人教版八年级数学上册《多边形的内角和》同步训练习题
八年级数学上册《第十一章 多边形及其内角和》同步训练题带答案(人教版)
八年级数学上册《第十一章多边形及其内角和》同步训练题带答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.过某个多边形一个顶点的所有对角线,将这个多边形分成5个三角形,这个多边形是()A.五边形B.六边形C.七边形D.八边形2.若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是()A.5或6 B.6或7 C.5或6或7 D.6或7或8 3.正五边形的外角和为()A.540°B.360°C.108°D.72°4.从一个多边形的一个顶点出发,最多可画2023条对角线,则它是()边形.A.2024B.2025C.2026D.20275.下列多边形中,内角和为540°的是()A.B.C.D.6.如果一个多边形的每个内角与它的外角相等,则它的边数为( )A.4 B.5 C.6 D.77.如图,在正五边形ABCDE中,F为BC边延长线上一点,连接AC,则∠ACF的度数为()A.72∘B.108∘C.144∘D.148∘8.如图,小明从点A出发沿直线前进5米到达点B,向左转x°后又沿直线前进5米到达点C,再向左转x°后沿直线前进5米到达点D……照这样走下去,小明第一次回到出发点A,一共走了60米,则x的值是()A.90 B.45 C.30 D.15二、填空题9.凸五边形的对角线共有条.10.一个多边形的每一个外角都为36°,则这个多边形的边数是.11.若过十二边形的一个顶点可以画n条对角线,则n的值是.12.永祚寺双塔(如图1),又名凌霄双塔,是山西省太原市现存的最高的古建筑,十三层均为正八边形楼阁式空心砖塔.如图2所示的正八边形是双塔其中一层的平面示意图,则其外角和的度数为.13.“岭南四大名园”之一的佛山“梁园”里不仅有秀水、奇石、名帖,还有随处可见的古典窗棂(如图①所示),这也是岭南建筑艺术之一、图②是这种窗棂中的部分图案.其中∠1、∠2、∠3、∠4是五边形ABCDE的4个外角,若∠1+∠2+∠3+∠4=280°,则∠D的度数是.三、解答题14.一个多边形内角和的度数比它外角和的度数的4倍多180°,求这个多边形的边数.15.根据图中相关数据,求出x的值.16.如图,∠ABE是四边形ABCD的外角,已知∠ABE=∠D.求证:∠A+∠C=180°17.如图所示,在五边形 ABCDE中,AE⊥DE,垂足为点E,∠D=150°,∠A=∠B,∠B-∠C=60°,求∠A的度数。
人教版八年级数学上册多边形及其内角和 基础同步训练(含答案)
多边形及其内角和 基础同步训练一.填空题1.一个多边形的内角和与它的外角和的总和为1080°,则它的边数是 . 2.一个多边形的各内角都等于144°,则这个多边形是 边形.3. 边形的内角和为2340°,若每个内角都相等,则每个外角的度数是 . 4.已知,在四边形ABCD 中,∠A =120°,∠D =90°,∠C =∠D ,那么∠C = 度.5.一个正多边形的内角和比一个五边形的内角和多540°,则这个多边形的每个外角的度数是 . 6.如图,小芸从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米, 又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了________米。
7.小明从原地出发走20米后,再向右转45°,再走20米,又再向右转45°……, 请问小明最后能回到原出发点吗,________(填“可以”或“不可以”)他走了________米。
8、已知:如图,∠1+∠2+∠3+∠4+∠5+∠6=___________.9、如果一个三角形的内角和为1800°,那么这个多边形有 条对角线.二.选择题:1.四边形的每个外角可以都是( )。
A .锐角B .直角C .钝角D .不确定 2.如果一个多边形的边数增加1,那么它的内角和增加( ) A .0° B .90° C .180° D .360°3.已知一个正多边形的每个外角等于60°,则这个正多边形是( )A .正五边形B .正六边形C .正七边形D .正八边形4、如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是( )A .110°B .108°C .105°D .100°303030A三.解答题:1.求下列图形中的x 的值.(1) (2)(2x-50)︒60︒x ︒AE CD95︒125︒EDCBAx ︒2.四边形ABCD 中,如果∠A +∠C =180°,∠A ︰∠B ︰∠C =2︰3︰7,求∠A 、∠B 、∠C 、∠D 的度数.3.已知:如图,正五边形ABCDE 中,BE ∥CD ,判断∠ABE 与∠AEB 的大小关系,并说明理由。
8年级数学人教版上册同步练习11.3多边形及其内角和(含答案解析)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!11.3多边形及其内角和专题一根据正多边形的内角或外角求值1.若一个正多边形的每个内角为150°,则这个正多边形的边数是( )A.12 B.11 C.10 D.92.一个多边形的每一个外角都等于36°,则该多边形的内角和等于________°.3.已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.专题二求多个角的和4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=( )A.360° B.540° C.630° D.720°5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.状元笔记【知识要点】1.多边形及相关概念多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.2.多边形的内角和与外角和内角和:n边形的内角和等于(n-2)·180°.外角和:多边形的外角和等于360°.【温馨提示】1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错.2.多边形的外角和等于360°,而不是180°.【方法技巧】1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.参考答案:1.A解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.故选A.2.1440解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.4.B 解析:∵∠1=∠C+∠D,∠2=∠E+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.故选B.5.360° 解析:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F.同理:∠BPO=∠D+∠C.∵∠A+∠B+∠BPO+∠POA=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.。
人教版初中八年级上册数学《多边形及其内角和》同步练习含答案解析
《11.3 多边形及其内角和》一、选择题:1.一个多边形的外角中,钝角的个数不可能是()A.1个B.2个C.3个D.4个2.不能作为正多边形的内角的度数的是()A.120°B.(128)°C.144°D.145°3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1 B.1:1 C.5:2 D.5:44.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个5.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角 B.都是锐角C.是一个锐角、一个钝角 D.互补6.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形 B.十二边形 C.十一边形 D.十边形7.若一个多边形共有十四条对角线,则它是()A.六边形B.七边形C.八边形D.九边形8.一个凸多边形除一个内角外,其余各内角的和为2570°,则这个内角的度数等于()A.90° B.105°C.130°D.120°二、中考题与竞赛题9.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.6三、填空题:10.多边形的内角中,最多有个直角.11.从n边形的一个顶点出发可以引条对角线,这些对角线将这个多边形分成个三角形.12.如果一个多边形的每一个内角都相等,且每一个内角都大于135°,那么这个多边形的边数最少为.13.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为.14.每一个内角都是144°的多边形有条边.四、基础训练:15.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(N=20)时,需要多少根火柴?16.一个多边形的每一个外角都等于24°,求这个多边形的边数.五、提高训练17.一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.六、探索发现18.从n边形的一个顶点出发,最多可以引多少条对角线?请你总结一下n边形共有多少条对角线.《11.3 多边形及其内角和》参考答案与试题解析一、选择题:1.一个多边形的外角中,钝角的个数不可能是()A.1个B.2个C.3个D.4个【考点】多边形内角与外角.【专题】计算题.【分析】根据n边形的外角和为360°得到外角为钝角的个数最多为3个.【解答】解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选D.【点评】本题考查了多边形的外角和:n边形的外角和为360°.2.不能作为正多边形的内角的度数的是()A.120°B.(128)°C.144°D.145°【考点】多边形内角与外角.【分析】根据n边形的内角和(n﹣2)•180°分别建立方程,求出n,由于n≥3的整数即可得到D 选项正确.【解答】解:A、(n﹣2)•180°=120•n,解得n=6,所以A选项错误;B、(n﹣2)•180°=(128)°•n,解得n=7,所以B选项错误;C、(n﹣2)•180°=144°•n,解得n=10,所以C选项错误;D、(n﹣2)•180°=145°•n,解得n=,不为整数,所以D选项正确.故选D.【点评】本题考查了多边形的内角和定理:n边形的内角和为(n﹣2)•180°.3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1 B.1:1 C.5:2 D.5:4【考点】多边形内角与外角.【分析】多边形的外角和是360°,且根据多边形的各内角都相等则各个外角一定也相等,根据选项中的比例关系求出外角的度数,根据多边形的外角和定理求出边数,如果是≥3的正整数即可.【解答】解:A、外角是:180×=60°,360÷60=6,故可能;B、外角是:180×=90°,360÷90=4,故可能;C、外角是:180×=度,360÷=7,故可能;D、外角是:180×=80°.360÷80=4.5,故不能构成.故选D.【点评】本题主要考查了多边形的外角和定理,理解外角与内角的关系是解题的关键.4.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个【考点】多边形内角与外角.【分析】利用多边形的外角和是360度即可求出答案.【解答】解:因为多边形的外角和是360度,在外角中最多有三个钝角,如果超过三个则和一定大于360度,多边形的内角与相邻的外角互为邻补角,则外角中最多有三个钝角时,内角中就最多有3个锐角.故选A.【点评】本题考查了多边形的内角问题.由于内角和不是定值,不容易考虑,而外角和是360度不变,因而内角的问题可以转化为外角的问题进行考虑.5.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角 B.都是锐角C.是一个锐角、一个钝角 D.互补【考点】多边形内角与外角.【分析】由四边形的内角和等于360°,又由有一组对角都是直角,即可得另一组对角一定互补.【解答】解:如图:∵四边形ABCD的内角和等于360°,即∠A+∠B+∠C+∠D=360°,∵∠A=∠C=90°,∴∠B+∠D=180°.∴另一组对角一定互补.故选D.【点评】此题考查了四边形的内角和定理.此题难度不大,解题的关键是注意掌握四边形的内角和等于360°.6.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形 B.十二边形 C.十一边形 D.十边形【考点】多边形的对角线.【分析】根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n﹣3)条对角线,由此可得到答案.【解答】解:设这个多边形是n边形.依题意,得n﹣3=10,∴n=13.故这个多边形是13边形.故选:A.【点评】多边形有n条边,则经过多边形的一个顶点所有的对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.7.若一个多边形共有十四条对角线,则它是()A.六边形B.七边形C.八边形D.九边形【考点】多边形的对角线.【分析】根据多边形对角线公式,可得答案.【解答】解:设多边形为n边形,由题意,得=14,解得n=7,故选:B.【点评】本题考查了多边形的对角线,熟记公式并灵活运用是解题关键.8.一个凸多边形除一个内角外,其余各内角的和为2570°,则这个内角的度数等于()A.90° B.105°C.130°D.120°【考点】多边形内角与外角.【专题】计算题.