流量计的选型与优缺点分析

合集下载

各种流量计的优缺点和适合的介质

各种流量计的优缺点和适合的介质

各种流量计的优缺点和适合的介质流量计是一种广泛应用于流体工程领域的仪器,用于测量和监测流体的流量。

根据工作原理和结构特点的不同,流量计可以分为多种类型,每种类型都有其独特的优点、缺点和适用介质。

下面将详细介绍几种常见的流量计。

1.机械式流量计机械式流量计是一种基于机械原理测量流体流量的仪器。

最常见的机械式流量计包括涡轮流量计、叶片式流量计和齿轮式流量计等。

(1)涡轮流量计优点:结构简单,易于安装和维护;适用范围广,可用于测量各种液态介质的流量;测量精度高,可达到±1%;响应速度快。

缺点:对流体介质的温度、压力和粘度等参数要求较高;易受颗粒物质的干扰。

适用介质:适用于各种液态介质,如石油、天然气、化工介质等。

(2)叶片式流量计优点:测量精度高,可达到±0.5%;结构简单,价格相对较低;可承受较高的工作压力。

缺点:叶片易受颗粒物与粘度高的介质的磨损;不适用于气体介质;需要一定的直管段来保证测量精度。

适用介质:适用于各种液态介质,如清水、石油和化工介质等。

(3)齿轮式流量计优点:测量精度高,可达到±0.2%;结构简单,工作可靠;适用于高温和高粘度液体的测量。

缺点:对流体介质的温度和粘度等参数要求较高;不适用于气体介质的测量;对颗粒物质敏感。

适用介质:适用于各种液态介质,尤其是粘度较高的液体。

2.电磁式流量计电磁式流量计是利用法拉第电磁感应原理进行测量的仪器,广泛用于液体和气体的流量测量。

优点:可适用于各种导电介质的流量测量;测量范围广,可达到远高于其他流量计的比例;无需添加额外的压力损失装置。

缺点:对被测流体的电导率要求较高;易受磁场干扰。

适用介质:适用于液体和气体,如腐蚀性介质、污水、纯水等。

3.热式流量计热式流量计是通过测量流体对热能的吸收或带走来确定流量的仪器。

优点:对流体介质的温度、压力和粘度要求较低;适用于小流量测量;响应速度快。

缺点:对流体介质的热导率要求较高;易受气泡和颗粒物的干扰。

各种流量计的优缺点及适合的介质

各种流量计的优缺点及适合的介质

各种流量计的优缺点及适合的介质流量计是用来测量介质(液体或气体)流动速度或流量的仪器。

根据其原理和工作方式的不同,可以分为多种不同类型的流量计。

下面将介绍一些常见的流量计,包括其优缺点以及适合的介质类型。

1.管式流量计:管式流量计适用于大流量和腐蚀性介质。

它的优点是结构简单,使用方便,且测量准确。

然而,该类型的流量计容易受到尺寸和形状限制,不适用于需要高精度测量的环境。

2.涡街流量计:涡街流量计适用于液体和气体介质。

它的优点是可测量低于或大于管道直径的流量,且具有较高的精度。

然而,该类型的流量计对介质的粘度和密度变化敏感,容易受到污染和腐蚀的影响。

3.转子流量计:转子流量计适用于中小流量以及液体介质。

它的优点是结构简单,使用方便,且适用于高温和高压环境。

然而,该类型的流量计对介质的粘度和密度变化较为敏感,对流体的脉动和振动也比较敏感。

4.浮子流量计:浮子流量计适用于小流量、低压和液体介质。

它的优点是结构简单,价格低廉,并且适用于粘度较高的流体。

然而,该类型的流量计对流体的侵蚀和污染较敏感,不适用于精度要求较高的场合。

5.磁流量计:磁流量计适用于导电液体介质。

它的优点是非侵入式的设计,不会对流体产生阻力,能够实现较高的精度和范围。

然而,该类型的流量计对介质的电导率敏感,且价格较高。

6.超声波流量计:超声波流量计适用于液体和气体介质。

它的优点是非侵入式的设计,不会对流体产生阻力,且不受介质密度和粘度的影响。

然而,该类型的流量计对管道内部有较强的要求,且价格较高。

总结起来,不同类型的流量计适用于不同的介质和环境条件。

在选择流量计时,需要考虑介质性质、流量范围、精度要求以及成本等因素。

同时,还需要考虑维护和校准流量计的难易程度。

综合考虑这些因素,选择适合的流量计可以确保测量过程的准确性和可靠性。

各种流量计选择的性能特点及要求

各种流量计选择的性能特点及要求

各种流量计选择的性能特点及要求流量计是一种用于测量流体或气体流量的仪器。

不同类型的流量计具有不同的性能特点和要求。

本文将详细介绍几种常见的流量计及其性能特点和要求。

1.转子式流量计转子式流量计是一种常见的机械式流量计。

它通过转子的旋转来测量流体的流速。

该类型的流量计具有以下性能特点和要求:-精度较高:转子式流量计通常具有较高的测量精度,可达到±0.1%-0.5%,适用于需要精确测量的应用。

-大范围测量:转子式流量计的测量范围相对较大,适用于不同流量范围的应用。

-适用于高温、高压介质:转子式流量计通常使用金属材料制成,能够在高温、高压条件下正常工作。

-能耗较低:由于转子式流量计是一种机械式流量计,它不需要外部能源供给,因此能耗较低。

2.涡轮流量计涡轮流量计通过测量在流体中旋转的涡轮的转速来确定流体的流速。

该类型的流量计具有以下性能特点和要求:-精度较高:涡轮流量计的测量精度通常较高,可以达到±0.2%-1%。

-快速响应:涡轮流量计的响应速度非常快,适用于需要快速测量的应用。

-是否适用于高温、高压介质取决于选用的材料:涡轮流量计的工作温度和压力范围取决于所使用的材料。

如使用高温、高压材料制成的涡轮流量计可适用于对高温、高压介质的测量。

-对流体的要求较高:涡轮流量计对流体的粘度和密度有一定要求,对于较大粘度或含有颗粒的流体,需要进行修正计算。

3.电磁流量计电磁流量计通过测量流体中的电磁感应来确定流体的流速。

