(完整版)《行星的运动》教学设计.doc

合集下载

教学设计行星的运动

教学设计行星的运动

6.1 《行星的运动》教学设计一、教学内容分析:本节内容主要介绍了人类历史上发现行星运动规律——开普勒三定律的一个过程。

从托勒密发展并完善的地心说,哥白尼勇敢的壮举——提出日心说,布鲁诺宣传和捍卫真理,第谷天才的行星观测技术,到开普勒发现并总结三大定律,经历了一千多年的时间,要让学生了解这段真理发现的艰难历程,并从科学家身上看到坚持不懈、勇于创新的科学精神。

二、教学对象分析(一)学生已有的知识结构和能力。

从学生已经具有的知识基础来看,学生在学习本节课之前,可能只是通过小学的科学课、报刊、杂志、电视等方式对有关科学家的事例略知一二,对科学家的发现、发明、创造内容的了解应该是非常琐碎的,无系统的天体运动研究历史方面的知识,但对天体的运动学习应该具有很大的好奇心和浓厚的兴趣。

(二)学生认知能力上的欠缺。

从学生的认知能力看,由于行星运动抽象、无法感知,学生在理解行星的运动规律上会存在障碍,同时椭圆在数学上还未接触过,也会给学生造成困惑。

本节课的目标切入点准确到位,侧重于“三维”中的情感、态度和价值观;较好地体现了教材内容统领全章的地位和功能。

三、教学目标(一)知识与技能1.了解地心说和日心说的基本内容。

2.知道开普勒行星运动定律及其科学价值,会用该定律分析行星运动问题。

3.知道所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

4.知道所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,且这个比值与行星的质量无关,但与太阳的质量有关。

(二)过程与方法了解人类对行星运动规律的认识过程,通过托勒密、哥白尼、第谷·布拉赫、开普勒等几位科学家对行星运动的不同认识,认识到观察、实验、总结实际规律在科学探究中的重要作用。

(三)情感、态度与价值观1.通过学习开普勒行星运动定律的建立过程,渗透物理科学探究的方法和思想,形成正确的宇宙运动观。

2.感悟科学是人类进步不竭的动力,感悟科学家对科学的执著和献身精神,培养学生热爱科学、献身科学的精神和勇于创新、敢于坚持真理、实事求是的科学态度。

教学设计2:6.1 行星的运动

教学设计2:6.1  行星的运动

《行星的运动》教学设计【教学目标】知识与技能1. 了解地心说和日心说的基本内容。

2. 明确开普勒行星运动定律,能应用开普勒行星运动定律分析问题。

过程与方法1. 了解观察在发现行星运动规律中的作用,认识物理实验在物理学发展过程的重要作用。

2. 了解科学研究方法对人类认识自然的重要作用。

情感、态度与价值观1. 通过开普勒行星运动定律的建立过程,渗透科学发现的方法论教育,建立科学的宇宙观。

2. 了解人类对行星运动规律认识过程的曲折与艰辛,学习科学家们实事求是,尊重客观事实,敢于支持真理,勇于创新和不怕牺牲的科学态度与科学精神。

【教学重难点】重点:理解和掌握开普勒行星运动定律的内容。

难点:对开普勒运动定律的应用,以及相关近似处理。

【教学过程】一、人类对行星运动的认识历程(以图片展示为主)1.地心说及其代表人物2.日心说及其代表人物对创立万有引力定律产生极大影响力的第谷和开普勒让学生充分体会科学家们在真理探索路途中的坚韧与执着,并深刻领会观察实验在物理理论创立过程中的重要作用。

二、开普勒行星运动定律1.所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

(椭圆轨道定律)结合教材“做一做”,应用flash,引导学生初步认识椭圆,理解行星是如何运行的。

2.对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。

(面积定律)提问:行星在运动过程中,速度如何变化?角速度与加速度的情况又如何?3.所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。

(周期定律)k Ta 23a :轨道半长轴长 T :公转周期 通过行星轨道特点,介绍中学阶段研究中的近似处理方法:(让学生领会物理学在处理问题时的原则——抓住主要矛盾,忽略次要因素)①多数行星绕太阳运动的轨道十分接近圆,太阳处在圆心。

②对某一行星来说,它绕太阳做圆周运动的角速度(或线速度)不度,即行星做匀速圆周运动。

③所有行星轨道半径的三次方跟它的公转周期的二次方的比值都相等。

人教版必修二《行星的运动》WORD教案3

人教版必修二《行星的运动》WORD教案3

人教版必修二《行星的运动》WORD教案3第一节行星的运动(第1课时)【教学目标】:(一)知识目标:了解“地心说”和“日心说”的内容明白得开普勒三大定律的内容及其简单应用(二)能力目标:在由地心说日心说,再到开普勒定律的探究过程中学习提出问题、猜想与假设等方法(三)德育目标:通过学习人类对行星运动规律的探究过程,使学生体会物理学对社会进展的重大作用,激发学生学习物理的广泛爱好.【教学重点】:明白得开普勒行星定律的内容【教学难点】:开普勒第三定律【教学方法】:对半讲练法、类比法【教学用具】:挂图【教学过程】:(一)引入:在浩渺的宇宙中有着许多大小不一、形状各异的天体,如月亮、地球、太阳、夜空中的星星……日出日落,斗专星移,各种天体都在不停地运动,我们明白:月亮绕着地球转,地球绕着太阳转,地球在公转的同时还在自转,天体的运动遵循着什么样的规律?关于不同星体的运动,有地心说和日心说,我们明白地心说是错误的,那么日心说是否就完美无缺呢?行星是否在做完美的匀速圆周运动呢?“坐地日行八万里,巡天遥看一千河”。

由这些许多天体组成的广衰无垠的宇宙始终是人们期望了解、不断探究的领域.(二)新课教学:一托勒密地心说→哥白尼日心说学生阅读课本,和学生一起感受人类认识天体运行规律的历程,讲授:(1)说到日心说和地心说,你会赶忙反映到哥白尼等,实际上在古代,人们关于天体的运动就存在着地心说和日心说两种对立的看法.地心说认为地球是宇宙的中心,是静止不动的,太阳、月亮以及其他行星都绕地球运动;日心说则相反,认为太阳是静止不动的,地球和其他行星都绕太阳运动.(2)公元二世纪的希腊天文学家托勒密使地心说进展和完善起来,由于地心说比较符合人们的日常体会(太阳从东边升起,在西边落下,看起来太阳绕地球运动),同时也符合天主教的思想:地球是宇宙中心,宇宙万物差不多上上帝制造的,因此地心说得到了教会的支持,统治了人们一千年之久.然而随着生产的进展,人们对天体运动的不断研究,天文资料越来越丰富,人们发觉托勒密的地心说的理论与实际观测的资料并不一致,仍旧不能说明某些问题,地心说所描述的天体的运动不仅复杂而且问题专门多.(3)十六世纪波兰天文学家哥白尼,通过四十年的观测与研究,在古代日心说的启发下,重新提出了日心说:太阳是宇宙的中心,地球和其它行星都围绕着太阳转动。

第一节行星的运动教案

第一节行星的运动教案

第六章第一节行星的运动教案一、素质教育目标(一)知识教学点1.了解“地心说”和“日心说”两种不同的观念2.知道开普勒对行星运动的描述.(二)能力训练点培养学生在客观事实的基础上通过分析、推理,提出科学假设,再经过实验检验的正确认识事物本质的思维方法.(三)德育渗透点通过开普勒行星运动定律的建立过程,渗透科学发现的方法论教育、建立科学的宇宙观.(四)美育渗透点通过学习,使学生了解到科学家为追求真理而不懈努力,顽强的执著精神,从他们身上所流露出来的人格美.二、学法引导学生自学、结合教师的讲解、介绍.三、重点·难点·疑点及解决办法1.重点“日心说”的建立过程和行星运动的规律.2.难点学生对天体的运动缺乏感性认识.3.疑点开普勒是如何确定行星运动规律的.四、师生互动活动设计1.教师用生动语言来介绍天体物体的发展历史,引起学生产生思想上的共鸣.2.学生通过阅读教材和观看相关资料来提高认识.五、教学步骤(一)整体感知在浩瀚的宇宙中有着无数大小不一、形态各异的天体,如太阳、地球、月亮、星星等等.这些天体是如何运动的呢?人类最初是通过直接的感性认识以及受宗教的影响,建立了“地心说”,但后来,第谷等科学家通过长期观测,记录了大量的观测数据,对地心说进行挑战,哥白尼在此基础上提出了“日心说”,“日心说”认为太阳是宇宙的中心,其他天体(包括地球)都绕太阳作匀速圆周运动.“日心说”虽在“地心说”的基础上前进了一大步,但“日心说”解释行星运动时与实际观测的结果仍有一定的误差,最终开普勒通过计算,确立了行星运动的正确图景:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上,所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.开普勒对行星运动的描述,为牛顿发现万有引力定律奠定了重要基础.(二)重点、难点的学习与目标完成过程1、引入我们生活在地球上,地球是浩瀚宇宙中无数星球中的一个,这些星球是如何运动的呢?从今天开始我们要把我们研究的目光投向太空,来研究太空中行星的运动规律。