【分析】可设这是一个n边形,这个内角的度数为x度,利用多边形的内角和=(n﹣2)•180°,根据多边形内角x的范围,列出关于n的不等式,求出不等式的解集中的正整数解确定出n的值,从而求出多边形的内角和,减去其余的角即可解决问题.【解答】解;设这是一个n边形,这个内角的度数为x度.因为(n﹣2)180°=2570°+x,所以x=(n﹣2)180°﹣2570°=180°n﹣2930°,∵0<x<180°,∴0<180°n﹣2930°<180°,解得:16.2<n<17.2,又n为正整数,∴n=17,所以多边形的内角和为(17﹣2)×180°=2700°,即这个内角的度数是2700°﹣2570°=130°.故本题选C.【点评】本题需利用多边形的内角和公式来解决问题.二、中考题与竞赛题9.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.6【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故选:B.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.三、填空题:10.多边形的内角中,最多有 4 个直角.【考点】多边形内角与外角.【分析】由多边形的外角和为360°可求得答案.【解答】解:当内角和90°时,它相邻的外角也为90°,∵任意多边形的外角和为360°,∴360°÷90°=4.故答案为:4.【点评】本题主要考查的是多边形的内角与外角,明确任意多边形的外角和为360°是解题的关键.11.从n边形的一个顶点出发可以引n﹣3 条对角线,这些对角线将这个多边形分成n﹣2 个三角形.【考点】多边形的对角线.【分析】根据n边形对角线的定义,可得n边形的对角线,根据对角线的条数,可得对角线分成三角形的个数.【解答】解从n边形的一个顶点出发可以引n﹣3条对角线,这些对角线将这个多边形分成n﹣2个三角形,故答案为:n﹣3,n﹣2.【点评】本题考查了多边形的对角线,由对角线的定义,可画出具体多边形对角线,得出n边形的对角线.12.如果一个多边形的每一个内角都相等,且每一个内角都大于135°,那么这个多边形的边数最少为9 .【考点】多边形内角与外角.【分析】根据多边形的外角和定理,列出不等式即可求解.【解答】解:因为n边形的外角和是360度,每一个内角都大于135°即每个外角小于45度,就得到不等式:,解得n>8.因而这个多边形的边数最少为9.【点评】本题已知一个不等关系就可以利用不等式来解决.13.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为11 .【考点】多边形内角与外角.【分析】先根据多边形的内角和外角的关系,求出一个外角.再根据外角和是固定的360°,从而可代入公式求解.【解答】解:设多边形的一个内角为9x度,则一个外角为2x度,依题意得9x+2x=180°解得x=()°360°÷[2×()°]=11.答:这个多边形的边数为11.【点评】本题考查多边形的内角与外角关系、方程的思想.关键是记住多边形的一个内角与外角互补、及外角和的特征.14.每一个内角都是144°的多边形有10 条边.【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为所给多边形的每个内角均相等,故又可表示成120°n,列方程可求解.此题还可以由已知条件,求出这个多边形的外角,再利用多边形的外角和定理求解.【解答】解:解法一:设所求n边形边数为n,则144°n=(n﹣2)•180°,解得n=10;解法二:设所求n边形边数为n,∵n边形的每个内角都等于144°,∴n边形的每个外角都等于180°﹣144°=36°.又因为多边形的外角和为360°,即36°•n=360°,∴n=10.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.四、基础训练:15.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(N=20)时,需要多少根火柴?【考点】规律型:图形的变化类.【分析】关键是通过归纳与总结,得到其中的规律,按规律求解.【解答】解:n=1时,有1个三角形,需要火柴的根数为:3×1;n=2时,有5个三角形,需要火柴的根数为:3×(1+2);n=3时,需要火柴的根数为:3×(1+2+3);…;n=20时,需要火柴的根数为:3×(1+2+3+4+…+20)=630.【点评】此题考查的知识点是图形数字的变化类问题,本题的关键是弄清到底有几个小三角形.16.一个多边形的每一个外角都等于24°,求这个多边形的边数.【考点】多边形内角与外角.【分析】根据多边形外角和为360°及多边形的每一个外角都等于24°,求出多边形的边数即可.【解答】解:设这个多边形的边数为n,则根据多边形外角和为360°,可得出:24×n=360,解得:n=15.所以这个多边形的边数为15.【点评】本题考查了多边形内角与外角,解答本题的关键在于熟练掌握多边形外角和为360°.五、提高训练17.一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.【考点】多边形内角与外角.【分析】设多边形的边数为a,多边形内角和为(a﹣2)180度,外角和为360度得到m:n=180(a ﹣2):360,从而用m、n表示出a的值.【解答】解:设多边形的边数为a,多边形内角和为(a﹣2)180度,外角和为360度,m:n=180(a﹣2):360a=,因为m,n 是互质的正整数,a为整数,所以n=2,故答案为:,2.【点评】本题考查了多边形的内角与外角,解答本题的关键在于熟练掌握多边形内角和与多边形外角和.六、探索发现18.从n边形的一个顶点出发,最多可以引多少条对角线?请你总结一下n边形共有多少条对角线.【考点】多边形的对角线.【分析】从n边形的一个顶点出发,最多可以引n﹣3条对角线,然后即可计算出结果.【解答】解:过n边形的一个顶点可引出n﹣3条对角线;n边形共有条对角线.【点评】本题主要考查的是多边形的对角线,掌握多边形的对角线公式是解题的关键.作者留言:非常感谢!您浏览到此文档。
人教版八年级数学上册11.3.2《多边形的内角和》同步训练习题
人教版八年级数学上册11.3.2《多边形的内角和》同步训练习题一.选择题(共7 小题)1.(2015•重庆)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形2.(2015•丽水)一个多边形的每个内角均为120°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形3.(2015•南宁)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60° B.72° C.90° D.108°4.(2015•眉山)一个多边形的外角和是内角和的,这个多边形的边数为()A.5 B.6 C.7 D.85.(2015•葫芦岛)如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P 的度数是()A.60° B.65° C.55° D.50°6.(2015•苏州模拟)如图,∠1,∠2,∠3,∠4 是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是()A.80°B.100°C.108°D.110°7.(2015•绵阳模拟)某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转,某一指令规定:机器人先向前行走2 米,然后左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了()A.14 米B.15 米C.16 米D.17 米二.填空题(共7 小题)8.(2015•淮安)五边形的外角和等于°.9.(2015•资阳)若一个多边形的内角和是其外角和的3 倍,则这个多边形的边数是.10.一个多边形的每一个外角都是36°,则这个多边形的边数是.11.(2015•盘锦二模)如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2= .12.(2015•淄博)如图,已知正五边形ABCDE,AF∥CD,交DB 的延长线于点F,则∠DFA= 度.13.(2015 春•晋江市期末)把一块含60°的三角板与一把直尺按如图方式放置,则∠α=度.14.(2015 春•龙岗区期末)如图,小明将若干个全等的正五边形巧妙地排成环状,则他要完成这一圆环共需个全等的五边形.三.解答题(共5 小题)15.(2015 春•镇江校级期末)一个多边形的内角和是它的外角和的5 倍,求这个多边形的边数.16.(2015 春•长春期末)在一个正多边形中,一个内角是它相邻的一个外角的3 倍.(1)求这个多边形的每一个外角的度数.(2)求这个多边形的边数.17.(2015 秋•周口校级月考)看图回答问题:(1)内角和为2014°,小明为什么不说不可能?(2)小华求的是几边形的内角和?(3)错把外角当内角的那个外角的度数你能求出来吗?它是多少度?18.(2015 秋•盐津县校级月考)如图所示,在△ABC 中,∠A=60°,BD、CE 分别是AC、AB 上的高,H 是BD、CE 的交点,求∠BHC 的度数.19.(2014 春•江阴市期末)探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?如图甲,∠FDC、∠ECD 为△ADC 的两个外角,则∠A 与∠FDC+∠ECD 的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?如图乙,在△ADC 中,DP、CP 分别平分∠ADC 和∠ACD,则∠P 与∠A 的数量关系.探究三:若将△ADC 改为任意四边形ABCD 呢?已知:如图丙,在四边形ABCD 中,DP、CP 分别平分∠ADC 和∠BCD,则∠P 与∠A+∠B 的数量关系.探究四:若将上题中的四边形ABCD 改为六边形ABCDEF 呢?如图丁则∠P 与∠A+∠B+∠E+∠F 的数量关系.探究五:如图,四边形ABCD 中,∠F 为四边形ABCD 的∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的锐角,若设∠A=α,∠D=β;(1)如图①,α+β>180°,则∠F= ;(用α,β表示)(2)如图②,α+β<180°,请在图中画出∠F,且∠F= ;(用α,β表示)(3)一定存在∠F 吗?如有,直接写出∠F 的值,如不一定,直接指出α,β满足什么条件时,不存在∠F.人教版八年级数学上册11.3.2《多边形的内角和》同步训练习题参考答案一.选择题(共7 小题)1.(2015•重庆)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形选C【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.2.(2015•丽水)一个多边形的每个内角均为120°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形【考点】多边形内角与外角.【分析】一个多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360 度,利用360 除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:外角是180°﹣120°=60°,360÷60=6,则这个多边形是六边形.故选:C.【点评】考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.3.(2015•南宁)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60° B.72° C.90° D.108°【考点】多边形内角与外角.【分析】首先设此多边形为n 边形,根据题意得:180(n﹣2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【解答】解:设此多边形为n 边形,根据题意得:180(n﹣2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选B.【点评】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°.4.(2015•眉山)一个多边形的外角和是内角和的,这个多边形的边数为()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【专题】计算题.【分析】根据多边形的外角和为360°及题意,求出这个多边形的内角和,即可确定出多边形的边数.【解答】解:∵一个多边形的外角和是内角和的,且外角和为360°,∴这个多边形的内角和为900°,即(n﹣2)•180°=900°,解得:n=7,则这个多边形的边数是7,故选C.【点评】此题考查了多边形的内角和与外角和,熟练掌握内角和公式及外角和公式是解本题的关键.5.(2015•葫芦岛)如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P 的度数是()A.60° B.65° C.55° D.50°【考点】多边形内角与外角;三角形内角和定理.【分析】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE 的度数,再根据角平分线的定义可得∠PDC 与∠PCD 的角度和,进一步求得∠P 的度数.【解答】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE 的平分线在五边形内相交于点O,∴∠PDC+∠PCD= (∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选:A.【点评】本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.6.