该类型的流量计具有以下性能特点和要求:-精度较高:电磁流量计通常具有很高的测量精度,可达到±0.25%-0.5%。

-阻塞小:由于电磁流量计没有机械运动部件,所以不存在流体通过的阻塞问题。

-适用于各种导电流体:电磁流量计适用于各种导电流体,不受介质种类的限制。

-对介质的温度、压力要求较高:电磁流量计对介质的温度、压力要求较高,通常需要进行保温、降压等工艺处理。

4.耐压式流量计耐压式流量计通过测量流体通过特定结构的管道或孔隙的流速来确定流体的流速。

质量流量计的优缺点

质量流量计的优缺点

质量流量计的优缺点
1、质量流量计的优点
直接测量介质的质量流量有很高的测量精度,可测量流体范围广泛,包括高粘度介质,含有固形物的浆液,足够密度的中高压气体。

压损小。

由于质量流量计的检测部件都被安装在管子外壁,管子内壁光滑通畅,介质可以顺利通过,压力损失大大减小,同时也减少了管道堵塞风险,便于现场维护。

质量流量计可以直接测量介质的质量流量、密度和温度3个参量,其余参量例如体积流量等都是换算而来。

2、质量流量计的缺点
质量流量计零点不稳定形成零点漂移,影响其精确度的进一步提高,误差分为基本误差和零点不稳定误差两部分。

不能用于测量低密度介质和低压气体,不适合测量两相流介质。

外界振动干扰较为敏感。

为防止外界振动干扰,安装时有固定支架要求。

重量和体积较大,价格较昂贵。

各类流量计工作原理优缺点与用途

各类流量计工作原理优缺点与用途

各类流量计工作原理优缺点与用途流量计是用来测量流体中的流量的仪器。

不同类型的流量计有不同的工作原理、优缺点和用途。

1.扬程罐:工作原理:扬程罐是一种基于液位高度来测量流量的设备。

它利用液位的变化来确定流体的流量。

当流体通过扬程罐时会造成液位变化,通过测量液位变化的速度来计算流体的流量。

优点:扬程罐结构简单,操作方便,适用于一般的低流速流体测量。

缺点:扬程罐不适用于高流速流体,精度有限。

用途:常用于低流速的物料流量测量,如水流量测量、油流量测量等。

2.差压流量计:工作原理:差压流量计是基于流体通过管道时,会产生差压的原理来测量流量。

通过测量流体通过流量计前后的压差来计算流体的流量。

优点:差压流量计精度高,可适用于各种流体和工况。

缺点:价格较高,需要定期校准。

用途:差压流量计适用于各种工况和流体,广泛应用于化工、石油、制药等行业中的流量测量。

3.涡街流量计:工作原理:涡街流量计是通过测量流体通过流量计时,产生的涡街频率和流体流速成正比的原理来测量流量。

利用流体通过流量计时形成的涡街产生的压力脉动,通过传感器将脉动转化为电信号,进而测量流体流速。

优点:具有良好的线性和重复性,可用于各种流体测量。

缺点:对液体含固体颗粒较大的流体不适用。

用途:涡街流量计适用于各种液体和气体的测量,广泛应用于供暖、供水、煤气等行业中的流量测量。

4.磁性流量计:工作原理:磁性流量计通过测量液体中的电磁感应来测量流体的流量。

当液体通过磁性流量计时,会在液体中产生垂直于流体流向的电磁感应,通过测量电磁感应的大小来计算流体流量。

优点:能够测量各种液体和气体,无压力损失。

缺点:对液体的电导率要求较高。

用途:磁性流量计适用于对液体和气体进行流量测量的场合,广泛应用于化工、石油、环保等行业中的流量测量。

5.超声波流量计:工作原理:超声波流量计利用超声波在流体中传播的速度来测量流体的流量。

通过向流体发送超声波信号,测量超声波传播的时间,根据传播时间来计算流体的流速和流量。

常用流量计分类及优缺点分析

常用流量计分类及优缺点分析

常用流量计分类及优缺点分析流量计是用于测量流体介质流量的仪器,广泛应用于工业生产和实验室研究等领域。

根据不同的原理和适用场景,流量计可以分为多种类型。

本文将对常用的流量计分类及其优缺点进行分析。

1.电磁流量计电磁流量计是利用法拉第电磁感应定律来测量导电液体流量的一种流量计。

优点是不受介质的压力、温度、密度、粘度等影响,适用于各种导电液体。

同时,电磁流量计没有活动零件,使用寿命长,可靠性高,维护方便。

缺点是价格较高,对介质的电导率要求较高。

2.涡街流量计涡街流量计是根据流体通过涡街产生旋涡的频率与流量成正比关系而设计的一种流量计。

优点是响应速度快,精度高,适用于不同介质的流量测量。

涡街流量计结构简单、体积小,不易堵塞,维护简单。

缺点是高压下的应用有限,且对介质的温度和粘度有一定要求。

3.超声波流量计超声波流量计利用超声波在流体内传播速度与流速成一定比例关系的原理进行流量测量。

优点是适用于各种液体和气体,无需接触介质,不会对流体产生压降,具有较低的能耗。

超声波流量计精度高,响应速度快,可靠性好。

缺点是价格较高,对传感器的安装和使用环境要求较高。

4.质量流量计质量流量计是通过测量介质受力或传感器受振动的质量变化来实现流量测量的。

质量流量计不受温度、压力、粘度等影响,适用于各种气体和液体的流量测量。

质量流量计响应速度快,精度高,具有大量自检和自校验功能。

然而,质量流量计价格较高,对安装条件和环境的要求严格。

综上所述,不同类型的流量计各有优劣。

在选择流量计时,应根据具体的应用场景和要求选取合适的类型。

常用流量计选型及比较

常用流量计选型及比较

常用流量计之间的比较流量测量是四大重要过程参数之一(其他的是温度、压力和物位)。

差压流量计(DP)这是最普通的流量技术,包括孔板、文丘里管和音速喷嘴。

DP流量计可用于测量大多数液体、气体和蒸汽的流速。

DP流量计没有移动部分,应用广泛,易于使用。

但堵塞后,它会产生压力损失,影响精确度。