行星的运动教学设计

行星的运动教学设计

《行星的运动》教学设计安远二中张招胜课题:人教版高一物理必修②第六章第一节《行星的运动》一、教学分析1、教材分析本节教材介绍了人们对星体运动的认识过程,重点介绍开普勒三定律,目的是引导学生认识天体运行的规律与地面物体的运行规律本质上是相同的,从而为万有引力定律的得出作准备。

这节内容对学生来说是抽象的、陌生的,甚至无法去感知。

所以本节课主要引导学生了解人类对星体运动认识的发展过程,从“日心说”和“地心说”的内容到其两者之间的争论,从第谷的精心观测到开普勒的数学运算,在学生整体感知的过程中引导学生体会这些大师们的思路、方法及他们的一丝不苟的科学精神,并激发他们热爱科学、探索真理的求知欲望。

2、学生分析高一的学生对知识充满着一种渴望,具有浓厚的学习兴趣,他们的观察不只停留在一些表面现象,而具有更深层次的探究愿望。

他们对天体的运动充满好奇又觉得非常神秘而不易理解。

但对行星的运动的了解只停留在看科普电视节目、科普书籍和地理课的介绍层面上,对古代天体运动的两种学说和开普勒行星三定律还很陌生。

二、教学目标(一)、知识与技能1.了解中国古代宇宙观。

2.知道地心说和日心说的基本内容。

3.知道开普勒关于行星运动的三大定律的内容。

4.理解人们对行星运动的认识过程是漫长复杂的,真理是来之不易的。

(二)、过程与方法1.通过托勒密、哥白尼、第谷·布拉赫、开普勒等几位科学家对行星运动的不同认识,了解人类认识事物本质的曲折性并加深对行星运动的理解.2.渗透科学思想、科学方法、科学品质的教育,感知物理学史,体会科学发展的曲折与艰辛。

3. 通过对天体运行研究历史的了解,体会科学研究的一般思路与方法──质疑、批判、猜测、观察与实验。

(三)、情感态度价值观1.通过对天体运行研究历史的了解,感悟科学家对科学的执著和献身精神。

2.澄清对天体运动裨秘、模糊的认识,掌握人类认识自然规律的科学方法.3.培养学生热爱科学、献身科学的精神和勇于创新、敢于坚持真理、实事求是的科学态度。

(完整word版)物理②必修6.1《行星的运动》教案

(完整word版)物理②必修6.1《行星的运动》教案

6.1行星的运动【教课目的】知识与技术1、知道地心说和日心说的基本内容。

2、知道全部行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

3、知道全部行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,且这个比值与行星的质量没关,但与太阳的质量相关。

4、理解人们对行星运动的认识过程是漫长复杂的,真谛是来之不易的。

过程与方法经过托勒密、哥白尼、第谷·布拉赫、开普勒等几位科学家对行星运动的不同认识,了解人类认识事物实质的波折性并加深对行星运动的理解。

感情态度与价值观1、澄清对天体运动神奇模糊的认识,掌握人类认识自然规律的科学方法。

2、感悟科学是人类进步不停的动力。

【教课要点】开普勒行星运动定律【教课难点】对开普勒行星运动定律的理解和应用【教课课时】1课时【教课过程】一、人类认识天体运动的历史1、“地心说”的内容及代表人物2、“日心说”的内容及代表人物二、开普勒行星运动定律的内容1、开普勒第必定律2、开普勒第二定律3、开普勒第三定律在高中阶段的学习中,多半行星运动的轨道能够按圆来办理。

引入新课多媒体演示:天体运动的图片阅读。

在浩大的宇宙中有无数大小不一、形态万千的天体,如月亮、地球、太阳、夜空中的星星由这些天体构成的广袤无穷的宇宙一直是我们盼望认识、不停探究的领域。

人们对行星运动的认识过程是漫长复杂的,历史上有过不同的见解,科学家对此进行了不懈的探究,经过本节内容的学习,将使我们正确地认识行星的运动。

新课解说一、古代对行星运动规律的认识问 1:.先人对天体运动存在哪些见解?“地心说”和“日心说”.问 2.什么是“地心说”?什么是“日心说”’ ?”地心说”以为地球是宇宙的中心,是静止不动的,大阳、月亮以及其余行星都绕地球运动,“日心说”则以为太阳是静止不动的,地球和其余行星都绕太阳运动.“地心说’的代表人物:托勒密 (古希腊 ).“地心说’切合人们的直接经验,同时也切合权力强盛的宗教神学对于地球是宇宙中心的认识,故地心说一度占有了统治地位.问 3:“日心说”战胜了“地心说” ,请阅读第《人类对行星运动规律的认识》,找出“地心说”遭受的难堪和“日心说’的成功之处.地心说所描绘的天体的运动不单复杂并且问题好多,假如把地球从天体运动的中心地点移到一个一般的、绕太阳运动的地点,换一个角度来考虑天体的运动,很多问题都能够解决,行星运动的描绘也变得筒单了.“日心说”代表人物:哥白尼,“日心说”能更完满地解说天体的运动.二、开普勒行星运动三定律问 1:先人以为天体做什么运动?先人把天体的运动看得十分神圣,他们以为天体的运动不同于地面物体的运动,天体做的是最完满、最和睦的匀速圆周运动.问 2:开普勒以为行星做什么样的运动?他是如何得出这一结论的?开普勒以为行星做椭圆运动.他发现假定行星傲匀逮圆周运动,计算所得的数据与观察数据不符,只有以为行星做椭圆运动,才能解说这一差异.问 3:开普勒行星运动定律哪几个方面描绘了行星绕太阳运动的规律?详细表述是什么?开普勒行星运动定律从行星运动轨道,行星运动的线速度变化,轨道与周期的关系三个方面揭露了行星运动的规律.(多媒体播放行星绕椭圆轨道运动的课件)开普勒第必定律:全部行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上.问 4:这必定律说了然行星运动轨迹的形状,不同的行星绕大阳运转时椭圆轨道同样吗不同.[教材做一做 ]能够用一条细绳和两图钉来画椭圆.如图6.1—l 所示,把白纸镐在木板上,而后按上图钉.把细绳的两头系在图钉上,用一枝铅笔紧贴着细绳滑动,使绳始终保持张紧状态.铅笔在纸上画出的轨迹就是椭圆,图钉在纸上留下的印迹叫做椭圆的焦点.想想,椭圆上某点到两个焦点的距离之和与椭圆上另一点到两个焦点的距离之和有什么关系?开普勒第二定律:对随意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积.问 5:如图 7.1-2 所示,行星沿着椭圆轨道运转,太阳位于椭圆的一个焦点上行星在远日点的速率与在近期点的速率谁大?因为相等时间内面积相等,所以近期点速率大。

高中物理必修2《行星的运动》教案

高中物理必修2《行星的运动》教案

高中物理必修 2《行星的运动》教课设计教课目的1、知识与技术(1)知道地心说和日心说的基本内容 ;(2)知道全部行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上 ;(3)知道全部行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,且这个比值与行星的质量没关,但与太阳的质量相关 ;(4)理解人们对行星运动的认识过程是漫长复杂的,真谛是来之不易的。

