4 随机过程 连续时间的马尔可夫链
第四章 马尔可夫链
股市预测
预测股票价格变化 基于历史数据建立模型 考虑股票之间的相关性 用于投资决策和风险管理
05
马尔可夫链的算法
状态转移矩阵算法
定义:状态转移 矩阵算法是马尔 可夫链中用于描 述状态转移概率 的算法
计算方法:根据 历史数据和当前 状态计算未来的 状态转移概率
应用场景:广泛 应用于自然语言 处理、语音识别、 机器翻译等领域
类问题等。
可扩展性强: 马尔可夫链可 以通过增加状 态和转移概率 来扩展模型, 以处理更复杂
的问题。
缺点
状态转移概率矩 阵必须已知
无法处理连续时 间或非齐次过程
无法处理多维或 多状态过程
无法处理非马尔 可夫过程
YOUR LOGO
THANK YOU
汇报人:儿
特点:隐马尔可夫链的状态转移和观测概率是参数化的,需要通过训练数据来估计。
应用:隐马尔可夫链在语音识别、自然语言处理、机器翻译等领域有广泛应用。
算法:隐马尔可夫链的算法包括前向-后向算法、Viterbi算法和Baum-Welch算法等。
04
马尔可夫链的应用
自然语言处理
文本分类:利 用马尔可夫链 对文本进行分 类,如垃圾邮 件过滤、情感
01
添加章节标题
02
马尔可夫链的定义
状态转移
定义:马尔可夫链的状态转移概率是描述状态之间转移的规则
特性:状态转移具有无记忆性,即下一个状态只与当前状态有关,与过去状态无关
转移矩阵:描述状态转移概率的矩阵
稳态分布:在长期状态下,马尔可夫链将趋于一个稳态分布,该分布描述
YOUR LOGO
马尔可夫链
,a click to unlimited possibilities
随机过程第四章马尔可夫链
0,
p(n) ij
1, i,
jI
jI
即P(n)也为随机矩阵.
当n
1时,
p (1) ij
pij
,
P (1)
P
当n
0时,规定pi(j0)
0 , i 1 , i
j j
13
4.1 马尔可夫链与转移概率
• 定理4.1 设{Xn, nT}为马尔可夫链, 则对任意 整数n0, 0l<n和i,jI, n步转移概率 p具i(jn) 有性
Ckx 0
pxqy ,
,
k ( j i)为偶数 k ( j i)为奇数
11
4.1 马尔可夫链与转移概率
例4.4 具有吸收壁和反射壁的随机游动状态空间 {1,2,3,4}, 1为吸收壁, 4为反射壁.
解:状态转移图
状态转移矩阵
1 3
1 0 0 0
1
1
3
1 1
3
1
1
1 1 1
1 3
1 3
2
P 3
5
4.1 马尔可夫链与转移概率
= =P{Xn=in|Xn-1=in-1}P{Xn-1=in-1 |Xn-2=in-2}
P{X1=i1|X0=i0}P{X0=i0} 马尔可夫链的统计特性完全由条件概率 P{Xn+1=in+1|Xn=in}确定。
6
4.1 马尔可夫链与转移概率
定义 称条件概率pij(n)= P{Xn+1=j|Xn=i} 为马尔 可夫链{Xn, nT}在时刻n的一步转移概率,简 称转移概率,其中i,jI.
P{X 0 i}P{X1 i1 | X 0 i} iI
P{X 2 i2 | X1 i1} P{X n in | X n1 in1}
随机过程-第五章-连续时间的马尔可夫链
第五章 连续时间的马尔可夫链5.1连续时间的马尔可夫链考虑取非负整数值的连续时间随机过程}.0),({≥t t X定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有})(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++=})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链.由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关.记(5.1)式条件概率一般形式为),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率.定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij =其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程.假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有},{}{t h P s h t s h P i i i >=>+>可见,随机变量i h 具有无记忆性,因此i h 服从指数分布.由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布;(2) 当过程离开状态i 时,接着以概率ij p 进行状态j,1=∑≠ij ij p .上述性质也是我们构造连续时间马尔可夫链的一种方法.当∞=i v 时,称状态i 为瞬时状态,因为过程一旦进入此状态立即就离开.0=i v 时,称状态i 为吸收状态,因为过程一旦进入状态就永远不再离开了.尽管瞬时状态在理论上是可能的,但以后假设对一切i, ∞<≤i v 0.因此,实际上一个连续时间的马尔可夫链是一个这样的随机过程,它按照一个离散时间的马尔可夫链从一个状态转移到另一个状态,但在转移到下一个状态之前,它在各个状态停留的时间服从指数分布.此外在状态i 过程停留的时间与下一个到达的状态必须是相互独立的随机变量.因此下一个到达的状态依赖于i h ,那么过程处于状态i 已有多久的信息与一个状态的预报有关,这与马尔可夫性的假定相矛盾.定理5.1 齐次马尔可夫过程的转移概率具有下列性质:;0)1(≥ij p (2);1=∑∈ij Ij p(3) ∑∈=+Ik kj ik ij s p t p s t p )()()(.其中(3)式即为连续时间齐次马尔可夫链的切普曼—柯尔哥洛夫方程. 证明 只证(3).由全概率公式及马尔可夫性可得 ===+=+)})0()({)(i X j s t X P s t p ij =∑∈===+Ik i X k t X j s t X P })0()(,)({=})()({})0()({k t X j s t X P i X k t X P Ik ==+==∑∈∑∈=Ik kj ik s p t p )()(.对于转移概率)(t p ij ,一般还假定它满足:⎩⎨⎧≠==→.,0,1)(lim 0j i ji t p ij t(5.3)称(5.3)式为正则条件.正则条件说明,过程刚进入某状态不可能立即又跳跃到另一状态.这正好说明一个物理系统要在有限时间内发生限多次跳跃,从而消耗无穷多的能量这是不可能的.定义5.3 对于任 一0≥t 记 },)({)(j t X P t p j ==,},)0({)0(I j j X P p p j j ∈===分别称}{},),({,I j p I j t p j j ∈∈ 齐次马尔可夫过程的绝对概率分布和初始概率分布.定理5.2齐次马尔可夫过程的绝对概率及有限维概率分布具有下列性质: (1) ,0)(≥t p j (2),1)(=∑∈t p j Ij(3) )()(t p p t p ij Ii i j ∑∈=;(4) );()()(h p t p h t p ij Ii i j ∑∈=+(5)).()...(})(,...,)({112111211-∈--====-∑n n i i i i ii Ii i n n t t p t t p p p i t X i t X p n n例5.1试证明泊松过程}0),({≥t t X 为连续时间齐次马尔可夫链. 证明 先证泊松过程具有马尔可夫性,再证明齐次性.由泊松过程的定义 它是独立增量过程,且X(0)=0.11,...0+<<<n n t t t ,有})(,...,)()({1111n n n n i t X i t X i t X P ===++= ,.)0()()()({1111i X t X i i t X t X P n n n n =--==-++ =,111212)()(,...)