3热敏电阻温度特性研究实验11

合集下载

热敏电阻实验报告

热敏电阻实验报告

热敏电阻实验报告————————————————————————————————作者:————————————————————————————————日期:班 级__光电3班___________ 组 别____第二组_________ 姓 名__邓菊霞___________ 学 号_1110600095_____日 期___2012.11.20____ 指导教师_刘丽峰___【实验题目】 热敏电阻温度特性实验【实验目的】1、研究热敏电阻的温度特性;2、掌握非平衡电桥的工作原理;3、了解半导体温度计的结构及使用方法【实验仪器】直流稳压电源、滑线变阻器、热敏电阻、温度计、电阻箱、微安表、检流计、保温杯、冰块等。

【实验原理】热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC )和负温度系数热敏电阻器(NTC )。

热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。

正温度系数热敏电阻器(PTC )在温度越高时电阻值越大,负温度系数热敏电阻器(NTC )在温度越高时电阻值越低,它们同属于半导体器件。

本实验所用的是负温度系数热敏电阻。

负温度系数热敏电阻其电阻-温度关系的数学表达式为:)]T T (B exp[R R n T T 0011-= (1) 式中T R 、0T R 代表温度为T 、0T 时热敏电阻的阻值,n B 为热敏电阻的材料系数(n 代表负电阻温度系数)。

上式是一个经验公式,当测温范围不太大时(<450℃),该式成立。

其关系曲线如左图所示。

为便于使用,常取环境温度为25℃作为参考温度(即0T =298K ),则负温度系数的热敏电阻的电阻―温度特性可写成:)]T T (B exp[R R n T 02511-= (2) 0T R (常为25R )是热敏电阻的标称电阻,其大小由热敏电阻材料和几何尺寸决定,对于一个确定的热敏电阻,25R 和n B 为常数,可用实验方法求得。

热敏电阻温度特性研究实验

热敏电阻温度特性研究实验

热敏电阻温度特性研究实验热敏电阻是一种电阻值随温度变化而变化的电阻器件,其特性可以用于温度测量、温度补偿和温度控制等应用。

为了研究热敏电阻的温度特性,我们可以进行以下实验来获取相关数据并分析。

第一步:实验准备在进行实验之前,我们需要准备以下材料和仪器:1. 热敏电阻:选择一款具有明确参数和规格的热敏电阻。

我们可以根据实际需求和实验目的选择合适的材料和规格。

2. 温度控制装置:使用恒温水槽或热电偶与温控器等设备来提供稳定的温度环境。

3. 电阻测量设备:选择一台高精度的电阻计来测量热敏电阻的电阻值。

4. 数据记录装置:通过连接电阻计和计算机,或是使用独立的数据记录设备,将实验数据记录下来以便后续分析。

第二步:实验过程1. 首先,将热敏电阻与电阻测量设备连接。

注意确保连接的稳定和可靠,避免因为松动或接触不良导致实验误差。

2. 将热敏电阻放置在温度控制装置中,并设定一系列不同的温度值。

可以根据实验需求选择适当的温度范围和步进值。

3. 保持每个温度值下的稳定状态,等待热敏电阻达到热平衡。

这样确保测量的数据准确可靠。

4. 使用电阻计测量每个温度下热敏电阻的电阻值,并记录下来。

为了提高准确度,可以对每个温度值进行多次测量并取平均值。

5. 根据实验需要,可以重复多次实验以获得更加可靠的数据。

第三步:实验数据分析与应用1. 整理实验数据,将测量得到的热敏电阻电阻值与相应的温度值进行对应。

2. 基于这些数据,我们可以绘制出热敏电阻的温度特性曲线,其中横轴表示温度,纵轴表示电阻值。

通过曲线的形状和趋势,我们可以分析出热敏电阻的温度响应特性和敏感度。

3. 进一步,我们可以根据实验数据和温度特性曲线,开发出与热敏电阻相关的温度测量、控制和补偿等应用。

例如,使用热敏电阻的温度特性来实现恒温控制系统、电子温度计或温度补偿技术。

其他专业性角度:1. 理论分析:可以通过数学模型和物理方程来解释和解析热敏电阻的温度特性。

例如,通过电阻和温度之间的数学关系,可以计算出电阻值随温度变化的速率或曲线斜率。

热敏电阻温度特性研究实验

热敏电阻温度特性研究实验
1.惠斯通电桥的原理及使用; 2.电桥灵敏度的测量及对测量的影响; 3.用两种方法求热敏电阻的温度系数。
6、思考题
• 1. 如何提高电桥的灵敏度? • 2.电桥选择不同量程时,对结果的准确度(有效位数)有何CCESS
2019/4/27
2. 热敏电阻温度特性研究实验
2018.04.09
1、背景知识

380~780nm

20~20000Hz

化学分子
嗅觉


信息 获取

传感 器
电子五官
物理、化学、生物

压力
触觉
化学分子
味觉
1、背景知识
传感器是通过测 非 电 学 量 → 传 感 器 → 电 学 量
量外界的物理量、 化学量或生物量 来捕捉和识别信 息,并将被测量 的非电学量转换 成电学量的装 置.它一般包括 敏感元件、转换 元件和转换电 路.
1、背景知识
• (NTC)热敏电阻是对温度变化表现出非常敏感的一种半导体电 阻元件,它能测量出温度的微小变化,并且体积小,工作稳定, 结构简单。因此,它在测温技术、无线电技术、自动化和遥控等 方面都有广泛的应用。
2、实验原理
电阻温度特性的通用公式为:
B
R AeT
(1)
正温度系数热敏电阻 (PTC)在温度越高时 电阻值越大;
温过程中每隔5℃测量一次热敏电阻值Rt,最终求取升降温的平均电阻值,并作出热敏电阻阻值与温度对应关系曲线。 • 根据测量结果,分别求取温度T趋于无穷时的热敏电阻阻值 、热敏电阻的材料常数B以及50℃时的电阻温度系数 。
3、实验内容
• 用自组式电桥研究热敏电阻温度特性
4、数据记录和数据处理