2、过程与方法:过托勒密、哥白尼、第谷·布拉赫、开普勒等几位科学家对行星运动的不一样认识,认识人类认识事物实质的波折性并加深对行星运动的理解。

3、感情、态度与价值观(1)澄清对天体运动裨秘、模糊的认识,掌握人类认识自然规律的科学方法。

(2)感悟科学是人类进步不断的动力。

教课重难点二、教课要点:理解和掌握开普勒行星运动定律,认识行星的运动。

学好本节有利于对宇宙中行星的运动规律的认识,掌握人类认识自然规律的科学方法,并有利于对人造卫星的学习。

三、教课难点:对开普勒行星运动定律的理解和应用,经过本节的学习能够澄清人们对天体运动神奇、模糊的认识。

教课工具多媒体、板书教课过程一、地心说和日心说1.基本知识(1)地心说①内容:地球是宇宙的中心,是静止不动的,太阳、月亮以及其余行星都绕地球运动 .②代表人物:托勒密 .(2)日心说①内容:太阳是静止不动的,地球和其余行星都绕太阳运动 .(3)两种学说的限制性它们都把天体的运动看得很神圣,以为天体的运动必定是最完满、最和睦的匀速圆周运动,而这和丹麦天文学家第谷的观察数据不符.2.思虑判断(1)宇宙的中心是太阳,全部行星都在绕太阳做匀速圆周运动.( ×)(2)造整天体每日东升西落的原由是天空不转动,不过地球每日自西向东自转一周 .( ×)(3)与日地距离对比,恒星离地球都十分遥远 .( √)研究沟通地心说和日心说是两种截然相反的看法,此刻看来这两种看法哪一种是正确的 ?【提示】两种看法受人们意识的限制,是人类发展到不一样历史时期的产物 . 两种看法都拥有历史限制性,此刻看来都是不完整正确的.二、开普勒行星运动定律1.基本知识2.思虑判断(1)环绕太阳运动的行星的速率是千篇一律的 .( ×)(2)开普勒定律仅合用于行星绕太阳的运动 .( ×)(3)行星轨道的半长轴越长,行星的周期越长 .( √)研究沟通行星绕太阳在椭圆轨道上运转,行星距太阳较近处与距太阳较远处对比较,运动速率哪处较大 ?【提示】由开普勒第二定律可知,因为在相等的时间内,行星与太阳的连线扫过相等的面积,明显相距较近时相等时间内经过的弧长一定较长,所以运动速率较大 .三、行星运动的近似办理1.基本知识(1) 行星绕太阳运动的轨道十分靠近圆,太阳处在圆心.(2)对某一行星来说,它绕太阳做圆周运动的角速度 ( 或线速度 )不变,即行星做匀速圆周运动.(3)全部行星轨道半径的三次方跟它的公转周期的二次方的比值都相等 .2.思虑判断(1)在中学阶段可以为地球环绕太阳做圆周运动 .( √)中的 a 可以为是行星的轨道半径 .( √)研究沟通以下图是火星冲日年份表示图,察看图中地球、火星的地点,思虑地球和火星谁的公转周期更长 .火星冲日年份表示图【提示】由题图可知,地球到太阳的距离小于火星到太阳的距离,依据开普勒第三定律可得:火星的公转周期更长一些 .四、对开普勒行星运动定律的理解【问题导思】1. 开普勒三定律分别从哪些方面揭露了行星的运动规律?2.太阳的地点是各行星的轨道焦点吗 ?误区警告:开普勒三定律是行星绕太阳运动的总结定律,实践表示该定律也合用于其余天体的运动,如月球绕地球运动、卫星绕木星运动,甚至人造卫星绕地球运动等 .例:有一个名叫谷神的小行星( 质量为m=1.00×1021kg) ,它的轨道半径是地球绕太阳运动的轨道半径的2.77 倍,则它绕太阳一周所需要的时间为 ()【审题指导】该题中谷神小行星与地球比较公转周期,需明确以下问题:(1)地球的公转周期为 1 年.(2)利用开普勒第三定律求解 .【答案】 D五、天体运动的规律及剖析方法1.天体的运动可近似当作匀速圆周运动:天体虽做椭圆运动,但它们的轨道一般靠近圆 . 中学阶段我们在办理天体运动问题时,为简化运算,一般把天体的运动看作圆周运动来研究,并且把它们视为做匀速圆周运动,椭圆的半长轴即为圆半径 .2. 在办理天体运动时,开普勒第三定律表述为:天体轨道半径r的三次方跟它的公转周期T 的二次方的比值为常数,据此可知,绕同一天体运动的多个天体,轨道半径 r 越大的天体,其周期越长 .3.天体的运动依照牛顿运动定律及匀速圆周运动规律,与一般物体的运动在应用这两个规律上没有差别 .特别提示1.关于同一中心天体的不一样行星 k 的数值相同,关于不一样的中心天体的行星 k 的数值不一样 .2. 公式经常用于比较不一样行星周期或半径.例:飞船沿半径为 R的圆周绕地球运动,其周期为 T. 假如飞船要返回地面,可在轨道上某点 A 处,将速率降低到适合数值,从而使飞船沿着以地心为焦点的椭圆轨道运动,椭圆和地球表面在B 点相切,如图 6-1-2 所示 . 假如地球半径为 R0,求飞船由 A点运动到 B 点所需要的时间规律总结:开普勒第三定律的应用应用开普勒第三定律可剖析行星的周期、半径,应用时可按以下步骤剖析:1.第一判断两个行星的中心天体能否相同,只有对同一此中心天体开普勒第三定律才成立 .2.明确题中给出的周期关系或半径关系 .3.依据开普勒第三定律列式求解 .高中美术鉴赏《事死如事生──古代陵墓雕塑》教课设计教课目的1、认识中国古代大型雕塑的遗存。

