥1 C.a≥1且a≠9 D.a≤118.如图,在矩形ABCD中,AD=4,∠DAC=30°,点P、E分别在AC、AD 上,则PE+PD的最小值是()A.2 B.2C.4 D.19.“双11”促销活动中,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有()A.4种 B.5种 C.6种 D.7种20.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG :S△HBG=tan∠DAG ⑤线段DH的最小值是2﹣2.A.2 B.3 C.4 D.5三、解答题(满分60分)21.先化简,再求值:÷﹣,其中a=1+2cos60°.22.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.23.如图,Rt△AOB的直角边OA在x轴上,OA=2,AB=1,将Rt△AOB绕点O逆时针旋转90°得到Rt△COD,抛物线y=﹣x2+bx+c经过B、D两点.(1)求二次函数的解析式;(2)连接BD,点P是抛物线上一点,直线OP把△BOD的周长分成相等的两部分,求点P的坐标.24.我市某中学为了了解孩子们对《中国诗词大会》,《挑战不可能》,《最强大脑》,《超级演说家》,《地理中国》五种电视节目的喜爱程度,随机在七、八、九年级抽取了部分学生进行调查(每人只能选择一种喜爱的电视节目),并将获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:(1)本次调查中共抽取了名学生.(2)补全条形统计图.(3)在扇形统计图中,喜爱《地理中国》节目的人数所在的扇形的圆心角是度.(4)若该学校有2000人,请你估计该学校喜欢《最强大脑》节目的学生人数是多少人?.25.在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图1所示.(1)甲、乙两地相距千米.(2)求出发3小时后,货车离服务区的路程y2(千米)与行驶时间x(小时)之间的函数关系式.(3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x(小时)之间的函数关系图线如图2中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等?26.已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.(1)如图1所示,易证:OH=AD且OH⊥AD(不需证明)(2)将△COD绕点O旋转到图2,图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论.27.为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?(3)在(2)的前提下,该企业决定投资不超过获得最大利润的在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?28.如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x轴、y 轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D 处,且tan∠CBD=(1)求点B的坐标;(2)求直线BN的解析式;(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.2017年黑龙江省佳木斯市中考数学试卷参考答案与试题解析一、填空题(每题3分,满分30分)1.“可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿吨用科学记数法可表示为8×1010吨.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:800亿=8×1010.故答案为:8×1010.2.在函数y=中,自变量x的取值范围是x≠1.【考点】E4:函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≠0,解得x≠1.故答案为:x≠1.3.如图,BC∥EF,AC∥DF,添加一个条件AB=DE或BC=EF或AC=DF 或AD=BE(只需添加一个即可),使得△ABC≌△DEF.【考点】KB:全等三角形的判定.【分析】本题要判定△ABC≌△DEF,易证∠A=∠EDF,∠ABC=∠E,故添加AB=DE、BC=EF或AC=DF根据ASA、AAS即可解题.【解答】解:∵BC∥EF,∴∠ABC=∠E,∵AC∥DF,∴∠A=∠EDF,∵在△ABC和△DEF中,,∴△ABC≌△DEF,同理,BC=EF或AC=DF也可证△ABC≌△DEF.故答案为AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可).4.在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取1个球,摸到红球的概率是,则这个袋子中有红球5个.