(2015•苏州模拟)如图,∠1,∠2,∠3,∠4 是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是()A.80°B.100°C.108°D.110°【考点】多边形内角与外角.【分析】根据多边形的外角和定理即可求得与∠AED 相邻的外角,从而求解【解答】解:根据多边形外角和定理得到:∠1+∠2+∠3+∠4+∠5=360°,∴∠5=360﹣4×70=80°,∴∠AED=180﹣∠5=180﹣80=100°.故选B.【点评】本题主要考查了多边形的外角和定理,任何多边形的外角和是360°.7.(2015•绵阳模拟)某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转,某一指令规定:机器人先向前行走2 米,然后左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了()A.14 米B.15 米C.16 米D.17 米【考点】多边形内角与外角.【分析】第一次回到原处正好转了360°,正好构成一个正八边形.【解答】解:机器人转了一周共360 度,360°÷45°=8,共走了8 次,机器人共走了8×2=16米.故选:C.【点评】本题考查了多边形的外角,是一个实际问题,要理解“回到原处”就是转了360 度.二.填空题(共7 小题)8.(2015•淮安)五边形的外角和等于 360 °.9.(2015•资阳)若一个多边形的内角和是其外角和的3 倍,则这个多边形的边数是 8 .【考点】多边形内角与外角.【分析】任何多边形的外角和是360°,即这个多边形的内角和是3×360°.n 边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是8.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.10.(2015•镇江二模)一个多边形的每一个外角都是36°,则这个多边形的边数是 10 .【考点】多边形内角与外角.【分析】多边形的外角和是固定的360°,依此可以求出多边形的边数.【解答】解:∵一个多边形的每个外角都等于36°,∴多边形的边数为360°÷36°=10.故答案为:10.【点评】本题主要考查了多边形的外角和定理:多边形的外角和是360°.11.(2015•盘锦二模)如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2= 240°.【考点】多边形内角与外角;三角形内角和定理.【分析】三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360 度即可求得∠1+∠2 的度数.【解答】解:根据三角形的内角和定理得:四边形除去∠1,∠2 后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故答案为:240°.【点评】主要考查了三角形及四边形的内角和是360 度的实际运用与三角形内角和180 度之间的关系.12.(2015•淄博)如图,已知正五边形ABCDE,AF∥CD,交DB 的延长线于点F,则∠DFA= 36 度.【考点】多边形内角与外角;平行线的性质.【分析】首先求得正五边形内角∠C 的度数,然后根据CD=CB 求得∠CDB 的度数,然后利用平行线的性质求得∠DFA 的度数即可.【解答】解:∵正五边形的外角为360°÷5=72°,∴∠C=180°﹣72°=108°,∵CD=CB,∴∠CDB=36°,∵AF∥CD,∴∠DFA=∠CDB=36°,故答案为:36.【点评】本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.13.(2015 春•晋江市期末)把一块含60°的三角板与一把直尺按如图方式放置,则∠α= 120 度.【考点】多边形内角与外角.【分析】三角板中∠B=90°,三角板与直尺垂直,再用四边形的内角和减去∠A、∠B、∠ACD 即得∠α的度数.【解答】解:如图:∵在四边形ABCD 中,∠A=60°,∠B=90°,∠ACD=90°,∴∠α=360°﹣∠A﹣∠B﹣∠ACD=360°﹣60°﹣90°﹣90°=120°,故答案为:120.【点评】本题主要考查了多边形的内角和.关键是得出用四边形的内角和减去∠A、∠B、∠ACD 即得∠α的度数.14.(2015 春•龙岗区期末)如图,小明将若干个全等的正五边形巧妙地排成环状,则他要完成这一圆环共需 10 个全等的五边形.【考点】多边形内角与外角.【分析】首先根据n 边形的内角和为:(n﹣2)×180°,求出五边形的内角和是多少,进而求出正五边形的每一个内角的度数是多少;然后求出∠1 的度数是多少,再用360°除以∠1 的度数,即可求出他要完成这一圆环共需多少个全等的五边形.【解答】解:如图1,,∵五边形的内角和为:(5﹣2)×180°=3×180°=540°,∴正五边形的每一个内角为:540°÷5=108°,∴∠1=108°×2﹣180°=216°﹣180°=36°,∵360°÷36°=10,∴他要完成这一圆环共需10 个全等的五边形.故答案为:10.【点评】此题主要考查了多边形的内角和定理,要熟练掌握,解答此题的关键是要明确n 边形的内角和为:(n﹣2)•180°(n≥3,且n 为整数),并能求出∠1的度数是多少.三.解答题(共5 小题)15.(2015 春•镇江校级期末)一个多边形的内角和是它的外角和的5 倍,求这个多边形的边数.【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°和外角和定理列出方程,然后求解即可.【解答】解:设多边形的边数为n,由题意得,(n﹣2)•180°=5×360°,解得n=12,所以,这个多边形是十二边形.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.16.(2015 春•长春期末)在一个正多边形中,一个内角是它相邻的一个外角的3 倍.(1)求这个多边形的每一个外角的度数.(2)求这个多边形的边数.【考点】多边形内角与外角.【分析】(1)设这个多边形的每一个外角的度数为x 度,根据题意列出方程解答即可;(2)根据多边形的外角和计算即可.【解答】解:(1)设这个多边形的每一个外角的度数为x 度.根据题意,得:3x+x=180,解得x=45.故这个多边形的每一个外角的度数为45°;(2)360°÷45°=8.故这个多边形的边数为8.【点评】此题考查多边形的外角和内角,关键是根据多边形的内角和和外角和定理计算.17.(2015 秋•周口校级月考)看图回答问题:(1)内角和为2014°,小明为什么不说不可能?(2)小华求的是几边形的内角和?(3)错把外角当内角的那个外角的度数你能求出来吗?它是多少度?【考点】多边形内角与外角.【分析】(1)n 边形的内角和是(n﹣2)•180°,因而内角和一定是180 度的倍数,依此即可作出判断;(2)多边形的内角一定大于0,并且小于180 度,因而内角和再加上一个内角的值,这个值除以180 度,所得数值比边数n﹣2 要大,大的值小于1.则用2014 除以180 所得值,加上2,比这个数小的最大的整数就是多边形的边数;(3)用2014°﹣1980°即可.【解答】解:(1)∵n 边形的内角和是(n﹣2)•180°,∴内角和一定是180 度的倍数,∵2014÷180=11…34,∴内角和为2014°不可能;(2)依题意有(x﹣2)•180°<2014°,解得x<13.因而多边形的边数是13,故小华求的是十三边形的内角和;(2)13 边形的内角和是(13﹣2)×180°=1980°,2014°﹣1980°=34°,因此这个外角的度数为34°.【点评】考查了多边形的内角与外角,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.18.(2015 秋•盐津县校级月考)如图所示,在△ABC 中,∠A=60°,BD、CE 分别是AC、AB 上的高,H 是BD、CE 的交点,求∠BHC 的度数.【考点】多边形内角与外角.【分析】根据高的定义得∠ADB=∠AEC=90°,于是利用四边形内角和为360°可计算出∠EHD,然后根据对顶角相等得到∠BHC 的度数.【解答】解:∵BD、CE 分别是△ABC 边AC、AB 上的高,∴∠ADB=∠AEC=90°,而∠A+∠AEH+∠ADH+∠EHD=360°,∴∠EHD=180°﹣60°=120°,∴∠BHC=120°.【点评】本题考查了四边形的内角和以及三角形高的意义,解答此类题的关键是利用四边形的内角和为360°.19.(2014 春•江阴市期末)探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?如图甲,∠FDC、∠ECD 为△ADC 的两个外角,则∠A 与∠FDC+∠ECD 的数量关系∠FDC+∠ECD=180°+∠A .探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?如图乙,在△ADC 中,DP、CP 分别平分∠ADC 和∠ACD,则∠P 与∠A 的数量关系∠P=90°+∠A .探究三:若将△ADC 改为任意四边形ABCD 呢?已知:如图丙,在四边形ABCD 中,DP、CP 分别平分∠ADC 和∠BCD,则∠P 与∠A+∠B 的数量关系∠P=(∠A+∠B).探究四:若将上题中的四边形ABCD 改为六边形ABCDEF 呢?如图丁则∠P 与∠A+∠B+∠E+∠F 的数量关系∠P=(∠A+∠B+∠E+∠F)﹣180°.探究五:如图,四边形ABCD 中,∠F 为四边形ABCD 的∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的锐角,若设∠A=α,∠D=β;(1)如图①,α+β>180°,则∠F= ∠F=(α+β)﹣90°;(用α,β表示)(2)如图②,α+β<180°,请在图中画出∠F,且∠F= ∠F=90°﹣(α+β);(用α,β表示)(3)一定存在∠F 吗?如有,直接写出∠F 的值,如不一定,直接指出α,β满足什么条件时,不存在∠F.【考点】多边形内角与外角;三角形内角和定理;三角形的外角性质.【分析】探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC= ∠ADC,∠PCD= ∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可;探究四:根据六边形的内角和公式表示出∠EDC+∠BCD,然后同理探究二解答即可;探究五:①根据四边形的内角和定理表示出∠BCD,再表示出∠DCE,然后根据角平分线的定义可得∠FBC= ∠ABC,∠FCE= ∠DCE,三角形的一个外角等于与它不相邻的两个内角的和可得∠F+∠FBC=∠FCE,然后整理即可得解;②同①的思路求解即可;③根据∠F 的表示,∠F 为0 时不存在.【解答】解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP 分别平分∠ADC 和∠ACD,∴∠PDC= ∠ADC,∠PCD= ∠ACD,∴∠DPC=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠ACD=180°﹣(∠ADC+∠ACD)=180°﹣(180°﹣∠A)=90°+ ∠A;探究三:∵DP、CP 分别平分∠ADC 和∠BCD,∴∠PDC= ∠ADC,∠PCD= ∠BCD,∴∠DPC=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠BCD=180°﹣(∠ADC+∠BCD)=180°﹣(360°﹣∠A﹣∠B)=(∠A+∠B);探究四:六边形ABCDEF 的内角和为:(6﹣2)•180°=720°,∵DP、CP 分别平分∠EDC 和∠BCD,∴∠PDC= ∠EDC,∠PCD= ∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠EDC﹣∠BCD=180°﹣(∠EDC+∠BCD)=180°﹣(720°﹣∠A﹣∠B﹣∠E﹣∠F)=(∠A+∠B+∠E+∠F)﹣180°即∠P= (∠A+∠B+∠E+∠F)﹣180°.故答案为:探究一:∠FDC+∠ECD=180°+∠A;探究二:∠P=90°+ ∠A;探究三:∠P=(∠A+∠B).探究四:∠P=(∠A+∠B+∠E+∠F)﹣180°;探究五:①,②.【点评】本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,此类题目根据同一个解答思路求解是解题的关键.。
人教版八年级上册数学 11 3 2多边形的内角和 同步练习(含答案)
人教版八年级上册数学11.3.2多边形的内角和同步练习一、单选题1.一个多边形每个内角都是150°,这个多边形是()A.九边形B.十边形C.十二边形D.十八形2.若一个多边形的内角和比它的外角和大540︒,则该多边形的边数为()A.6B.7C.8D.93.一个多边形的每个外角都是72︒,则这个多边形的边数为()A.4B.5C.6D.84.一个多边形的内角和是外角和的3倍,这个多边形是()A.六边形B.八边形C.九边形D.十边形5.正五边形的外角和是()A.360︒B.270︒C.180︒D.90︒+ 6.已知一个n边形的内角和是1800︒,从它的一个顶点出发可以作m条对角线,则m n 的值为()A.17B.19C.21D.667.如图,点A、B、C、D、E、F在同一平面内,连接AB、BC、CD、DE、EF、FA,若110∠+∠+∠+∠+∠等于()BCD∠=︒,则A B D E FA.470︒B.450︒C.430︒D.410︒8.一个多边形内角和与它的外角和的比为72:,则这个多边形的边数为()A .9B .8C .7D .6二、填空题 9.一个多边形的每个内角都是150︒,那么这个多边形的边数为________. 10.正n 边形的一个外角是60︒,则边数n =___________.11.一个多边形的内角和是其外角和的2倍,这是一个________边形.12.若一个正多边形的内角和是外角和的2倍,则这个正多边形的边数为___________. 13.如图,在五边形ABCDE 中,80P ∠=︒,BCD ∠的平分线与CDE ∠的平分线交于点P ,则A B E ∠+∠+∠=______.14.如图,正五边形ABCDE 中,连接AC 、BE 交于点P ,则BPC ∠=___________.15.如图所示,已知60MON ∠=︒,正五边形ABCDE 的顶点A 、B 在射线OM 上,顶点E 在射线ON 上,则NED ∠=______度.16.如图,在平面上,将边长相等的正三角形、正四边形、正五边形、正六边形的一边∠+∠-∠=______度.重合并叠在一起,则312三、解答题20.看图回答问题:(1)内角和为2014°,小明为什么说不可能?(2)小华求的是几边形的内角和?参考答案:1.C2.B3.B4.B5.A6.C7.A8.A9.1210.611.六12.613.340︒14.72︒15.2416.2417.(1)9n=n=(2)1518.边数为5,内角为108︒19.60°20.(2)13。