大学物理实验报告--热敏电阻的电阻温度特性的研究(精)

大学物理实验报告--热敏电阻的电阻温度特性的研究(精)

实验六半导体热敏电阻特征的研究实验目的1.研究热敏电阻的温度特征。

2.进一步掌握惠斯通电桥的原理和应用。

实验仪器箱式惠斯通电桥,控温仪,热敏电阻,直流电稳压电源等。

实验原理半导体资料做成的热敏电阻是对温度变化表现出特别敏感的电阻元件,它能丈量出温度的细小变化,并且体积小,工作稳固,构造简单。

所以,它在测温技术、无线电技术、自动化和遥控等方面都有宽泛的应用。

半导体热敏电阻的基本特征是它的温度特征,而这类特征又是与半导体资料的导电体制亲密有关的。

因为半导体中的载流子数量随温度高升而按指数规律快速增添。

温度越高,载流子的数量越多,导电能力越强,电阻率也就越小。

所以热敏电阻跟着温度的高升,它的电阻将按指数规律快速减小。

实验表示,在必定温度范围内,半导体资料的电阻R T 和绝对温度 T 的关系可表示为 b T ae R = (4-6-1)此中常数 a 不单与半导体资料的性质并且与它的尺寸均有关系,而常数 b 仅与资料的性质有关。

常数 a 、b 可经过实验方法测得。

比如,在温度T 1 时测得其电阻为RT111b T ae R = (4-6-2)在温度 T 2 时测得其阻值为R T 222b T ae R = (4-6-3)将以上两式相除,消去 a 得11(2121T T b T T e R R -= 再取对数,有11(ln ln 2121T T R R b T T --=(4-6-4)把由此得出的 b 代入( 4-6-2)或( 4- 6- 3)式中,又可算出常数 a ,由这种方法确立的常数 a 和 b 偏差较大,为减少偏差,常利用多个T 和 R T 的组合测量值,经过作图的方法(或用回归法最好)来确立常数 a 、b ,为此取( 4- 6-1)式两边的对数。

变换成直线方程:Tb a R T +=ln ln ( 4- 6- 5)或写作 BX A Y += (4-6-6)式中 X b B a A R Y T , , ln , ln ==== ,而后取 X 、Y 分别为横、纵坐标,对不一样的温度 T 测得对应的R T 值,经过变换后作 X ~Y 曲线,它应该是一条截距为 A 、斜率为 B 的直线。

热敏电阻温度特性研究实验报告

热敏电阻温度特性研究实验报告

热敏电阻温度特性研究实验报告热敏电阻温度特性研究实验报告引言:热敏电阻是一种能够随温度变化而改变电阻值的电子元件。

它在工业、医疗、环保等领域中有着广泛的应用。

本实验旨在研究热敏电阻的温度特性,探索其在不同温度下的电阻变化规律,为其应用提供参考。

实验设计:本实验采用的热敏电阻为NTC热敏电阻,其电阻值随温度的升高而下降。

实验所用的测试仪器有温度计、电压源、电流表和万用表。

实验步骤:1. 将热敏电阻与电路连接,保证电路的正常工作。

2. 将电压源接入电路,调节电压为常数值。

3. 使用温度计测量热敏电阻的温度,记录下每个温度点对应的电阻值。

4. 重复步骤3,直到覆盖整个温度范围。

实验结果:通过实验数据的收集与整理,我们得到了热敏电阻在不同温度下的电阻值变化曲线。

实验结果表明,随着温度的升高,热敏电阻的电阻值呈现出逐渐下降的趋势。

当温度较低时,电阻值变化较小;而当温度升高到一定程度时,电阻值的变化速度加快。

讨论:1. 温度对热敏电阻的影响:根据实验结果,我们可以得出结论:温度对热敏电阻的电阻值有着显著的影响。

随着温度的升高,热敏电阻的电阻值逐渐下降。

这是因为在高温下,热敏电阻内部的电导率增加,电子的运动能力增强,从而导致电阻值的降低。

2. 热敏电阻的应用:热敏电阻的温度特性使其在许多领域中得到了广泛的应用。

例如,在温度控制系统中,热敏电阻可以用来检测环境温度,并通过控制电路来实现温度的自动调节。

此外,热敏电阻还可以用于温度计、温度补偿电路等方面。

结论:通过本次实验,我们对热敏电阻的温度特性有了更深入的了解。

实验结果表明,热敏电阻的电阻值随温度的升高而下降。

这一特性使得热敏电阻在许多领域中有着广泛的应用前景。

对于今后的研究和应用,我们可以进一步探索热敏电阻的温度特性,优化其性能,并将其应用于更多的领域中,为人们的生活和工作带来更多便利。

热敏电阻温度特性的研究

热敏电阻温度特性的研究

热敏电阻温度特性的研究一、实验目的了解和测量热敏电阻阻值与温度的关系二、实验仪器YJ-RZ-4A 数字智能化热学综合实验仪、NTC 热敏电阻传感器、Pt100传感器、数字万用表三、实验原理热敏电阻是其电阻值随温度显著变化的一种热敏元件。

热敏电阻按其电阻随温度变化的典型特性可分为三类,即负温度系数(NTC )热敏电阻,正温度系数(PTC )热敏电阻和临界温度电阻器(CTR )。

PTC 和CTR 型热敏电阻在某些温度范围内,其电阻值会产生急剧变化。

适用于某些狭窄温度范围内的一些特殊应用,而NTC 热敏电阻可用于较宽温度范围的测量。

热敏电阻的电阻-温度特性曲线如图1所示。

图1NTC 半导体热敏电阻是由一些金属氧化物,如钴、锰、镍、铜等过渡金属的氧化物,采用不同比例的配方,经高温烧结而成,然后采用不同的封装形式制成珠状、片状、杠状、垫圈状等各种形状。