行星的运动教案设计

行星的运动教案设计

一、教学目标1. 让学生了解行星的运动特点和规律。

2. 使学生掌握开普勒定律及其在行星运动中的应用。

3. 培养学生运用物理知识解决实际问题的能力。

二、教学内容1. 行星的运动特点2. 开普勒定律3. 行星运动规律的应用三、教学重点与难点1. 教学重点:行星的运动特点,开普勒定律,行星运动规律的应用。

2. 教学难点:开普勒定律的推导和应用。

四、教学方法1. 采用问题驱动法,引导学生探究行星运动的规律。

2. 利用多媒体动画演示行星运动,增强学生直观感受。

3. 案例分析法,分析行星运动在现实生活中的应用。

五、教学过程1. 引入新课:通过讲解行星的运动特点,激发学生兴趣。

2. 讲授行星的运动特点:介绍行星运动的规律,如椭圆轨道、面积速率恒定等。

3. 讲解开普勒定律:阐述开普勒第一、第二、第三定律的定义及其推导过程。

4. 应用开普勒定律分析行星运动:举例说明开普勒定律在行星运动中的应用。

5. 分析行星运动在现实生活中的应用:介绍行星运动在航天、地球科学等领域的应用。

6. 课堂互动:学生提问、讨论,解答疑惑。

行星的运动教案设计一、教学目标1. 使学生了解开普勒定律及其对行星运动规律的描述。

2. 让学生通过观察和分析,掌握行星运动的规律。

3. 培养学生的科学探究能力和团队协作精神。

二、教学内容1. 开普勒定律的描述和解释。

2. 行星运动的规律。

3. 行星运动规律在现实生活中的应用。

三、教学重点与难点1. 教学重点:开普勒定律的内容及其对行星运动的解释。

2. 教学难点:开普勒定律的推导和应用。

四、教学方法1. 采用问题驱动法,引导学生探究行星运动的规律。

2. 利用多媒体动画演示行星运动,增强学生直观感受。

3. 案例分析法,分析行星运动在现实生活中的应用。

五、教学过程1. 引入新课:通过讲解行星的运动特点,激发学生兴趣。

2. 讲授行星的运动特点:介绍行星运动的规律,如椭圆轨道、面积速率恒定等。

3. 讲解开普勒定律:阐述开普勒定律的内容,引导学生理解开普勒定律对行星运动的解释。

第1节 行星的运动 教学设计

第1节 行星的运动 教学设计

第七章万有引力与宇宙航行第1节行星的运动[学习目标]1.了解人类对行星运动规律的认识历程.2.知道开普勒定律的内容.3.能用开普勒定律分析一些简单的行星运动问题.知识点1地心说与日心说1.地心说:地球是宇宙的中心,且是静止不动的,太阳、月亮以及其他行星都绕地球运动.2.日心说:太阳是宇宙的中心,且是静止不动的,地球和其他行星都绕太阳运动.3.局限性:都把天体的运动看得很神圣,认为天体的运动必然是最完美、最和谐的匀速圆周运动,而与丹麦天文学家第谷的观测数据不符.知识点2开普勒定律1.开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上.2.开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等.3.开普勒第三定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.其表达式为a3T2=k,其中a是椭圆轨道的半长轴,T是行星绕太阳公转的周期,k是对所有行星都相同的常量.[判一判](1)各行星围绕太阳运动的速率是不变的.()(2)开普勒定律仅适用于行星绕太阳的运动.()(3)行星轨道的半长轴越长,行星的公转周期越长.()(4)可近似认为地球围绕太阳做圆周运动.()(5)行星绕太阳运动一周的时间内,它与太阳的距离是不变的.()(6)公式a3T2=k,只适用于轨道是椭圆的运动.()提示:(1)×(2)×(3)√(4)√(5)×(6)×[想一想](1)请利用你学习的知识分析哪个小孩说得更有道理?(2)如何理解开普勒第三定律中的常量k?提示:(1)第二个小孩说得更有道理,因为地球有绕地轴的自转和绕太阳的公转,地球每天自转一周,因此坐在家中的小孩相对“家”虽然没有动,但随地球旋转了一周,路程大约是8万里.(2)当行星绕太阳运行时,虽然轨道半径和周期各不相同,但是k=a3T2相同,常量k与行星无关,但与中心天体有关.中心天体不同,常量k一般也不相同,即k值是由中心天体决定的,与环绕天体无关.例如卫星绕地球运行的k值与行星绕太阳运行的k值不同,k不是一个普适常量.总结一下就是:①对同一中心天体,k值不变.②对不同的中心天体,k值不同.③k值大小由中心天体的质量决定.1.(对开普勒定律的理解)关于行星的运动,下列说法正确的是()A.关于行星的运动,早期有“地心说”与“日心说”之争,“日心说”理论是完美无缺的B.所有行星围绕太阳运动的轨道都是椭圆,且近日点速度小,远日点速度大C.开普勒第三定律r3T2=k,式中k的值仅与中心天体的质量有关D.卫星围绕行星运动不满足开普勒第三定律解析:选 C.地心说认为地球是宇宙的中心,其他天体都绕地球运行;日心说认为太阳是宇宙的中心,所有天体都绕太阳运行.不论是日心说还是地心说,在研究行星运动时都是有局限性的,A错误;根据开普勒行星运动定律,所有行星围绕太阳运动的轨道都是椭圆,且近日点速度大,远日点速度小,B错误;开普勒第三定律r3T2=k,式中k的值仅与中心天体的质量有关,C正确;卫星围绕行星运动也满足开普勒第三定律,D错误.2.(对开普勒定律的理解)关于开普勒行星运动定律,下列说法不正确的是()A.所有行星围绕太阳的运动轨道都是椭圆,太阳处在椭圆的一个焦点上B.对于任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积C.行星在近日点的速率小于在远日点的速率D.对于开普勒第三定律a3T2=k,k值是与a和T均无关的值解析:选C.由开普勒第一定律知A正确;由开普勒第二定律可知,太阳系的任一行星与太阳的连线在相等时间内扫过的面积相等,由于行星在近日点与太阳的连线短,则运行速率必然大,故B正确,C错误;由开普勒第三定律可知,D正确.3.(对开普勒第三定律的理解)(多选)对于开普勒第三定律的公式a3T2=k,下列说法正确的是()A.公式只适用于轨道是椭圆的运动B.式中的k值,对于所有行星都相等C.式中的k值,只与中心天体有关,与绕中心天体旋转的行星无关D.该公式也适用于围绕地球运行的所有卫星解析:选CD.圆是椭圆的特例,故公式既然适用于椭圆轨道的卫星,也就适用于圆轨道的行星,但此时公式中的a为轨道半径,故A错误;比例系数k是一个由中心天体决定而与行星无关的常量,但不是恒量,不同的星系中,k值不同,即只要是围绕同一中心天体运行的不同天体,公式都适用,包括以地球为中心天体的系统,故B错误,C、D正确.4.(开普勒第三定律的应用)阋神星是一个已知最大的属于柯伊伯带及海王星外天体的矮行星,因观测估算比冥王星大,在公布发现时曾被其发现者和NASA等组织称为“第十大行星”.若将地球和阋神星绕太阳的运动看作匀速圆周运动,它们的运行轨道如图所示.已知阋神星绕太阳运行一周的时间约为557年,设地球绕太阳运行的轨道半径为R,则阋神星绕太阳运行的轨道半径约为()A.3557R B.557RC.35572R D.5573R解析:选C.由开普勒第三定律R3地T2地=r3阋T2阋,得r阋=35572R,C正确.探究一对开普勒定律的理解【情景导入】1.图甲是地球绕太阳公转及四季的示意图,由图可知地球在春分日、夏至日、秋分日和冬至日四天中哪一天绕太阳运动的速度最大?哪一天绕太阳运动的速度最小?2.图乙是“金星凌日”的示意图,观察图中地球、金星的位置,地球和金星哪一个的公转周期更长?提示:1.冬至日;夏至日.由题图甲可知,冬至日地球在近日点附近,夏至日在远日点附近,由开普勒第二定律可知,冬至日地球绕太阳运动的速度最大,夏至日地球绕太阳运动的速度最小.2.地球.由题图乙可知,地球到太阳的距离大于金星到太阳的距离,根据开普勒第三定律可得,地球的公转周期更长一些.1.开普勒第一定律解决了行星的轨道问题行星的轨道都是椭圆,如图甲所示.不同行星绕太阳运动的椭圆轨道是不同的,太阳处在椭圆的一个焦点上,如图乙所示,即所有轨道都有一个共同的焦点——太阳.因此开普勒第一定律又叫轨道定律.2.开普勒第二定律解决了行星绕太阳运动的速度大小问题(1)如图所示,如果时间间隔相等,由开普勒第二定律知,面积S A=S B,可见离太阳越近,行星在相等时间内经过的弧长越长,即行星的速率越大.因此开普勒第二定律又叫面积定律.(2)近日点、远日点分别是行星距离太阳的最近点、最远点.同一行星在近日点速度最大,在远日点速度最小.3.开普勒第三定律解决了行星公转周期的长短问题(1)如图所示,由a3T 2=k知椭圆轨道半长轴越长的行星,其公转周期越长,因此第三定律也叫周期定律.常量k与行星无关,只与太阳有关.(2)该定律不仅适用于行星绕太阳的运动,也适用于卫星绕地球的运动,其中常量k与卫星无关,只与地球有关,也就是说k值大小由中心天体决定.【例1】火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()A.太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C.火星与木星公转周期之比的二次方等于它们轨道半长轴之比的三次方D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积[解析]根据开普勒行星运动定律,火星和木星沿各自的椭圆轨道绕太阳运行时,太阳位于椭圆的一个焦点上,A错误;行星绕太阳运行的轨道不同,周期不同,运行速度大小也不同,B错误;火星与木星运行的轨道半长轴的立方与周期的平方之比是一个常量,a3火T2火=a3木T2木=k,⎝⎛⎭⎪⎫a火a木3=⎝⎛⎭⎪⎫T火T木2,C正确;火星与太阳连线在相同时间内扫过的面积相等,木星与太阳连线在相同时间内扫过的面积相等,但这两个面积不相等,D错误.[答案] C[针对训练1](多选)如图所示,两质量相等的卫星A、B绕地球做匀速圆周运动,用R、T、v、S分别表示卫星的轨道半径、周期、速度、与地心连线在单位时间内扫过的面积.下列关系式正确的有()A.T A>T B B.v A>v BC.S A=S B D.R3AT2A=R3BT2B解析:选AD.