()(---=--=-n n n n i i t X t X i i t X t X } = })()({11n n n n i i t X t X P -=-++ . 另一方面,因为})()({11n n n n i t X i t X P ==++=})0()()()({11n n n n n n i X t X i i t X t X P =--=-++ =})()({11n n n n i i t X t X P -=-++所以})(,...,)()({1111n n n n i t X i t X i t X P ===++=})()({11n n n n i t X i t X P ==++. 即泊松过程是一个连续时间马尔可夫过程.以下证明齐次性. 当i j ≥ 时,由泊松过程的定义})()({i s X j t s X P ==+= })()({i j s X t s X P -=-+=)!()(i j t eij t---λλ j<i.时,由于过程的增量只取非负整数,故,0),(=t s p ij 所以⎪⎩⎪⎨⎧<≥-==--i j ij i j t e t p t s p i j t ij ij ,0,)!()()(),(λλ, 即转移概率只与t 有关,泊松过程具有齐次性.5.2柯尔莫哥洛夫微分方程对于连续时间齐次马尔可夫链转移概率)(t p ij 的求解一般比较复杂.下面首先讨论)(t p ij 的可微性及)(t p ij 满足的柯尔莫哥洛夫微分程.引理5.1 设齐次马尔可夫过程满足正则性条件(5.3),则对于任意固定的)(,,t p I j i ij ∈是t 的一致连续函数.证明 设h>0,由定理5.1得)()()()()(t p t p h p t p h t p ij rj Ir ir ij ij -=-+∑∈)()()()()(t p t p h p t p h p ij ij ii rj ir ir -+=∑≠=)()](1[)()(t p h p t p h p ij ii rj ir ir --=∑≠故有)],(1[)()](1[)()(h p t p h p t p h t p ii ij ii ij ij --≥--=-+ ),(1)()()()()(h p h p t p h p t p h t p ii ir ir rj ir ir ij ij -=≤≤-+∑∑≠≠因此).(1)()(h p t p h t p ii ij ij -≤-+对于h<0,同样有).(1)()(h p t p h t p ii ij ij --≤-+ 综上所述得到).(1)()(h p t p h t p ii ij ij -≤-+ 由正则性条件知,0)()(lim 0=-+→t p h t p ij ij h 即)(t p ij 关于t 是一致连续的.以下我们恒设齐次马尔可夫过程满足正则性条件(5.3)式.定理5.3 设)(t p ij 是齐次马尔可夫过程的转移概率,则下列极限存在 (1);)(1lim 0∞≤==∆∆-→∆ii i ii t q v t t p (2).,)(lim 0j i q tt p ij ij t ≠∞<=∆∆→∆我们称ij q 为齐次马尔可夫过程从状态i 到状态j 的转移概率或跳跃强度.定理中的极限的概率意义为:在长为t ∆的时间区间内,过程从状态i 转移到另一其他状态的转移概率为)(1t p ii ∆-等于t q ii ∆加一个比t ∆高阶的无穷小量,而过程从状态i 转移到状态j 的转移概率为)(t p ij ∆等于t q ij ∆加一个比t ∆高阶的无穷小量. 推论 对有限齐次马尔可夫过程,有 ∞<=∑≠ij ij ii q q证明 由定理5.1 ,有)()(1,1)(t p t p t pij ij ii Ij ij∆=∆-=∆∑∑≠∈由于求和是在有限集中进行,故有.)(lim )(1lim 00∑∑≠≠→∆→∆=∆∆=∆∆-=ij ij ij i j t ii t ii q t t p t t p q (5.4)对于状态空间无限的齐次马尔可夫过程,一般只有 ∑≠≥ij ij ii q q .若连续时间齐次马尔可夫是具有有限状态空间I={0,1,2,…,n},则其转移速率构成以下形式的矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=nn n n n n q q q q q qq q q Q .....................11111000100 (5.5) 由(5.4)式知,Q 矩阵的每一行元素之和为0,对角线元素为负或0,其余.0,≥ij q 利用Q 矩阵可以推出任意时间间隔t 的转移概率所满足的方法组,从而可以求解转移概率.由切普曼---柯尔莫哥洛夫方程有 ),()()(t p h p h t p Ik kj ik ij ∑∈=+或等价地)()](1[)()()()(t p h p t p h p t p h t p ij ii kj ik ik ij ij --=-+∑≠两边除以h 后令0→h 取极限,应用定理5.3得到 )()()(lim )()(lim 00t p q t p hh p ht p h t p ij ii kj ik ik h ij ij h -=-+∑≠→→ (5.6) 假定在(5.6)式的右边可交换极限与求和,再运用定理5.3,于是得到以下结论: 定理5.4 (柯尔莫哥洛夫向后方程)假设,ii ik ik q q =∑≠则对一切i,j 及0≥t ,有,)()(ij ii ik kj ik ijp q t p q t p -='∑≠ (5.7) 证明 只要证明(5.6)式右边极限与求和可交换次序.现在对于任意固定的N,有≥∑≠→)()(inflim 0t p hh p kj ik ik h )()()(inf lim ,,0t p q t p h h p kj Nk i k ik kj Nk i k ik h ∑∑<≠<≠→= 因为上式对一切N 成立,所以)()()(inflim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≥ (5.8) 为了倒转不等式,注意对于N>i,由于,1)(≤t p kj 所以 ≤∑≠→)()(sup lim ,0t p hh p kj i k ik h ≤+≤∑∑≥<≠→])()()(sup[lim ,0Nk ik kj Nk i k ik h h h p t p h h p ≤--+≤∑∑<≠<≠→])()(1)()(sup[lim ,,0Nk i k ik ii kj Nk i k ik h h h p h h p t p h h p ,)(,,∑∑<≠<≠-+≤Nk i k ikii kj Nk i k ikqq t p q令∞→N ,由定理5.3和条件得)()()(sup lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≤. 上式连同(5.8)可得 )()()(lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→=.定理5.4中)(t p ij 满足的微分方程组以柯尔莫可洛夫向后方程著称.称它们为向后方程,是因为在计算时刻t+h 的状态的概率分布时我们对退后到时刻h 的状态取条件,即我们从)()(})0()({..})(,)0()({)(h p t p i X k h X P k h X i X j h t X P h t p ik Ik kj Ik ij ∑∑∈∈======+=+开始计算.对时刻t 的状态取条件,我们可以导出另一组方程,称为柯尔莫哥洛夫向前方程.