八年级数学上册《第十一章 多边形及其内角和》同步练习题含答案(人教版)
八年级数学上册《第十一章多边形及其内角和》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.正六边形的每个内角都是()A.60°B.80°C.100°D.120°2.n 边形的每个外角都为 15°,则边数 n 为()A.20 B.22 C.24 D.263.若一个正多边形的一个内角为144°,则这个图形为正()边形A.八B.九C.七D.十4.如果一个多边形的边数由8边变成10边,其内角和增加了()A.90°B.180°C.360°D.540°5.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=()A.90°B.180°C.270°D.360°6.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上()根木条.A.1B.2C.3D.47.如图,在五边形ABCDE中,∠A+∠B+∠E=α,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.12α﹣90°B.90°+12αC.12αD.540°−12α8.如图,某人从点A出发,前进8m后向右转60°,再前进8m后又向右转60°,按照这样的方式一直走下去,当他第一次回到出发点A时,共走了()A.24m B.32m C.40m D.48m二、填空题9.过m边形一个顶点可引出7条对角线,n边形共有2条对角线,则mn=10.一个多边形的内角和等于900°,则这个多边形是边形.11.一个四边形的四个内角的度数之比是3:3:2:1,求这个四边形的最小内角是.12.小明在用计算器计算一个多边形的内角和时,得出的结果为2005°,小芳立即判断他的结构是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.你认为正确的内角和应该是.13.如图,已知矩形ABCD,一条直线把矩形分割成两个多边形,若两个多边形的内角和分别为M和N则M+N的最小值为.三、解答题14.已知一个多边形的内角和是外角和的4倍还多180°,求这个多边形的边数.15.如图,四边形ABCD中,已知∠B、∠C的角平分线相交于点O,∠A+∠D =200°,求∠BOC的度数.16.求出下列图形中x的值.17.已知n边形的内角和θ=(n-2)×180°(1)甲同学说,θ能取540°;而乙同学说,θ也能取450°,甲、乙的说法对吗?若对,求出边数n,若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x18.连接多边形任意两个不相邻顶点的线段称为多边形的对角线.(1)对角线条数分别为、、、.(2)n边形可以有20条对角线吗?如果可以,求边数n的值;如果不可以,请说明理由.(3)若一个n边形的内角和为1800°,求它对角线的条数.参考答案1.D2.C3.D4.C5.C6.C7.A8.D9.4010.七11.20°12.198013.360∘14.解:设这个多边形的边数是n,依题意得(n﹣2)×180°=4×360°+180°(n﹣2)=8+1n=11.即这个多边形的边数是1115.四边形ABCD中∠A+∠ABC+∠BCD+∠D=360°∵∠A+∠D=200°∴∠ABC+∠BCD=360°-200°=160°∵BO、CO分别是∠ABC、∠BCD的平分线∠OBC= 12∠ABC,∠OCB= 12∠BCD∴∠OBC= 12(∠ABC+∠BCD)= 12×160°=80°∵∠BOC+∠OBC+∠OCB=180°∴∠BOC=180°-80°=100°∴∠BOC的度数为100°.16.(1)根据三角形外角的性质得x+(x+10)=x+70解得,x =60.(2)根据四边形的内角和为360°得 x+(x+10)+90+60=360解得,x =100.17.(1)解:甲对,乙不对.理由如下: ∵当θ取540°时540°=(n-2)×180° 解得n=5;当θ取450°时450°=(n-2)×180° 解得n= 92 ;∵n 为整数∴θ不能取450°;(2)解:依题意得(n-2)×180°+360°=(n+x-2)×180° 解得x=2.18.(1)2;5;9;n(n−3)2(2)解:假设可以,根据题意得: n(n−3)2 =20解得:n=8或n=-5(舍去)∴n 边形可以有20条对角线,此时边数n 为八(3)解:∵一个n 边形的内角和为1800° ∴180°×(n-2)=1800°解得:n=12∴n(n−3)2 = 12×(12−3)2 =54.答:这个多边形有54条对角线。
人教版八年级上册 11.3 多边形及其内角和 同步练习(含答案)
多边形及其内角和同步练习一.选择题1.正多边形的每个内角为135度,则多边形为()A.4B.6C.8D.102.若一个多边形减去一个角后,内角和为720°,则原多边形不可能是几边形()A.四边形B.五边形C.六边形D.七边形3.一个四边形的四个内角度数之比为1:2:4:5,则这个四边形中,最小的内角为()A.30°B.40°C.50°D.60°4.一个正多边形的每个内角的度数都等于相邻外角的2倍,则该正多边形的边数是()A.3B.4C.6D.125.如图,已知一个五边形ABCDE纸片,一条直线将该纸片分割成两个多边形.若这两个多边形内角和分别为m和n,则m+n不可能是()A.540°B.720°C.900°D.1080°6.如图,在五边形ABCDE中,AE∥BC,延长DE至点F,连接BE,若∥A=∥C,∥1=∥3,∥AEF=2∥2,则下列结论正确的是()∥∥1=∥2 ∥AB∥CD ∥∥AED=∥A ∥CD∥DEA.1个B.2个D.4个7.如图,正五边形ABCDE绕点A顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α (0°<α<90°),若DE∥B′C′,则∥α为()A.36°B.54°C.60°D.72°8.如图,在四边形ABCD中,∥DAB的角平分线与∥ABC的外角平分线相交于点P,且∥D+∥C=210°,则∥P=()A.10°B.15°C.30°D.40°9.设BF交AC于点P,AE交DF于点Q.若∥APB=126°,∥AQF=100°,则∥A-∥F=()A.60°B.46°C.26°D.45°10.如图,已知四边形ABCD中,∥C=90°,若沿图中虚线剪去∥C,则∥1+∥2等于()B.135°C.270°D.315°11.如图,在六边形ABCDEF中,若∥A+∥B+∥C+∥D=500°,∥DEF与∥AFE的平分线交于点G,则∥G等于()A.55°B.65°C.70°D.80°12.如图,A,B,C,D,E,F是平面上的6个点,则∥A+∥B+∥C+∥D+∥E+∥F的度数是()A.180°B.360°C.540°D.720°二.填空题13.八边形的内角和为;一个多边形的每个内角都是120°,则它是边形.14.一个多边形,除了一个内角外,其余各角的和为2750°,则内角和是.15.如图,已知在四边形ABCD中,∥A+∥C=135°,∥ADE=125°,则∥B= .16.如图所示,若∥DBE=78°,则∥A+∥C+∥D+∥E= °.17.如图所示,∥A+∥B+∥C+∥D+∥E+∥F+∥G+∥H= °.三.解答题18.(1)已知一个正多边形的每个内角比它的每个外角的4倍多30°,求这个多边形的边数;(2)一个多边形的外角和是内角和的七分之二,求这个多边形的边数.19.如图,在四边形ABCD中,BD∥CD,EF∥CD,且∥1=∥2.(1)求证:AD∥BC;(2)若BD平分∥ABC,∥A=130°,求∥C的度数.20.如图,四边形ABCD中,∥BAD=106°,∥BCD=64°,点M,N分别在AB,BC上,将∥BMN沿MN翻折得∥FMN,若MF∥AD,FN∥DC.求(1)∥F的度数;(2)∥D的度数.21.将纸片∥ABC沿DE折叠使点A落在点A'处【感知】如图∥,点A落在四边形BCDE的边BE上,则∥A与∥1之间的数量关系是;【探究】如图∥,若点A落在四边形BCDE的内部,则∥A与∥1+∥2之间存在怎样的数量关系?并说明理由.【拓展】如图∥,点A落在四边形BCDE的外部,若∥1=80°,∥2=24°,则∥A的大小为.22.已知,在四边形ABCD中,∥A+∥C=160°,BE,DF分别为四边形ABCD的外角∥CBN,∥MDC的平分线.(1)如图1,若BE∥DF,求∥C的度数;(2)如图2,若BE,DF交于点G,且BE∥AD,DF∥AB,求∥C的度数.参考答案1-5:CAACD 6-10:CBBBC 11-12:CB13、1080°;六14、2880°15、170°16、10217、72018、:(1)设这个多边形的每个内角是x°,每个外角是y°,则得到一个方程组得而任何多边形的外角和是360°,则多边形内角和中的外角的个数是360÷30=12,则这个多边形的边数是12边形;(2)设这个多边形的边数为n,依题意得:(n-2)180°=360°,解得n=9,答:这个多边形的边数为9.19、:(1)证明:∵BD⊥CD,EF⊥CD(已知),∴BD∥EF(垂直于同一直线的两条直线平行),∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2,∴∠1=∠3(等量代换).∴AD∥BC(内错角相等,两直线平行).(2)∵AD∥BC(已知),∴∠ABC+∠A=180°(两直线平行,同旁内角互补).∵∠A=130°(已知),∴∠ABC=50°.∵DB平分∠ABC(已知),∴∠3=25°.∴∠C=90°-∠3=65°.20、:(1)∵MF∥AD,FN∥DC,∠BAD=106°,∠BCD=64°,∴∠BMF=106°,∠FNB=64°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=53°,∠FNM=∠MNB=32°,∴∠F=∠B=180°-53°-32°=95°;(2)∠F=∠B=95°,∠D=360°-106°-64°-95°=95°.21、:(1)如图,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A.(2)如图②,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2.(3)如图③,∵∠1=∠DFA+∠A,∠DFA=∠A′+∠2,∴∠1=∠A+∠A′+∠2=2∠A+∠2,∴2∠A=∠1-∠2=56°,解得∠A=28°.故答案为:∠1=2∠A;28°.22、:(1)过点C作CH∥DF,∵BE∥DF,∴BE∥DF∥CH,∴∠FDC=∠DCH,∠BCH=∠EBC,∴∠DCB=∠DCH+∠BCH=∠FDC+∠EBC,∵BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线,∴∠FDC=∠CDM,∠EBC=∠CBN,∵∠A+∠BCD=160°,∴∠ADC+∠ABC=360°160°=200°,∴∠MDC+∠CBN=160°,∴∠FDC+∠CBE=80°,∴∠DCB=80°;(2)连接GC并延长,同理得∠MDC+∠CBN=160°,∠MDF+∠NBG=80°,∵BE∥AD,DF∥AB,∴∠A=∠MDF=∠DGB=∠NBG=40°,∵∠A+∠BCD=160°,∴∠BCD=160°-40°=120°.。
人教版2023-2024学年八年级上册数学《多边形及其内角》同步练习(含答案)
人教版2023-2024学年八年级上册数学《多边形及其内角》同步练习一、单选题1.一个多边形的每个外角都等于与它相邻的内角,这个多边形是( )边形A .四B .五C .六D .八2.若一个多边形的每个内角都是,那么它的边数是( )140︒A .5B .7C .9D .113.中国古代建筑具有悠久的历史传统和光辉的成就,其建筑艺术也是美术鉴赏的重要对象.如图是中国古代建筑中的一个正八边形的窗户,则它的内角和为( )A .B .C .D .1080︒900︒720︒540︒4.如图,一束平行太阳光照射到正五边形上,若∠1=46°,则∠2的度数为( )A .46°B .108°C .26°D .134°5.如图1是一个2×5长方形方格,用图2所示的1×2的黑色长方形(允许只用一种)去填满,共有( )种不同的方法.A .7B .8C .9D .106.如图,四边形中,与相邻的两外角平分线交ABCD 90,ADC ABC ∠=∠=︒ADC ABC ∠∠、于点若则的度数为( ),E 60,A ∠=︒E ∠A .B .C .D .60 50 40 307.如图,要使一个七边形木架不变形,至少要再钉上木条的根数是( )A .1根B .2根C .3根D .4根8.七边形中,、的延长线相交于点.若图中、、、的ABCDEFG AB ED O 1∠2∠3∠4∠外角的角度和为,则的度数为( )220︒BOD ∠A .B .C .D .30︒35︒40︒45︒9.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )A .B .C .D .240︒220︒180︒330︒10.如图,直线,将一个含角的直角三角尺按图中方式放置,点E 在AB CD ∥60︒EGF 上,边、分别交于点H 、K ,若,则等于( ).AB GF EF CD 64BEF ∠=︒GHC ∠三、解答题21.若一个多边形的内角和等于它的外角和的24.已知一个正n边形的内角和是正三角形内角和的4倍.(1)求n;(2)用边长相等的正n 边形和正三角形两种地板镶嵌地面,则一个公共顶点处需要正n边形和正三角形的个数分别为x、y,求x和y的关系式.25.如图,小明从点A出发,前进10m后向右转30°,再前进10m后又向右转30°,……,如此反复下去,直到她第一次回到出发点A,他所走的路径构成了一个正多边形.(1)求小明一共走了多少米;(2)求这个正多边形的内角和.答案:1.A2.C3.A4.C5.B6.D7.D8.C9.A10.B11.512.③④13.50°或130°14. 15 60°15.18/十八16. 2 817./36度36︒18./度 144︒1443519. 144 10 144020./度180︒18021.这个多边形是十边形22.(1)15;(2)1523.(1)8(2)360︒24.(1)6n =(2)26x y +=25.(1)小明一共走了120米1800 (2)这个多边形的内角和是.。