根据开普勒第三定律r3T2=k知,轨道半径越大,周期越大,所以T A>T B,故A、D正确;由v=2πrT知,v Av B=R A T BR B T A=R AR B×R3BR3A=R BR A<1,即v B>v A,故B错误;根据开普勒第二定律可知,应是同一卫星与地心连线在单位时间内扫过的面积相等,故C错误.探究二开普勒定律的应用【情景导入】(1)太阳每天东升西落,这一现象是否说明太阳绕着地球运动呢?为什么?(2)行星m绕恒星M运动情况的示意图如图所示,则在A、B、C、D四个位置中,速度最大的是哪个位置?行星m从A运行到B过程中做加速运动还是减速运动?提示:(1)不能.太阳是太阳系的中心,地球等行星绕太阳运动.太阳东升西落,是因为地球的自转.(2)A减速运动1.适用范围:天体的运动可近似看成匀速圆周运动,开普勒第三定律既适用于做椭圆运动的天体,也适用于做圆周运动的天体.2.应用(1)知道了行星到太阳的距离,就可以由开普勒第三定律计算或比较行星绕太阳运行的周期.反之,知道了行星的周期,也可以计算或比较其到太阳的距离.(2)知道了彗星的周期,就可以由开普勒第三定律计算彗星轨道的半长轴长度,反之,知道了彗星的半长轴长度也可以求出彗星的周期.3.k值:表达式a3T2=k中的常数k,只与中心天体的质量有关,如研究行星绕太阳运动时,常数k只与太阳的质量有关,研究卫星绕地球运动时,常数k只与地球的质量有关.【例2】(多选)如图所示,对开普勒第一定律的理解,下列说法正确的是()A.在行星绕太阳运动一周的时间内,它到太阳的距离是不变化的B.在行星绕太阳运动一周的时间内,它到太阳的距离是变化的C.某个行星绕太阳运动的轨道一定是在某一固定的平面内D.某个行星绕太阳运动的轨道一定不在一个固定的平面内[解析]由开普勒第一定律可知:行星绕太阳运动的轨道是椭圆,有时远离太阳,有时靠近太阳,故它到太阳的距离是变化的,A错误,B正确;行星围绕着太阳运动,由于受到太阳的引力作用而被约束在速度与引力所决定的平面内一定的轨道上,C正确,D错误.[答案]BC【例3】某行星绕一恒星运行的椭圆轨道如图所示,E和F是椭圆的两个焦点,O是椭圆的中心,行星在B点的速度比在A点的速度大.则该恒星位于()A.O点B.B点C.E点D.F点[解析]根据开普勒第一定律,恒星应该位于椭圆的焦点上,故A、B错误;根据开普勒第二定律,对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积,则行星在离恒星较近的位置速率较大,在远离恒星的位置速率较小,因为行星在B点的速度比在A点的速度大,则恒星位于E点,故C正确,D错误.[答案] C【例4】天文学家观察哈雷彗星的周期为76年,到太阳最近的距离为8.9×1010 m,试根据开普勒第三定律计算哈雷彗星到太阳最远的距离.太阳系的开普勒常量k可取3.354×1018 m3/s2.[解析]由开普勒第三定律知a3T2=k,所以a=3kT2=33.354×1018×(76×365×24×3 600)2m≈2.68×1012 m,彗星到太阳最远的距离为2a-8.9×1010m=(2×2.68×1012-8.9×1010)m≈5.27×1012 m.[答案] 5.27×1012 m[针对训练2]地球绕太阳运动的轨道是椭圆,因而地球与太阳之间的距离随季节变化.若认为冬至这天地球离太阳最近,夏至最远.则下列关于地球在这两天绕太阳公转时速度大小的说法中正确的是()A.地球公转速度是不变的B.冬至这天地球公转速度大C.夏至这天地球公转速度大D.无法确定解析:选B.冬至这天地球与太阳的连线短,夏至长.根据开普勒第二定律,要在相等的时间内扫过相等的面积,则在相等的时间内,冬至时地球运动的路径要比夏至时长,所以冬至时地球运动的速度比夏至时的速度大,B正确.[针对训练3](多选)如图,海王星绕太阳沿椭圆轨道运动,P为近日点,Q为远日点,M、N为轨道短轴的两个端点,运行的周期为T0.若只考虑海王星和太阳之间的相互作用,则海王星在从P经过M、Q到N的运动过程中()A.从P到M所用的时间等于T0 4B.从Q到N阶段,速率逐渐变大C.从P到Q阶段,角速度逐渐变小D.从M到N所用时间大于T0 2解析:选BCD.由开普勒第二定律用对称性可知,海王星从P运动到Q所用时间与从Q 回到P 所用时间相等,各为T 02,但从近日点到远日点即P 到Q ,海王星的速率逐渐减小、角速度在减小,故从P 到M 与从M 到Q 虽通过的路程相同,但所用的时间一定是从M 到Q 长,即从P 到M 所用时间小于T 04、从M 到Q所用时间大于T 04,再由对称性可知,从Q 到N 速率逐渐变大,从M 到N 的时间一定大于半个周期,A 错误,B 、C 、D 正确.[针对训练4] 已知两个行星的质量m 1=2m 2,公转周期T 1=2T 2,则它们绕太阳运动轨道的半长轴之比为( )A.a 1a 2=12 B.a 1a 2=21 C.a 1a 2=34 D.a 1a 2=134解析:选C.根据开普勒第三定律a 3T 2=k ,又因为公转周期T 1=2T 2,则它们绕太阳运转轨道的半长轴之比为a 1a 2=3T 21T 22=34. [A 级——合格考达标练]1.关于太阳系中各行星的轨道,以下说法错误的是( )A .所有行星绕太阳运动的轨道都是椭圆B .有的行星绕太阳运动的轨道是圆C .不同行星绕太阳运动的椭圆轨道的半长轴是不同的D .不同的行星绕太阳运动的轨道各不相同解析:选B.由开普勒第一定律知八大行星的轨道都是椭圆,A 正确,B 错误;不同行星离太阳远近不同,轨道不同,半长轴也就不同,C 、D 正确.2.关于环绕地球运动的卫星,下列说法正确的是( )A .分别沿圆轨道和椭圆轨道运动的两颗卫星,不可能具有相同的周期B .沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率C .在赤道上空运动的两颗同步卫星,它们的轨道半径有可能不同D .沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合解析:选 B.由开普勒第三定律可知,当圆轨道的直径与椭圆轨道的长轴相等时它们运行周期相等,A 错误;由开普勒第二定律可知,当卫星在沿椭圆轨道运行过程中到地心距离相等时速率相同,B 正确;同步卫星周期一定,由开普勒第三定律可知其轨道半径一定相同,C 错误;沿不同的圆形轨道、椭圆轨道运行的卫星,只要求地心位于轨道平面的圆心或椭圆面的一个焦点上,不同轨道平面可与赤道面成不同夹角、轨迹可有不同交点,故能经过同一点的卫星轨道面不一定重合,D 错误.3.太阳系中有一颗绕太阳公转的行星,到太阳的平均距离是地球到太阳平均距离的4倍,则该行星绕太阳公转的周期是( )A .10年B .2年C .4年D .8年解析:选D.设地球轨道半径为R ,则行星的轨道半径为4R ,根据开普勒第三定律得R 3T 2=(4R )3T 2行,解得:T 行=43T =8T ,地球的公转周期为1年,则说明该行星的公转周期为8年,故D 正确.4.某行星沿椭圆轨道运行,远日点到太阳的距离为a ,近日点到太阳的距离为b ,过远日点时行星的速率为v a ,则过近日点时的速率为( )A.b a v aB . a b v a C.a b v a D . ba v a解析:选C.在行星经过近日点与远日点时各取一段相等的极短时间Δt ,由开普勒第二定律可知,行星与太阳连线在相等时间内扫过的面积相等,则有12b v b Δt =12a v a Δt ,解得v b =a b v a ,C 正确.5.(多选)哈雷彗星绕太阳运动的轨道是比较扁的椭圆,下列说法正确的是( )A .彗星在近日点的速率大于在远日点的速率B .彗星在近日点的角速度大于在远日点的角速度C .彗星在近日点的向心加速度大于在远日点的向心加速度D .若彗星周期为76年,则它的半长轴是地球公转半径的76倍解析:选ABC.根据开普勒第二定律,近日点与远日点相比在相同时间内走过的弧长要大,因此在近日点彗星的线速度(即速率)、角速度都较大,A、B正确;向心加速度a=v2R,在近日点,v大,R小,因此a大,C正确;根据开普勒第三定律r3T2=k,则r31r32=T21T22=762,即r1=35 776r2,D不正确.[B级——等级考增分练]6.火星绕太阳运动的椭圆轨道如图所示,M、N、P是火星依次经过的三个位置,F1、F2为椭圆的两个焦点.火星由M到N和由N到P的过程中,通过的路程相等,火星与太阳中心的连线扫过的面积分别为S1和S2.已知由M→N→P过程中,火星速率逐渐减小.下列判断正确的是()A.太阳位于焦点F2处B.S1<S2C.在M和N处,火星的角速度ωM<ωND.在N和P处,火星的动能E k N<E k P解析:选B.已知由M→N→P过程中,火星速率逐渐减小,根据开普勒第二定律可知,火星和太阳的距离越来越大,即太阳位于焦点F1处,故A错误;火星由M到N和由N到P的过程,通过的路程相等,速率逐渐减小,所以火星由M到N的运动时间小于由N到P的运动时间,根据开普勒第二定律可知单位时间内扫过的面积相等,因此S1<S2,故B正确;因v=ωr,v M>v N>v P,r N>r M,所以火星的角速度ωM>ωN,火星的动能E k N>E k P,故C、D错误.7.我国在西昌卫星发射中心用长征三号乙运载火箭,以“一箭双星”方式成功发射第52、53颗北斗导航卫星.发射过程中,北斗52星的某一运行轨道为椭圆轨道,周期为T0,如图所示,则()A.卫星绕地球飞行的轨道是个椭圆,地球处于椭圆的中心B.卫星在A→B→C的过程中,速率逐渐变大C.卫星在A→B过程所用的时间小于T0 4D.在C点卫星速度有最大值解析:选 C.由开普勒第一定律可知,卫星绕地球飞行的轨道是个椭圆,地球处于椭圆的一个焦点上,故A错误;根据开普勒第二定律可知,卫星在相等的时间内扫过的面积相等,卫星在A→B→C的过程中,卫星与地球的距离增大,速率逐渐变小,在C点卫星速度有最小值,故B、D错误;卫星在A→B→C的过程所用的时间是半个周期,由于这段运动过程中速率逐渐变小,A→B、B→C 的路程相等,所以卫星在A→B过程所用的时间小于B→C过程所用的时间,则卫星在A→B过程所用的时间小于T04,故C正确.。