可得),()()(h p t p h t p kj Ik ik ij ∑∈=+)()()()()(t p h p t p t p h t p ij kj Ik ik ij ij -=-+∑∈=)()](1[)()(t p h p h p t p ij jj kj jk ik --=∑≠,所以 )}.()(1)()({lim )()(lim 00t p h h p h h p t p ht p h t p ij jj kj jk ik h ij ij h --=-+∑≠→→假定我们能交换极限与求和,则由定理5.3便得到),()()(t p q q t p t p ij ii jk kj ik ij-='∑≠ 令人遗憾的是上述极限与求和的交换不是恒成立,所以上式并非总是成立.然而在大多数模型中----包括全部生灭过程与全部有限状态的模型,它们是成立的. 定理5.5(柯尔莫哥洛夫向前方程) 在适当的正则条件下,,)()()(jj ij kj ik ik ijq t p q t p t p -='∑≠ (5.9) 利用方程组(5.7)或(5.9)及初始条件 .,0)0(,1)0(j i p p ij ii ≠==我们可以解得)(t p ij .柯尔莫哥洛夫向后和向前方程虽然形式不同,但是可以证明它们所求得的解)(t p ij 是相同的.在实际应用中,当固定最后所处状态j,研究)(t p ij 时(i=0,1,2,…,n),采用向后方程比较方便;当固定状态i,研究)(t p ij 时(j=0,1,2,…,),则采用向前方程较方便.向后方程和向前方程可以写成矩阵形式),()(t QP t P =' (5.10) ,)()(Q t P t P =' (5.11) 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---= (222120121110)020100q q q q q qq q q Q ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=............ (222120121110)020100p p p p p pp p p P 这样,连续时间马尔可夫链的转移概率的求解问题就是矩阵微分方程的求解问题,其转移概率由其转移速率矩阵Q 决定.特别地,若Q 是一个有限维矩阵,则(5.10)和(5.11)的解为 .!)()(0∑∞===j jQtj Qt et P定理5.6 .齐次马尔可夫过程在t 时刻处于状态I j ∈的绝对概率)(t p j 满足下列方程:.)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' (5.12)证明 由定理5.2,有)()(t p p t p ij Ii i j ∑∈=t将向前方程(5.9)式两边乘以,i p 并对i 求和得.)())(()(kj jk ikiIi jj ijiIi ijIi iq t pp q t pp t p p ∑∑∑∑≠∈∈∈+-='故 .)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' .与离散马尔可夫链类似,我们讨论转移概率 )(t p ij 当 ∞→t 时的极限分布与平稳分布的有限性质.定义5.4 设)(t p ij 为连续时间马尔可夫链的转移概率,若存在时刻 21,t t ,使得 ,0)(1>t p ij ,0)(2>t p ij则称状态i 和j 是互通的.若所有状态都是互通的,则称此马尔可夫链为不可约的.定理5.7 设连续时间的马尔可夫是不可约的,则有下列性质:(1) 若它是正常返的,则极限)(lim t p ij t ∞→存在且等于.,0I j j ∈>π这里.,0I j j ∈>π是方程组1,==∑∑∈≠Ij j kj jk k jj j q q πππ (5.13)的唯一非负解.此时称.,0{I j j ∈>π是该过程的平稳分布,并且有 .)(lim j j t t p π=∞→ (2) 若它是零常返的或非常返的,则.,,0)(lim )(lim I j i t p t p j t ij t ∈==∞→∞→在实际问题中,有些问题可以用柯尔莫哥洛夫方程直接求解,有些问题虽然不能求解但是可以用方程(5.13)求解.例5.2 考虑两个状态的连续时间马尔可夫链,在转移到状态1之前链在状态0停留的时间是参数为λ的指数变量,而在回到状态0之前它停留在状态1的时间是参数为μ的指数变量,显然该链是一个齐次马尔可夫过程,其状态转移概率为 ),()(01h o h h p +=λ),()(10h o h h p +=μ由定理5.3知由柯尔莫哥洛夫向前方程得到)()()(000100t p t p t p λμ-='=,)()(00μμλ++-t p 其中最后一个等式来自).(1)(0001t p t p -=因为,1)0(00=p 由常数变易法得 ,)()(00t e t p μλμλλμλμ+-+++=若记,,00μλμμμλλλ+=+=则,)()(0000t e t p μλλμ+-+=类似地由向前方程)()()(010001t p t p t p μλ-=' ,)()(lim )(1lim 1001010011011q h p dhdhh p h h p q h h h ====-==→→μ,)()(lim )(1lim 0100101000000q h p dhdhh p h h p q h h h ====-==→→λ可解得 ,)()(0001t e t p μλλλ+--= 由对称性知,)()(0011t e t p μλμλ+-+= ,)()(0010t e t p μλμμ+--= 转移概率的极限为),(lim )(lim 10000t p t p t t ∞→∞→==μ),(lim )(lim 11001t p t p t t ∞→∞→==λ 由此可见,当∞→t 时, )(t p ij 的极限存在且与i 无关.定理5.6知,平稳分布为 0100,λπμπ== 若取初始分布为平稳分布,即,}0)0({00μ===p X P ,}1)0({01λ===p X P 则过程在时刻t 的绝对概率分布为 )()()(1010000t p p t p p t p +==0)(000)(00]1[][μμλμλμμλμλ=-+++-+-t t e e=0)(000)(00][]1[λμλλλμμλμλ=++-+-+-t t e e .例5.3 机器维修问题.设例5.2中状态0代表某机器正常工作状态1代表机器出故障.状态转移概率与例5.2相同,即在h 时间内,机器从正常工作变为出故障的概率为),()(01h o h h p +=λ在h 时间内,机器从有故障变为经修复后正常工作的概率为),()(10h o h h p +=μ试求在t=0时正常工作的机器,在t=5时为正常工作的概率. 解 由例5.2已求得该过程的Q 矩阵为⎪⎪⎭⎫⎝⎛--=μμλλQ .根据题意,要求机器最后所处的状态为正常工作,只需计算)(00t p 即可. 由例5.2知,)()(0000t e t p μλλμ+-+=,,00μλμμμλλλ+=+=故 ,)5(5)(0000μλλμ+-+=e p 因为P{X(0)=0}=1=,0p 所以)()()(1010101t p p t p p t p +=====)5()5(}0)5({0000p p p X P .)5(5)(0000μλλμ+-+=e p5.3 生灭过程连续时间马尔可夫链的一类重要特殊情形是生灭过程,它的特征是在很短的时间内,系统的状态只能从状态i 转移到状态i-1或i+1或保持不变,确切定义如下. 定义5.5 设齐次马尔可夫过程}0),({≥t t X 的状态空间为I={0,1,2,…},转移概率为)(t p ij ,如果,0),()(1,>+=+i i i i h o h h p λλ,0,0),()(01,=>+=-μμμi i i i h o h h p),()(1)(,h o h h p i i i i ++-=μλ则称 }0),({≥t t X 为生灭过程,i λ为出生率, i μ为死亡率.