11.3多边形及其内角和同步练习2024-2025学年人教版数学八年级上册
11.3 多边形及其内角和一、单选题1.用“筝形”和“镖形”两种不同的瓷砖铺设成如图所示的地面,则“筝形”瓷砖中的内角BCD ∠的度数为( )A .120︒B .135︒C .144︒D .150︒2.若一个多边形的内角和为900︒,则从该多边形的一个顶点出发的对角线条数是( ) A .3 B .4 C .5 D .63.过八边形一个顶点的所有对角线,把这个多边形分成三角形的个数是( )A .5B .6C .7D .84.如图所示,图中x 的值是()A .80B .70C .60D .505.一个多边形的内角和是外角和的5倍,这个多边形边数为( )A .14B .12C .10D .86.若一个正n 边形的内角和为1080︒,则它的每个外角度数是( )A .36︒B .45︒C .72︒D .60︒7.如图,直线MN PQ ∥,点A 在直线MN 与PQ 之间,点B 在直线MN 上,连接AB .ABM ∠的平分线BC 交PQ 于点C ,连接AC ,过点A 作AD PQ ⊥交PQ 于点D ,作AF AB ⊥交PQ 于点F ,AE 平分DAF ∠交PQ 于点E ,若45CAE ∠=︒,52ACB DAE ∠=∠,则ACD ∠的度数是( )A .18︒B .27︒C .30︒D .45︒8.若一个正多边形每一个外角都相等,且一个内角的度数是140︒,则这个多边形是( ) A .正七边形 B .正八边形 C .正九边形 D .正十边形9.如图,在△ABC 中,△A=50°,则△1+△2的度数为( )A .180°B .230°C .250°D .310°10.一个多边形的内角和为1800︒,则这个多边形的边数为( )A .10B .11C .12D .13二、填空题11.若正多边形的一个中心角为40︒,则这个正多边形的一个内角等于 ︒. 12.如图,一张内角和为1800︒的多边形纸片按图示的剪法.....剪去一个内角后,得到的新多边形的边数为 .13.五边形从一个顶点出发的对角线的条数为 条.14.如图,在六边形ABCDEF 中,若500A B C D ∠+∠+∠+∠=︒,DEF ∠与AFE ∠的平分线交于点G ,则G ∠等于 .15.当一个多边形边数增加2时,它的内角和增加了 .16.正六边形的内角和为 度.17.下列说法中,△同位角相等;△两条平行线被第三条直线截成的同位角的平分线互相平行;△三角形的角平分线、中线、高都是线段;△十边形的内角和为1800︒.正确的是 .(请将你认为正确的序号填写在横线上)18.一个多边形的内角和为1800︒,则这个多边形的边数是 .19.如图,BE 是正五边形ABCDE 的对角线.若过点A 作直线//l BE ,则1∠的大小是 度.20.已知一个多边形中,除去一个内角外,其余内角的和为1160°,则除去的那个内角的度数是 .三、解答题21.(1)已知四边形ABCD 如图(1)所示.求证360A B C D ∠+∠+∠+∠=︒;(2)如图(2)所示的模板,按规定,AB ,CD 的延长线相交成40︒的角,因交点不在板上,不便测量,质检员测得115BAE ∠=︒,117DCE ∠=︒.如果你是质检员,如何知道模板是否合格?为什么?22.问题再现现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题.今天我们把正多边形的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究. 我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如图,用正方形镶嵌平面,可以发现在一个顶点O 周围围绕着4个正方形的内角.试想:如果用正六边形镶嵌平面,在一个顶点周围应该围绕 个正六边形内角. 问题提出如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案? 问题解决猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决.从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x 个正方形和y 个正八边形的内角可以拼成一个周角.根据题意,可得方程:()8218090?3608x y -⨯+=,整理得:238x y +=,我们可以找到唯一一组适合方程的正整数解为12x y =⎧⎨=⎩. 结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.问题拓广请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.23.已知一个正n边形的内角和是正三角形内角和的4倍.(1)求n;(2)用边长相等的正n边形和正三角形两种地板镶嵌地面,则一个公共顶点处需要正n边形和正三角形的个数分别为x、y,求x和y的关系式.24.已知一个多边形的各内角相等,并且一个外角等于一个内角的23,则这个多边形的边数是几?25.已知一个多边形的边数为n,若这个多边形的每个内角都比与它相邻的外角的4倍多30 ,求这个多边形对角线的总条数.参考答案:1.C2.B3.B4.C5.B6.B7.B8.C9.B10.C11.14012.1313.214.70︒/70度15.360︒16.72017.②③/③② 18.1219.3620.100°.21.(1)略;(2)不合格,略 22.略23.(1)6n =(2)26x y +=24.这个多边形的边数是5. 25.54。
【人教版八年级数学上册同步练习试题及答案】《11.3.2多边形的内角和》同步练习及答案
11.3.2多边形的内角和一、选择题260的是(宁波)一个多边形的每个外角都等于4.(2012•深圳)如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为)7.(2013•咸宁)如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()二、填空题9.从n边形的一个顶点出发,可以引____条对角线,它们将n边形分为____个三角形, n边形的内角和是 ,外角和是。
10.多边形的边数每增加1,它的内角和就增加_________,外角和________。
11.一个四边形的一组对角互补,那么另一组对角_________.12.(2013•德阳)已知一个多边形的每一个内角都等于108°,则这个多边形的边数是_________.13.(2013•莱芜)正十二边形每个内角的度数为 _________ . 14.(2013•西宁)如果一个正多边形的一个外角是60°,那么这个正多边形的边数是 _________ . 15.(2013•遂宁)若一个多边形内角和等于1260°,则该多边形边数是 _________ . 16.(2013•娄底)一个多边形的内角和是外角和的2倍,则这个多边形的边数为 _________ . 17.(2013•乐山)如图,在四边形ABCD 中,∠A=45°.直线l 与边AB ,AD 分别相交于点M ,N ,则∠1+∠2= _________ .18、已知一个多边形的内角和与外角和的差为1080°,则这个多边形是_____•边形. 三、解答题19.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.20. 已知如图,四边形ABCD 中,B ∠和C ∠的平分线交于点O .求证:1()2BOC A D ∠=∠+∠.21.•一个多边形截去一个角(不过顶点)后,所形成的一个多边形的内角和是2520°,求原多边形的边数。
人教版 八年级数学上册 11.3 多边形及其内角和 同步训练(含答案)
人教版八年级数学上册11.3 多边形及其内角和同步训练(含答案)一、选择题(本大题共7道小题)1. 若一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.62. 将一个n边形变成(n+2)边形,内角和将()A.减少180° B.增加180°C.减少360° D.增加360°3. 下列哪一个度数可以作为某一个多边形的内角和()A.240° B.600°C.540° D.2180°4. 设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A. a>bB. a=bC. a<bD. b=a+180°5. 一个正多边形的每个外角不可能等于()A.30° B.50° C.40° D.60°6. 若在n边形内部任意取一点P,将点P与各顶点连接起来,可以把n边形分成n个三角形,利用这个事实,可以探索到n边形的内角和为()A.180°×n B.180°×n-180°C.180°×n+180° D.180°×n-360°7. 如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m).则点E的坐标是()A. (2,-3)B. (2,3)C. (3,2)D. (3,-2)二、填空题(本大题共7道小题)8. 如图所示,x的值为________.9. 如图,在四边形ABCD中,若∠A+∠B+∠C=260°,则∠D的度数为________.10. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.11. 若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是________.12. 一个正五边形和一个正六边形按如图所示的方式摆放,它们都有一边在直线l上,且有一个公共顶点O,则∠AOB的度数是________.13. 如图,小明从点A出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°……照这样走下去,他第一次回到出发地点A时,一共走了________米.14. 如图,含30°角的三角尺的直角边AC,BC分别经过正八边形的两个顶点,则∠1+∠2=________°.三、解答题(本大题共3道小题)15. “X”与“Y”分别是两个多边形,请根据图中“X”与“Y”的对话,解答下列各小题.(1)求“X”与“Y”的外角和相加的度数;(2)分别求“X”与“Y”的内角和的度数.16. 小华与小明在讨论一个凸多边形的问题,他们的对话如下:小华说:“这个凸多边形的内角和是2020°.”小明说:“不可能吧!你错把一个外角当作内角了!”请根据俩人的对话,回答下列问题:(1)凸多边形的内角和为2020°,小明为什么说不可能?(2)小华求的是几边形的内角和?17. 如图,在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延长线与∠EDC处的外角的平分线相交于点P,求∠P的度数.人教版八年级数学上册11.3 多边形及其内角和同步训练-答案一、选择题(本大题共7道小题)1. 【答案】B2. 【答案】D[解析] (n+2)边形的内角和比n边形的内角和大n·180°-(n-2)·180°=360°.3. 【答案】C[解析] ∠多边形内角和公式为(n-2)×180°,∠多边形内角和一定是180°的倍数.∠540°=3×180°,∠540°可以作为某一个多边形的内角和.4. 【答案】B【解析】∠四边形的内角和为360°,五边形的外角和为360°,∴a =b.5. 【答案】B[解析] 设正多边形的边数为n,则当30°n=360°时,n=12,故A可能;当50°n=360°时,n=365,不是整数,故B不可能;当40°n=360°时,n=9,故C可能;当60°n=360°时,n=6,故D可能.6. 【答案】D7. 【答案】C【解析】点A(0,a),∴y轴过点A,点C、D纵坐标相同,∴CD 与x轴平行,∵正五边形是轴对称图形,∴点E和点B关于y轴对称,∴点E的坐标为(3,2).二、填空题(本大题共7道小题)8. 【答案】55°[解析] 由多边形的外角和等于360°,得360°-105°-60°+x+2x =360°,解得x=55°.9. 【答案】100°10. 【答案】8【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.【一题多解】因为正多边形的每一个外角都是45°,所以这个正多边形的每一个内角都是180°-45°=135°,设正多边形的边数为n,则(n-2)×180°=135°×n,解得n=8.方法指导设正多边形的边数为n,正多边形的外角和为360°,内角和为(n-2)×180°,每个内角的度数为180°×(n-2)n.11. 【答案】6【解析】设这个多边形的边数为n,则内角和为(n-2)·180°,外角和为360°,则根据题意有:(n-2)·180°=2×360°,解得n=6.12. 【答案】84°[解析] 由题意,得∠AOE=108°,∠BOF=120°,∠OEF=72°,∠OFE=60°,∠∠EOF=180°-72°-60°=48°.∠∠AOB=360°-108°-48°-120°=84°.13. 【答案】120[解析] 由题意得360°÷36°=10,则他第一次回到出发地点A时,一共走了12×10=120(米).故答案为120.14. 【答案】180[解析] 正八边形的每一个内角为(8-2)×180°8=135°,所以∠1+∠2=2×135°-90°=180°.三、解答题(本大题共3道小题)15. 【答案】解:(1)360°+360°=720°.(2)设X的边数为n,则Y的边数为3n.由题意,得180(n-2)+180(3n-2)=1440,解得n =3.所以X 的内角和为180°×(3-2)=180°, Y 的内角和为180°×(3×3-2)=1260°.答:“X”的内角和的度数为180°,“Y”的内角和的度数为1260°.16. 【答案】解:(1)∠n 边形的内角和是(n -2)×180°, ∠多边形的内角和一定是180°的整倍数. ∠2020÷180=11……40, ∠多边形的内角和不可能为2020°.(2)设小华求的是n 边形的内角和,这个内角为x°,则0<x <180. 根据题意,得(n -2)×180°-x +(180°-x)=2020°,解得n =12+2x +40180. ∠n 为正整数,∠2x +40必为180的整倍数. 又∠0<x <180, ∠40180<2x +40180<400180. ∠n =13或14.∠小华求的是十三边形或十四边形的内角和.17. 【答案】解:延长ED ,BC 相交于点G.在四边形ABGE 中,∠G =360°-(∠A +∠B +∠E)=50°, ∠P =∠FCD -∠CDP =12(∠DCB -∠CDG)=12∠G =12×50°=25°.。