流量测量的精确度取决于压力表的精确度。

容积流量计(PD)PD流量计用于测量液体或气体的体积流速,它将流体引入计量空间内,并计算转动次数。

叶轮、齿轮、活塞或孔板等用以分流流体。

PD 流量计的精确度较高,是测量粘性液体的几种方法之一。

但是它也会产生不可恢复的压力误差,以及需装有移动部件。

涡轮流量计当流体流经涡轮流量计时,流体使转子旋转。

转子的旋转速度与流体的速度相关。

通过转子感受到的流体平均流速,推导出流量或总量。

涡轮流量计可精确地测量洁净的液体和气体。

像PD流量计,涡轮流量计也会产生不可恢复的压力误差,也需要移动部件。

电磁流量计具有传导性的流体在流经电磁场时,通过测量电压可得到流体的速度。

电磁流量计没有移动部件,不受流体的影响。

在满管时测量导电性液体精确度很高。

电磁流量计可用于测量浆状流体的流速。

超声流量计传播时间法和多普勒效应法是超声流量计常采用的方法,用以测量流体的平均速度。

像其他速度测量计一样,是测量体积流量的仪表。

它是无阻碍流量计,如果超声变送器安装在管道外测,就无须插入。

它适用于几乎所有的液体,包括浆体,精确度高。

但管道的污浊会影响精确度。

涡街流量计是在流体中安放一根非流线型游涡发生体,游涡的速度与流体的速度成一定比例,从而计算出体积流量。

涡街流量计适用与测量液体、气体或蒸汽。

它没有移动部件,也没有污垢问题。

涡街流量计会产生噪音,而且要求流体具有较高的流速,以产生旋涡。

热式质量流量计通过测量流体的温度的升高或热传感器降低来测量流体速度。

热式质量流量计没有移动部件或孔,能精确测量气体的流量。

热质量流量计是少数能测量质量流量的技术之一,也是少数用于测量大口径气体流量的技术。

流量计选型原则及优缺点分析

流量计选型原则及优缺点分析

流量计选型原则及优缺点分析流量计是测量液体或气体在单位时间内通过管道的体积或质量的仪器。

在工业生产和实验室研究中,流量计具有重要的作用。

选型合适的流量计可以确保准确测量流体的流量,提高生产效率和质量。

选择合适的流量计需要考虑多个因素,下面是一些常见的选型原则及其优缺点分析。

1.流量范围:流量范围是选型流量计的首要考虑因素之一、流量计需要能够覆盖实际流量的范围,以确保准确性和可靠性。

然而,不同流量计的测量范围不同,有些适用于低流量,而有些适用于高流量。

因此,在选择流量计时,应根据实际需求选择合适的流量范围,以避免测量范围太大或太小,导致测量不准确或无法测量。

2.流体性质:流体性质是另一个需要考虑的重要因素。

流体的物理和化学性质会对流量计的选择产生影响。

一些流量计对特定的液体或气体具有特殊的适应性,而另一些则适用于多种类型的流体。

此外,流体的温度、压力、粘度等因素也需要考虑。

因此,选择流量计时,需要了解流体的性质,以确定流体与流量计是否兼容。

3.测量精度:测量精度是流量计的一个关键指标。

不同类型的流量计具有不同的测量精度。

有些流量计具有较高的精度,适用于对流量要求较高的场合,而有些则具有较低的精度,适用于对流量要求不那么严格的场合。

因此,选择流量计时,需要根据实际需要确定所需的测量精度,以避免测量误差过大或过小。

4.安装和维护便捷性:安装和维护便捷性也是选型流量计时需要考虑的因素之一、一些流量计需要在管道中进行安装,而另一些则可以外部安装。

此外,一些流量计需要经常维护和校准,而另一些则可以长时间使用而不需要维护。

因此,选择流量计时,需要考虑它们的安装和维护便捷性,以降低使用成本和提高效率。

5.价位:流量计的价格因品牌和型号而异。

有些流量计价格低廉,适用于低预算项目,而有些则价格昂贵,适用于高端应用。

因此,选择流量计时,需要根据实际预算确定合理的价格范围,并在质量和性能之间做出权衡。

综上所述,选型流量计需要考虑多个因素,包括流量范围、流体性质、测量精度、安装和维护便捷性以及价格等。

各类型流量计特点及适用范围

各类型流量计特点及适用范围
涡街流量计
1、结构简单牢固;
2、适用流体种类多;
3、精度较高;
4、范围度宽;
5、压损小。
1、不适用于低雷诺数测量;
2、需较长直管段;
3、仪表系数较低(与涡轮流量计相比);(4)仪表在脉动流、多相流中尚缺乏应用经验。
涡街流量计是属于最年轻的一类流量计,但其发展迅速,目前已成为通用的一接触式测量;
2、为无流动阻挠测量,无压力损失;
3、可测量非导电性液体,对无阻挠测量的电磁流量计是一种补充。
1、传播时间法只能用于清洁液体和气体;而多普勒法只能用于测量含有一定量悬浮颗粒和气泡的液体;
2、多普勒法测量精度不高。
1、传播时间法典型应用有:工厂排放液、液化天然气等;
2、多普勒法适用于异相含量不太高的双相流体,例如未处理污水‘通常不适用清洁的液体。
差压式流量计应用范围广泛,至今尚无任何一类流量计可与之相比拟,在各类流量仪表中其使用量占居首位。
它在各工业部门的用量约占流量计全部用量的1/4~1/3。
转子流量计
1、结构简单、直观、压力损失小、维修方便
耐压力低,有玻璃管易碎的较大风险;
适用于小管径和低流速;管径D<150mm的小流量,也可测腐蚀性介质。
差压式流量计
1、应用最多的孔板式,结构牢固,性能稳定可靠,使用寿命长;
2、检测件与变送器、显示仪表分别由不同厂家生产,便于规模经济生产。
1、测量精度普遍偏低;
2、范围度窄,一般仅3:1~4:1;
3、现场安装条件要求高;
4、压损大(指孔板、喷嘴等)。
流体方面:单相、混相、洁净、脏污、粘性流等;工作状态方面:常压、高压、真空、常温、高温、低温等;管径方面:从几mm到几m。
1、结构复杂,体积庞大;