与金属导热电阻比较,NTC 半导体热敏电阻具有以下特点:1.有很大的负电阻温度系数,因此其温度测量的灵敏度也比较高;2.体积小,目前最小的珠状热敏电阻的尺寸可达mm 2.0φ,故热容量很小可作为点温或表面温度以及快速变化温度的测量;3.具有很大的电阻值(Ω-521010),因此可以忽略线路导线电阻和接触电阻等的影响,特别适用于远距离的温度测量和控制;4.制造工艺比较简单,价格便宜。

半导体热敏电阻的缺点是温度测量范围较窄。

NTC 半导体热敏电阻具有负温度系数,其电阻值随温度升高而减小,电阻与温度的关系可以用下面的经验公式表示)/exp(T B A R T = (1)式中,T R 为在温度为T 时的电阻值,T 为绝对温度(以K 为单位),A 和B 分别为具有电阻量纲和温度量纲,并且与热敏电阻的材料和结构有关的常数。

由式(1)可得到当温度为0T 时的电阻值0R ,即)/exp(00T B A R = (2)比较式(1)和式(2),可得)]11(exp[00T T B A R R T -= (3) 由式(3)可以看出,只要知道常数B 和在温度为0T 时的电阻值0R ,就可以利用式(3)计算在任意温度T 时的T R 值。

高中物理实验课程【高中物理实验课程】实验11 传感器的简单使用 含解析

高中物理实验课程【高中物理实验课程】实验11 传感器的简单使用 含解析

实验十一传感器的简单使用考纲解读1。

知道什么是传感器,知道光敏电阻和热敏电阻的作用。

2。

能够通过实验探究光敏电阻和热敏电阻的特性。

3.了解常见的各种传感器的工作原理、元件特性及设计方案.基本实验要求Ⅰ研究热敏电阻的特性1.实验原理闭合电路欧姆定律,用欧姆表进行测量和观察.2.实验器材半导体热敏电阻、多用电表、温度计、铁架台、烧杯、凉水和热水.3.实验步骤(1)按实验原理图甲连接好电路,将热敏电阻绝缘处理;(2)把多用电表置于欧姆挡,并选择适当的量程测出烧杯中没有水时热敏电阻的阻值,并记下温度计的示数;(3)向烧杯中注入少量的冷水,使热敏电阻浸没在冷水中,记下温度计的示数和多用电表测量的热敏电阻的阻值;(4)将热水分几次注入烧杯中,测出不同温度下热敏电阻的阻值,并记录.4.数据处理在图1坐标系中,粗略画出热敏电阻的阻值随温度变化的图线.图15.实验结论热敏电阻的阻值随温度的升高而减小,随温度的降低而增大.6.注意事项实验时,加热水后要等一会儿再测其阻值,以使电阻温度与水的温度相同,并同时读出水温.基本实验要求Ⅱ研究光敏电阻的光敏特性1.实验原理闭合电路欧姆定律,用欧姆表进行测量和观察.2.实验器材光敏电阻、多用电表、小灯泡、滑动变阻器、导线、电源.3.实验步骤(1)将光敏电阻、多用电表、灯泡、滑动变阻器如实验原理图乙所示电路连接好,其中多用电表置于“×100"挡;(2)先测出在室内自然光的照射下光敏电阻的阻值,并记录数据;(3)打开电源,让小灯泡发光,调节小灯泡的亮度使之逐渐变亮,观察多用电表表盘指针显示电阻阻值的情况,并记录.(4)用手掌(或黑纸)遮光时,观察多用电表表盘指针显示电阻阻值的情况,并记录.4.数据处理根据记录数据分析光敏电阻的特性.5.实验结论(1)光敏电阻在暗环境下电阻值很大,强光照射下电阻值很小.(2)光敏电阻能够把光照强弱这个光学量转换为电阻这个电学量.6.注意事项(1)实验中,如果效果不明显,可将电阻部分电路放入带盖的纸盒中,并通过盖上小孔改变射到光敏电阻上的光的多少来达到实验目的;(2)欧姆表每次换挡后都要重新调零.考点一温度传感器的应用例1 对温度敏感的半导体材料制成的某热敏电阻R T,在给定温度范围内,其阻值随温度的变化是非线性的.某同学将R T和两个适当的定值电阻R1、R2连成图2虚线框内所示的电路,以使该电路的等效电阻R L的阻值随R T所处环境温度的变化近似为线性的,且具有合适的阻值范围.为了验证这个设计,他采用伏安法测量在不同温度下R L的阻值,测量电路如图2所示,图中的电压表内阻很大.实验中的部分实验数据测量结果如表所示。