人教版八年级数学上册《11.3多边形及其内角和》同步练习题(含答案)
初中数学·人教版·八年级上册——第11 章三角形11.3多边形及其内角和同步练习题测试时间 :30 分钟一、选择题1. 正十二边形的每一个内角的度数为()A.120 °B.135 °C.150°D.1 080 °答案C正十二边形的每一个外角的度数是=30°, 则每一个内角的度数是180°-30 ° =150°. 应选 C.2. 一个多边形的边数增添2, 则这个多边形的外角和()A. 增添 180°B. 增添 360°C.增添 540°D.不变答案D由多边形的外角和为360°, 知一个多边形的边数增添2, 这个多边形的外角和不变.3. 假如一个多边形的每个内角都相等, 且内角和为 1 800 °, 那么这个多边形的一个外角是()A.30°B.36°C.60°D.72°答案A设多边形是n边形,依据题意得(n-2)·180°=1 800°,解得n=12,那么这个多边形的一个外角是360°÷ 12=30°, 即这个多边形的一个外角是30°. 应选 A.二、填空题4. 从一个多边形的一个极点出发, 一共可作 10 条对角线 , 则这个多边形的内角和是度.答案 1 980分析(10+3-2) × 180°=1 980 °, 则这个多边形的内角和是 1 980 度.5. 如图 , 在七边形 ABCDEFG中, 线段 AB、 ED的延伸线订交于O 点. 若∠ 1、∠ 2、∠ 3、∠ 4 极点处的外角的度数和为220°, 则∠ BOD的度数为.答案40°分析∵∠ 1、∠ 2、∠ 3、∠ 4 极点处的外角的度数和为220° , ∴∠ 1+∠ 2+∠3+∠4+220° =4×180°,∴∠ 1+∠ 2+∠ 3+∠ 4=500° , ∵五边形 OAGFE的内角和 =(5-2) × 180°=540°,∴∠ 1+∠ 2+∠ 3+∠ 4+∠BOD=540°, ∴∠ BOD=540°-500 °=40° .6. 一个多边形的内角和与它的一个外角的和为570°, 那么这个多边形的边数为.答案 5分析设多边形的边数为n, 此中一个外角为x°, 则 0<x<180, 依据题意 , 得 (n-2) ·180°+x°=570° , ∴n=5-.又∵ 0<x<180, ∴4<n<5, ∵ n 为大于或等于 3 的整数 , ∴n=5.三、解答题7.请依据下边 X 与 Y 的对话 , 解答以下各小题 :X: 我和 Y 都是多边形 , 我们俩的内角和相加的结果为 1 440 ° .Y:X 的边数与我的边数之比为1∶3.(1)求 X 与 Y 的外角和相加的度数 ;(2)分别求出 X与 Y 的边数 ;(3)试求出 Y 共有多少条对角线 .分析(1)360 °+360°=720°. 故 X 与 Y 的外角和相加的度数为720°.(2) 设 X 的边数为 n, 则 Y 的边数为 3n, 由题意得 180(n-2)+180(3n-2)=1 440,解得n=3,∴3n=9,∴X与Y的边数分别为 3 和 9.(3)×9× (9-3)=27( 条 ), 故 Y 共有 27 条对角线 .8. 如图, 四边形ABCD中,AE 均分∠BAD,DE均分∠ADC.(1) 假如∠ B+∠C=120°, 则∠ AED的度数为( 直接写出结果 );(2)依据 (1) 的结论 , 猜想∠ B+∠C 与∠ AED之间的关系 , 并证明 .分析(1)60 °.(2) ∠AED=( ∠B+∠C).证明 : 在四边形 ABCD中, ∵∠ BAD+∠ CDA+∠B+∠C=360°, ∴∠ BAD+∠CDA=360°-( ∠B+∠C),又∵ AE均分∠ BAD,DE均分∠ ADC,∴∠ EAD=∠ BAD,∠EDA=∠ADC,∴∠ EAD+∠EDA=∠ BAD+∠ ADC=×[360°-(∠ B+∠C)],∴在△ AED中,∠AED=180°-(∠EAD+∠EDA)=180°-×[360° -(∠ B+∠C)]=( ∠B+∠ C), 故∠ AED=( ∠B+∠C).内容总结。
人教版 八年级数学上册 11.3 多边形及其内角和 同步训练(含答案)
人教版八年级数学上册11.3 多边形及其内角和同步训练(含答案)一、选择题(本大题共7道小题)1. 若一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.62. 将一个n边形变成(n+2)边形,内角和将()A.减少180° B.增加180°C.减少360° D.增加360°3. 下列哪一个度数可以作为某一个多边形的内角和()A.240° B.600°C.540° D.2180°4. 设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A. a>bB. a=bC. a<bD. b=a+180°5. 一个正多边形的每个外角不可能等于()A.30° B.50° C.40° D.60°6. 若在n边形内部任意取一点P,将点P与各顶点连接起来,可以把n边形分成n个三角形,利用这个事实,可以探索到n边形的内角和为()A.180°×n B.180°×n-180°C.180°×n+180° D.180°×n-360°7. 如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m).则点E的坐标是()A. (2,-3)B. (2,3)C. (3,2)D. (3,-2)二、填空题(本大题共7道小题)8. 如图所示,x的值为________.9. 如图,在四边形ABCD中,若∠A+∠B+∠C=260°,则∠D的度数为________.10. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.11. 若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是________.12. 一个正五边形和一个正六边形按如图所示的方式摆放,它们都有一边在直线l上,且有一个公共顶点O,则∠AOB的度数是________.13. 如图,小明从点A出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°……照这样走下去,他第一次回到出发地点A时,一共走了________米.14. 如图,含30°角的三角尺的直角边AC,BC分别经过正八边形的两个顶点,则∠1+∠2=________°.三、解答题(本大题共3道小题)15. “X”与“Y”分别是两个多边形,请根据图中“X”与“Y”的对话,解答下列各小题.(1)求“X”与“Y”的外角和相加的度数;(2)分别求“X”与“Y”的内角和的度数.16. 小华与小明在讨论一个凸多边形的问题,他们的对话如下:小华说:“这个凸多边形的内角和是2020°.”小明说:“不可能吧!你错把一个外角当作内角了!”请根据俩人的对话,回答下列问题:(1)凸多边形的内角和为2020°,小明为什么说不可能?(2)小华求的是几边形的内角和?17. 如图,在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延长线与∠EDC处的外角的平分线相交于点P,求∠P的度数.人教版八年级数学上册11.3 多边形及其内角和同步训练-答案一、选择题(本大题共7道小题)1. 【答案】B2. 【答案】D[解析] (n+2)边形的内角和比n边形的内角和大n·180°-(n-2)·180°=360°.3. 【答案】C[解析] ∠多边形内角和公式为(n-2)×180°,∠多边形内角和一定是180°的倍数.∠540°=3×180°,∠540°可以作为某一个多边形的内角和.4. 【答案】B【解析】∠四边形的内角和为360°,五边形的外角和为360°,∴a =b.5. 【答案】B[解析] 设正多边形的边数为n,则当30°n=360°时,n=12,故A可能;当50°n=360°时,n=365,不是整数,故B不可能;当40°n=360°时,n=9,故C可能;当60°n=360°时,n=6,故D可能.6. 【答案】D7. 【答案】C【解析】点A(0,a),∴y轴过点A,点C、D纵坐标相同,∴CD 与x轴平行,∵正五边形是轴对称图形,∴点E和点B关于y轴对称,∴点E的坐标为(3,2).二、填空题(本大题共7道小题)8. 【答案】55°[解析] 由多边形的外角和等于360°,得360°-105°-60°+x+2x =360°,解得x=55°.9. 【答案】100°10. 【答案】8【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.【一题多解】因为正多边形的每一个外角都是45°,所以这个正多边形的每一个内角都是180°-45°=135°,设正多边形的边数为n,则(n-2)×180°=135°×n,解得n=8.方法指导设正多边形的边数为n,正多边形的外角和为360°,内角和为(n-2)×180°,每个内角的度数为180°×(n-2)n.11. 【答案】6【解析】设这个多边形的边数为n,则内角和为(n-2)·180°,外角和为360°,则根据题意有:(n-2)·180°=2×360°,解得n=6.12. 【答案】84°[解析] 由题意,得∠AOE=108°,∠BOF=120°,∠OEF=72°,∠OFE=60°,∠∠EOF=180°-72°-60°=48°.∠∠AOB=360°-108°-48°-120°=84°.13. 【答案】120[解析] 由题意得360°÷36°=10,则他第一次回到出发地点A时,一共走了12×10=120(米).故答案为120.14. 【答案】180[解析] 正八边形的每一个内角为(8-2)×180°8=135°,所以∠1+∠2=2×135°-90°=180°.三、解答题(本大题共3道小题)15. 【答案】解:(1)360°+360°=720°.(2)设X的边数为n,则Y的边数为3n.由题意,得180(n-2)+180(3n-2)=1440,解得n =3.所以X 的内角和为180°×(3-2)=180°, Y 的内角和为180°×(3×3-2)=1260°.答:“X”的内角和的度数为180°,“Y”的内角和的度数为1260°.16. 【答案】解:(1)∠n 边形的内角和是(n -2)×180°, ∠多边形的内角和一定是180°的整倍数. ∠2020÷180=11……40, ∠多边形的内角和不可能为2020°.(2)设小华求的是n 边形的内角和,这个内角为x°,则0<x <180. 根据题意,得(n -2)×180°-x +(180°-x)=2020°,解得n =12+2x +40180. ∠n 为正整数,∠2x +40必为180的整倍数. 又∠0<x <180, ∠40180<2x +40180<400180. ∠n =13或14.∠小华求的是十三边形或十四边形的内角和.17. 【答案】解:延长ED ,BC 相交于点G.在四边形ABGE 中,∠G =360°-(∠A +∠B +∠E)=50°, ∠P =∠FCD -∠CDP =12(∠DCB -∠CDG)=12∠G =12×50°=25°.。
2023-2024学年人教版数学八年级上册 11.3多边形及其内角和同步练习(含答案)