各种流量计优缺点

各种流量计优缺点

各种流量计优缺点流量计是一种用于测量液体、气体或蒸汽流量的仪器。

不同类型的流量计在不同的工作环境和应用中有各自的优缺点。

以下是常见的几种流量计的优缺点:1. 体积流量计(Positive Displacement Flowmeter)优点:-非常准确,适用于测量低流量。

-适用于高粘度和高温介质。

-不需要修正。

缺点:-需要频繁的校准和维护。

-由于流体必须通过一个移动的部件,流体中可能会存在一些污染物。

2. 旋转翅片流量计(Rotary Vane Flowmeter)优点:-测量响应时间快。

-体积小巧,安装方便。

-可用于粘度较高的流体。

缺点:-测量范围有限。

-没有液体密度的自动修正功能。

-翅片容易磨损。

3. 涡街流量计(Vortex Flowmeter)优点:-可以测量稳定的流体和蒸汽。

-几乎不受流体温度和压力的影响。

-长期可靠性高。

缺点:-对于液体中含有较高含固体颗粒的情况,可能会产生误差。

-较低的精度和准确度。

4. 质量流量计(Mass Flowmeter)优点:-可以直接测量液体或气体的质量流量。

-流体密度对测量结果没有影响。

-可以测量多种介质。

缺点:-高精度、高性能的质量流量计价格昂贵。

-对于高压、高温和腐蚀性介质,选择适合的传感器材料和结构变得困难。

5. 超声波流量计(Ultrasonic Flowmeter)优点:-不接触流体,无压降和泄漏。

-适用于大流量的液体和气体测量。

-耐压性能好。

缺点:-测量误差可能会受到气泡、颗粒物的干扰。

-对于含有杂质或气泡的流体测量效果差。

6. 磁性流量计(Magnetic Flowmeter)优点:-适用于大流量、腐蚀性液体的测量。

-不受温度和压力变化的影响。

-对于含固体颗粒的液体也有较好的测量效果。

缺点:-对于非导电液体无法进行准确测量。

-当液体的电导率较低时,测量结果可能有较大误差。

7. 系统测速仪(Pitot Tube)优点:-适用于测量气体和液体的流速。

流量计优缺点分类

流量计优缺点分类

气体流量计工作原理、特点流量计的分类:按工作原理分:一、速度式流量计;二、容积式流量计;三、差压式流量计;四、质量流量计等。

(一)速度式流量计:通过测得气体流速来计算出气体流量的一类流量计。

涡轮流量计、旋进旋涡流量计等。

1、气体涡轮流量计①原理:当气流进放流量计时,首先经过机芯的前导流体并加速,在流体的作用下,由于涡轮叶片与流体流向成一定角度,此时涡轮产生转动力矩,在涡轮克服阻力矩和摩擦力后开始轮动。

当诸力矩达到平衡时,转速稳定,涡轮转动角速度与流量成线性关系,对于机械计数器式的涡轮流量计,通过传动机构带动计数器旋转计数。

对采用电子式流量积算仪的流量计,通过旋转的发讯盘或信号传感器以及放大电路输出代表涡轮旋转速度的脉冲信号,该脉冲信号的频率与流体体积流量成正比。

②特点:主要优点:1、准确度高:气体涡轮流量计,全量程一般为1.0%~2.0%,高准确度型为0.5%~1.0%;可见所有流量计中,它是高准确度的一种。

2、重复性好,一般可达到0.05%~0.2%。

由于其具有良好的重复性,通过经常校准或在线校准后可达到极高的准确度,因此在贸易结算中是优先选用的流量计之一。

3、范围度宽,中大口径一般可达20:1以上,小口径为10:1,始动流量也较低。

4、压力损失较小,在常压下一般为0.1~0.5kPa。

5、结构紧凑,体积轻巧,安装使用比较方便,流通能力大。

6、可采用多种显示方式。

可只带机械计数器或只配普通型流量积算仪,也可以在机械计数器上增加温压补偿仪,且可长期采用电池供电(可连续运行两年以上,有的产品长达五年),使用方便。

7、由于一般采用脉冲频率信号输出,适于总量计量及与计算机连接,无零点漂移,抗干扰能力强。

同时若采用高频信号输出,可获得很高的频率信号(3~4)kHz,信号分辨力强。

8、对于大口径测量可制成插入型,压力损失小,价格低,可不断流取出,安装维护方便。

主要缺点:1、要长期保持校准特性,需要定期人。

四种常用流量计的优缺点

四种常用流量计的优缺点

四种常用流量计的优缺点一、孔板流量计孔板流量计是将标准孔板与多参量差压变送器(或差压变送、温度变送器及压力变送器)配套组成的高量程比差压流量装置,可测量气体、蒸汽、液体及天然气的流量。

广泛应用于石油、化工、冶金、电力、供热、供水等领域的过程控制和测量。

孔板流量计被广泛适用于煤炭、化工、交通、建筑、轻纺、食品、医药、农业、环境保护及人民日常生活等国民经济各个领域,是发展工农业生产,节约能源,改进产品质量,提高经济效益和管理水平的重要工具在国民经济中占有重要的地位。

在过程自动化仪表与装置中,流量仪表有两大功用:作为过程自动化控制系统的检测仪表和测量物料数量的总量表。

(一)优点:1.标准节流件是全用的,并得到了国际标准组织的认可,无需实流校准,即可投用,在流量传感器中也是唯一的;2.结构易于复制,简单、牢固、性能稳定可靠、价格低廉;3.应用范围广,包括全部单相流体(液、气、蒸汽)、部分混相流,一般生产过程的管径、工作状态(温度、压力)皆可以测量;4.检测件和差压显示仪表可分开不同厂家生产,便与专业化规模生产。

(二)缺点:1.测量的重复性、精确度在流量传感器中属于中等水平,由于众多因素的影响错综复杂,精确度难于提高;2.范围度窄,由于流量系数与雷诺数有关,一般范围度仅3∶1~4∶1;3.有较长的直管段长度要求,一般难于满足。

尤其对较大管径,问题更加突出;4.压力损失大;5.孔板以内孔锐角线来保证精度,因此传感器对腐蚀、磨损、结垢、脏污敏感,长期使用精度难以保证,需每年拆下强检一次;6.采用法兰连接,易产生跑、冒、滴、漏问题,大大增加了维护工作量。

二、容积式流量计容积式流量计,又称定排量流量计,简称PD流量计,在流量仪表中是精度最高的一类。

它利用机械测量元件把流体连续不断地分割成单个已知的体积部分,根据测量室逐次重复地充满和排放该体积部分流体的次数来测量流体体积总量。

容积式流量计按其测量元件分类,可分为椭圆齿轮流量计、刮板流量计、双转子流量计、旋转活塞流量计、往复活塞流量计、圆盘流量计、液封转筒式流量计、湿式气量计及膜式气量计等。