【考点】X4:概率公式.【分析】设这个袋子中有红球x个,根据已知条件列方程即可得到结论.【解答】解:设这个袋子中有红球x个,∵摸到红球的概率是,∴=,∴x=5,故答案为:5.5.若关于x的一元一次不等式组无解,则a的取值范围是a≥2.【考点】CB:解一元一次不等式组.【分析】先求出各不等式的解集,再与已知解集相比较求出a的取值范围.【解答】解:由x﹣a>0得,x>a;由1﹣x>x﹣1得,x<2,∵此不等式组的解集是空集,∴a≥2.故答案为:a≥2.6.为了鼓励居民节约用水,某自来水公司采取分段计费,每月每户用水不超过10吨,每吨2.2元;超过10吨的部分,每吨加收1.3元.小明家4月份用水15吨,应交水费39.5元.【考点】1G:有理数的混合运算.【分析】先根据单价×数量=总价求出10吨的水费,再根据单价×数量=总价加上超过10吨的部分的水费,再把它们相加即可解答.【解答】解:2.2×10+(2.2+1.3)×(15﹣10)=22+3.5×5=22+17.5=39.5(元).答:应交水费39.5元.故答案为:39.5.7.如图,BD是⊙O的切线,B为切点,连接DO与⊙O交于点C,AB为⊙O的直径,连接CA,若∠D=30°,⊙O的半径为4,则图中阴影部分的面积为.【考点】MC:切线的性质;MO:扇形面积的计算.【分析】由条件可求得∠COA的度数,过O作OE⊥CA于点E,则可求得OE的长和CA的长,再利用S阴影=S扇形COA﹣S△COA可求得答案.【解答】解:如图,过O作OE⊥CA于点E,∵DB为⊙O的切线,∴∠DBA=90°,∵∠D=30°,∴∠BOC=60°,∴∠COA=120°,∵OC=OA=4,∴∠OAE=30°,∴OE=2,CA=2AE=4∴S阴影=S扇形COA﹣S△COA=﹣×2×4=π﹣4,故答案为:π﹣4.8.圆锥的底面半径为2cm,圆锥高为3cm,则此圆锥侧面展开图的周长为(2+4π)cm.【考点】MP:圆锥的计算.【分析】利用勾股定理易得圆锥的母线长,圆锥周长=弧长+2母线长.【解答】解:∵圆锥的底面半径是2,高是3,∴圆锥的母线长为: =,∴这个圆锥的侧面展开图的周长=2×+2π×2=2+4π.故答案为2+4π.9.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为4或4或4.【考点】KQ:勾股定理;KH:等腰三角形的性质.【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【解答】解:如图1,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OB=4,又∵∠AOC=∠BOM=60°,∴△BOM是等边三角形,∴BM=BO=4,∴Rt△ABM中,AM==4;如图2,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OA=4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM==4,∴Rt△ABM中,AM==4,综上所述,当△ABM为直角三角形时,AM的长为4或4或4.故答案为:4或4或4.10.如图,四条直线l 1:y1=x,l2:y2=x,l3:y3=﹣x,l4:y4=﹣x,OA1=1,过点A1作A1A2⊥x轴,交l1于点A2,再过点A1作A1A2⊥l1交l2于点A2,再过点A2作A2A3⊥l3交y轴于点A3…,则点A2017坐标为[()2015,()2016].【考点】D2:规律型:点的坐标.【分析】先利用各直线的解析式得到x轴、l1、l2、y轴、l3、l4依次相交为30的角,各点的位置是每12个一循环,由于2017=168×12+1,则可判定点A2016在x轴的正半轴上,再规律得到OA2016=()2015,然后表示出点A2017坐标.【解答】解:∵y 1=x,l2:y2=x,l3:y3=﹣x,l4:y4=﹣x,∴x轴、l1、l2、y轴、l3、l4依次相交为30的角,∵2017=168×12+1,∴点A2016在x轴的正半轴上,∵OA2==,OA3=()2,OA4=()3,…OA2016=()2015,∴点A2017坐标为[()2015,()2016].故答案为[()2015,()2016].二、选择题(每题3分,满分30分)11.下列运算中,计算正确的是()A.(a2b)3=a5b3B.(3a2)3=27a6C.x6÷x2=x3D.(a+b)2=a2+b2【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a6b3,不符合题意;B、原式=27a6,符合题意;C、原式=x4,不符合题意;D、原式=a2+2ab+b2,不符合题意,故选B12.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】利用中心对称图形与轴对称图形性质判断即可.【解答】解:既是轴对称图形又是中心对称图形的是,故选A13.