2023-2024学年人教版数学八年级上册11.3多边形及其内角和同步练习(含答案)2023-2024学年人教版数学八年级上册11.3 多边形及其内角和同步练习一、单选题1.五边形的内角和为()A.720° B.540° C.360° D.180°2.下列角度中,不能成为多边形内角和的是()A.600° B.720° C.900° D.1080°3.一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形4.若从一个正多边形的一个顶点出发,最多可以引5条对角线,则它的一个内角为()A.B.C.D.5.如果一个四边形的面积正好等于它的两条对角线乘积的一半,那么这个四边形一定是()A.菱形B.矩形C.正方形D.对角线互相垂直的四边形6.在一个凸n边形的纸板上切下一个三角形后,剩下一个内角和为1080°的多边形,则n的值为()A.7 B.8C.9 D.以上都有可能7.一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.14或15或16 B.15或16或17 C.15或16 D.16或178.下列说法中,正确的个数有()①若一个多边形的外角和等于360°,则这个多边形的边数为4;②三角形的高相交于三角形的内部;③三角形的一个外角大于任意一个内角;④一个多边形的边数每增加一条,这个多边形的内角和就增加;⑤对角线共有5条的多边形是五边形.A.1个B.2个C.3个D.4个二、填空题9.若一个正多边形的一个外角等于18°,则这个正多边形的边数是.10.一个多边形的内角和与外角和的比是4:1,则它的边数是.11.如图,点O是正五边形ABCDE的中心,连接BD、OD,则∠BDO =°.12.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.13.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=度.三、解答题14.一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.15.如图,是四边形的一个外角,且.那么与互补吗?为什么?16.如图,CD∠AF,∠CDE=∠BAF,AB∠BC,∠C=120°,∠E=80°,试求∠F的度数.17.如图,四边形ABCD中,BA丄DA,CD丄BC,BE、DF分别是∠ABC、∠ADC的平分线.(1)∠1与∠2有什么数量关系,为什么?(2)BE与DF有什么位置关系?请说明理由.18.如图,将六边形纸片ABCDEF沿虚线剪去一个角(∠BCD)后,得到∠1+∠2+∠3+∠4+∠5=460°.(1)求六边形ABCDEF的内角和;(2)求∠BGD的度数.19.如图,五边形中,.(1)求的度数;(2)直接写出五边形的外角和.参考答案1.B 2.A 3.C 4.D 5.D 6.D 7.A 8.B 9.2010.1011.1812.24°13.360 °14.解:根据题意,得(n﹣2)180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.15.解:与互补,理由如下:∠ ,∠ABC+=180∠∠ABC+∠D=180 ,∠四边形内角和等于360 ,∠ + =360°-(∠ABC+∠D)=180°∠ 与互补.解:如图,连结AD在四边形ABCD中,∠BAD+∠ADC+∠B+∠C=360°.∠AB∠BC,∠∠B=90°.又∠∠C=120°,∠∠BAD+∠ADC=150°.∠CD∠AF,∠∠CDA=∠DAF.又∠∠CDE =∠BAF,∠∠EDA=∠BAD.在四边形ADEF∠DAF+∠EDA+∠F+∠E=360°,∠∠F+∠E=360°(∠ADC+∠BAD)=210°.又∠∠E=80°,∠∠F=130°17.(1)解:∠1+∠2=90°;理由如下:∠BE,DF分别是∠ABC,∠ADC的平分线,∠∠ABC=2∠1,∠ADC=2∠2,∠BA丄DA,CD丄BC,∠∠A=∠C=90°,∠∠ABC+∠ADC=180°,∠2(∠1+∠2)=180°,∠∠1+∠2=90°;(2)解:BE∠DF;理由如下:在∠FCD中,∠∠C=90°,∠∠DFC+∠2=90°,∠∠1+∠2=90°,∠∠1=∠DFC,∠BE∠DF.18.(1)解:六边形ABCDEF的内角和为:180°×(6-2)=720°;(2)解:∠∠1+∠2+∠3+∠4+∠5=460°,∠∠GBC+∠C+∠CDG=720°-460°=260°,∠∠G=360°-(∠GBC+∠C+∠CDG)=100°.19.(1)解:∠AE∠CD,∠∠D+∠E=180°,∠五边形ABCDE中,∠A=100°,∠B=120°,∠.(2)解:根据多边形的外角和定理:五边形的外角和是:°。
人教八年级上册数学同步训练11-3-2 多边形的内角和
11.3.2多边形的内角和知能演练提升一、能力提升1.如果一个正多边形的每一个外角都是锐角,那么这个正多边形的边数一定不小于()A.3B.4C.5D.62.若一个多边形的边数由5增加到11,则内角和增加的度数是()A.1 080°B.720°C.540°D.360°3.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是()A.110°B.108°C.105°D.100°4.游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行,成功的招数不止一招,可助我们成功的一招是()A.每走完一段直路后沿向右偏72°方向行走B.每段直路要短C.每走完一段直路后沿向右偏108°方向行走D.每段直路要长5.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形6.若凸n边形的内角和为1 260°,则从一个顶点出发引的对角线条数是.★7.如图,在四边形ABCD中,∠A+∠B=210°,且∠ADC的平分线与∠DCB的平分线相交于点O,则∠COD的度数是.8.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.★9.如图,求∠A+∠B+∠OCD+∠ODC+∠E+∠F的度数.二、创新应用★10.如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D,……照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米知能演练·提升一、能力提升1.C 每个外角都是锐角,即小于90°,设边数为n ,则这些锐角的和一定小于n×90°.而外角和为360°,所以360°<n×90°,n>4,即n 不小于5.2.A 因为每增加一条边,内角和增加180°,所以增加6条边,内角和增加180°×6=1 080°.3.D 由题意知∠AED 的补角为80°,则∠AED=100°.4.A 依题意,行走的路线是正五边形,正五边形的每一个外角的度数为360÷5=72°,故选A .5.D 多边形的外角和是360°,内角和等于外角和的一半,则内角和是180°,可知此多边形为三角形.6.6 因为凸n 边形的内角和为1 260°,所以(n-2)×180°=1 260°,得n=9.故从一个顶点出发引的对角线的条数为9-3=6.7.105° ∵四边形的内角和为360°,∠A+∠B=210°,∴∠ADC+∠BCD=360°-210°=150°.∵DO ,CO 分别为∠ADC 与∠BCD 的平分线,∴∠ODC=12∠ADC ,∠OCD=12∠BCD.∴∠ODC+∠OCD=12(∠ADC+∠BCD )=12×150°=75°. ∴∠COD=180°-75°=105°.8.解 由题意知这个多边形的内角和为3×360°-180°=900°.设这个多边形的边数为n ,根据题意,得(n-2)×180°=900°,解得n=7.故这个多边形的边数为7.9.解 如图,连接BE ,则在△COD 与△BOE 中,∠ODC+∠OCD+∠COD=180°,∠OBE+∠OEB+∠BOE=180°.∵∠COD 与∠BOE 是对顶角,∴∠COD=∠BOE.∵∠ODC+∠OCD=180°-∠COD ,∠OBE+∠OEB=180°-∠BOE ,∴∠ODC+∠OCD=∠OBE+∠OEB.∴题图中的∠A+∠B+∠OCD+∠ODC+∠E+∠F等于上图中的∠A+∠F+∠ABC+∠DEF+∠OBE+∠OEB=∠A+∠F+∠ABE+∠BEF=360°,即所求六个角的和为360°.二、创新应用10.B由已知得小明行走的路线是正多边形,边数为360°÷45°=8,故他第一次回到出发点A时所走的路程为10×8=80(米).。
人教版八年级数学上册 多边形及其内角和同步练习题精选(附答案)
人教版八年级数学上册 多边形及其内角和同步练习题精选一、选择题。
1.下列图形中具有稳定性的有( )A .正方形B .长方形C .梯形D .直角三角形2.四边形没有稳定性,当四边形形状改变时,发生变化的是( )A .四边形的边长B .四边形的周长C .四边形的某些角的大小D .四边形的内角和3.九边形的对角线有( )A .25条B .31条C .27条D .30条4.下列图中不是凸多边形的是( )5.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是( )A . 六边形B .五边形C .四边形D .三角形6.如图,木工师傅从边长为90cm 的正三角形木板上锯出一正六边形木块,那么正六边形木板的边长为( )A . 34cmB .32cmC .30cmD .28cm7.六边形内角和为( )A .360°B .540°C .720°D .1080°8.某学生在计算四个多边形的内角和时,得到下列四个答案,其中错误的是( )A .180°B .540°C .1900°D .1080°9.下列多边形中,内角和与外角和相等的是( )A . 四边形B .五边形C .六边形D .八边形10.当一个多边形的边数增加时,其外角和( )A .增加B .减少C .不变D .不能确定11.如果一个多边形的内角和是720°,那么这个多边形的对角线的条数是( )A .6B .9C .14D .2012.已知正n 边形的一个内角为135°,则边数n 的值是( )A .6B .7C .8D .1013.如图,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为( )A .120°B .180°C .240°D .300°ABCD14.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为( )A .5B .5或6C .5或7D .5或6或715.一个多边形截去一个角(不过顶点)后,形成的多边形的内角和是2520°,那么原多边形的边数是( )A .13B .14C .15D .13或1516.如图,过正五边形ABCDE 的顶点A 作直线l ∥BE ,则∠1的度数为( )A .30°B .36°C .38°D .45°17.若一个多边形的内角和小于其外角和,则这个多边形的边数是( )A .3B .4C .5D .618.如果一个多边形的内角和是它的外角和的n 倍,则这个多边形的边数是( )A .nB .2n-2C .2nD .2n+2二、填空题。
11.3多边形及其内角和-2023-2024学年人教版八年级数学上册同步练习(含答案)
11.3多边形及其内角和-2023-2024学年人教版八年级数学上册同步练习(含答案)11.3多边形及其内角和-2023-2024学年人教版八年级数学上册同步练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.正多边形的一个内角等于150 ,则该多边形是正()边形A.9 B.10 C.11 D.122.下列说法中正确的是()A.三角形的角平分线是一条射线.B.三角形的一个外角大于任何一个内角.C.任意三角形的外角和都是180°.D.内角和是1080°的多边形是八边形.3.下列正多边形中,内角和等于外角和的是()A.正三边形B.正四边形C.正五边形D.正六边形4.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为的新多边形,则原多边形的边数为A.13 B.14 C.15 D.165.十边形的内角和是()A.1080° B.1260° C.1440° D.1800°6.若一个多边形的内角和与外角和之差是,则此多边形是()边形.A.6 B.7 C.8 D.97.正五边形的外角和为()A.360° B.540° C.720° D.900°8.如图,过正六边形ABCDEF的顶点B作一条射线与其内角∠BAF的角平分线相交于点P,且∠APB=40°,则∠CBP的度数为()A.80° B.60° C.40° D.30°9.在下列四组多边形的地板砖中:①正三角形与正方形;②正三角形与正十边形;③正方形与正六边形;④正方形与正八边形.将每组中的两种多边形结合,能密铺地面的是()A.①②③ B.①②④ C.③④ D.①④10.若一个多边形的内角和是外角和的1.5倍,则这个多边形是()A.三角形B.四边形C.五边形D.六边形二、填空题11.八边形从其中的任何一个顶点最多可画条对角线,这些对角线可将八边形分成三角形.12.一个多边形的每个外角均为40°,则这个多边形的内角和为.13.如图,.14.我们把正多边形的一个内角与外角的比值叫做正多边形的内外比,内外比为3的正多边形的边数为15.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.正多边形的一个外角是40°,则这个正多边形的边数是.B.运用科学计算器比较大小:sin37.5° .16.一个多边形的内角和比外角和多1080°,并且这个多边形的各内角都相等,则这个多边形的每一个外角等于.17.从一个八边形的一个顶点画对角线,可画出条对角线.18.已知一个多边形的每一个外角都等于,则这个多边形的边数是.19.如图,AB∠CD,∠BAC与∠DCA的平分线相交于点G,GE∠AC于点E,F为AC上的一点,且AF=FC,GH∠CD于H.下列说法①AG∠CG;②∠BAG=∠CGE;③S∠AFG=S∠CFG;④若∠EGH∠∠ECH=2∠7,则∠EGH=40°.其中正确的有.20.如果n边形的每一个内角都等于与它相邻外角的2倍,则n的值是.三、解答题21.如图,在四边形中,与互补,、分别平分、,与相交于点G.(1)与有怎样的数量关系?说明理由;(2)若,,求的度数.22.已知n边形的内角和等于900°,试求出n边形的边数.23.已知一个多边形的内角和是,求这个多边形是多少边形.24.已知一个多边形的每个内角都相等,且一个内角比一个外角大36°,求这个多边形的边数.25.(1)如图(1)所示是四边形,小明作出它对角线为2条,算法为=2.(2)如图(2)是五边形,小明作出它的对角线有5条,算法为=5.(3)如图(3)是六边形,可以作出它的对角线有________条,算法为________.(4)猜想边数为n的多边形对角线条数的算法及条数.试卷第1页,共3页试卷第1页,共3页参考答案:1.D2.D3.B4.B5.C6.C7.A8.C9.D10.C11. 5 612.1260°13./度14.815.9, >16.36°17.518.519.①②③④.20.621.(1)互余,理由见解析;(2)20°22.723.十边形24.525.(3)9,=9;(4).