常用流量计分类及优缺点分析

常用流量计分类及优缺点分析

常用流量计分类及优缺点分析测量流体流量的仪表统称为流量计或流量表。

流量计是工业测量中重要的仪表之一。

随着工业生产的发展,对流量测量的准确度和范围的要求越来越高,流量测量技术日新月异。

为了适应各种用途,各种类型的流量计相继问世。

目前已投入使用的流量计已超过100种。

每种产品都有它特定的适用性,也都有它的局限性。

按测量原理分有力学原理、热学原理、声学原理、电学原理、光学原理、原子物理学原理等。

按流量计的结构原理进行分类:有容积式流量计、差压式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计、质量流量计和插入式流量计。

按测量对象划分就有封闭管道和明渠两大类;按测量目的又可分为总量测量和流量测量,其仪表分别称作总量表和流量计。

总量表测量一段时间内流过管道的流量,是以短暂时间内流过的总量除以该时间的商来表示,实际上流量计通常亦备有累积流量装置,做总量表使用,而总量表亦备有流量发讯装置。

因此,以严格意义来分流量计和总量表已无实际意义。

一、按测量原理分类1.力学原理:属于此类原理的仪表有利用伯努利定理的差压式、转子式;利用动量定理的冲量式、可动管式;利用牛顿第二定律的直接质量式;利用流体动量原理的靶式;利用角动量定理的涡轮式;利用流体振荡原理的旋涡式、涡街式;利用总静压力差的皮托管式以及容积式和堰槽式等等。

2.电学原理:用于此类原理的仪表有电磁式、差动电容式、电感式、应变电阻式等。

3.声学原理:利用声学原理进行流量测量的有超声波式.声学式(冲击波式)等。

4.热学原理:利用热学原理测量流量的有热量式、直接量热式、间接量热式等。

5.光学原理:激光式、光电式等是属于此类原理的仪表。

6.原子物理原理:核磁共振式、核幅射式等是属于此类原理的仪表。

7.其它原理:有标记原理(示踪原理、核磁共振原理)、相关原理等。

二、按流量计结构原理分类按当前流量计产品的实际情况,根据流量计的结构原理,大致上可归纳为以下几种类型:差压式流量计是根据安装于管道中流量检测件产生的差压,已知的流体条件和检测件与管道的几何尺寸来计算流量的仪表。

流量计如何选型 流量计选型方法详解

流量计如何选型 流量计选型方法详解

流量计如何选型? 流量计选型方法详解流量计如何选型?流量计在选型时要充分考虑各方面的因素,以保证应用。

为帮助大家解决流量计如何选型的问题,世界泵阀网特汇总了以下内容,以供参考。

在流量计如何选型的问题中,不同种类的流量计选型方法和参照因素也不相同,要根据其具体的作用和性能来参考选择。

1. 电磁流量计选型测量各种酸、碱、盐等腐蚀液体;各种易燃,易爆介质;各种工业污水,纸浆,泥浆等。

电磁流量计不能用于测量气体、蒸气以及含有大量气体的液体.不能用来测量电导率很低的液体介质,不能测量高温高压流体。

2. 涡街流量计选型(旋涡流量计)涡街流量计,主要用于工业管道介质流体的流量测量,如气体、液体、蒸气等多种介质。

其特点是压力损失小,量程范围大,精度高,在测量工况体积流量时几乎不受流体密度、压力、温度、粘度等参数的影响。

⒊浮子流量计选型(转子流量计)它可以用来测量液体、气体、以及蒸汽的流量,特别适宜低流速小流量的介质流量测量。

⒋科氏力质量流量计选型质量流量计广泛应用于石化等领域,是当今世界上最先进的流量测量仪表之一,⒌热式(气体)质量流量计选型适合单一气体和固定比例多组份气体的测量。

⒍超声波流量计选型目前我国只能用于测量200℃以下的流体。

强腐蚀性、非导电性、放射性及易燃易爆介质的流量测量问题。

⒎涡轮流量计选型涡轮流量计广泛应用于以下一些测量对象:石油、有机液体、无机液、液化气、天然气、煤气和低温流体等。

流量计选型不可能做到十全十美,因为.每种型式都有它特有的优缺点,只能根据不同的测量方式和结构,要求不同的测量操作、使用方法和使用条件来选择安生可靠又经济耐用的最佳型式。

流量计选型之前要做好以下准备工作:1、测流体的名称、特性(腐蚀性、粘稠度、磨损性等)2、工作流量(正常流量、最大流量、最小流量)3、工作压力(最大、最小工作压力),如果有负压形成要特别注意4、工作温度(最高温度、最低温度)5、流体的电导率,要求必须具备一定的导电性,电导率≥5μS/cm6、安装地点7、供电方式8、工艺管道尺寸9、与中控室之间的通讯方式。