若,λλi i =μλμμ,(,i i =是正常数),则称}0),({≥t t X 为线性生灭过程. 若0≡i μ,则称}0),({≥t t X 为纯生过程. 若0≡i λ,则称}0),({≥t t X 为纯灭过程. 生灭过程可作如下概率解释:若以X(t)表示一个生物群体在t 时刻的大小,则在很短的时间h 内(不计高阶无穷小),群体变化有三种可能,状态由i 变到i+1,即增加一个个体,其概率为h i λ;.状态由i 变到i-1,即减少一个个体,.其概率为h i μ;群体大小保持不变,其概率为.)(1h i i μλ+-由定理5.3得到,0,)()(,0≥+=-==i h p dhd t q i i h ii ii μλ ⎩⎨⎧≥-=≥+====,1,1,,0,1,)()(0i i j i i j h p dh d t q ii h ij ij μλ ,2,0≥-=j i q ij故柯尔莫哥洛夫向前方程为.,),()()()()(1,11,1I j i t p t p t p t p j i j ij j j j i j ij∈++-='++--μμλλ 故柯尔莫哥洛夫向后方程为.,),()()()()(,11,I j i t p t p t p t p j i i ij j j j i i ij∈++-='+-λμλμ 因为上述方程组的求解较为困难,我们讨论其平稳分布.由(5.13)式,有 ,2),()(,≥-=j i h o h p j i,1100πμπλ=.1,)(1111≥+=+++--j j j j j j j j πμπλπμλ逐步递推得,0101πμλπ=…, ,11--=j jj j πμλπ 再利用11=∑∞=j j π,得平稳分布,11211100)......1(-∞=-∑+=j j j μμμλλλπ, 112111021110)......1(......-∞=--∑+=j jj j j j μμμλλλμμμλλλπ 例5.4 生灭过程例子M/M/S 排队系统.假设顾客按照参数为λ的泊松过程来到一个有s 个服务员的服务站,即相继来到之间的时间是均值为λ1的独立指数随机变量,每一个顾客一来到,如果有服务员空闲,则直接进行服务,否则此顾客加入排队系列.当一个服务员结束对一位顾客的服务时顾客就离开服务系统,排队中的下一顾客进入服务. 假定相继的服务时间是独立的指数随机变量,均值为μ1.如果我们以X(t)记时刻t 系统中的人数,则}0),({≥t t X 是生灭过程⎩⎨⎧>≤≤=,,,1,s n s s n n n μμμ .0,≥=n n λλM/M/s 排队系统中M 表示马尔可夫过程,s 代表s 个服务员.特别在M/M/1排队系统中,μμλλ==n n ,,若1<μλ,则由(5.14)可得 .0),1()()(1)(1≥-=+=∑∞=n n n nnn μλμλμλμλπ。
第五章 连续时间马尔可夫链-随机过程
二、连续时间马尔可夫链的状态逗留时间和转移速率 命题 以 i 记过程在转移到另一状态之前停留在状态 i 的时 间,则对一切 s,t0 有 P{ i t s | i s} P{ i t } ,因此, 随机变量 i 是无记忆的必有指数分布,其参数设为 v i
证明: P{ i t s | i s}
P{T1 t } 1 e t
P{T1 T2 t } P{T1 T2 t | T1 x } e t dx
0 t
= (1 e 2 ( t x ) ) e x dx (1 e t )2
0
t
P{T1 T2 T3 t } P{T1 T2 T3 t | T1 T2 x }dFT1 T2 ( x )
i 1 n
其中 f 是密度函数(5.3.2)
e (t x) ,0 x t f ( x) 1 et 0, 其它
但因为(5.3.1)是 n 个密度为 f 的随机变量的子样 Y1,Y2,, Yn 的顺序统计量 Y(1),Y(2),, Y(n)的联合密度函数。于是得 命题 5.3.1 一个尤尔过程,其 X(0)=1,则给定 X(t)=n+1 时,出生时刻 S1,S2,, Sn 的分布如同取自密度为(5.3.2)的母体的容量为 n 的子 样 Y1,Y2,, Yn 的顺序统计量 Y(1),Y(2),, Y(n)的分布。
0 1 2 3
…Байду номын сангаас
n
n
2
3
… (n 1)
若对一切 n, n 0 (即若死亡是不可能的),则生灭过程称为纯 生过程,i 个个体开始的纯生过程,生长率为 n , n i 。
刘次华 随机过程 第五章
1 1 2
i∈I
i
ij
(t )
i∈I
n−1i n
(t n − t n −1 )
5.1 连续时间马尔可夫链
例5.1 证明泊松过程{X(t), t≥0}为连续时间 齐次马尔可夫链。 证明:先证泊松过程的马尔可夫性。 证明: 泊松过程是独立增量过程,且X(0)=0,对 任意0<t1< t2<…< tn< tn+1有
j ≠i
1 − pii (∆t ) qii = lim = lim ∆t →0 ∆t →0 ∆t 注:一般而言qii
∑p
j ≠i
ij
(∆t )
∆t
= ∑ qij
j ≠i
∑q
j ≠i
ij
5.2 柯尔莫哥洛夫微分方程
若连续时间齐次马尔可夫链具有有限状态 空间I={0,1,2,…,n}, 则
⎛ − q00 ⎜ ⎜ q10 Q= ⎜ ⎜ ⎜ q ⎝ n0 q01 − q11 qn1 q0 n ⎞ ⎛ Q1 ⎞ ⎟ ⎜ ⎟ q1n ⎟ ⎜ Q2 ⎟ = ⎟ ⎜ ⎟ ⎟ ⎜ ⎟ ⎟ ⎜ ⎟ − qnn ⎠ ⎝ Qn ⎠
5.1 连续时间马尔可夫链
定义5.2 齐次转移概率 pij(s,t)=pij(t) (与起始时刻s无关,只与时间间隔t有关) 转移概率矩阵P(t)=(pij(t)) ,i,j∈I,t ≥0 命题:若τi为过程在状态转移之前停留在 命题: 状态i的时间,则对s, t≥0有 (1) P{τ i > s + t | τ i > s} = P{τ i > t} (2) τi 服从指数分布 证(1) 事实上
5.1 连续时间马尔可夫链
过程在状态转移之前处于状态i的时间τi服 从指数分布 Fτ i ( x ) = 1 − e − λi x F (1)当λi=+∞时, τ ( x ) = 1, P{τ i > x} = 1 − Fτ ( x ) = 0, 状态i的停留时间τi 超过x的概率为0, 则称状态i为瞬时状态; F (2)当λi=0时,τ ( x ) = 0, P{τ i > x} = 1 − Fτ ( x ) = 1, 状态i的停留时间τi 超过x的概率为1,则 称状态i为吸收状态。
4马氏链
可见,{Xn,n=0,1,2,…}是一个马氏链。
Pij ( m , m + n)∆ P { X n + m = j | X m = i}
称为马氏链在时刻 m 系统处于状态 i 的条件下,在时 刻 m+n 转移到状态 j 的转移概率。
2.转移概率的性质
(1) Pij≥0;
(2)
∑ P (m , m + n) = 1, i = 0,1, 2,⋯
对任意的 n 及 i 0 , i 1 , ⋯ , i n , i n + 1 ∈ x ,
P {X n +1 = i n +1 X 0 = i 0 , X 1 = i1 , ⋯ , X n = i n } 0 i n+1 > i n =1 = P{X n+1 = i n+1 | X n = i n } i n +1 ≤ i n in
马尔可夫链及其概率分布 引言
直观上,过程(或系统)在时刻t0所处的状态为已 知的条件下,过程在时刻t>t0所处状态的条件分布与过 程在时刻t0之前所处的状态无关。 用分布函数表达此性质,设随机过程{X(t),t∈T}, 状态空间为χ,若对于t 的任意n个值t1<t2<…<tn,n≥3, 有