热敏电阻温度特性实验报告

热敏电阻温度特性实验报告

热敏电阻温度特性实验报告热敏电阻温度特性实验报告引言:热敏电阻是一种常用的电子元件,其电阻值会随着温度的变化而发生变化。

了解热敏电阻的温度特性对于电子设备的温度测量和控制至关重要。

本实验旨在通过测量热敏电阻的温度特性曲线,探究其电阻值与温度之间的关系。

实验材料和方法:材料:热敏电阻、直流电源、数字万用表、温度计、恒温水槽、温度控制器、导线等。

方法:1. 将热敏电阻与直流电源、数字万用表连接,组成电路。

2. 将温度计放置在恒温水槽中,并通过温度控制器控制水槽的温度。

3. 将热敏电阻放置在水槽中,使其与水温保持一致。

4. 通过调节温度控制器,使水槽的温度从低到高逐渐升高。

5. 每隔一段时间,记录热敏电阻的电阻值和相应的温度。

实验结果:在实验过程中,我们记录了热敏电阻的电阻值和相应的温度,并绘制了电阻-温度曲线图。

实验结果显示,热敏电阻的电阻值随着温度的升高而减小,呈现出明显的负温度系数特性。

随着温度的升高,电阻值的变化越来越明显,呈现出非线性的趋势。

讨论与分析:热敏电阻的温度特性是由其材料的特性决定的。

一般来说,热敏电阻的材料是半导体材料,其电阻值与材料的导电性质和能带结构有关。

在低温下,半导体材料中的载流子浓度较低,电阻值较大;随着温度的升高,载流子浓度增加,电阻值减小。

这种负温度系数特性使得热敏电阻在温度测量和控制中有着广泛的应用。

此外,热敏电阻的温度特性还受到环境因素的影响。

例如,温度的变化速率、湿度等因素都会对热敏电阻的温度特性产生一定的影响。

因此,在实际应用中,我们需要根据具体的环境条件对热敏电阻的温度特性进行修正和校准。

结论:通过本实验,我们成功地测量了热敏电阻的温度特性,并得到了电阻-温度曲线。

实验结果表明,热敏电阻的电阻值随着温度的升高而减小,呈现出负温度系数特性。

这一特性使得热敏电阻在温度测量和控制中具有重要的应用价值。

然而,需要注意的是,热敏电阻的温度特性受到环境因素的影响,因此在实际应用中需要进行修正和校准。

热敏电阻温度特性及研究带实验数据处理

热敏电阻温度特性及研究带实验数据处理

本科实验报告实验名称:热敏电阻温度特性的研究 (略写)实验15热敏电阻温度特性的研究【实验目的和要求】1. 研究热敏电阻的温度特性。

2. 用作图法和回归法处理数据。

【实验原理】 1. 金属导体电阻金属导体的电阻随温度的升高而增加,电阻值t R 与温度t 间的关系常用以下经验公式表示:)1(320 ++++=ct bt t R R t α (1)式中t R 是温度为t 时的电阻,0R 为00=t C 时的电阻,c b ,,α为常系数。

在很多情况下,可只取前三项:)1(20bt t R R t ++=α (2)因为常数b 比α小很多,在不太大的温度范围内,b 可以略去,于是上式可近似写成:)1(0t R R t α+=(3)式中α称为该金属电阻的温度系数。

2. 半导体热敏电阻热敏电阻由半导体材料制成,是一种敏感元件。

其特点是在一定的温度范围内,它的电阻率T ρ随温度T 的变化而显著地变化,因而能直接将温度的变化转换为电量的变化。

一般半导体热敏电阻随温度升高电阻率下降,称为负温度系数热敏电阻,其电阻率T ρ随热力学温度T 的关系为TB T e A /0=ρ (4)式中0A 与B 为常数,由材料的物理性质决定。

也有些半导体热敏电阻,例如钛酸钡掺入微量稀土元素,采用陶瓷制造工艺烧结而成的热敏电阻在温度升高到某特定范围(居里点)时,电阻率会急剧上升,称为正温度系数热敏电阻。

其电阻率的温度特性为: TB T e A ⋅'=ρρ (5)式中A '、ρB 为常数,由材料物理性质决定。

对(5)式两边取对数,得A T BR T ln 1ln += (6)可见T R ln 与T 1成线性关系,若从实验中测得若干个T R 和对应的T 值,通过作图法可求出A (由截距A ln 求出)和B (即斜率)。

3. 实验原理图图1 实验原理图4. 单臂电桥的基本原理用惠斯通电桥测量电阻时,电桥应调节到平衡状态,此时0=g I 。

2021年大学物理课题演示实验报告五篇模板最新

2021年大学物理课题演示实验报告五篇模板最新

实验报告是把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报。

以下是初心为您推荐。

大学物理实验报告1一、实验任务精确测定银川地区的重力加速度二、实验要求测量结果的相对不确定度不超过5%三、物理模型的建立及比较初步确定有以下六种模型方案方法一、用打点计时器测量所用仪器为打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等.利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g.方法二、用滴水法测重力加速度调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t方法三、取半径为r的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃杯的形状为旋转抛物面重力加速度的计算公式推导如下取液面上任一液元a,它距转轴为_,质量为m,受重力mg、弹力n.由动力学知ncosα-mg=0(1)nsinα=mω2_(2)两式相比得tgα=ω2_/g,又tgα=dy/d_,∴dy=ω2_d_/g,∴y/_=ω2_/2g.∴g=ω2_2/2y..将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标_、y测出,将转台转速ω代入即可求得g.方法四、光电控制计时法调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t方法五、用圆锥摆测量所用仪器为米尺、秒表、单摆.使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆锥n转所用的时间t,则摆锥角速度ω=2πn/t摆锥作匀速圆周运动的向心力f=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r由以上几式得g=4π2n2h/t将所测的n、t、h代入即可求得g值.方法六、单摆法测量重力加速度在摆角很小时,摆动周期为则通过对以上六种方法的比较,本想尝试利用光电控制计时法来测量,但因为实验室器材不全,故该方法无法进行;对其他几种方法反复比较,用单摆法测量重力加速度原理、方法都比较简单且最熟悉,仪器在实验室也很齐全,故利用该方法来测最为顺利,从而可以得到更为精确的值。

热敏电阻的温度特性研究

热敏电阻的温度特性研究

热敏电阻的温度特性研究及其应用一、 实验目的1.了解热敏电阻和Cu50的基本结构及其应用。

2.研究热敏电阻的阻值与温度的关系,并测定电阻温度系数和热敏电阻材料常数。

3.比较Cu50的温度特性。

4.熟悉惠斯顿单臂电桥的工作原理和使用方法。

二、 实验原理物质的电阻值随温度而变化的现象称为热电阻效应。

在一定的温度范围内,可以通过测量电阻值的变化而进行温度变化的测量,这就是热电传感器的工作原理。

典型的热电传感器有热电偶、热电阻和热敏电阻。

其中,热敏电阻由半导体材料制成,它的电阻温度系数比金属的大几百倍,有着极其灵敏的电阻温度效应,同时它还具有体积小、反应快等优点。

热敏电阻是性能良好的温度传感元件,可以制成半导体温度计、湿度机、气压计、微波功率计等测量仪表,并广泛应用于工业自动控制。

热敏电阻按其电阻随温度变化的典型特性可分为三类,即负温度系数(NTC )热敏电阻,正温度系数(PTC )热敏电阻和临界温度电阻器(CTR )。

其中,NTC 型热敏电阻的电阻值会随温度上升而下降,且电阻随温度的变化范围较大。

热敏电阻的电阻-温度特性曲线如图1所示。

图1NTC 型热敏电阻的电阻与温度的关系式为:T B T Ce R = (1)其中,T 为热力学温度,B 和C 都是与材料物理性质有关的常数,B 称作热敏电阻材料常数,一般为1500-6000K 。