行星的运动教案设计

行星的运动教案设计

一、教案基本信息1. 教案名称:行星的运动教案设计2. 适用年级:八年级3. 学科领域:物理4. 教学时长:45分钟二、教学目标1. 让学生了解行星的运动特点,掌握开普勒定律。

2. 培养学生通过观察、分析、归纳等方法研究物理问题的能力。

3. 激发学生对天文学的兴趣,培养其探索宇宙奥秘的热情。

三、教学内容1. 行星的运动特点2. 开普勒定律的发现3. 开普勒定律的表述4. 行星运动规律的应用5. 太阳系中的行星运动四、教学重点与难点1. 重点:行星的运动特点,开普勒定律的表述及应用。

2. 难点:开普勒第三定律的理解和应用。

五、教学方法1. 采用问题驱动法,引导学生通过观察、分析、归纳来探究行星的运动规律。

2. 利用多媒体课件,展示行星运动的动态过程,增强学生的直观感受。

3. 结合历史背景,讲述开普勒定律的发现过程,激发学生的学习兴趣。

4. 开展小组讨论,培养学生合作探究的能力。

六、教学步骤1. 引入新课:通过讲解太阳系行星的运动,引发学生对行星运动特点的好奇心。

2. 探究行星运动特点:让学生观察多媒体课件中的行星运动轨迹,引导学生发现行星运动的规律。

3. 讲解开普勒定律:介绍开普勒定律的发现过程,讲解第一、第二、第三定律的内容。

4. 应用开普勒定律:分析太阳系中行星的运动,让学生运用开普勒定律解释行星的运动规律。

5. 课堂小结:总结本节课所学内容,强调开普勒定律在解释行星运动中的重要性。

七、教学活动1. 观察行星运动轨迹:让学生利用多媒体课件观察不同行星的运动轨迹。

2. 小组讨论:学生分组讨论行星运动的规律,分享各自的发现。

3. 展示成果:各小组派代表向全班同学展示讨论成果,讲解行星运动的规律。

4. 思维导图:学生绘制思维导图,总结开普勒定律的内容及应用。

八、作业布置1. 复习开普勒定律的内容,理解行星运动的规律。

2. 结合教材,思考开普勒定律在实际中的应用,如地球的公转等。

3. 预习下一节课内容,了解行星运动的其他解释模型。

行星的运动》教学设计

行星的运动》教学设计

《行星的运动》教学设计【设计思想】本节课内容是该章第一单元的开篇。

这一单元教材在安排上按照科学探究的思路展开,重在介绍万有引力定律建立的过程,这是一次生动的科学思维和科学方法的教育。

从古代朴素的唯物主义思想,到天文学家对行星运动大量的观察资料;从研究行星运动规律,到猜想行星运动的原因;最终得到万有引力定律,无处不在体现着科学探索的精神与方法。

这节内容在第一单元教学中起到开门砖的作用。

对学生来说本节内容是抽象的、陌生的,甚至无法去感知。

对天体的运动充满好奇又觉得非常神秘而不易理解。

所以我们必须去引导学生了解人们对星体运动认识的发展过程,从“日心说”和“地心说”的内容到其两者之间的争论,从第谷的精心观测到开普勒的数学运算,在学生整体感知的过程中引导学生体会这些大师们的思路、方法及他们的一丝不苟的科学精神,并激发他们热爱科学、探索真理的求知热情。

本节内容包括“地心说”“日心说”的内容、开普勒定律的内容和天体运动的近似处理等知识点。

【教学目标】一、知识目标1.了解“地心说”和“日心说”两种不同的观点及发展过程;2.知道开普勒对行星运动的描述;3.知道天体运动的近似处理方法。

二、能力目标1.培养学生在客观事物的基础上通过分析、推理提出科学假设,再经过实验验证的正确认识事物本质的思维方法;2.通过学习,培养学生善于观察、善于思考和提高实际应用的能力;3.通过体验性活动提高学生实践的意识。

三、德育目标1.通过开普勒行星运动定律的建立过程,渗透科学发现的方法论教育,建立科学的宇宙观和价值观;2.激发学生热爱科学、探索真理的求知热情;3.培养学生交流合作以及评价探究结果的素养。

【教学重点】1.“日心说”的建立过程。

2.行星运动的规律。

【教学难点】1.学生对天体运动缺乏感性认识。

2.开普勒行星运动规律的应用。

【教学方法】1.“日心说”建立的教学──采用对比、反证及讲授法。

2.行星运动规律的建立──采用挂图、放录像资料或用CAI课件模拟行星的运动情况。

高中物理必修2《行星的运动》教学设计

高中物理必修2《行星的运动》教学设计

普通高中课程标准实验教科书(义务教育课程标准实验教科书)《物理》必修(必修)2§6.1《行星的运动》教学设计班级备课人备课时间年月日【教学目标】知识与技能1.知道地心说和日心说的基本内容。

2.学习开普勒三大定律,能用三大定律解决问题。

3.了解人类对行星的认识过程是漫长复杂的,真是来之不易的。

过程与方法1.体会精确的观察记录在科学研究中的重要地位。

2.对过对开普勒三定律的学习了解天体运动的规律。

情感态度与价值观1.通过托勒密、哥白尼、第谷·布拉赫、开普勒等几位科学家对行星运动的不同认识,了解人2.类认识事物本质的曲折性并加深对行星运动的理解。

3.了解伽利略等科学家为科学献身的精神,学习前人对问题一丝不苟、孜孜以求的精神。

【教学重点】开普勒行星运动定律【教学难点】对开普勒行星运动定律的理解和应用【课型】新课【教具准备】多媒体投影仪【课时安排】2课时教案(教学过程)一、知识结构近日点 远日点二、教学步骤一、引入师:同学们,在前面的学习中我们研究了地面上物体的运动,从今天开始我们来研究天空中的运动:天体运动。

师:自古以来,当人们仰望星空时,天空中壮丽璀璨的现象便吸引了他们的注意。

智慧的头脑开始探索星体运动的奥秘。

直到二十一世纪的今天,科学迅猛发展,人类终于能够飞出地球,登上月球。

还能飞向万籁俱寂的茫茫太空,探索更遥远的星球。

但你可知道:人类走到这一步经过了多少艰辛曲折?在对行星规律的认识过程里人们经历了地心说、日心说及到开普勒定律。

二、地心说古希腊的天文学家和哲学家通过直接的感性认识,认为地球是宇宙的中心,是静止不动的,太阳月亮等各星体都围绕地球做简单的完美的圆周运动。

因为地心说符合人们的直接经验,如:太阳从东边升起,从西边落下;同时也符合强大的宗教神学关于地球是宇宙中心的认识,故地心说一度占据了统治地位。

代表人物:亚里士多德最先提出,古希腊的托勒密加以完善的三、日心说随着世界航海事业的发展,人们希望借助星星的位置为船队导航,因而对行星的运动观测越来越精确.再加上第谷等科学家经过长期观测及记录的大量的观测数据,用托勒密的“地心说”模型很难得出完美的解答.当时,哥伦布和麦哲伦的探险航行已经使不少人相信地球并不是一个平台,而是一个球体,哥白尼就开始推测是不是地球每天围绕自己的轴线旋转一周呢?他假设地球并不是宇宙的中心,它与其他行星都是围绕着太阳做匀速圆周运动.这就是“日心说”的模型。

《行星的运动》教学设计

《行星的运动》教学设计
课题
行星的运动




科学观念
(1)了解人类对行星运动规律的认识历程。
(2)了解观察的方法在认识行星运动规律中的作用。
科学思维
(1)行星运动模型的建立。
(2)通过托勒密、哥白尼、开普勒等几位科学家对行星运动的不同认识、了解人类认识事物本质的曲折性并加深对行星运动的理解.
(3)具有使用科学证据的意识和评估科学证据的能力,有定性到定量对行星三定律进行描述、解释。
土星
1.43×1012
9.30×108
天王星
2.87×1012
2.66×109
海王星
4.50×1012
5.20×109
(通过数据验证开普勒第三定律的正确性,并理解k是一个与行星无关的常量)
思考与交流:k是一个与行星无关的常量,那它可能跟谁有关?(每个小组算一组数据)
教师:实际上,多数行星的轨道与圆十分接近(展示表格),
感悟观察在科学研究中的重要性。
体会科学家们实事求是、尊重客观事实、不迷信权威、敢于坚持真理和勇于探索的科学态度和科学精神。
感悟人们对行星ห้องสมุดไป่ตู้动的认识过程是漫长复杂的,真理是来之不易的。
学习任务3:学习开普勒行星运动定律
学生阅读回答相关问题:第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
下面有请各个小组成员把课前收集的关于对天体运动研究的重要代表人物资料(各自的研究结果、所持观点及依据)进行小组讨论并选出一位同学给大家讲讲他们的相关情况。.
对学生收集材料进行点评(表扬、补充);
阅读科学足迹,托勒密:地心宇宙;哥白尼:拦住了太阳,推动了地球
问题探究:
1.为什么日心学说占统治地位的时间较长?