P {X ( t n ) ≤ xn X ( t1 ) = x1 , X ( t 2 ) = x 2 , ⋯ , X ( t n−1 ) = x n−1 }
条件下, 即在 X ( t i ) = x i , i = 1,2,⋯ , n − 1条件下,X ( t n )的条件分 布函数等于在条件 X ( t n−1 ) = x n−1下X ( t n )的条件分布函 数。
则称过程{X(t),t∈T}具有马尔可夫性,或称 {X(t),t∈T}为马尔可夫过程。
随机过程Ch连续时间的马尔可夫链课件
由柯尔莫哥洛夫向前方程旳矩阵形式可得
例:设有一参数连续,状态离散的马尔可夫
过程X t,t 0,状态空间为I 1,2,, N,
当i j,时qij 1,i, j 1,2,, N,
当i 1,2,, N时,qii (N 1),求pij t 。
互通:i j i j,j i。 若所有状态都是互通的,则称此马尔可夫链 为不可约的。
定理5.7 设连续时间马尔可夫链是不可 约旳,则有下列性质:
(1)若它是正常返旳,则极限
lim
t
pij (t)
存在
且等于j >0,jI。这里j 是
jq jj kqkj ,
j 1
k j
jI
旳唯一非负解,此时称{j >0,jI}是该过
对任意0 t1 t2 tn tn1有
PX tn1 in1 / X t1 i1,, X tn in P{X tn1 X tn in1 in / X t1 X 0 i1,
X t2 X t1 i2 i1,, X tn X tn1 in in1} PX tn1 X tn in1 in
pii h 1 qiih oh
pij
h
qij h
oh
称qij 为齐次马尔可夫过程从状态i 到状态j 的转移
速率或跳跃强度,定理的概率含义为:在一个长
为h的时间区间内,从状态i 转移到其它状态的概率
为:1 pii h 等于 qiih o h ;而由状态i转移 到状态j的概率pij h 等于qij h o h 。
定理:设pij (t)是齐次马尔可夫过程的转移概率, 则下列极限存在:
dpij t
连续时间的马尔可夫链
成立,称{X(t),t ≥0}为连续参数马尔可夫链。
(0)
1, Pij
(0)
1 , i j 0 ( i j ) 知 lim p ij ( t ) t 0 0 , i j
定义5.5:连续参数齐次马氏链{X(t),t ≥0}称 p P X 0 j
j
即X(0)的概率分布,为连续参数齐次马氏链的初 始分布。 称
ii ii
(1) lim
1 p ii ( t ) t p ij ( t ) t
t 0
i q ii
( 2 ) lim
t 0
q ij , j i
q ii 表 示 在 t时 刻 通 过 状 态 i的 通 过 速 度 , q ij 表 示 在 时 刻 t由 状 态 i 到 状 态 j的 速 度 。
证
由切普曼-柯尔莫哥洛夫方程有
kI
p ij ( t h )
p ik ( h ) p k j ( t )
p ij ( t h ) p ij ( t ) p ij ( t ) lim
k i
p ik ( h ) p k j ( t ) [1 p ii ( h )] p ij ( t )
e p ij ( s , t ) p ij ( t ) 0
t
( j i )! , j i
, j i
转移概率与s无关,泊松过程具有齐次性。
随机过程与马尔可夫链
随机过程与马尔可夫链随机过程是数学中一种常见的描述随机变量随时间变化的模型。
它可以用于建模和分析各种随机现象,如股票价格的波动、人员流动、网络数据传输等。
而马尔可夫链则是一种常见的随机过程,它具有马尔可夫性质,即未来状态的概率分布仅依赖于当前状态,与过去的状态无关。
一、随机过程的定义与特点随机过程可以用数学模型来描述,其中最常见的是通过概率函数来定义。
对于离散时间的随机过程,我们可以用一个序列{Xn}来表示,其中Xn表示在第n个时间点的随机变量。
同样地,对于连续时间的随机过程,我们可以用一个函数X(t)来表示,在不同的时间点t上取不同的随机值。
随机过程具有以下几个特点:1. 随机过程描述了随机变量在时间上的演化规律;2. 随机过程是随机变量的集合,它可以包含无穷个甚至连续无穷个随机变量;3. 随机过程可以是离散时间的,也可以是连续时间的;4. 随机过程可以是有限维的,也可以是无限维的。
二、马尔可夫链的定义与性质马尔可夫链是一种特殊的随机过程,它满足马尔可夫性质。
具体来说,给定一个随机过程{Xn},如果对于任意的时刻n,给定过去的状态Xn-1,未来状态Xn+1的条件概率分布仅依赖于当前状态Xn,则称该过程具有马尔可夫性质。
马尔可夫链的定义包括以下几个要素:1. 状态空间:马尔可夫链的状态空间是指随机变量Xn取值的范围,可以是有限的或者可数的。
2. 转移概率:对于任意两个状态i和j,转移概率Pij表示从状态i转移到状态j的概率。
3. 初始概率:初始概率πi表示初始状态为i的概率。
马尔可夫链具有以下几个重要性质:1. 马尔可夫性质:未来状态的概率分布只依赖于当前状态,与过去的状态无关。
2. 时齐性:马尔可夫链的转移概率在时间上保持不变。
3. 不可约性:任意两个状态之间存在一条路径,使得转移到目标状态的概率大于0。
4. 非周期性:不存在周期性的状态循环。
三、马尔可夫链的应用马尔可夫链在实际问题中有着广泛的应用。
随机过程的马尔可夫链与转移矩阵
随机过程的马尔可夫链与转移矩阵马尔可夫链与转移矩阵是随机过程中重要的概念,它们能够描述系统在不同状态之间转移的概率。
本文将详细介绍马尔可夫链的概念和性质,并解释转移矩阵的作用和计算方法。
一、马尔可夫链的概念马尔可夫链是指一个具有马尔可夫性质的随机过程。
马尔可夫性质是指一个系统在给定当前状态下的未来状态只与当前状态有关,与过去状态无关。
例如,假设有一个赌徒每天可以处于三种状态之一:赢钱、亏钱或者保持不变。
如果该赌徒在第n天状态改变的概率只与第n-1天的状态有关,而与之前的状态无关,那么该赌徒的行为就可以用马尔可夫链来描述。
二、转移概率与转移矩阵在马尔可夫链中,转移概率是指系统从一个状态转移到另一个状态的概率。
转移概率可以用一个矩阵表示,这个矩阵称为转移矩阵。
转移矩阵的行和列分别对应系统的状态,矩阵中的元素表示系统从某个状态转移到另一个状态的概率。
每行的元素之和应等于1,表示在某个状态下,系统一定要转移至另一个状态。
三、转移矩阵的计算计算转移矩阵需要获取系统在不同状态之间的转移概率。
通常通过观察大量的历史数据或者统计样本数据来估计这些概率。
例如,假设有一个天气马尔可夫链,状态可以是晴天、多云或者雨天。
通过对过去一年的天气数据进行分析,可以计算出系统在不同天气状态之间转移的概率。
根据这些计算结果,可以构建出转移矩阵。
例如:晴天多云雨天晴天 0.7 0.2 0.1多云 0.4 0.3 0.3雨天 0.2 0.4 0.4四、马尔可夫链的性质马尔可夫链具有一些特殊的性质,这些性质在实际应用中具有重要意义。
1. 长期稳定性:马尔可夫链经过足够长的时间后,系统的状态分布会趋于一个稳定状态。
2. 遍历性:从任意一个状态出发,最终都能够到达其他所有状态。
3. 不可约性:系统的状态空间中的所有状态都可以互相转换。
4. 周期性:系统中的某些状态可能会进入一个周期循环,无法转移到其他状态。
通过研究马尔可夫链的性质,可以更好地理解系统的演化规律,并且对系统进行预测和控制。
连续时间马尔可夫链
P{X (t s) j | X (t) k, X (0) i} kI P{X(t) k | X(0) i}
P{X (t s) j | X (t) k}P{X (t) k | X (0) i}
P{X(tn+1)=in+1|X(t1)=i1, X(t2)=i2,, X(tn)=in} =P{X(tn+1)=in+1|X(tn)=in},
则称{X(t), t 0 }为连续时间马尔可夫链.
