1三元相图基础

合集下载

第五章三元相图-PPT精品.ppt

第五章三元相图-PPT精品.ppt
3 等温界面(水平截面) (1)做法:某一温度下的水平面与相图中各面的交线。 (2)截面图分析 3个相区:L, α, L+α; 2条相线:L1L2, S1S2(共轭曲线); 若干连接线:可作为计算相对量的杠杆(偏向低熔
点组元;可用合金成分点与顶点的连线近似代替,过给定合 金成分点,只能有唯一的共轭连线。)
第三节 三元共晶相图
二 组元在固态有限溶解的共晶相图 (1)相图分析
第三节 三元共晶相图
二 组元在固态有限溶解的共晶相图 (2)等温截面 应用:可确定平衡相及其成分;可运用杠杆定律和重心定律。
是直边三角形 三相平衡区 两相区与之线接 (水平截面与棱柱面交线)
单相区与之点接 (水平截面与棱边的交点,表 示三个平衡相成分。)
类型: 包共晶转变 包晶转变
与4个单相区点接触; 相区邻接(四相平衡面) 与6个两相区线接触;
与4个三相区面接触。
第四节 三元相图总结
二 组元在固态有限溶解的共晶相图 3 四相平衡
两相共晶线 液相面交线 线:EnE 两相共晶面交线 液相单变量线 液相区与两相共晶面交线 固相单变量线
第三节 三元共晶相图
二 组元在固态有限溶解的共晶相图 (1)相图分析
液相面 固相面(组成) 面: 二相共晶面 三相共晶面 溶解度曲面:6个 两相区:6个 区: 单相区:4个 三相区:4个 四相区:1个
第三节 三元共晶相图
二 组元在固态有限溶解的共晶相图
(4)投影图 律)
定律)
合金结晶过程分析; 相组成物相对量计算(杠杆定律、重心定
组织组成物相对量计算(杠杆定律、重心
第四节 三元相图总结
二 组元在固态有限溶解的共晶相图
1 两相平衡
立体图:共轭曲面。 等温图:两条曲线。

三元相图ppt

三元相图ppt
三元相图的分析技巧
相态的分析
确定三元相图的三个相态
根据三元相图中的三个区域,可以确定三元相图的三个相态,即液相、固相和气 相。
确定相态之间的转化
三元相图中不同相态之间的转化与成分和温度有关,可以根据相图中的成分和温 度范围确定不同相态之间的转化条件。
结晶过程的分析
分析结晶过程
三元相图中的结晶过程分析需要了解不同成分的溶液中结晶 过程的特点,以及结晶过程中成分的变化规律。
材料科学的基础研究
三元相图的研究也是材料科学基础研 究的重要组成部分。通过对三元相图 的深入研究,可以更好地理解物质的 本质和规律,为材料科学的其他领域 提供基础支撑。
THANKS
谢谢您的观看
新型材料的探索
研究者们通过实验探索新型材料的三元相图,以寻找具有更优性能的相变材料, 应用于能源、环保等领域。
理论研究进展
计算方法的改进
研究者们不断改进计算方法,以更准确地预测三元相图中的 相行为。
分子动力学模拟
利用分子动力学模拟技术,研究者们可以模拟真实材料的三 元相图,为理论预测提供更为准确的依据。
多晶型和同素异构体的存在
在某些三元体系中,可能存在多种晶型和同素异构体,这些不同结构的物质在物理和化学 性能上可能存在显著的差异,因此如何考虑这些差异对三元相图的影响也是一个重要的问 题。
三元相图未来研究方向的建议
加强实验研究
由于三元相图的复杂性,实验研究仍然是确定三元相图最准确的方法。因此,需要发展新的实验技术,提高实验的精度和效 率,同时需要建立更加完善的数据库和理论模型来描述和预测三元相图。
应用研究进展
能源储存与运输
研究者们正在研究如何利用三元相图优化能源储存与运输过程中的性能。例 如,优化相变材料在储存和运输过程中的热力学性质。

三元相图(2)