流量计选型

流量计选型

流量计选型1. 引言在各种工业应用中,流量计是一个非常重要的设备,用于精确测量流体的流量。

通过实时监测和记录流体的流速和体积,流量计可以帮助工程师和操作人员控制和优化工艺过程。

然而,在选择合适的流量计时,需要考虑多个因素,如测量范围、测量准确度、安装条件等。

本文将介绍流量计的常见类型,并提供一些选型指南,以帮助读者在选择合适的流量计时做出明智的决策。

2. 流量计的常见类型2.1 机械式流量计机械式流量计是最早被广泛使用的流量计之一,它通过测量流体通过一个特定的管道或孔口的流速来计算流量。

常见的机械式流量计包括涡轮式流量计、节流装置和孔板流量计。

机械式流量计的优点是结构简单、价格低廉,并且适用于各种流体和介质。

然而,由于机械式流量计受到流体的黏度、密度和温度的影响,其测量准确度较低。

2.2 电磁式流量计电磁式流量计利用法拉第电磁感应定律测量导电流体的流量。

当流体通过电磁感应器时,感应器产生的磁场会随着流速的变化而改变,通过测量改变后的磁场可以计算出流量。

电磁式流量计具有测量范围大、精度高、抗干扰能力强的优点,适用于液体和气体的测量,但对于非导电流体无法使用。

2.3 质量式流量计质量式流量计是通过测量流体通过流量计的质量来计算流量,而不是通过测量速度或体积。

质量式流量计可以测量各种流体和气体,具有高精度、高稳定性的特点。

然而,质量式流量计通常比其他类型的流量计更昂贵,并且对于大流量的测量可能不适用。

3. 流量计的选型指南3.1 测量范围在选择流量计时,首先需要确定要测量的流量范围。

根据应用的具体要求,选择一个能够满足最大和最小流量需求的流量计是至关重要的。

如果流量计的范围太小,可能无法精确测量高流量值;如果范围太大,可能无法检测到低流量或精度降低。

3.2 测量准确度测量准确度是选择流量计时要考虑的另一个重要因素。

不同类型的流量计具有不同的准确度要求,因此需要根据应用的需求进行权衡。

通常情况下,要求更高的测量准确度会导致更高的成本。

10种流量计的说明

10种流量计的说明

10种流量计的说明流量计是用于测量液体、气体、蒸汽等流体在管道内的流量的设备。

根据测量原理的不同,流量计也可以分为多种类型。

本文将介绍10种常见的流量计,并分别从其原理、优缺点等方面进行说明。

1. 纯浮子式流量计纯浮子式流量计的主要原理是利用一根垂直的管道,内部设置有一个浮子,并用取压孔来测量压力差,从而推算出流量大小。

纯浮子式流量计的特点是测量简单、成本较低,但测量范围较窄。

2. 激磁式流量计激磁式流量计是一种电磁测量流量的装置,主要由测量管、电极、激磁线圈和送信器等组成。

其工作原理是通过电磁感应作用,测量液体或气体在管道中的流量。

使用时需要被测流体具有一定的导电性。

3. 转子式流量计转子式流量计是一种利用液体或气体的动力作用测量流量的装置,主要由转子、测量管、传感器等组成。

其工作原理是通过液体或气体的旋转作用,驱动转子旋转并从而测量流量。

转子式流量计优点是测量准确,缺点是易被介质中的固体颗粒等物质卡住。

4. 涡街流量计涡街流量计是利用流体的惯性作用来完成流量测量的装置,主要由测量管、涡轮、传感器等组成。

其优点是适用范围广,可以精确地测量多种流体,但对介质粘度等性质有一定的要求。

5. 爆破片流量计爆破片流量计是一种由一般管道中可以容纳的气体产生爆炸所以能的流量计。

其主要原理是当管道内的气体流量达到一定程度时,会产生滞留作用,促使元件产生爆炸,再通过测量声音或振动等参数来推算流量大小。

爆破片流量计的优点是精度较高,但因其设置有爆破装置,使用时较为危险。

6. 落体式流量计落体式流量计利用重力来完成测量液体流量的装置,主要由测量管、落体装置等组成。

其工作原理是通过让被测液体自由落体,并通过时间和液体测量管的标定来计算流量大小。

落体式流量计的主要优点是结构简单、适用于粘度较高的液体,但数据处理较为麻烦。

7. 均质器流量计均质器流量计是利用液体在均质器中的压力平衡来测量流量的装置,主要由均质器、流量计、变送器等组成。

流量计选型原则及优缺点分析

流量计选型原则及优缺点分析

流量计选型原则及优缺点分析流量计是少数几种使用比制造艰难的仪表之一。

这是因为流量是一个动态量,处于运动状态的液体内部不仅存在着粘性摩擦作用,还会产生不稳定的旋涡和二次流等复杂流动现象。

测量仪表本身受到众多因素,如:管道、口径大小、形状(圆形、矩形)、边界条件、介质的物性(温度、压力、密度、粘度、脏污性、腐蚀性等)、流体的流动状态(紊流状态、速度分布等)以及安装条件与水平的影响。

面对国内外十几类、上百个品种的流量仪表(先后发展起来的容积式、差压式、涡轮式、面积式、电磁式、超声波式和热式流量计等类型),如何根据流量、流态、安装要求与环境条件、经济性等因素合理选型,是应用好流量仪表的前提和基础。

除了仪表自身质量要得到保证,工艺数据的提供和仪表的安装、使用、维护是否合理也相当重要。

没有一种流量计是完美的,对任何流体、工况都完全适应的,每种流量计都有自己的特点,有着其适应的条件,因此在对各种测量方法和仪表特性作比较全面了解的前提下,选择出最适合、最稳定可靠的最佳形式。

本文介绍了几种流量计的特点和适用环境。

1、电磁流量计电磁流量计自20世纪50年代末国内首次工业应用以来,七八十年代在流量测量中运用和发展很快。

电磁流量计的工作原理是基于法拉第电磁感应定律,即被测介质垂直于磁力线方向流动,因而在与介质流动和磁力线都垂直的方向上产生一感应电动势EX,当磁场强度B与两极间距离d一定时,则感应电动势EX与被测介质流量(流速)成正比。

电磁流量计不受温度、压力、粘度、重度等外界因素的影响,测量管内部无收缩或凸出部分的压力损失,另外,流量元件检测出的最初信号,是一个与流体平均流速成精确线性变化的电压,它与流体的其他性质无关,具有很大的优越性。

根据污水具有流量变化大、含杂质、腐蚀性小、有一定的导电能力等特性,测量污水的流量,电磁流量计是一个很好的选择。

它结构紧凑、体积小,安装、操作、维护方便,如测量系统采用智能化设计,整体密封加强,能在较恶劣的环境下正常工作。

电磁流量计和超声波流量计哪个更好用

电磁流量计和超声波流量计哪个更好用

电磁流量计和超声波流量计哪个更好用电磁流量计和超声波流量计各有其优势和局限性,哪个更好用取决于具体的应用场景和需求。

以下是对两者优缺点的详细比较:电磁流量计优点高精度测量:电磁流量计不受流体密度、粘度、温度、压力变化的影响,在一定电导率范围内,测量精度高。

宽量程比:量程比宽,可达1:100,适用于不同的流量测量需求。

无压力损失:由于测量管内无阻碍流动部件,不会对流体造成额外的压力损失。

良好的耐腐蚀性:可选用不同的电极和衬里材料,适合测量多种腐蚀性介质。

无机械惯性:响应灵敏,可以测量瞬时脉动流量,线性好。

安装简便:直管段要求相对较低,安装和维护相对简单。

局限性对介质电导率有要求:不能测量电导率很低的液体介质,如蒸馏水、石油制品或有机溶剂等。

不能测量非导电介质:如气体、蒸汽等,仅限于测量导电液体。

受温度限制:由于测量管绝缘衬里材料受温度的限制,不能测量高温高压流体。

易受电磁干扰:流量计的传感器信号较小,易受外界电磁干扰的影响。

维护需求:如果测量介质中含有污垢,电极上污垢物达一定厚度可能导致仪表测量误差加大。

成本问题:相比于某些其他类型的流量计,电磁流量计的购置和维护成本可能较高。

超声波流量计优点非接触式测量:不会改变流体的流动状态,不会产生压力损失,且便于安装。

测量范围广:可以测量不易接触、不易观察的流体流量和大管径流量。

可测非导电介质:能够测量强腐蚀性介质和非导电介质的流量。

测量不受流体物性参数影响:测量的体积流量不受被测流体的温度、压力、粘度及密度等热物性参数的影响。

局限性稳定性较差:长时间测量下,换能器可能产生疲劳,影响稳定性。

直管段要求高:如果直管段不能满足标准,测量精度会受到影响。

抗干扰能力差:易受气泡、结垢、泵及其它声源混入的超声杂音干扰,影响测量精度。

温度测量范围有限:一般只能测量温度低于200℃的流体。

安装不确定性:安装的不确定性会给流量测量带来较大误差。

结论综上所述,电磁流量计和超声波流量计各有优劣,选择哪个更好用需要根据具体的应用场景和需求来决定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流量计的选型与优缺点分析流量计是少数几种使用比制造艰难的仪表之一。