10.1 连续时间马尔可夫链的性质
定义10.2 过程在s时刻处于状态i, 经过时间t后转移到 状态j的概率pij(s,t)= P{X(s+t)=j|X(s)=i} 称为转移概率. 若 转移概率与起始时刻s无关, 只与时间间隔t有关, 则称连 续时间马尔可夫链具有平稳的或齐次的转移概率, 记为
定义10.3 设{X (t),t 0} 为连续时间的马尔可夫过程, 则 (1) 初始概率 pj pj (0) P{X (0) j}, j I; (2) 绝对概率 pj (t) P{X (t) j}, j I , t 0; (3) 初始分布 { pj , j I }; (4) 绝对分布 { pj (t) , j I } (t 0).
pi pii1 (t1 ) pi1i2 (t2 t1 ) pin1in (tn tn1 ). iI
10.1 连续时间马尔可夫链的性质
例10.1 证明泊松过程{X(t), t0}为连续时间齐次马尔可夫链. 证 先证泊松过程的马尔可夫性.
P{ i
s t, i
s}
P{ i
s t} ,
P{ i s}
P{ i s}
10.1 连续时间马尔可夫链的性质
随机过程 第4章 马尔可夫链
一步转移概率矩阵
p11 P p 21 p12 p 22 p1n p2n
性质: (1) p ij 0 , i , j I
(2)
j I
p ij 1 , i I
(随机矩阵)
n 步转移概率
[定义] 称条件概率
p q q p
0 1
p, i j pij q, i j (i , j 0,1)
二步转移概率矩阵:
P
( 2)
2 2 p q P2 2 pq
2 pq 2 2 p q
[例2] (例4.4)具有吸收壁和反射壁的随机游动
设质点在线段 [1,4] 上作随机游动。假设ห้องสมุดไป่ตู้只能在时刻 nT 发生移动,且只能停留在1,2,3,4点上。当质点转移 到2,3点时,它以1/3的概率向左或向右移动一格,或停 留在原处。当质点移动到点 1 时,它以概率 1 停留在原 处。当质点移动到点4时,它以概率1移动到点3。若以 Xn 表示质点在时刻 n 所处的位置,则{ Xn , n T }是一 个齐次马尔可夫链。
f
(n) 12
( q1 p 3 ) m 1 q1 q 3 , m ( q1 p 3 ) p1 ,
n 2m, m 1 n 2 m 1, m 0
(n) f13
( p1 q 2 ) m 1 p1 p 2 , n 2 m , m 1 m n 2 m 1, m 0 ( p1 q 2 ) q1 ,
pij(n) 不仅与状态 i , j 有关,而且与时刻 n 有关。
当 pij(n) 与时刻 n 无关时,表示马尔可夫链具有平稳 转移概率。
《随机过程——计算与应用》课件-马尔科夫连 4
(3)若i j,则j i
(互通的对称性)
上述性质的验证留作ห้องสมุดไป่ตู้习.
定理6.3.5 设i, j S,则
(1) i j fij 0 (2)若i是常返的,且i j 则有f ji 1,从而有i j,
证明 (1) 设i j 则 n 1 使pi(jn) 0
因而也有
fij
p(n) ij
0
或者同为零常返的;或者同为正常返周期态,且周期 相同.或者同为正常返非周期(遍历态).
证明 i j, i j, j i, 存在正整数l, n,使
p(l ) ij
0
p(n) ji
0
由C-K方程,对任意的正整数m有
p (lmn) ii
p p p p(l) ik
p(m) ks
p(n) si
周 期 为 4.
例6.3.9 设齐次马尔可夫链的状态空间S={1,2,3,4,5,6,}, 其一步转移概率矩阵为
0 0 1 0 0 0
0
0
0
0
0
1
0 0 0 0 1 0
P
1 3
1 3
0
1 3
0
0
1 0 0 0 0 0
0
1 2
0
0
0
12
试分解此马尔可夫链,并写出各状态类型及周期.
1
1
1 3
下面证明 当i ,j 同为正常返态时,周期相同
设i, j同为正常返状态,周期分别为di , d j
由C-K方程
p (nl ) jj
p(n) jk
p(l) kj
p p (n) (l ) ji ij
0
k
dj nl
又因为,对任意的m有
随机过程中的马尔可夫链与时间平稳性
模型选择的准则
模型的复杂度:选 择简单有效的模型, 避免过度拟合或欠 拟合
数据特征:根据数 据的分布和特点选 择合适的模型
预测精度:选择能 够提供较高预测精 度的模型
解释性:选择易于 理解和解释的模型 ,有助于分析和推 断
模型诊断与检验
模型拟合优度检验:通过比较实际数据与模型预测结果的差异,评估模型对数据的拟合程度。
定义:马尔可夫链 的状态空间是指马 尔可夫链中所有可 能的状态集合。
分类:离散状态 空间和连续状态 空间。
状态空间的性质: 马尔可夫性、可 到达性和遍历性。
应用:在随机过 程、统计学、物 理学等领域有广 泛应用。
马尔可夫链的转移概率
性质:转移概率具有非负性、 归一性和时齐性
计算方法:通过状态转移矩 阵或转移函数来计算
02 马 尔 可 夫 链 的 定 义 与 性 质 04 马 尔 可 夫 链 的 遍 历 性 及 其 与
时间平稳性的关系
06 时 间 非 平 稳 马 尔 可 夫 链 及 其应用
Part One
单击添加章节标题
Part Two
马尔可夫链的定义 与性质
马尔可夫链的基本定义
定义:马尔可夫链是一个随机过程, 其中每个状态只与前一个状态有关, 当前的状态只依赖于前一个状态。
定义:马尔可夫链中从一个 状态转移到另一个状态的概 率
应用:在统计学、经济学、 生物学等领域有广泛应用
Part Three
时间平稳性及其在 马尔可夫链中的应
用
时间平稳性的定义
时间平稳性是指一 个随机过程在时间 上的统计特性不随 时间的推移而改变
在马尔可夫链中, 时间平稳性意味 着状态转移概率 的稳定性
随机过程中的马尔可夫 链与时间平稳性
04 第四讲 马尔可夫链
4 Markov预测 预测
s0=[90/200 50/200 30/200 30/200]; p=[0.7 0.1 0.1 0.1;0.2 0.4 0.15 0.25;0.15 0.1 0.5 0.25;0.2 0.15 0.2 0.45]; s1=s0*p s2=s1*p %解最终值;sn*p=sn, 即p’*sn’=sn’ A=[-0.3000 0.2000 0.1500 0.1000 0.2000 0.1500
4 Markov预测 预测
4 Markov预测 预测
某地区有A、 、 三家电厂 调查表明, 三家电厂, 某地区有 、B、C三家电厂,调查表明, 该地区上月对各类大用户售电量总和为20万度。 该地区上月对各类大用户售电量总和为 万度。 万度 其中, 、 、 各销售 各销售10、 、 万度 万度。 其中,A、B、C各销售 、6、4万度。 本月(以购电量计): 本月(以购电量计): A厂顾客中:70%留 20%转B 10%转C 厂顾客中: 厂顾客中 留 转 转 B厂顾客中:60%留 25%转A 15%转C 厂顾客中: 厂顾客中 留 转 转 C厂顾客中:90%留 5%转A 厂顾客中: 留 转 5%转B 转 厂顾客中 已知市场总量不变,预测本月和下月的市场占 已知市场总量不变, 有率以及最终市场占有率。 有率以及最终市场占有率。
4 Markov预测 预测
• 初始转移矩阵:P=[0.7 0.2 0.1;0.25 0.6 初始转移矩阵: 0.15;0.05 0.05 0.9]; • 初始概率向量:S0=[10/20 6/20 4/20]=[0.5 初始概率向量: 0.3 0.2]; • 本月市场占有率:S1=S0*P=[0.435 0.29 本月市场占有率: 0.275] • 下月市场占有率:S2=S1*P=[0.391 0.275 下月市场占有率: 0.335]