三元相图(2)
金的成分点和两个平衡相的成分点必然位 于成分三角形内的同一条直线上。 (由相率可知,此时系统有一个自由度,表示一个相的成 分可以独立改变,另一相的成分随之改变。) (2)杠杆定律:用法与二元相同。
共线法则与杠杆定律 两条推论
(1)给定合金在一定温度下处于两相平衡时,若其中 一个相的成分给定,另一个相的成分点必然位于已知成分 点连线的延长线上。
图中a,b,c分别是组元A,B,C的熔点。在共晶合金中,一个组元的熔点会 由于其他组元的加人而降低,因此在三元相图中形成了三个向下汇聚的液相面。 其中,
ae1Ee3a是组元 A的初始结晶面; be1Ee2b是组元 B的初始结晶面; ce2Ee3c是组元C的初始结晶面。 3个二元共晶系中的共晶转变点el,e2,e3在三元系中都伸展成为共晶转变线, 这就是3个液相面两两相交所形成的3条熔化沟线e1E,e2E和e3E。当液相成分 沿这3条曲线变化时,分别发生共晶转变:
(2)若两个平衡相的成分点已知,合金的成分点必然 位于两个已知成分点的连线上。
重心法则 在一定温度下,三元合金三相平衡时,合金的成分点为三个平衡相
的成分点组成的三角形的质量重心。(由相率可知,此时系统有一个 自由度,温度一定时,三个平衡相的成分是确定的。)
平衡相含量的计算:所计算 相的成分点、合金成分点和二者 连线的延长线与对边的交点组成 一个杠杆。合金成分点为支点。 计算方法同杠杆定律。
2 三元相图的空间模型
包含成分和温度变量的三元合金相图是一个三维的立体图形。图8.2是一种最 简单的三元相图的空间模型。A,B,C 3种组元组成的浓度三角形和温度轴构成 了三柱体的框架,a,b,c三点分别表明A,B,C 3个组元的熔点。由于这3个 组元在液态和固态都彼此完全互溶,所以3个侧面都是简单的二元匀晶相图。在 三棱柱体内,以3个二元素的液相线作为边缘构成的向上凸的空间曲面是三元系 的液相面。以3个二元系的固相线作为边缘构成的向下凹的空间曲面是三元系的 固相面,它表示不同成分的合金凝固终了的温度。液相面以上的区域是液相区, 固相面以下的区域是固相区,中间区域如图中O成分三元系在与液相面和固相面 交点1和2所代表的温度区间内为液、固两相平衡区。三元相图能够实用的方法 是使之平面化。

第六章 三元相图

第六章 三元相图

来计算。
如右图中的合金o,其中的
A
C
相与 相的相对量分别为:
% mo 100%
mn
三元相图中的杠杆定律
% on 100%
mn
6-1 三元相图基础
3. 重心法则:当三元系合金
B
处于三相平衡时,研究它们之间
的成分和相对量的关系,则须用
重心法则。如右图中,O为合金
( )
的成分点,P、Q、S分别为三个
三条三相共晶转变线相交于 a
E点。成分为 E 的液相在该点温
l
度下发生四相平衡共晶转变: f
LE TE A B C
E点称为三元共晶点,其所对应 m
的温度成为四相共晶转变温度。 A
c
e3 k
j
e1
b
e2
p g Eh
C
三元共晶点 E与三个固相的 成分点m、n、p 组成的水平面称 为四相平衡共晶转变平面。
由于第三组元的加入,三个
二元共晶点在三元系中均演化成
为三相共晶转变线 e1E、e2E 和 e3E。当液相成分沿着这三条曲 线变化时,则分别发生三相共晶
转变: e1 E e2E e3E
L AB L BC L AC
a c
e3
l
k
f j
e1
b
e2
m
p
g
A
Eh C
n
B
固态互不溶解的三元共晶相图
6-2 固态互不溶解的三元共晶相图
6-1 三元相图基础
三、三元相图中的杠杆定律及重心法则
1. 直线法则:一定温度下,三元系材料处于两相平衡 时,材料的成分点和其两个平衡相的成分点必然位于同一条 直线上,该规律称为直线法则或三点共线原则。

第八章 三元相图

第八章   三元相图
共晶转变线,这就是3个液相面两两相交所形成的3条熔化沟线e1E, e2E和e3E。当液相成分沿这3条曲线变化时,分别发生共晶转变:
e3 e1
LA+ C
e2
LA+ B
E
L B +C