如图,是由若干个相同的小立方体搭成的几何体体俯视图和左视图.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或7【考点】U3:由三视图判断几何体.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层最多和最少小立方体的个数,相加即可.【解答】解:由俯视图易得最底层有4个小立方体,由左视图易得第二层最多有3个小立方体和最少有1个小立方体,那么小立方体的个数可能是5个或6个或7个.故选D.14.某市4月份日平均气温统计图情况如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.13,13 B.13,13.5 C.13,14 D.16,13【考点】W5:众数;W4:中位数.【分析】根据条形统计图得到各数据的权,然后根据众数和中位数的定义求解.【解答】解:这组数据中,13出现了10次,出现次数最多,所以众数为13,第15个数和第16个数都是14,所以中位数是14.故选C.15.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C.D.【考点】E6:函数的图象.【分析】根据特殊点的实际意义即可求出答案.【解答】解:先注甲时水未达连接地方是,乙水池中的水面高度没变化;当甲池中水到达连接的地方,乙水池中水面上升比较快;当两水池水面不持平时,乙水池的水面持续增长较慢,最后两池水面持平后继续快速上升,故选:D.16.反比例函数y=图象上三个点的坐标为(x1,y1)、(x2,y2)、(x3,y3),若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y1<y3<y2【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再根据x1<x2<0<x3即可得出结论.【解答】解:∵反比例函数y=中,k=3>0,∴此函数图象的两个分支分别位于第一三象限,且在每一象限内y随x的增大而减小.∵x1<x2<0<x3,∴(x1,y1)、(x2,y2)在第三象限,(x3,y3)在第一象限,∴y2<y1<0<y3.故选B.17.已知关于x的分式方程=的解是非负数,那么a的取值范围是()A.a>1 B.a≥1 C.a≥1且a≠9 D.a≤1【考点】B2:分式方程的解;C6:解一元一次不等式.【分析】根据分式方程的解法即可求出a的取值范围;【解答】解:3(3x﹣a)=x﹣3,9x﹣3a=x﹣3,8x=3a﹣3∴x=,由于该分式方程有解,令x=代入x﹣3≠0,∴a≠9,∵该方程的解是非负数解,∴≥0,∴a≥1,∴a的范围为:a≥1且a≠9,故选(C)18.如图,在矩形ABCD中,AD=4,∠DAC=30°,点P、E分别在AC、AD 上,则PE+PD的最小值是()A.2 B.2C.4 D.【考点】PA:轴对称﹣最短路线问题;LB:矩形的性质.【分析】作D关于直线AC的对称点D′,过D′作D′E⊥AD于E,则D′E=PE+PD的最小值,解直角三角形得到即可得到结论.【解答】解:作D关于直线AC的对称点D′,过D′作D′E⊥AD于E,则D′E=PE+PD的最小值,∵四边形ABCD是矩形,∴∠ADC=90°,∵AD=4,∠DAC=30°,∴CD=,∵DD′⊥AC,∴∠CDD′=30°,∴∠ADD′=60°,∴DD′=4,∴D′E=2,故选B.19.“双11”促销活动中,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有()A.4种 B.5种 C.6种 D.7种【考点】95:二元一次方程的应用.【分析】设购买80元的商品数量为x,购买120元的商品数量为y,根据总费用是1000元列出方程,求得正整数x、y的值即可.【解答】解:设购买80元的商品数量为x,购买120元的商品数量为y,依题意得:80x+120y=1000,整理,得y=.因为x是正整数,所以当x=2时,y=7.当x=5时,y=5.当x=8时,y=3.当x=11时,y=1.即有4种购买方案.故选:A.20.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG :S△HBG=tan∠DAG ⑤线段DH的最小值是2﹣2.A.2 B.3 C.4 D.5【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质;T7:解直角三角形.【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【解答】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCF,∴∠ABE=∠DAG,∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同法可证:△AGB≌△CGB,∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确,∵S△HDG :S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,又∵∠DAG=∠FCD,∴S△HDG :S△HBG=tan∠FCD,tan∠DAG,故④正确取AB的中点O,连接OD、OH,∵正方形的边长为4,∴AO=OH=×4=2,由勾股定理得,OD==2,由三角形的三边关系得,O、D、H三点共线时,DH最小,DH 最小=2﹣2.