随机过程中的马尔可夫链与随机游走
随机过程中的马尔可夫链与随机游走随机过程是概率论和数理统计中的一个重要概念,它描述了随机变量在时间序列中的演变规律。
而马尔可夫链是随机过程的一个特殊形式,它具有“无后效性”和“马尔可夫性”两个关键特征。
在本文中,我们将介绍马尔可夫链及其在随机过程中的应用——随机游走。
一、马尔可夫链的定义及性质马尔可夫链是一类离散随机过程,其演变满足一个重要条件:未来状态的概率分布只与当前状态有关,与过去的状态无关。
这个特性被称为“无后效性”,它是马尔可夫链的基本定义。
马尔可夫链还具有“马尔可夫性”,即状态的转移概率只与当前状态有关,与时间无关。
换句话说,未来的状态仅取决于当前状态,而与时间的推移无关。
这使得马尔可夫链在许多实际问题中具有广泛的应用价值。
二、随机游走的定义及相关概念随机游走是一种特殊的马尔可夫链,它描述了一个对象在空间中随机移动的过程。
在每个时刻,对象可以从当前位置向相邻的位置移动,而移动的方向和距离是随机确定的。
随机游走可以用于模拟无规律的运动现象,如分子在溶液中的扩散、股票价格的涨跌等。
在随机游走中,有几个重要的概念需要了解。
首先是状态空间,它包含了对象可能出现的所有位置。
其次是转移概率,它描述了对象从一个位置转移到另一个位置的概率。
最后是平稳分布,它表示随机游走在长时间模拟中达到的状态分布。
平稳分布是随机游走的一个重要性质,它不受初始状态的影响,最终会趋于稳定。
三、马尔可夫链与随机游走的应用马尔可夫链和随机游走在各个领域都有广泛的应用。
在物理学中,马尔可夫链可用于描述粒子的随机运动,从而推导出统计物理学中的一些重要结果。
在经济学中,马尔可夫链可以用来建模金融市场的波动,预测股票价格的变化趋势。
在计算机科学中,马尔可夫链被用于搜索引擎的排序算法和机器学习模型中。
随机游走则在网络分析、搜索算法、模拟实验等方面有着广泛应用。
例如,在网页排名算法中,随机游走可以模拟用户点击行为,从而指导搜索引擎对网页进行排序。
概率论中的随机过程分类
概率论中的随机过程分类概率论是研究随机现象的一门学科,而随机过程则是概率论中的重要概念之一。
随机过程是指一组随机变量的集合,描述了随机现象在时间上的演变规律。
随机过程的分类是概率论研究的重要内容之一,本文将介绍随机过程的分类及其相关概念,包括马尔可夫过程、泊松过程和布朗运动。
一、马尔可夫过程马尔可夫过程是指在给定了当前状态的情况下,未来状态的演变仅依赖于当前状态,与过去状态无关。
其特点是具有“无后效性”。
马尔可夫过程可以分为离散时间和连续时间两种类型。
1.1 离散时间马尔可夫链离散时间马尔可夫链是指在离散的时间点上进行状态转移的马尔可夫过程。
其状态空间是一个有限个或可数无限个离散状态的集合。
转移概率矩阵描述了任意两个状态之间的转移概率。
离散时间马尔可夫链可以用状态转移图表示,每个节点代表一个状态,边表示状态之间的转移概率。
1.2 连续时间马尔可夫链连续时间马尔可夫链是指在连续时间上进行状态转移的马尔可夫过程。
其状态空间可以是有限个或可数无限个离散状态的集合,也可以是连续状态空间。
转移概率由无穷小生成函数表示,可以通过微分方程求解得到系统的稳态分布。
二、泊松过程泊松过程是一类特殊的随机过程,描述了在一段固定时间内随机事件发生的次数。
其特点是事件之间的间隔时间服从指数分布,并且事件的发生与否相互独立。
泊松过程可以用来描述诸如电话呼叫、交通流量、电子设备失效等现象。
泊松过程可以分为纯生灭过程和队列过程两种类型。
2.1 纯生灭过程纯生灭过程是指在单位时间内,每个事件发生的概率为λ,而事件消失的概率为μ。
纯生灭过程可以用来描述人口模型、粒子衰变等现象。
2.2 队列过程队列过程是一类特殊的泊松过程,描述了在排队系统中顾客到达和离开的情况。
队列过程可以用来分析服务设施的利用率、延迟时间、排队长度等指标。
常见的队列模型包括M/M/1队列、M/M/c队列等。
三、布朗运动布朗运动是一类连续时间的随机过程,具有连续状态空间和连续时间参数。
随机过程的连续时间马尔可夫过程与转移概率
随机过程的连续时间马尔可夫过程与转移概率随机过程是概率论中研究的重要课题,它描述了随机事件在时间上的演化规律。
马尔可夫过程是一类常见的随机过程,它具有马尔可夫性质,即在给定当前状态下,未来状态的概率分布只与当前状态有关,与过去的状态无关。
本文将重点讨论随机过程中的连续时间马尔可夫过程以及与之相关的转移概率。
一、连续时间马尔可夫过程的定义连续时间马尔可夫过程是指在时间上呈连续变化的随机过程,它的状态空间和状态转移概率在时间的任意一段内都保持不变。
具体而言,对于一个连续时间马尔可夫过程,其状态空间可以用S表示,状态转移概率可以用P(t)表示,其中t表示时间。
二、连续时间马尔可夫过程的特点1. 马尔可夫性质:连续时间马尔可夫过程具有马尔可夫性质,即在给定当前状态下,未来状态的概率分布只与当前状态有关,与过去的状态无关. 这一性质使得马尔可夫过程具有很好的简化性和计算性.2. 独立增量性质:连续时间马尔可夫过程具有独立增量性质,即在不重叠的时间间隔上的状态变量是相互独立的.3. 示性函数的连续性:连续时间马尔可夫过程中,随机变量状态的转移概率是连续函数,这也是它与离散时间马尔可夫过程的一个重要区别。
三、连续时间马尔可夫链与转移概率对于连续时间马尔可夫过程,其状态转移概率可以由转移概率矩阵来表示。
转移概率矩阵是一个关于时间t的函数,记作P(t)。
它的元素Pij(t)表示在时间t内从状态i转移到状态j的概率。
转移概率矩阵满足以下性质:1. Pij(t) ≥ 0,对于所有的i、j和t都成立。
2. 对于任意固定的i和t,有ΣjPij(t) = 1,即在固定时间t内,从状态i出发转移到所有可能状态j的概率之和为1。
3. 转移概率矩阵P(t)的乘积P(s+t)等于P(s)乘以P(t),即P(s+t) =P(s)P(t),其中s和t为任意的正实数。
根据转移概率矩阵P(t)的性质,我们可以得出连续时间马尔可夫过程的转移概率随时间的推移而改变,但在任意一段时间内始终保持一致。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
j 1
k j
jI
的唯一非负解,此时称{j >0,jI }是该
过程的平稳分布,并且有
lim
t
pj
(t)
j
(2)若它是零常返的或非常返的,则
lim
t
pij (t)
lim
t
pj (t)
0,
i, j I
定理:不可约链是正常返的充要条件是它存在 平稳分布,且此时平稳分布就等于极限分布。
n+1
n
n+1 n
{ ( ) ( ) ( ) } ( ) ( ) \ P X t n +1 = in +1 / X t1 = i1, L , X t n = in = P {X t n +1 = in +1 / X t n = in }
即具有马尔可夫性
证:齐次性,当j i时,由泊松过程定义
PX s t j / X s i
注:虽然前进方程和后退方程在形式上有所不同, 但两者的解都是同一的,费勒在1940年已证明。
例:考虑两个状态的连续时间马氏链,在转移 到状态1之前马氏链在状态0停留的时间是参数
为的指数变量,而在回到状态0之前,它停留 在状态1的时间是参数为的指数变量。显然该
马氏链是一个齐次马氏链。
ìïïíïïïî
pij
t q
jj
称为前进方程
或
dPt
dt
QPt
Pt Q
Pt
eQt
j0
Qt j
j!