这是因为流量是一个动态量,处于运动状态的液体内部不仅存在着粘性摩擦作用,还会产生不稳定的旋涡和二次流等复杂流动现象。

测量仪表本身受到众多因素,如:管道、口径大小、形状(圆形、矩形)、边界条件、介质的物性(温度、压力、密度、粘度、脏污性、腐蚀性等)、流体的流动状态(紊流状态、速度分布等)以及安装条件与水平的影响。

面对国内外十几类、上百个品种的流量仪表(先后发展起来的容积式、差压式、涡轮式、面积式、电磁式、超声波式和热式流量计等类型),如何根据流量、流态、安装要求与环境条件、经济性等因素合理选型,是应用好流量仪表的前提和基础。

除了仪表自身质量要得到保证,工艺数据的提供和仪表的安装、使用、维护是否合理也相当重要。

没有一种流量计是完美的,对任何流体、工况都完全适应的,每种流量计都有自己的特点,有着其适应的条件,因此在对各种测量方法和仪表特性作比较全面了解的前提下,选择出最适合、最稳定可靠的最佳形式。

本文介绍了几种流量计的特点和适用环境。

1、电磁流量计电磁流量计自20世纪50年代末国内首次工业应用以来,七八十年代在流量测量中运用和发展很快。

电磁流量计的工作原理是基于法拉第电磁感应定律,即被测介质垂直于磁力线方向流动,因而在与介质流动和磁力线都垂直的方向上产生一感应电动势EX,当磁场强度B与两极间距离d一定时,则感应电动势EX与被测介质流量(流速)成正比。

电磁流量计不受温度、压力、粘度、重度等外界因素的影响,测量管内部无收缩或凸出部分的压力损失,另外,流量元件检测出的最初信号,是一个与流体平均流速成精确线性变化的电压,它与流体的其他性质无关,具有很大的优越性。

根据污水具有流量变化大、含杂质、腐蚀性小、有一定的导电能力等特性,测量污水的流量,电磁流量计是一个很好的选择。

它结构紧凑、体积小,安装、操作、维护方便,如测量系统采用智能化设计,整体密封加强,能在较恶劣的环境下正常工作。

选型时要注意以下几点:①被测量液体必须是导电的液体或浆液;②口径与量程,最好是正常量程超过满量程的一半(一般为正常流量的4~8倍),流速在2-4m/s之间;③使用压力必须小于流量计耐压;④不同温度及腐蚀性介质选用不同内衬材料和电极材料。

优点:无节流部件,因此压力损失小。

不受流体的温度、压力、密度和粘度的影响;只与被测流体的平均速度有关,测量范围宽;只需经水标定后即可测量其他介质,无须修正,最适合作为结算用计量设备使用。

由于技术及工艺材料的不断改进,稳定性、线性度、精度和寿命的不断提高和管径的不断扩大,对于固液两相的介质的测量采用了可更换电极以及刮刀电极的方式,解决了高压(32MPa)、耐腐蚀(防强酸、碱衬里)介质的测量问题,以及口径的不断扩大(最大作到3200mm口径),寿命的不断增长(一般大于10年),电磁流量计得到越来越广泛的应用,其成本也得到了降低,但整体价格特别是大管径的价格仍较高,因此在流量仪表的采购中有重要的地位。

缺点:电磁流量计不能用于测量气体、蒸汽以及含有大量气体的液体,不能用来测量电解率很低的液体介质,不能测量高温高压流体;电磁流量计的安装与调试比其它流量计复杂,且要求更严格;用来测量带有污垢的粘性液体时,粘性物或沉淀物附着在测量管内壁或电极上,使变送器输出电势变化,带来测量误差,电极上污垢物达到一定厚度,可能导致仪表无法测量。

2、超声波流量计超声波流量计是通过检测流体流动对超声束(或超声脉冲)的作用以测量流量的仪表。

在封闭管道用超声波流量计按测量原理分类有:时间传播法、多普勒效应法、波束偏移法、相关法、噪声法。

对管道流量进行测试时,为提高水流量测量精度,选择测量点时要求选择流体流场均匀的部分,一般应遵循下列原则:①被测管道内流体必须是满管。

②选择被测管道的材质应均匀质密,易于超声波传播,如垂直管段(流体由下向上)或水平管段(整个管路中最低处为好)。

③安装距离应选择上游大于10倍直管径,下游大于5倍直管径(注:不同仪器要求的距离会有所不同,具体距离以使用的仪器说明书为准)以内无任何阀门、弯头、变径等均匀的直管段,测量点应充分远离阀门、泵、高压电、变频器等干扰源。

④充分考虑管内结垢状况,尽量选择无结垢的管段进行测量。

优点:是一种非接触式测量仪表,可用来测量不易接触、不易观察的流体流量和大管径流量,它不会改变流体的流动状态,不会产生压力损失,且便于安装;可以测量强腐蚀性介质和非导电介质的流量;超声波流量计的测量范围大,管径范围从20mm~5m,不受被测流体的温度、压力、粘度及密度等热物性参数的影响;可以做成捆绑式、管道式和便携式两种形式。

缺点:温度测量范围不高,一般只能测量温度低于200℃的流体;抗干扰能力差;易受气泡、结垢、泵及其它声源混入的超声杂音干扰、影响测量精度;直管段要求严格,为前20D,后5D否则离散性差,测量精度低;测量管道因结垢,会严重影响测量准确度,带来显著的测量误差,甚至在严重时仪表无流量显示;可靠性、精度等级不高(一般为1.5~2.5级左右),重复性差。