无法证明DH平分∠EHG,故②错误,故①③④⑤正确,故选C.三、解答题(满分60分)21.先化简,再求值:÷﹣,其中a=1+2cos60°.【考点】6D:分式的化简求值;T5:特殊角的三角函数值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将a的值代入即可解答本题.【解答】解:÷﹣===,当a=1+2cos60°=1+2×=1+1=2时,原式=.22.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.【考点】R8:作图﹣旋转变换;P7:作图﹣轴对称变换.【分析】根据题意画出相应的三角形,确定出所求点坐标即可.【解答】解:(1)画出△ABC关于y轴对称的△A1B1C1,如图所示,此时A1的坐标为(﹣2,2);(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,如图所示,此时A2的坐标为(4,0);(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,如图所示,此时A3的坐标为(﹣4,0).23.如图,Rt△AOB的直角边OA在x轴上,OA=2,AB=1,将Rt△AOB绕点O逆时针旋转90°得到Rt△COD,抛物线y=﹣x2+bx+c经过B、D两点.(1)求二次函数的解析式;(2)连接BD,点P是抛物线上一点,直线OP把△BOD的周长分成相等的两部分,求点P的坐标.【考点】H8:待定系数法求二次函数解析式;H5:二次函数图象上点的坐标特征;R7:坐标与图形变化﹣旋转.【分析】(1)由旋转性质可得CD=AB=1、OA=OC=2,从而得出点B、D坐标,代入解析式即可得出答案;(2)由直线OP把△BOD的周长分成相等的两部分且OB=OD,知DQ=BQ,即点Q为BD的中点,从而得出点Q坐标,求得直线OP解析式,代入抛物线解析式可得点P坐标.【解答】解:(1)∵Rt△AOB绕点O逆时针旋转90°得到Rt△COD,∴CD=AB=1、OA=OC=2,则点B(2,1)、D(﹣1,2),代入解析式,得:,解得:,∴二次函数的解析式为y=﹣x2+x+;(2)如图,∵直线OP把△BOD的周长分成相等的两部分,且OB=OD,∴DQ=BQ,即点Q为BD的中点,∴点Q坐标为(,),设直线OP解析式为y=kx,将点Q坐标代入,得: k=,解得:k=3,∴直线OP的解析式为y=3x,代入y=﹣x2+x+,得:﹣ x2+x+=3x,解得:x=1或x=﹣4(舍),当x=1时,y=3,∴点P坐标为(1,3).24.我市某中学为了了解孩子们对《中国诗词大会》,《挑战不可能》,《最强大脑》,《超级演说家》,《地理中国》五种电视节目的喜爱程度,随机在七、八、九年级抽取了部分学生进行调查(每人只能选择一种喜爱的电视节目),并将获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:(1)本次调查中共抽取了200名学生.(2)补全条形统计图.(3)在扇形统计图中,喜爱《地理中国》节目的人数所在的扇形的圆心角是36度.(4)若该学校有2000人,请你估计该学校喜欢《最强大脑》节目的学生人数是多少人?.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据题意列式计算即可;(2)求得喜爱《挑战不可能》节目的人数,将条形统计图补充完整即可;(3)用360°×喜爱《地理中国》节目的人数占总人数的百分数即可得到结论;(4)直接利用样本估计总体的方法求解即可求得答案.【解答】解:(1)30÷15%=200名,答:本次调查中共抽取了200名学生;故答案为:200;(2)喜爱《挑战不可能》节目的人数=200﹣20﹣60﹣40﹣30=50名,补全条形统计图如图所示;(3)喜爱《地理中国》节目的人数所在的扇形的圆心角是360°×=36度;故答案为:36;(4)2000×=600名,答:该学校喜欢《最强大脑》节目的学生人数是600人.25.在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图1所示.(1)甲、乙两地相距480千米.(2)求出发3小时后,货车离服务区的路程y2(千米)与行驶时间x(小时)之间的函数关系式.(3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x(小时)之间的函数关系图线如图2中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等?【考点】FH:一次函数的应用.。

相关文档
最新文档