图中a,b,c分别是组元A,B,C的熔点。在共 晶合金中,一个组元的熔点会由于其他组 元的加入而降低,因此在三元相图中形成 了三个向下汇聚的液相面。其中, ae1Ee3a是组元 A的初始结晶面; be1Ee2b是组元 B的初始结晶面; ce2Ee3c是组元C的初始结晶面
四、三元相图中的杠杆定律及重心定律
3.重心定律
当一个相完全分解成三个新相,或是一个相在分 解成两个新相的过程时,研究它们之间的成分和 相对量的关系,则须用重心定律。 根据相律,三元系处于三相平衡时,自由度为1。 在给定温度下这三个平衡相的成分应为确定值。 合金成分点应位于三个平衡相的成分点所连成的 三角形内。
第八章 三元相图
三元合金系(ternery system)中含有三个组元,因此 三元相图是表示在恒压下以温度变量为纵轴,两个成分变量 为横轴的三维空间图形。由一系列空间区面及平面将三元图 相分隔成许多相区。
8.1 三元相图的基础知识
三元相图的基本特点: (1) 完整的三元相图是三维的立体模型; (2) 三元系中可以发生四相平衡转变。四相 平衡区是恒温水平面; (3) 三元相图中有单相区、两相区、三相区 和四相区。除四相平衡区外,一、二、三相平 衡区均占有一定空间,是变温转变。
二、三元相图的空间模型
三、三元相图的截面图 投影图

三元相图各类图形有等温(水平)截面图、垂直 (变温)截面图、投影图。
1. 等温水平截面图

三元相图ppt

三元相图ppt
智能化数据库
通过建立智能化数据库,可以实现对大量计算结果的自动分析和处理,从而更好地挖掘三 元相图中的信息。
06
其他相关三元相图的内容
三元合金的物理性质
液相线
三元合金在一定温度和压力下, 各相之间的混合物处于平衡状态 ,此时液态三元合金的最低共晶 成分的液相组成点连接形成的曲 线。
固相线
三元合金在一定温度和压力下, 各相之间的混合物处于平衡状态 ,此时固态三元合金的共晶成分 的固相组成点连接形成的曲线。
数据库管理系统
通过建立数据库管理系统,可以将三元相图计算结果进行分类、整理和归纳,方 便研究人员进行查询和使用。
三元相图的集成与智能化研究
多尺度模拟
利用多尺度模拟方法可以将微观结构和宏观性能联系起来,从而更好地研究三元相图。
机器学习
机器学习技术可以对三元相图计算结果进行分析、归纳和预测,从而为研究三元相图提供 了新的思路和方法。
优化合金组织
通过三元相图,可以预测合金在不同温度和成分下的组织,进而优化合金组织结 构,提高材料综合性能。
材料制备
优化制备工艺
三元相图可以预测不同制备工艺下的材料相变行为,为制备 工艺的优化提供依据。
新型材料制备
利用三元相图可以设计新型的高性能材料,并通过合适的制 备工艺制备得到所需的材料体系。
工业生产过程
三元相图
xx年xx月xx日
目录
• 三元相图简介 • 三元相图的基本理论 • 三元相图的主要分析方法 • 三元相图的具体应用 • 三元相图的发展趋势和前景 • 其他相关三元相图的内容
01
三元相图简介
定义和意义
定义
三元相图是一种图形表示,主要用于描述 三个变量或三种物质之间的相互关系。

三元相图教程ppt课件

三元相图教程ppt课件

e1 E1
C E2 e2
(4) 三角形规则
C
用途:确定结晶产物和
结晶终点。
内容:原始熔体组成点 所在三角形的三个顶点表
C
e4
E
m P
e3
示的物质即为 其结晶产物;
与这 三个物质相应的初晶
A
S
区所包围的三元无变量点 A
e1
Q
B

S
B
是其结晶终点。
46
2) 不同组成的结晶路程分析 A、划分副三角形, 确定组成点的位置; B、 分析析晶产物和析晶终点; C、分析析晶路线,正确书写其结晶路程; D、利用规则检验其正确性。
A
结论:从M3中取出M1
+M2愈多,则M点离M1和
M2愈远。
C
M
M3 PP M1
M2 B
17
四、 三元相图的基本类型
1)具有一个低共熔点的简单三元相图
高温熔体
对C晶体饱和: p=2, f=2
低共熔点:同时对晶 体C、A、B饱和, p=4,f=0; 至液相消失 到达界线:同时对晶体 C、A饱和; p=3, f=1 18 18
(2)三侧面:构成三个简单二元系统状态图,并具有相 应的二元 低共熔点;
(3)二元系统的液相线在三元系统中发展为液相面,液 相面代表了一种二相平衡状态,三个液相面以上的空间 为熔体的单相 区;
(4)液相面相交成界线,界线代表了系统的三相平衡状 态,f = 1;
(5)三个液相面和三条界线在空间交于E/点,处于四相 平衡状态, f = 0;
E1为I相应副 三角形的交叉 位,则为单转 熔点
40
无变量点 E1处于其相应 副三角形 △ADC的共轭 位,则为双转 熔点,在E1点发 生l+C+A=D