在实际应用中,当固定最后所处状态j,研究pij t 时i 0,1,, N ,采用向后方程较方便,解出prj t, r I;当固定状态i,研究pij t时, j 0,1,2,, N 则采用向前方程较方便,解出pir t,r I。
记:p (t ) = ij
P
{X (t ) =
j
| X (0) =
i }为转移概率.
( ) ( P (t ) = p (t ) ,i, j 纬I , t ij
0)为转移矩阵。
å (1) pij (t ) ? 0, pij (t ) 1
jÎ I
(2)
CK
方程:p ij
(t
+
s)=
å
p ik
(t
)p kj
称Q为保守矩阵,对应的马尔可夫过程为保守的。
三.前进方程与后退方程
定理:设X t,t 0,I 1,2,, N为连续参数
有限马氏链。
则
dpij t dt
k i
qik
pkj t
qii
pij
t
称为后退方程
dpij t dt
k
j
pik
t qkj
28
例题(机器维修问题2)设有m台机床,s个维修工,s m,机床或是工作, 或是损坏等待修理。机床损坏后,空着的维修工立即修理,若维修工不空, 则机床按先坏先修队列排队等待修理。假定每台机床从工作到损坏的时间 服从参数为λ的指数分布;每台修理的机床修理好的时间为参数为μ的指数 分布。用X(t)表示时刻t损坏的机床台数,则{X(t),t 0}是状态空间 E={0,1,2, m}的时间连续的生灭过程。
定理:设pij (t)是齐次马尔可夫过程的转移概率, 则下列极限存在:
( ) p h
( ) 即 : 1 q = lim ij (= p ' (0))
ij
h® 0 h
ij
i? j
( ) 1 - p h
( )2 q = lim
ii (= - p ' (0))
ii
h® 0
h
ii
往往给出如下式子:
pij (h ) = l h + o (h )
rI
r j
rI
dpij t
dt
N
1 pij
t
1
pij
t
Npij t 1
pij t
ce Nt
1. N
i, j 1,2,, N
利用初始条件:pii 0 1,pij 0 0i j
当i
j时,c
p 01
p10
(h (h
) )
= =
lh mh
+ +
0 (h ) 0 (h )
ìïïíïïïî
p01 p10
(h (h
) )
= =
lh mh
+ +
0 (h ) 0 (h )
q = lim p01 (h ) = l
h 01
h0
Q = 骣çççç桫-ml
q = lim p10 (h ) = m
h 10
n
n+1 n
另一方面
{ ( ) ( ) } ( ) ( ) ( ) ( ) P X t n +1 = in +1 / X t n = in = P {X t n +1 - X t n = in +1 - in / X t n - X 0 = in }
( ) ( ) = P {X t - X t = i - i }
h0
l -
m÷÷÷÷÷
由柯尔莫哥洛夫前进方程:
P't PtQ
p00 t p10 t
p01t p11t
p00 p10
t t
p01 p11
t t
\
p¢ 00
(t
)
=
mp 01
(t
)
-
l
p 00
29
由柯尔莫哥洛夫向前方程的矩阵形式可得
例题(理发店问题):一个理发店有一位理 发师,两个等待座位,顾客的到达率为每 小时5个,理发师一小时可给两个人理发。 假定顾客到达为泊松分布,理发师的服务 时间为指数分布,用X(t)表示理发店内的顾 客数,则X(t)为生灭过程。
互通:i j i j,j i。 若所有状态都是互通的,则称此马尔可夫链 为不可约的。
定理5.7 设连续时间马尔可夫链是不可 约的,则有下列性质:
(im
是t
pij (t)
存在
jqjj kqkj ,
其状态空间为I {0,1, 2, },i为出生率,i为死亡率。
若i =i,i i,称{X (t),t 0}为线性生灭过程。
若i =0,称{X (t),t 0}为纯生过程。
若i =0,称{X (t),t 0}为纯灭过程。
27
例题(M/M/s排队系统):顾客到达为参数为λ的泊松过程,系统内有s个 服务台,每个顾客的服务时间为的指数分布且与顾客到达时间相互独立。 用X(t)表示系统t时刻的顾客数,则X(t)为生灭过程
n+1
n+1
1
1
n
n
( ) ( ) ( ) ( ) ( ) ( ) = P {X tn+1 - X tn = in+1 - in | X t1 - X 0 = i1,L , X tn - X tn- 1 = in - in- 1}
{ } ( ) ( ) = P X t - X t = i - i
n+1
生灭过程
设马氏链{X (t), t 0}具有转移概率
pii1(h) ih 0(h), i 0
pii
1
(h)
ih 0(h), i
0, 0
0
pii
(h)
1
(i
i
)h
0(h)
pij (h) 0(h), i j 2
称{X (t), t 0}为生灭过程。
p01 t 0 1 e t
p11 t
0
e t 0
p10 t 0 1 e t
例:设有一参数连续,状态离散的马尔可夫
过程X t,t 0,状态空间为I 1,2,, N,
当i j,时qij 1,i, j 1,2,, N,
第五章 连续时间的 马尔可夫链
内容
连续时间的马尔可夫链 柯尔莫哥洛夫微分方程
5.1 连续时间的马尔可夫链
一、定义和一般性质
为方便计,以下设参数集T 0,,状态空间
I 0,1,2, 定义:随机过程X t,t 0状态空间I 0,1,2,
若对任意0 t1 t2 tn1及非负整数 i1,i2 ,,in1 I有:
PX s t
X s
j
i
et
t j
ji
i!
当j i时由过程增量仅取非负整数,
故 pij s,t 0
pij
s, t
pij
t
et
t ji j i!,
0,
与s无关,所以是齐次的。
j i,t 0 ji
定理:设连续参数齐次马氏链满足正则性条件,则:
1pii (t) 0,t 0; 2若有t0使pij (t0 ) 0,则对一切t t0均有pij (t) 0;
3pij (t)是0,上的一致连续函数。
二.Q矩阵 对连续参数马氏链而言,担当一步转移概率
角色的是转移强度,它是用转移概率函数在0点 的导数来定义的。
在每个状态的停留时间是指数分布 ,参数可能不同。