热敏电阻的电阻温度系数T α定义为温度变化1℃时阻值的变化量与该温度下的阻值之比:dTdR R TT T 1=α (2)将式(1)代入上式中得: 2TBT -=α (3) 单位是K -1,一般为-2%~-6%K -1。

由式(3)可以看出,T α是随温度降低而迅速增大。

T α决定热敏电阻在全部工作范围内的温度灵敏度。

热敏电阻的测温灵敏度比金属热电阻的高很多。

Cu50是一种用铜丝做成的热电阻,它的电阻的阻值是随着温度线性变化的,在0℃时它的阻值为50Ω。

其电阻值计算公式为:Cu50的电阻值=实际温度值×k+50 其中k 为变化率,单位:Ω/℃。

热敏电阻的温度特性

热敏电阻的温度特性

测量热敏电阻的温度特性热敏电阻是用半导体材料制成的热敏器件,根据其电阻率随温度变化的特性不同,大致可分为三种类型:(1)NTC (负温度系数)型热敏电阻;(2)PTC (正温度系数)型热敏电阻;(3)CTC (临界温度系数)型热敏电阻。

其中PTC 型和CTC 型热敏电阻在一定温度范围内,阻值随温度剧烈变化,因此可用做开关元件。

热敏电阻器在温度测控、现代电子仪器及家用电器(如电视机消磁电路、电子驱蚊器)等中有广泛用途。

在温度测量中使用较多的是NTC 型热敏电阻,本实验将测量其电阻温度特性。

1.实验目的(1)测量NTC 型热敏电阻的温度特性;(2)学习用作图法处理非线性数据。

2.实验原理NTC 型热敏电阻特性NTC 型热敏电阻是具有负的温度系数的热敏电阻,即随着温度升高其阻值下降,在不太宽的温度范围内(小于450℃),其电阻-温度特性符合负指数规律。

NTC 热敏电阻值R 随温度T 变化的规律由式(1-1)表示T BT Ae R =(1-1) 其中A 、B 为与材料有关的特性常数,T 为绝对温度,单位K 。

对于一定的热敏电阻,A 、B 为常数。

对式(1-1)两边取自然对数有 T B A R T +=ln ln (1-2) 从TR T 1ln -的线性拟合中,可得到A 、B 的值,写出热敏电阻温度特性 的经验公式。

3.实验内容(1)连接电路。

(2)观察NTC 型热敏电阻的温度特性。

(3)测量NTC 型热敏电阻的温度特性。

(4)数据处理a. 画出热敏电阻的t R -特性曲线;b. 画出T R T 1ln 曲线,求出其直线的截距、斜率,即可求得A 、B ,写 出热敏电阻温度特性的经验公式。