第5章-2---三元相图1

第5章-2---三元相图1

5.13 四相平衡共晶系
5.13.4 综合投影图
冷却过程中有 四相反应
L-a+b+
5.13 四相平衡共晶系
5.13.4 综合投影图
5.13 四相平衡共晶系 L
L-a
合金 o
L-a+b
L-a+b+
a+a + b+a+b++b+
L
合金 o’
L-b
L-a+b
a+b
b+a+b+a+
5.13.4 综合投影图
5.13 四相平衡共晶系
5.13.3、垂直截面
5.13 四相平衡共晶系
5.13.4 综合投影图
1、作法:将立体图中 各空间曲面、曲线投 影到成分三角形
2、用途: a、可得到各个面的投影 b、可得到各相区的投影 c、各种成分的平衡冷却
过程 d、组织分区图
5.13 四相平衡共晶系
5.13.4 综合投影图
5.13 四相平衡共晶系
5.13.4 综合投影图
5.13 四相平衡共晶系
I a; II a + bII ; III a + bII + II ; IV a + (a + b ) + bII ; V a + (a + b ) + bII + II ; VI a + (a + b ) + (a + b + ) + bII + II
用杠杆定理
5.12 三相平衡三元
5.12.2 几种典型的三相平衡三元系
5.12 三相平衡三元系

第八章 三元相图

第八章 三元相图

第八章三元相图三元合金系(ternery system)中含有三个组元,因此三元相图是表示在恒压下以温度变量为纵轴,两个成分变量为横轴的三维空间图形。

由一系列空间区面及平面将三元图相分隔成许多相区。

第一节三元相图的基础知识三元相图的基本特点:(1) 完整的三元相图是三维的立体模型;(2) 三元系中可以发生四相平衡转变。

四相平衡区是恒温水平面;(3) 三元相图中有单相区、两相区、三相区和四相区。

除四相平衡区外,一、二、三相平衡区均占有一定空间,是变温转变。

一、三元相图成分表示方法三元相图成分通常用浓度(或成分)三角形(concentration/composition triangle)表示。

常用的成分三角形有等边成分三角形、等腰成分三角形或直角成分三角形。

(一) 等边成分三角形-图形1. 等边成分三角形图形在等边成分三角形中,三角形的三个顶点分别代表三个组元A、B、C,三角形的三个边的长度定为0~100%,分别表示三个二元系(A—B系、B—C系、C—A系)的成分坐标,则三角形内任一点都代表三元系的某一成分。

其成分确定方法如下:由浓度三角形所给定点S,分别向A、B、C顶点所对应的边BC、CA、AB 作平行线(sa、sb、sc),相交于三边的c、a、b点,则A、B、C组元的浓度为:WA = sc = Ca WB = sa= AbWC = sb= Bc•注:sa+ sb+ sc = 1 Ca + Ab+ Bc= 12. 等边成分三角形中特殊线(1) 平行等边成分三角形某一边的直线。

凡成分点位于该线上的各三元相,它们所含与此线对应顶角代表的组元的质量分数(浓度)均相等。

(2) 通过等边成分三角形某一顶点的直线位于该线上的所有三元系,所含另外两顶点所代表的的组元质量分数(浓度)比值为恒定值。

(二) 成分的其它表示法1.等腰成分三角形当三元系中某一组元B含量较少,而另外两组元(A、C)含量较多,合金点成分点必然落在先靠近成分三角形的某一边(如AC)附近的狭长地带内。