行星的运动教案

行星的运动教案

行星的运动教案一、教学目标:1. 知识与技能:了解行星的运动规律,能够描述地球的自转与公转运动以及月球的绕地球运动。

2. 过程与方法:通过观察和实验证明地球的自转与公转运动以及月球的绕地球运动。

3. 情感态度价值观:培养学生对科学的兴趣,了解地球的美丽与神奇。

二、教学重难点:1. 了解行星的自转与公转运动。

2. 了解月球的绕地球运动三、教学过程:1. 导入:通过播放一段关于夜晚星空的视频,引起学生对行星运动的思考。

2. 概念讲解:(1)自转运动:讲解地球的自转运动,即地球以西向东自转一周所花的时间为一天,造成昼夜交替的现象。

(2)公转运动:讲解地球的公转运动,即地球绕太阳公转的运动,造成四季变化的现象。

(3)绕地运动:讲解月球绕地球运动的规律,即月球以逆时针方向绕地球公转一周所花的时间为一个月。

3. 实验探究:(1)实验一:利用一个篮球表示地球,一颗橙表示太阳,一个小球表示月球,橙球固定在教室中央,篮球在场地上自转,同时绕橙球公转,小球围绕篮球绕圈。

通过实验观察,学生发现地球自转一周为一天,地球公转一周为一年,月球绕地球一周为一个月。

(2)实验二:利用一个手电筒固定表示太阳,一个旋转台表示地球,一个小球表示月球。

通过手电筒照射地球,月球围绕地球运动,学生观察现象并记录下来。

4. 归纳总结:(1)与学生共同总结地球的自转与公转运动以及月球的绕地运动规律,澄清概念和规律。

(2)巩固知识点,解答学生的问题。

5. 练习与拓展:(1)让学生画出地球的自转与公转运动的示意图。

(2)让学生编写一首歌曲或小诗来表达地球的自转与公转运动,激发学生的创造力。

6. 课堂小结:通过本堂课的学习,学生们了解了行星的运动规律,掌握了地球的自转与公转运动以及月球的绕地运动。

同时通过实验探究,培养了学生科学实验的能力,激发了他们对科学的兴趣。

7. 课后作业:要求学生结合自己的实际观察,写一篇关于日月星辰运动的观察日记。

6.1行星的运动(教案)

6.1行星的运动(教案)

6.1 行星的运动(一)教学目标1、指示目标:了解人类对人类对行星运动规律的认识过程,知道开普勒三大定律2、能力目标:会利用地球的公转周期与公转半径计算任意一个太阳系行星半径的方法3、情感、态度、价值观:学习古人在追求真理时候的执着,研究问题的任性,培养学生健全的人格。

(二)教学过程●1、学生阅读书本两分钟,从书上获取信息提问1.古代人对天体运动存在哪些看法?2.“地心说”和“日心说”的观点分别是什么?3.哪种学说统治时间更长?为什么?板书:一、历史回顾板书:1、地心说资料:地心说的起源很早,最初由古希腊学者欧多克斯提出,经亚里士多德完善,又让托勒密进一步发展成为“地心说”。

在16世纪“日心说”创立之前的1000多年中,“地心说”一直占统治地位。

亚里士多德的地心说认为,宇宙是一个有限的球体,分为天地两层,地球位于宇宙中心,所以日月围绕地球运行,物体总是落向地面。

地球之外有9个等距天层,由里到外的排列次序是:月球天、水星天、金星天、太阳天、火星天、木星天、土星天、恒星天和原动力天,此外空无一物。

上帝推动了恒星天层,才带动了所有天层的运动。

人类居住的地球,则静静地屹立在宇宙中心。

地球是宇宙的中心。

地球是静止不动的,太阳、月亮以及其它行星都绕地球运动。

统治很长时间的原因:①符合人们的日常经验;②符合宗教地球是宇宙的中心的说法。

托勒密的“地心说”体系地心说是长期盛行于古代欧洲的宇宙学说。

它最初由古希腊学者欧多克斯在公元前三世纪提出,后来经托勒密(90-168)进一步发展而逐渐建立和完善起来。

板书:代表人物:托勒密(90-168)板书2、日心说太阳是静止不动的,地球和其它行星都绕太阳转动。

哥白尼的“日心说”体系约在公元前260年,古希腊天文学家阿利斯塔克最早提出了日心说的观点。

但真正发展并完善日心说的,是来自波兰的哥白尼(1473-1543)。

板书:代表人物:哥白尼(1473-1543)资料:1.地球是球形的。

行星的运动教案

行星的运动教案

行星的运动教案【篇一:行星的运动教学设计】第六章万有引力定律(一、行星的运动)教学目的:1.了解地心说和日心说两种不同的观点2.知道开普勒对行星运动的描述教学重点:知道开普勒对行星的描述教学过程:引入:在前面我们学习了力和运动,并且讲述了力和运动的关系:动力学。

介绍了几种常见的物体运动,本章将介绍一种新的力-------万有引力和一种新的运动实例--------行星的运动。

一地心说与日心说1.让同学自己阅读,找出地心说和日心说的观点:地心说:认为地球是宇宙的中心。

地球的静止不动的,太阳、月亮以及其它行星都绕地球运动。

日心说:认为太阳是静止不动的,地球和其它行星都绕太阳动动2.为什么地心说会统治人们很久时间。

3.古人是如何看待天体的运动:古人认为天体的运动是最完美、和谐的匀速圆周运动。

4.谁首先对天体的匀速圆周运动的观点提出怀疑:开普勒二开普勒三定律开普勒通过四年多的刻苦计算,先后否定了十九种设想,最后了发现星运行的轨道不是圆,而是椭圆。

并得出了开普勒两条定律:开普勒第一定律:所有行星分别在大小不同的椭圆轨道上围绕太阳运动,太阳是在这些椭圆的一个焦点上。

开普勒第二定律:太阳和行星的联线在相等的时间内扫过相等的面积如图:如果时间间隔相等,即t2-t1=t4-t3那么面积a=面积b开普勒第三定律:所有行星的椭圆轨道的半长轴的三次方跟公转周期的平方的比值都相等。

r/t=k (k是一个与行星或卫星无关的常量,但不同星球的行星或卫星32k值不一定相等)其中m为行星质量,r为行星轨道半径,即太阳与行星的距离。

也就是说,太阳对行星的引力正比于行星的质量而反比于太阳与行星的距离的平方。

而此时牛顿已经得到他的第三定律,即作用力等于反作用力,用在这里,就是行星对太阳也有引力。

同时,太阳也不是一个特殊物体,它用语言表述,就是:太阳与行星之间的引力,与它们质量的乘积成正比,与它们距离的平方成反比。

这就是牛顿的万有引力定律。

物理教案-行星的运动

物理教案-行星的运动

一、教学目标1. 让学生了解行星的运动特点和规律。

2. 使学生掌握开普勒定律及其在行星运动中的应用。

3. 培养学生运用物理知识解决实际问题的能力。

二、教学内容1. 行星的运动特点2. 开普勒定律3. 行星运动的规律三、教学重点与难点1. 教学重点:开普勒定律,行星运动的规律。

2. 教学难点:开普勒定律的理解和应用,行星运动的数学表达。

四、教学方法1. 采用问题驱动法,引导学生探究行星运动的规律。

2. 利用多媒体演示,增强学生对行星运动现象的直观认识。

3. 案例分析法,分析实际问题,提高学生运用物理知识解决实际问题的能力。

五、教学过程1. 导入:通过简要介绍行星的运动特点,激发学生对行星运动规律的兴趣。

2. 新课导入:介绍开普勒定律,引导学生理解行星运动的规律。

3. 课堂讲解:详细讲解开普勒定律的数学表达和应用,分析行星运动的规律。

4. 案例分析:分析实际问题,让学生运用开普勒定律解决行星运动问题。

5. 课堂练习:布置相关练习题,巩固学生对开普勒定律和行星运动规律的理解。

6. 总结与拓展:对本节课内容进行总结,提出课后思考题,引导学生深入研究行星运动。

六、教学评价1. 评价学生对开普勒定律和行星运动规律的理解程度。

2. 评估学生运用物理知识解决实际问题的能力。

3. 考查学生在课堂练习中的表现,以及对知识的掌握和运用。

七、课后作业1. 复习开普勒定律和行星运动规律,总结相关知识点。

2. 完成课后练习题,巩固所学知识。

3. 选择一个实际问题,运用开普勒定律进行分析和解答。

八、教学反思在课后,教师应反思本节课的教学效果,包括学生的参与度、理解程度和反馈。

根据学生的实际情况,调整教学方法和策略,以便更好地满足学生的学习需求。

九、教学拓展1. 介绍其他行星运动的研究成果,如伽利略、牛顿等科学家的贡献。

2. 探讨行星运动在现代天文学和航天技术中的应用。

3. 引导学生关注天文现象,培养学生的观测兴趣和科学素养。

行星的运动教案

行星的运动教案

行星的运动教案一、教学目标1.了解行星的基本概念和分类;2.掌握行星的运动规律和运动轨迹;3.理解行星运动的原因和影响;4.能够运用所学知识解释天文现象。

二、教学内容1. 行星的基本概念和分类行星是指绕太阳运行的天体,按照距离太阳的远近可以分为内行星和外行星。

内行星包括水星、金星、地球和火星,外行星包括木星、土星、天王星、海王星和矮行星等。

2. 行星的运动规律和运动轨迹行星的运动规律可以用开普勒三定律来描述:1.第一定律:行星绕太阳运动的轨道是一个椭圆,太阳位于椭圆的一个焦点上;2.第二定律:行星在其轨道上的速度是不断变化的,当行星离太阳较远时速度较慢,当行星靠近太阳时速度较快;3.第三定律:行星绕太阳公转的周期的平方与行星到太阳平均距离的立方成正比。