3、涡街流量计涡街流量计作为一种新型流量计,80年代中期以来发展较快,它在流量测量方面有着诸多的优点和长处,在现代流量测量中应用越来越广泛。

在国内使用涡街流量计进行流量测量也愈来愈得到重视,目前我国已有性能优良并有自主知识产权的产品系列。

涡街流量计是基于流体振动发展起来的,根据旋涡的不同,检测方式从热丝式、热敏式逐渐发展了应力式、磁敏式及差动开关电容式、超声波式等。

涡街流量计的原理是在流量计管道中,设置一阻流件,当流体流经阻流件时,由于阻流件表面的阻流作用等原因,在其下游会产生两列不对称的旋涡,这些旋涡在阻流件的侧后方分开,形成所谓的卡门旋涡列,两列旋涡的旋转方向是相反的,当旋涡列是稳定时,产生旋涡的频率f与流量计管道中流体流速υ呈线性关系。

优点:几乎可用于一切可形成旋涡列的场合,不仅可用于封闭的管道,还可用于开放的沟槽。

与涡轮流量计相比,涡街流量计没有可动的机械部件,维护工作量小,仪表常数稳定;与孔板式流量计相比,涡街流量计测量范围大,压力损失小,准确度高,安装与维护简单。

缺点:(1)涡街流量计的测量范围较大,一般10:1,但测量下限受许多因素限制:Re>10000是涡街流量计工作的最基本条件,除此以外,它还受旋涡能量的限制,介质流速较低,则旋涡的强度、旋转速度也低,难以引起传感元件产生响应信号,旋涡频率f也小,还会使信号处理发生困难。

测量上限则受传感器的频率响应(如磁敏式一般不超过400Hz)和电路的频率限制,因此设计时一定要对流速范围进行计算、核算,根据流体的流速进行选择。

使用现场环境条件复杂,选型时除注意环境温度、湿度、气氛等条件外,还要考虑电磁干扰。

在强干扰如高压输电电站、大型整流所等场合,磁敏式、压电应力式等仪表不能正常工作或不能准确测量。

(2)振动也是该类仪表的一大劲敌。

因此在使用时注意避免机械振动,尤其是管道的横向振动(垂直于管道轴线又垂直旋涡发生体轴线的振动),这种影响在流量计结构设计上是无法抑制和消除的。

由于涡街信号对流场影响同样敏感,故直管段长度不能保证稳定涡街所必要的流动条件时,是不宜直接选用的(要加装整流器)。

即使是抗振性较强的电容式、超声波式,保证流体为充分发展的单向流,也是不可忽略的。

(3)介质温度对涡街流量计的使用性能也有很大的影响。

如压电应力式涡街流量计不能长期使用在300℃状态下,因其绝缘阻抗会由常温下的10MΩ~100MΩ急降至1MΩ~10KΩ,输出信号也变小,导致测量特性恶化,对此宜选用磁敏式或电容式结构。

在测量系统中,传感器与转换器宜采用分离安装方式,以免长期高温影响仪表可靠性和使用寿命。

涡街流量计如果选择不当,性能也不能很好发挥。

只有经过合理选型、正确安装后,还需要在使用过程中认真定期维护,不断积累经验,提高对系统故障的预见性以及判断、处理问题的能力,从而达到令人满意的效果。

4、节流式流量计节流式流量计是一种使用历史悠久,实验数据较完善的测量装置。

它是以测量流体流经节流装置所产生的静压差来显示流量大小的一种流量计。

最基本的配置是由节流装置、差压信号管路和差压变送器组成。

工业上最常用的是节流装置是已经标准化了的“标准节流装置”。

如,标准孔板、喷嘴、文丘利喷嘴、文丘利管。

现在节流装置特别是喷嘴流量测量朝一体化方向,将高精度的差压变送器和温度补偿与喷嘴做成一体化,大大提高了精度。

采用皮托管技术可对节流装置进行在线标定。

现今在工业测量中也采用一些非标准节流装置,如双重孔板,圆缺孔板,环形孔板等,这些仪表一般需要实流标定。

标准节流装置结构比较简单,但由于它尺寸公差、形状和位置公差的要求比较高,加工的技术难度较高。

以标准孔板为例,它属于超薄板状零件,加工易产生变形,较大的孔板在使用过程中也易产生变形而影响精度。

节流装置的取压孔一般不会开得太大,在使用过程中也会产生变形而影响测量精度。

标准孔板由于在使用过程中经过流体对它的摩擦,也会使其与测量有关的结构要素(如锐角)产生磨损而降低测量精度。

尽管差压流量计发展较早,但随着其他各种形式的流量仪表的不断完善和开发,随着工业发展对流量计量要求的不断提高,差压流量计在工业测量中的地位已逐步地被先进的、高精度的、便利的流量仪表所取代。

5、涡轮流量计涡轮流量计,是速度式流量计中的主要种类,它采用多叶片的转子(涡轮)感受流体平均流速,从而推导出流量或总量的仪表。

涡轮流量计首先将流速转换为涡轮的转速,再将转速转换成与流量成正比的电信号。

一般它由传感器和显示仪两部分组成,也可做成整体式。

它在一些测量对象上得到了广泛的应用,例如:石油、有机液体、无机液、液化气、天然气和低温流体等。

涡轮流量计和容积式流量计、科里奥利质量流量计称为流量计中三类重复性、精度最佳的产品,作为十大类型流量计之一,其产品已发展为多品种、多系列批量生产的规模。

优点:涡街流量计精度高,重复性高,无零点漂移,抗干扰能力强,量程范围宽,结构紧凑。

压力损失小,叶轮能具有防腐功能;容易维修,有自整流的结构,小型轻巧,结构简单,可在短时间内将其组合拆开。

现阶段生产的涡轮流量计还采用全硬质合金(碳化钨)屏蔽式悬臂梁结构轴承,集转动轴承与压力轴承于一体,大大提高了轴承寿命,并可在有少量泥沙与污物的介质中工作。

而且具有非线性精度补偿功能的智能流量显示器,修正公式精度优于±0.02%。

缺点:不适合长期使用,它不能长期保持校准状态,流体物性对流量特性有较大影响。

;要求上游管道长度应有不小于2D的等径直管段;不适合脏污介质。

除了以上几个类型的流量计外,还有浮子流量计、科氏力质量流量计、热式(气体)质量流量计、容积式流量计等。

相关文档
最新文档