热敏电阻温度特性研究实验

热敏电阻温度特性研究实验

热敏电阻温度特性研究实验热敏电阻是指在特定温度范围内,其电阻值随温度变化而变化的电阻器件。

它是一种温度传感器,在自动控制、冷却系统、卫生间智能化管理等领域应用广泛。

为了研究热敏电阻的温度特性,我们设计了实验。

具体实验流程如下:实验器材:1.实验箱2.热敏电阻3.万用表4.电烙铁5.电线实验步骤:1.将实验箱开启并连接电源。

2.将热敏电阻连线到万用表中。

3.利用电烙铁将电线与热敏电阻焊接起来。

4.将热敏电阻所在的回路接入到实验箱中的控制板上。

5.调整实验箱的温度,使它从室温升高至40℃,并记录下每个温度点对应的电阻值。

6.将实验数据转化为数据表或图表,并对其进行分析。

7.对实验结果进行讨论,探讨热敏电阻的特性及其在实际应用中的意义。

实验结果:当温度从室温升高至40℃时,热敏电阻的电阻值呈现一个递减的趋势。

随着温度的升高,热敏电阻的电阻值下降的速度也越来越快。

当温度达到一定值(本实验中为35℃)时,热敏电阻的电阻值下降速度会变得更加明显。

分析:首先,在室温下,热敏电阻的电阻值处于其最高点。

这时,温度升高时热敏电阻的电阻值逐渐降低,因为热敏电阻的材料在温度升高时,其内部晶格结构发生变化,导致了电子的迁移距离变小,从而电阻值减小。

其次,当温度超过一定值时,热敏电阻的材料会进入一个临界温度范围内。

在这个范围内,热敏电阻的电阻值的下降速度会明显加快。

原因是在这个温度范围内,热敏电阻的材料会发生另一种相变,导致电子的迁移距离更短,电阻值更小。

结论:本实验通过测量热敏电阻在不同温度下的电阻值,探讨了热敏电阻的温度特性。

实验结果显示,热敏电阻的在温度变化下的电阻值呈现明显的下降趋势。

此外,在临界温度范围内,其电阻值开始加速下降。

这些结论对于热敏电阻在温控、卫浴设备等领域的实际应用具有重要的参考价值。

热敏电阻的温度特性实验报告

热敏电阻的温度特性实验报告

热敏电阻的温度特性实验报告热敏电阻的温度特性实验报告引言:热敏电阻是一种能够根据温度变化而改变电阻值的电子元件。

它在各种电子设备中广泛应用,如温度控制系统、温度补偿电路等。

本实验旨在通过测量热敏电阻在不同温度下的电阻值,研究其温度特性。

实验装置:本实验采用了以下装置:热敏电阻、恒温水槽、电源、数字万用表、温度计等。

实验步骤:1. 将热敏电阻连接到电路中,确保电路连接正确。

2. 将恒温水槽中的水加热至不同温度,如20℃、30℃、40℃等。

3. 使用温度计测量水槽中的水温,并记录下来。

4. 使用数字万用表测量热敏电阻在不同温度下的电阻值,并记录下来。

5. 重复步骤2-4,直到得到足够的数据。

实验结果:根据实验数据,我们可以绘制出热敏电阻的温度特性曲线。

在实验中,我们发现热敏电阻的电阻值随温度的升高而减小。

这是因为热敏电阻的电阻值与温度呈负相关关系。

随着温度的升高,热敏电阻中的电子活动增加,电阻值减小。

讨论:热敏电阻的温度特性是其应用的基础。

通过实验数据的分析,我们可以得出以下结论:1. 热敏电阻的温度特性曲线呈非线性关系。

在低温区域,电阻值随温度的升高呈指数增长;在高温区域,电阻值随温度的升高呈线性增长。

2. 热敏电阻的温度特性与其材料的选择有关。

不同材料的热敏电阻在不同温度范围内表现出不同的特性曲线。

3. 热敏电阻的温度特性可以通过控制电流来实现温度的测量和控制。

通过测量热敏电阻的电阻值,我们可以推算出环境的温度。

结论:本实验通过测量热敏电阻在不同温度下的电阻值,研究了其温度特性。

实验结果表明,热敏电阻的电阻值随温度的升高而减小,呈现出非线性关系。

热敏电阻的温度特性与其材料的选择有关,可以通过控制电流来实现温度的测量和控制。

这些研究结果对于热敏电阻的应用具有重要的指导意义。

附录:以下是实验中测得的一组数据:温度(℃) 电阻值(Ω)20 10030 8040 6050 4060 20根据这组数据,我们可以绘制出热敏电阻的温度特性曲线。

热敏电阻特性研究实验报告

热敏电阻特性研究实验报告

热敏电阻特性研究实验报告热敏电阻特性研究实验报告引言:热敏电阻是一种能够根据温度的变化而改变电阻值的材料。

它在许多领域中都有广泛的应用,比如温度控制、温度测量和温度补偿等。

本实验旨在研究热敏电阻的特性,并探究其在不同温度下的电阻变化规律。

实验方法:首先,我们准备了一台温度控制装置和一根热敏电阻。

将热敏电阻与电路连接,然后将其放置在温度控制装置中。

通过改变温度控制装置的设置,我们可以控制热敏电阻所处的温度。

实验过程:我们首先将温度控制装置的温度设置为室温,然后记录下此时热敏电阻的电阻值。

接下来,我们逐渐提高温度,每隔10摄氏度记录一次热敏电阻的电阻值。

当温度达到100摄氏度时,我们停止了温度的升高,并记录下此时的电阻值。

实验结果:根据我们的实验数据,我们可以得到一个电阻-温度曲线。

从图表中可以看出,在低温下,热敏电阻的电阻值相对较高。

随着温度的升高,电阻值逐渐下降。

当温度达到一定值后,电阻值开始急剧下降,直至趋近于零。

这是因为在高温下,热敏电阻的电阻值受到温度的极大影响,导致电阻值几乎为零。

讨论:热敏电阻的这种特性使其在温度测量和控制中非常有用。

通过测量热敏电阻的电阻值,我们可以准确地确定所测量的温度。

此外,由于热敏电阻在高温下电阻值接近零,因此它也可以用于过热保护和温度补偿。

例如,在一些电子设备中,热敏电阻可以用于监测电路的温度,当温度过高时,它可以触发保护机制,以防止设备过热而损坏。

结论:通过本次实验,我们研究了热敏电阻的特性,并了解了其在不同温度下的电阻变化规律。

热敏电阻的电阻值随温度的升高而下降,在高温下趋近于零。

这使得热敏电阻在温度测量和控制中具有重要的应用价值。

热敏电阻的特性研究对于电子工程师和科研人员来说是非常有意义的,它们可以通过研究和改进热敏电阻的性能来提高温度测量和控制的精度和可靠性。

实验3 虚拟仿真实验--热敏电阻温度特性研究实验

实验3 虚拟仿真实验--热敏电阻温度特性研究实验
升高而减小。
可用于温度测量、温度补偿、抑制浪涌等
本次实验:测量NTC电阻的温度特性
NTC
三、实验原理/ 3.2 NTC电阻的温度特性
NTC热敏电阻的电阻—温度关系:
R Ae
B
T
其中为绝对温度,是温度趋于无穷时的阻值∞ ,
表征了阻值随温度变化的快慢。、是与半导体
材料有关的常数。
热敏电阻的电阻温度系数:
1 dR

RT dt
其中 是温度为时的电阻值
三、实验原理/ 3.3、电阻的测量更方法——惠斯通电桥
图中四个电阻 、 、 和 组成一个四边形,称为电桥的
四个臂,在四边形的一对对角A和C之间连接电源,而在另一对对
角B和D之间接入检流计。当B和D两点电位相等时,中无电流
通过,电桥便达到了平衡,平衡状态下满足:
Rx R3
Rx
(14),
三、实验原理/ 3.3、电阻的测量更方法——惠斯通电桥
I Rg Rg R1
E +I Rg R1
R1 R2
R1
E I Rg R3
Rx R3
Rx
(14),
将式(14)中含 IRg 的项都移到左侧,整理可得:
I Rg Rg R1 R1 R2 Rx R3 R12 Rx R3 +R3 Rx R1 R2 ER1 Rx R3 ERx R1 R2 (15),
)
R1 R3
R1 R3
Rx R1
=a
R3 R2
R2 Rx 1
= a,
则:
R1 R3 a
1
a 在a=1处具有最小值。
当a>0时,函数

热敏电阻温度特性及研究带实验数据处理

热敏电阻温度特性及研究带实验数据处理

热敏电阻温度特性及研究带实验数据处理
热敏电阻是一种温度敏感材料,其电阻值随温度的变化而变化。

热敏电阻的电阻值与温度之间的关系可以用一些数学公式来描述。

常见的一种描述方法是使用斯特恩-沃尔哈特公式(Steinhardt-Hart公式):
R(T) = R0 * exp[B * (1 / T - 1 / T0)]
其中,R(T)是温度为T时的电阻值,R0是参考温度T0(通常
为25℃)时的电阻值,B是常数。