3. 行星运动的原因和影响行星运动的原因是由于太阳的引力作用,行星在太阳的引力作用下绕太阳公转。

行星运动的影响包括:1.行星的运动速度和轨道大小影响着行星的季节变化;2.行星的运动轨迹和周期影响着行星的气候和天文现象;3.行星的运动规律和轨道形状影响着行星的探测和研究。

4. 运用所学知识解释天文现象通过对行星运动规律的了解,可以解释很多天文现象,例如:1.行星的视运动和逆行现象;2.行星的日、月、星合和月食、日食现象;3.行星的自转和磁场现象等。

三、教学方法本课程采用讲授、演示和实验相结合的教学方法,通过讲解行星的基本概念和分类,演示行星的运动规律和运动轨迹,以及实验观测行星的运动现象,让学生深入理解行星的运动规律和影响。

四、教学步骤1. 行星的基本概念和分类讲解行星的基本概念和分类,让学生了解行星的基本特征和分类方法。

2. 行星的运动规律和运动轨迹演示行星的运动规律和运动轨迹,让学生了解行星的运动规律和轨道形状。

3. 行星运动的原因和影响讲解行星运动的原因和影响,让学生了解行星运动的原理和影响。

4. 实验观测行星的运动现象通过实验观测行星的运动现象,让学生亲身体验行星的运动规律和影响。

《行星的运动》教案2.doc

《行星的运动》教案2.doc

《行星的运动》教案一、教学目标(一)知识与技能1、知道地心说和日心说的基本内容。

2、知道所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

3、知道所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,且这个比值与行星的质量无关,但与太阳的质量有关。

4、理解人们对行星运动的认识过程是漫长复杂的,真理是来之不易的。

(-)过程与方法通过托勒密、哥白尼、第谷•布拉赫、开普勒等几位科学家对行星运动的不同认识,了解人类认识事物本质的曲折性并加深对行星运动的理解。

(三)情感态度与价值观1、澄清对天体运动神秘模糊的认识,掌握人类认识自然规律的科学方法。

2、感悟科学是人类进步不竭的动力。

二、教学重点开普勒行星运动定律、对开普勒行星运动定律的理解和应用三、教学难点教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。

四、课时安排1课时五、教学准备多媒体课件、粉笔、图片。

六、教学过程新课导入:教师活动:在浩瀚的宇宙中有着无数大小不一、形态各异的天体。

白天我们沐浴着太阳的光辉,夜晚,仰望苍穹,繁星闪烁,美丽的月亮把我们带入无限的遐想中。

由这些天体所组成的宇宙始终是人们渴望了解又不断探索的领域。

经成百上千年的探索,伟大的科学家们对它已经有了一些初步的了解。

本节我们就共同来学习前人所探索到的行星的运动情况。

新课讲解:一、古人对天体运动的看法及发展过程教师活动:引导学生阅读教材第一段,投影出示以下提纲:1、古代人们对天体运动存在哪些看法?2、什么是"地心说",什么是“日心说” ?3、哪种学说占统治地位的时间较长?4、两种学说争论的结果是什么?学生活动:阅读课文,并从课文中找出相应,的答案。

学生代表发言。

1、在古代,人们对于天体的运动存在着地心说和日心说两种对立的看法。

2、“地心说”认为地球是宇宙的中心,是静止不动的,太阳,月亮以及其他行星都绕地球运动;“日心说”认为太阳是宇宙的中心,地球,月亮以及其他行星都在绕太阳运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章万有引力与航天
第一节行星的运动
陕西省洛南中学高一物理马英锋
教学目标:
知识与技能:
1、了解地心说和日心说的基本观点和代表人物;
2、理解开普勒行星运动三大定律的基本内容;
3、学会利用开普勒行星运动定律解决相关物理问题。

过程与方法:
1、通过托勒密、哥白尼、第谷、开普勒对行星运动规律的不同认识,了
解人类对行星运动规律的不断深入的理解和研究。

2、通过对学生自主探究和合作讨论理解行星运动的基本规律和高中物理处理行星运动的模型。

情感态度与价值观:
1、体会科学家探索天体运动的过程,培养学生实事求是的科学态度。

2、由第谷和开普勒的探索和分析过程,建立科学严谨的实验态度和科学
有效的实验方法。

教学重点:
开普勒行星运动三大定律。

教学难点:
对开普勒行星运动定律的理解和应用。

新课引入:
一、人类对行星运动规律的认识
多媒体展示图片:展示漫天繁星的天空图片,将学生引入到行星运动规律的认识当中。

学生自主阅读教材第 33 页,回答相关问题,了解地心说和日心说的基本理论、其代表人物以及局限性。

1.托勒密所代表的观点是什么?他的观点的局限性体现在哪?
2.哥白尼提出了怎样的观点?他的理论不能解决什么问题?
地心说日心说
代表人物托勒密哥白尼
观点地球是宇宙的中心,是静止不动太阳是宇宙的中心,是静止不动的,太阳、月亮以及其他行星都的,地球和其他行星都绕太阳运
绕地球运动。

动。

局限性不能准确解释行星的逆行现象不能解释是什么维持地球运动二、开普勒行星运动定律
“地心说”和“日心说”都认为天体的运动是最完美的、最和谐的匀速圆周运动。

然而开普勒对第谷的数据进行处理和分析,对“地心说”和“日心说”
提出了质疑,并且发现了新的规律,这就是开普勒行星运动的三大定律。

1、让学生自主探究一年四季的变化,从而揭示出开普勒第一定律。

年份春分夏至秋分冬至
2004 3/21 6/21 9/23 12/21
2005 3/21 6/21 9/23 12/21
2006 3/21 6/21 9/23 12/21 经过分析春夏秋冬四季不是完全的相等,即地球绕太阳的运动不是匀速圆
周运动,经过分析地球绕着太阳的轨道是椭圆轨道。

开普勒第一定律 ( 轨道定律 ) :所有行星绕太阳运动的轨道都是椭圆,太阳处在
椭圆的一个焦点上。

利用 flash 动画展示太阳系中八大行星的运动轨道,启发学生思考图片隐
含的信息。

提示:不同的行星绕太阳的椭圆轨道是不同的。

2、开普勒对第谷的大量的观察数据分析得到了开普勒第二定律。

开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等
的时间内扫过相等的面积。

利用圆周运动线速度的定义来比较近日点的速度和远日点的速度。

提示:近日点的速度大于远日点的速度。

3、给出四种天体运动轨道的半长轴和周期,计算半长轴的立方与周期的平方的
比值。

然后根据结果分析得出自己的结论。

天体半长轴 106 km 周期(天)k( m3 s 2 )
水星 3.36 1018
57.91 87.97
金星108.2 225 3.36 1018
月球0.3844 27.3 1.02 1013
同步卫星0.0424 1 1.02 1013
开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转
周期的二次方的比值都相等。

提示:这个比值的大小只和中心天体的质量有关。

三、行星运动的处理方法:
学生仔细观察教材 P33 页的图片,用直尺测量一下海王星和天王星在轨道
的不同处到太阳中心的距离。

天体右点距离( cm)右点距离( cm)右点距离( cm)右点距离( cm)海王星 2.50 2.50 2.50 2.53
天王星 1.70 1.60 1.50 1.55 学生自己经过分析和讨论,行星运动的轨道的确是椭圆轨道,可是非常接
近圆周。

因此,我们在高中物理中可以近似的用圆周轨道来描述行星运动的规
律。

我们可以将开普勒三大定律改写一下。

1、行星绕太阳的轨道十分接近圆,太阳处在圆心;
2、对于某一行星而言,行星做匀速圆周运动;
3、所有行星轨道半径的三次方与它的公转周期的二次方的比值都相等。

四、作业:
教材第 33 页第 1 题和第 4 题。

五、教学反思:。

相关文档
最新文档