第5章-三元相图PPT课件

第5章-三元相图PPT课件
•20
2、结晶过程分析 O 自液态缓冷至于液互
相相交时,开始从液相中结晶出 α 固溶体,此时液相的成分l1即为合金成分, 而固相的成分为固相面某一点 s。
α 相越来 越多,固相的成分由s1点沿固相面移至s2 点,液相成分自l1点移至 l2点,由直线法则可知,合金的成分点必落 在l2和s2的连线上。
Ca=WA=30% Ac=WC=60% Ab=WB=10%。
中都有应用,但应用最为广泛的还是等边 三角形。
•10
2、等边成分三角形中特定意义的线 (1) 平行 于三角形某一边的直线 凡成分位于该线上的所有合金,它们 所含的由这条边对应顶点所代表的组元的 含量为一定值。如图5-103中ef直线上代表 B组元的含量均为Ae。
•15
•16
•17
由直线法则可得到以下规律: a、 当温度一定时,若已知两平衡相的 成分,则合金的成分必位于两平衡相成分 的连线上; b、 当温度一定时,若已知一相的成分 及合金的成分,则另一平衡相的成分必位 于两已知成分点的连线的延长线上; c、 当温度变化时,两平衡相的成分变 化时,其连线一定绕合金的成分点而转动。
•1
三元相图与二元相图比较,组元数增加 了1个,即成分变量是两个,故表示成分的坐 标轴应为2个,需要用一个平面表示,再加上 垂直于该平面的温度轴,这样三元相图就 演变成一个在三维空间的立体图形,分隔 相区的是一系列空间曲面,而不是二元相 图的平面曲线。
•2
1、三元相图的成分表示方法 (1) 等边成分三角形 这样的三角形称为浓度三角形或成分三角 形(Composition Triangle)。常用的成分三 角形是等边三角形和直角三角形。
•38
•11
•12
(2)通过三角形顶点的任一直线 凡成分位于该直线上的所有合金

第5章 三元合金相图

第5章  三元合金相图
相对应成分点的连接直线称为连接线, 或称共轭连线;
L1’、L2’、…和S1’ 、S2’、… 连成的 曲线称为共轭曲线。
3. 三相平衡(three-phase equilibrium)
三元系中三相平衡时,三个自由能—成分曲面 只有唯一的公切面。
三个公切点投影到成分三角形上构成的成分点 即三个平衡相在该温度下的成分点。当温度一 定,三个平衡相的成分将是确定不变的。连接 三个平衡相的成分点的三角形称为连接三角形。
线上的L2, α相的成分变到mp线上的α2 , α2在 L2和 x 两点连线的延长线上,根据杠杆定律可 算出此时两相相对量为:
L2 %

x 2 L2 2
100 %
2%

L2 x L2 2
100 %
在此温度下发生三相共晶反应
L2 2 2
在反应过程中L、α、β三相的成分分别沿着ee’、mp、nq线变化。冷
3. 三元相图的投影图(projections)
● 把三元立体相图中所有相区的交线都垂直投影 到浓度三角形中,就得到三元相图的投影图, 可利用它分析合金在加热和冷却过程中的转变。
● 如果把一系列不同温度的水平截面中的相界线 投影到浓度三角形中,并在每一条投影上标注 相应的温度,就得到等温线投影图;类似地图 上的等高线。
● 以等边成分三角形表示三元系的成分, 在浓度三角形的各个顶点分别作与浓度 平面垂直的温度轴,构成外形是一个三 棱柱体的三元相图;
● 三棱柱体的三个侧面是三组二元相图, 三棱柱体内部,有一系列空间曲面分隔 出若干相区。
● 三元相图复杂,不易描述相变过程和确 定相变温度。因此,实现三元相图实用 化的方法是使之平面化。
当 x 点在α3β的连线上,包晶反应结束而进入α+β两相区。反应结束 时α和β两相的相对量为

2-三元系相图基础1

2-三元系相图基础1
L 1 S1+S2+S3
E 2 3
•单转熔点(双升点) 特点:对应三组分的成分三角形之外, 交叉位置 L +S1 S2+S3
交叉
交叉
交叉
•双转熔点(双降点)
特点;处于相应成分三角形的共轭位置 S3 L+S1+S2
共轭
•双降点形式的过渡点
特点:共轭位置的极限情况 L+S1+S2 无对应的三角形,是一条线
(3)无论熔体M在三角形的何种位置,析 晶产物都是A、B、C 三种晶相,且都在三 元低共熔点上析晶结束,因此三元低共熔 点一定是析晶的结束点。
杠杆规则的应用 (1)当液相组成点刚刚到达D点:
CM L% = ×100% CD DM C% = ×100% CD
C F
Mt1
(2)当液相组成点刚刚到达E点:
单相区: 一个
L
TA A3 A2 A1 TB E1 E3 TC E C3 C2 C1 E2 B3 B2 B1
双相区: 三个
L + A、L + B、L + C
A
B
三相区: 四个
L + A + B、L + B +C、 L + A + C、 A + B + C
C
四相区: 一个
L+A+B+C
27
等温截面及其投影
e3
t2 A
t2 D E t2
e2
t1
.
B
e1
熔体的结晶路程: 液相点: →C →C + A M 1 ⎯L ⎯ ⎯→ D ⎯L ⎯ ⎯ ⎯→ E ( LE → C + A + B ) 固相点:

材料科学基础-三元相图(1)

材料科学基础-三元相图(1)

一、三元相图的成分表示法
1.浓度等边三角形:
三个顶点为纯组元,三条边为二元合金,三角形内任一点为三 元合金
一.三元相图的成分表示法:等腰三角形
一.三元相图的成分表示法:直角坐标系
3.浓度三角形中特殊线: 3.1 平行浓度三角形任一边的直线
3.2 从浓度三角形的一个顶点到对边的任意直线
二、杠杆定律及重心法则
2.三元相图分析法总结---三相平衡--等温截 面:直边三角形,三顶点为相成分点,可用重心法则
三元相图分析 法总结--三相平衡 变温
截面: 曲边三角形 或多边形
三元相图分析法总结---三相平衡--三相反应的
判定: 1. 变温截面上
2. 三 元 相 图 分 析 法 总 结 --三相平衡-- 三
4. 简单三元共晶的等温截面 二相区:共轭线,三相区:三角形,三个顶点代表成分点
5.简单三元共晶的变温截面:平行于浓度三角形一边的 变温截面cd , 合金x的结晶过程:L→B,L→A+B,
L→A+B+C, 练习:分析p-f之间合金的结晶过程
简单三元共晶的变温截面:通过顶点的变温截面,
注意:不能用杠杆定律,F4-17中A1g1 非四相平衡
1175
760
Cr12(2%C):
L→γ,L→γ+C1,
795
γ→α+C1,α→C1
室温组织:球光体 和莱氏体(共晶体)
总目录
相反应的判定--:
投影图判断三 相反应
液相单变量线穿 过两旁固相成分点连 线的为二元共晶型, 而单变线穿过两旁 固相成分点连线延 长线为二元包晶反 平衡
反应类型判断----液相面投影图: 指向结点单变量线数 为产物数

物理化学,三元相图

物理化学,三元相图

B 10 20 30 40 II
50
C% 60 70 80 90
50 40 ← A%
30
20 10
C
课堂练习
1. 确定合金I、II、 III、IV的成分
III 点: A%=20% B%=20% C%=60% 70 90 80
B 10 20 30
60 B% 50
40 30 20
40
50
C% 60
III
LA
B
e2 E2
L B
e
e3 E3
L C
C
E3
TC
E2
L C
E1 E3
LA+ B
E2
L B +C
LA+ C
EAe1源自Be e2e3
C
E1 E3
LA+ B
E2
L B +C
LA+ C
E TA TB E1
三 相 平 衡 共 晶 线
——
A3 A2 A1
B3 B2
E2 B1
A
E3
TC E C3 C2 C1
C
3. 直线法则与重心法则
1)直线法则 —— 适用于两相平衡的情况
三元合金R分解为 α与 β 两个新相, 这两个新相和原合金 R点的浓度必定 在同一条直线上。 B
投影到任何一边上,按二 元杠杆定律计算
C% B% g’ R
fg f ' g ' R W ef e' f ' R W
三元相图
一、三元相图几何特征
1. 成分表示法
—— 浓度三角形
等边三角型 B%
B
C%
+ 顺时针坐标