可以通过实验来测量不同
温度下的电阻值,最终得出B的值。

一般而言,B的值与热敏电阻所用的材料有关。

热敏电阻的温度特性可以用温度-电阻曲线来表示。

一般实验中,可以将热敏电阻置于一个温度控制器中,通过调节控制器的温度来改变热敏电阻的温度,然后测量不同温度下的电阻值。

将测量得到的电阻值和温度绘制成图表,就可以得到温度-电
阻曲线。

常见的温度-电阻曲线如下所示:
在实验中,还需要对实验数据进行处理和分析。

一般而言,可以使用拟合方法来拟合温度-电阻曲线,并得到斯特恩-沃尔哈
特公式中的参数B的值。

拟合可以用线性拟合、非线性拟合
等方法,常见的拟合工具有Matlab、Excel等。

除了拟合方法,还可以使用校准方法来研究热敏电阻的温度特性。

校准方法是将已知温度下的温度传感器与热敏电阻放在一起进行校准,然后将校准得到的数据用于热敏电阻的温度测量。

总之,热敏电阻温度特性的研究需要进行实验,并对实验数据进行处理和分析。

实验可以采用不同的方法和工具,如温度控制器、拟合软件等。

研究结果可以用于热敏电阻的温度测量和控制等方面。

热敏电阻温度特性的研究带实验数据处理

热敏电阻温度特性的研究带实验数据处理

热敏电阻温度特性的研究带实验数据处理————————————————————————————————作者:————————————————————————————————日期:本科实验报告实验名称:热敏电阻温度特性的研究 (略写)实验15热敏电阻温度特性的研究【实验目的和要求】 1. 研究热敏电阻的温度特性。

2. 用作图法和回归法处理数据。

【实验原理】 1. 金属导体电阻金属导体的电阻随温度的升高而增加,电阻值t R 与温度t 间的关系常用以下经验公式表示:)1(320 ++++=ct bt t R R t α(1)式中t R 是温度为t 时的电阻,0R 为00=t C 时的电阻,c b ,,α为常系数。

在很多情况下,可只取前三项:)1(20bt t R R t ++=α (2)因为常数b 比α小很多,在不太大的温度范围内,b 可以略去,于是上式可近似写成:)1(0t R R t α+= (3)式中α称为该金属电阻的温度系数。

2. 半导体热敏电阻热敏电阻由半导体材料制成,是一种敏感元件。

其特点是在一定的温度范围内,它的电阻率T ρ随温度T 的变化而显著地变化,因而能直接将温度的变化转换为电量的变化。

一般半导体热敏电阻随温度升高电阻率下降,称为负温度系数热敏电阻,其电阻率T ρ随热力学温度T 的关系为T B T e A /0=ρ (4)式中0A 与B 为常数,由材料的物理性质决定。

也有些半导体热敏电阻,例如钛酸钡掺入微量稀土元素,采用陶瓷制造工艺烧结而成的热敏电阻在温度升高到某特定范围(居里点)时,电阻率会急剧上升,称为正温度系数热敏电阻。

其电阻率的温度特性为: TB T eA ⋅'=ρρ (5)式中A '、ρB 为常数,由材料物理性质决定。

对(5)式两边取对数,得A T BR T ln 1ln += (6)可见T R ln 与T 1成线性关系,若从实验中测得若干个T R 和对应的T 值,通过作图法可求出A (由截距A ln 求出)和B (即斜率)。

实验三 NTC和PTC热敏电阻温度特性的研究

实验三  NTC和PTC热敏电阻温度特性的研究

实验三NTC和PTC热敏电阻温度特性的研究温度传感器是最早开发、应用最广的一类传感器。

温度传感器种类很多,典型的热电式传感器有热电偶、热电阻和热敏电阻。

热敏电阻对于温度变化非常敏感,将其运用于非平衡电桥中,可将温度及与温度相关的非电量转化为电参量的变化,因此被广泛应用于自动化控制、温度测量技术、遥控等方面。

热敏电阻由半导体材料制成,它的电阻温度系数比金属的大几百倍,有着极其灵敏的电阻温度效应,同时它还具有体积小、反应快等优点。

热敏电阻按照温度系数的不同分为:正温度系数热敏电阻(简称PTC热敏电阻)和负温度系数热敏电阻(简称NTC热敏电阻)。

NTC热敏电阻是Negative Temperature Coefficient 的缩写,意思是负温度系数热敏电阻。

图3-1 环氧封装系列NTC热敏电阻图3-2 玻璃封装系列NTC热敏电阻NTC热敏电阻的阻值随着NTC热敏电阻本体温度的升高呈现出阶跃性的减小, 温度越高,电阻值越小。

它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的,如图3-1、图3-2所示。

这些金属氧化物材料都具有半导体性质,因此在导电方式上完全类似锗、硅等半导体材料。

温度低时,这些氧化物材料的载流子(电子和空穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。

NTC热敏电阻器在室温下的变化范围在100~1000000欧姆。

NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。

PTC热敏电阻是Positive Temperature Coefficient 的缩写,意思是正的温度系数。

PTC 热敏电阻超过一定的温度(居里温度)时, 它的电阻值随着温度的升高呈阶跃性的增高。

PTC 热敏电阻除测温、控温、在电子线路中作温度补偿外,还制成各类加热器,有机高分子PTC 热敏电阻适合作为电路保护元件(如过载保护)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验( 3 ) 热敏电阻温度特性研究实验
班级 18020S01 学号 1802004137 姓名 沈豹 组别 日期 2020-6-5 指导教师
一.实验目的
本实验的目的是了解热敏电阻的电阻—温度特性及测温原理,学习惠斯通电桥的原理及使用方法,学习坐标变换、曲线改直的技巧。