三元相图1PPT课件

三元相图1PPT课件
求C%:也同样方法确定。
a
c
X
a’
b
浓度刻度一般用顺时 针表示。
确定X点合金的成分:
55%A、20%B、 25%C
2、两条特殊直线:
2.1平行于三角形一条边的直 线:凡成分位于该直线上的合 金,其中所含的由这个边对 应顶点所代表的组元含量为 定值。
例如:合金成分在GQ线上, 所含的B组元量相同,为AG%;
DEF的重心(质量重心)上,
合金的重量与三相的重量存
在如下关系
—— 重心法则
w
Nd Dd
w N
w
Ne Ee
w N
w
Nf Ff
w N
§3. 三元匀晶相图
三个组元在液态、固态下完全互溶的三元相图。(任意两
个组元都可以无限互溶,它们组成三元合金也可以无限互
溶)。
1、相图的空间模型
ABC 是成分三角形 ,
在二元合金中:液相成分沿着液相线变化,固相成分 沿着固相线变化。
在三元合金中:液相成分沿着液相面变化,固相成分 沿着固相面变化,并且这种变化不是发生在一个平面 上,而是不停地发生偏转,沿着空间曲线变化。
α相成分在固相面上依次为: α1, α2, α3, α4 (合金成分点)。
L相成分在液相面上依次为:(合 金成分点) L1, L2, L3, L4 。
xa+xb+xc=AB=BC=AC
如果取等边三角形的边长作为合金的总量100%, 则过一点向三边顺序作平行线就可以确定合金的成分。
a cX
b
1.2成分三角形
三角形的边长为100%,三顶点代表 纯组元A、B、C。AB边代表A-B二 元系,BC边代表B-C二元系,AC边 代表A-C二元系。在三角形内任意一 点均表示一成分确定的三元合金,这 样的三角形称为浓度三角形。

三元相图

三元相图

计算方法同杠杆定律。
W Rd w % 100% WR ad W Re w % 100% WR e W Rf A w % 100% WR f
B%
C%
f

R d

e

← A% C
4. 其它浓度三角形
1) 等腰浓度三角形
组元B的含量很少 成分点靠近AC边
B
按比例放大AB、BC边
三、 三元共晶相图
共晶转变:
一个液相 ,同时结晶出两个(或三个)固相 —— 共同结晶
共晶线:
M-E-N
T(℃) TA
L
L+
M 183℃ E
液相线:
线:
TA——E——TS

L+
N
TS

固相线:
TA—M—E—N—TS

F Pb G Sn
固溶度曲线:
MF、NG
共晶点:
点:
E
最大溶解度点:
M、N
II点: A%=20% B%=50% C%=30% 70 60 B% 50 40 30 20 10 A 90 80 70 60 90 80
B 10 20 30 40 II C% 60 70 80 90 50 40 ← A% 30 20 10 C
50
课堂练习
1. 确定合金I、II、 III、IV的成分
3. 等温截面及其投影
B
C
A
B
L+
C
L
A
L+
相区变化方向 L
随着等温温度的降低, 液相线投影向液相区移 动,即液相区缩小;固 相区增大,两相区向液 相区一方移动
匀晶三元系的等温截面
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5章 三元合金相图
5.1三元相图基础
★是三维立体图 ★可以有四相平衡,四相平衡区是恒温水 平面 ★三相区是一个空间区域,自由度数为1
5.1.1三元相图成分表示方法
1.等边成分三角形
2.等边成分三角形中的特殊线
3.成分的其他表示方法
ቤተ መጻሕፍቲ ባይዱ
5.1.2三元相图中的杠杆定律及重心定律 ★用直线定律确定二相区平衡相的相对量; ★用重心定律确定三相区平衡相的相对量。
上下两式相除:
Ce-Cg/Ae′-Ag′= Cf-Cg/ Af′-Ag 即:Ce-Cg /Cf-Cg= Ae′-Ag′/Af′-Ag 因此,acb必在一条直线上(解析几何中的三 点共线式) (2)杠杆定律:由上式Wα(Ce-Cg)=Cf-Cg Wα = Cf-Cg / Ce-Cg =cb/ab Wβ =ac/ab
材料科学基础
第5章 三元合金相图
合肥工业大学材料学院 宣天鹏
5.1 三元相图基础 5.2 三元匀晶相图 5.3 固态下互不溶解的三元共晶相图 5.4 固态下有限溶解的三元共晶相图 5.5 两个共晶型二元系和一个匀晶型二元系构成的三元相图 5.6 包共晶型三元系相图 5.7 包晶型三元系相图 5.8 形成稳定化合物的三元系相图 5.9 三元相图举例 5.10 三元相图小结
(1)直线法则(三点共线法则):三元合金 两相平衡时,合金成分点(c点)和两平衡相 成分点(α相:a和β相:b点)必然位于成分三 角形内的同一条直线上。
令Wα+Wβ=1 A组元:Ce·Wα+Cg·(1-Wα)=Cf B组元:Ae′·Wα+Ag′·(1-Wα)=Af′ Wα(Ce-Cg)=Cf-Cg; Wα(Ae′-Ag′)= Af′-Ag′
(3)重心法则
相关文档
最新文档