二.实验仪器
热敏电阻测温实验装置包括:自耦调压器、待测热敏电阻和温度计、直流单臂电桥、电压源、滑线变阻器(2个)、四线电阻箱(3个)、检流计、单刀开关。

三.实验原理
1.半导体热敏电阻的电阻—温度特性
热敏电阻的电阻值与温度的关系为:T B Ae R /=
A ,
B 是与半导体材料有关的常数,T 为绝对温度,根据定义,电阻温度系数为: dT
dR
R t 1=
α Rt 是在温度为t 时的电阻值。

2.惠斯通电桥的工作原理,如图所示:
惠斯通电桥原理图
四个电阻R1,R2,R3,Rx 组成一个四边形,即电桥的四个臂,其中Rx 就是待测热敏电阻。

在四边形的一对对角A 和C 之间连接电源,而在另一对对角B 和D 之间接入检流计G 。

当B 和D 两点电位相等时,G 中无电流通过,电桥便达到了平衡。

平衡时必有Rx =(R2/ R1)·R3,(R2/ R1)和R3都已知,Rx 即可求出。

电桥灵敏度的定义为: x
x R R S /n
∆∆=
式中△Rx 指的是在电桥平衡后Rx 的微小改变量,△n 越大,说明电桥灵敏度越高。

四.实验内容步骤
1.用箱式电桥研究热敏电阻温度特性
(1)使用内接电源和内接检流计,按照实验电路图连线。

(2)线路连接好以后,检流计调零。

(3)调节直流电桥平衡。

(4)测量并计算出室温时待测热敏电阻值Rx ,微调电路中的电阻箱,测量并根据电桥灵敏度公式:S=△n /(△Rx /Rx )或S=△n /(△R0/R0),计算出室温时直流电桥的电桥灵敏度。

(5)调节适当的自耦调压器输出电压值,使烧杯中的水温从20℃升高到85℃以上,每隔5℃测量一次热敏电阻值Rt ;再将自耦调压器输出电压值调为0V ,使水慢慢冷却,降温过程中每隔5℃测量一次热敏电阻值Rt ,最终求取升降温的平均电阻值,并作出热敏电阻阻值与温度对应关系曲线。

(6)根据测量结果,利用公式B/T e ∞=R R 和dT
dR
R t 1=
α,分别求取温度T 趋于无穷时的热敏电阻阻值R ∞、热敏电阻的材料常数B 以及50℃时的电阻温度系数α。

总成绩: 预习 操作
处理
2.用自组式电桥研究热敏电阻温度特性
(1)按下图所示实验电路图正确连线。

直流电桥测电阻电路图
(2)线路连接好以后,检流计调零。

(3)调节直流电桥平衡。

(4)测量并计算出室温时待测热敏电阻值Rx,微调电路中的电阻箱,测量并根据电桥灵敏度公式:S=△n/(△Rx/Rx)或S=△n/(△R0/R0),计算出室温时直流电桥的电桥灵敏度。

(5)选择合适的自耦调压器输出电压值,使烧杯中的水温从20℃升高到85℃以上,每隔5℃测量一次热敏电阻阻值;再将自耦调压器输出电压值调为0V,在水温的从85℃下降到室温的过程中,每隔5℃测量一次热敏电阻阻值,最终求取升降温的平均电阻值,并作出热敏电阻阻值与温度对应关系曲线。

(6)根据测量结果,求取温度T趋于无穷时的热敏电阻阻值R∞、热敏电阻的材料常数B以及50℃时的电阻温度系数α。

五.数据记录
(1)用箱式电桥研究热敏电阻温度特性
内容 1 2 3
电阻臂R0(Ω)5930 5930 5930
变化量∆R0 (Ω) 300 600 950
偏转格数∆n0 1 2 3
电桥灵敏度19.8 19.8 18.7
(2)用箱式电桥研究铜电阻温度特性
内容 1 2 3
电阻臂R0(Ω)54.3 54.3 54.3
变化量∆R0 (Ω) 0.3 0.6 1.0
偏转格数∆n0 1 2 3
电桥灵敏度181.0 181.0 162.9
温度值(单位°C)
(Ω)
20 25 30 35 40
升温时铜电阻值
(Ω)
55.0 56.0 57.0 58.2 59.2
降温时铜电阻值
(Ω)
55.0 56.0 57.0 58.2 59.2
温度值
(单位°
C)(Ω)
20 25 30 35 40 45 50 55 60 65
升温时热
敏电阻值
(Ω)
4690 3790 3090 2490 2190 1790 1390 1190 1010 870
降温时热
敏电阻值
(Ω)
4720 3810 3110 2550 2100 1780 1450 1250 1000 860
热敏电阻
平均值
(Ω)
4705 3800 3100 2520 2145 1785 1420 1220 1005 865
2
铜电阻平均值(Ω)
55.0
56.0
57.0
58.2
59.2
六.数据处理
(1)电桥灵敏度S=19.4
50°时,斜率为-1.90,电阻为1451Ω,由公式dT
dR
R t 1=
α可得, 开氏度=摄氏度+273.15电阻温度系数α(单位:1/K)=-0.0335.
根据LnRt-1/T 曲线,可知T 趋于无穷时,LnR ∞=-4.4145。

R ∞(单位:Ω)=0.0121,开氏度=摄氏度+273.15,B/T e ∞=R R ,B(单位:K)=3714.
(3)电桥灵敏度S=.175.0
铜电阻的阻值R0(单位:Ω)=50.2
由公式Rt=R0(1+α*t),可得到铜电阻的温度系数α(单位:1/°C )=0.0043
七.实验结果分析
实验误差的主要来源是对相应温度点的电阻值的测定的不准确,其误差可以达到几
十欧姆,这主要是因为温度计的不准确和热敏电阻对温度变化的敏感性造成的,选择合
适的桥臂总阻值,桥臂电阻比能提高电桥灵敏度,本实验的精确度并不高。

2。

相关文档
最新文档