答案第1页,共2页答案第1页,共2页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学上册《多边形的内角和》同步训练习题11.3.2《多边形的内角和》同步训练习题一.选择题(共7小题)1.(2015•重庆)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形2.(2015•丽水)一个多边形的每个内角均为120°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形3.(2015•南宁)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60°B.72°C.90°D.108°4.(2015•眉山)一个多边形的外角和是内角和的,这个多边形的边数为()A.5 B.6 C.7 D.85.(2015•葫芦岛)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP﹨CP分别平分∠EDC﹨∠BCD,则∠P的度数是()A.60°B.65°C.55°D.50°6.(2015•苏州模拟)如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A.80°B.100°C.108°D.110°7.(2015•绵阳模拟)某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转,某一指令规定:机器人先向前行走2米,然后左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了()A.14米B.15米C.16米D.17米二.填空题(共7小题)8.(2015•淮安)五边形的外角和等于°.9.(2015•资阳)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.10.一个多边形的每一个外角都是36°,则这个多边形的边数是.11.(2015•盘锦二模)如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2= .12.(2015•淄博)如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA= 度.13.(2015春•晋江市期末)把一块含60°的三角板与一把直尺按如图方式放置,则∠α=度.14.(2015春•龙岗区期末)如图,小明将若干个全等的正五边形巧妙地排成环状,则他要完成这一圆环共需个全等的五边形.三.解答题(共5小题)15.(2015春•镇江校级期末)一个多边形的内角和是它的外角和的5倍,求这个多边形的边数.16.(2015春•长春期末)在一个正多边形中,一个内角是它相邻的一个外角的3倍.(1)求这个多边形的每一个外角的度数.(2)求这个多边形的边数.17.(2015秋•周口校级月考)看图回答问题:(1)内角和为2014°,小明为什么不说不可能?(2)小华求的是几边形的内角和?(3)错把外角当内角的那个外角的度数你能求出来吗?它是多少度?18.(2015秋•盐津县校级月考)如图所示,在△ABC中,∠A=60°,B D﹨CE分别是AC﹨AB上的高,H是BD﹨CE的交点,求∠BHC的度数.19.(2014春•江阴市期末)探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?如图甲,∠FDC﹨∠ECD为△ADC的两个外角,则∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?如图乙,在△ADC中,DP﹨CP分别平分∠ADC和∠ACD,则∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图丙,在四边形ABCD中,DP﹨CP分别平分∠ADC和∠BCD,则∠P与∠A+∠B的数量关系.探究四:若将上题中的四边形ABCD改为六边形ABCDEF呢?如图丁则∠P与∠A+∠B+∠E+∠F的数量关系.探究五:如图,四边形ABCD中,∠F为四边形ABCD的∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的锐角,若设∠A=α,∠D=β;(1)如图①,α+β>180°,则∠F= ;(用α,β表示)(2)如图②,α+β<180°,请在图中画出∠F,且∠F= ;(用α,β表示)(3)一定存在∠F吗?如有,直接写出∠F的值,如不一定,直接指出α,β满足什么条件时,不存在∠F.人教版八年级数学上册11.3.2《多边形的内角和》同步训练习题参考答案一.选择题(共7小题)1.(2015•重庆)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形选C【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.2.(2015•丽水)一个多边形的每个内角均为120°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形【考点】多边形内角与外角.【分析】一个多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:外角是180°﹣120°=60°,360÷60=6,则这个多边形是六边形.故选:C.【点评】考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.3.(2015•南宁)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60°B.72°C.90°D.108°【考点】多边形内角与外角.【分析】首先设此多边形为n边形,根据题意得:180(n﹣2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选B.【点评】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°.4.(2015•眉山)一个多边形的外角和是内角和的,这个多边形的边数为()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【专题】计算题.【分析】根据多边形的外角和为360°及题意,求出这个多边形的内角和,即可确定出多边形的边数.【解答】解:∵一个多边形的外角和是内角和的,且外角和为360°,∴这个多边形的内角和为900°,即(n﹣2)•180°=900°,解得:n=7,则这个多边形的边数是7,故选C.【点评】此题考查了多边形的内角和与外角和,熟练掌握内角和公式及外角和公式是解本题的关键.5.(2015•葫芦岛)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP﹨CP分别平分∠EDC﹨∠BCD,则∠P的度数是()A.60°B.65°C.55°D.50°【考点】多边形内角与外角;三角形内角和定理.【分析】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.【解答】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD﹨∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选:A.【点评】本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.6.(2015•苏州模拟)如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A.80°B.100°C.108°D.110°【考点】多边形内角与外角.【分析】根据多边形的外角和定理即可求得与∠AED相邻的外角,从而求解【解答】解:根据多边形外角和定理得到:∠1+∠2+∠3+∠4+∠5=360°,∴∠5=360﹣4×70=80°,∴∠AED=180﹣∠5=180﹣80=100°.故选B.【点评】本题主要考查了多边形的外角和定理,任何多边形的外角和是360°.7.(2015•绵阳模拟)某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转,某一指令规定:机器人先向前行走2米,然后左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了()A.14米B.15米C.16米D.17米【考点】多边形内角与外角.【分析】第一次回到原处正好转了360°,正好构成一个正八边形.【解答】解:机器人转了一周共360度,360°÷45°=8,共走了8次,机器人共走了8×2=16米.故选:C.【点评】本题考查了多边形的外角,是一个实际问题,要理解“回到原处”就是转了360度.二.填空题(共7小题)8.(2015•淮安)五边形的外角和等于360 °.9.(2015•资阳)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是8 .【考点】多边形内角与外角.【分析】任何多边形的外角和是360°,即这个多边形的内角和是3×360°.n边形的内角和是(n﹣2)•18 0°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是8.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.10.(2015•镇江二模)一个多边形的每一个外角都是36°,则这个多边形的边数是10 .【考点】多边形内角与外角.【分析】多边形的外角和是固定的360°,依此可以求出多边形的边数.【解答】解:∵一个多边形的每个外角都等于36°,∴多边形的边数为360°÷36°=10.故答案为:10.【点评】本题主要考查了多边形的外角和定理:多边形的外角和是360°.11.(2015•盘锦二模)如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2= 240°.【考点】多边形内角与外角;三角形内角和定理.【分析】三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【解答】解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故答案为:240°.【点评】主要考查了三角形及四边形的内角和是360度的实际运用与三角形内角和180度之间的关系.12.(2015•淄博)如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA= 36 度.【考点】多边形内角与外角;平行线的性质.【分析】首先求得正五边形内角∠C的度数,然后根据CD=CB求得∠C DB的度数,然后利用平行线的性质求得∠DFA的度数即可.【解答】解:∵正五边形的外角为360°÷5=72°,∴∠C=180°﹣72°=108°,∵CD=CB,∴∠CDB=36°,∵AF∥CD,∴∠DFA=∠CDB=36°,故答案为:36.【点评】本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.13.(2015春•晋江市期末)把一块含60°的三角板与一把直尺按如图方式放置,则∠α=120 度.【考点】多边形内角与外角.【分析】三角板中∠B=90°,三角板与直尺垂直,再用四边形的内角和减去∠A﹨∠B﹨∠ACD即得∠α的度数.【解答】解:如图:∵在四边形ABCD中,∠A=60°,∠B=90°,∠ACD=90°,∴∠α=360°﹣∠A﹣∠B﹣∠ACD=360°﹣60°﹣90°﹣90°=120°,故答案为:120.【点评】本题主要考查了多边形的内角和.关键是得出用四边形的内角和减去∠A﹨∠B﹨∠ACD即得∠α的度数.14.(2015春•龙岗区期末)如图,小明将若干个全等的正五边形巧妙地排成环状,则他要完成这一圆环共需10 个全等的五边形.【考点】多边形内角与外角.【分析】首先根据n边形的内角和为:(n﹣2)×180°,求出五边形的内角和是多少,进而求出正五边形的每一个内角的度数是多少;然后求出∠1的度数是多少,再用360°除以∠1的度数,即可求出他要完成这一圆环共需多少个全等的五边形.【解答】解:如图1,,∵五边形的内角和为:(5﹣2)×180°=3×180°=540°,∴正五边形的每一个内角为:540°÷5=108°,∴∠1=108°×2﹣180°=216°﹣180°=36°,∵360°÷36°=10,∴他要完成这一圆环共需10个全等的五边形.故答案为:10.【点评】此题主要考查了多边形的内角和定理,要熟练掌握,解答此题的关键是要明确n边形的内角和为:(n ﹣2)•180°(n≥3,且n为整数),并能求出∠1的度数是多少.三.解答题(共5小题)15.(2015春•镇江校级期末)一个多边形的内角和是它的外角和的5倍,求这个多边形的边数.【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°和外角和定理列出方程,然后求解即可.【解答】解:设多边形的边数为n,由题意得,(n﹣2)•180°=5×360°,解得n=12,所以,这个多边形是十二边形.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.16.(2015春•长春期末)在一个正多边形中,一个内角是它相邻的一个外角的3倍.(1)求这个多边形的每一个外角的度数.(2)求这个多边形的边数.【考点】多边形内角与外角.【分析】(1)设这个多边形的每一个外角的度数为x度,根据题意列出方程解答即可;(2)根据多边形的外角和计算即可.【解答】解:(1)设这个多边形的每一个外角的度数为x度.根据题意,得:3x+x=180,解得x=45.故这个多边形的每一个外角的度数为45°;(2)360°÷45°=8.故这个多边形的边数为8.【点评】此题考查多边形的外角和内角,关键是根据多边形的内角和和外角和定理计算.17.(2015秋•周口校级月考)看图回答问题:(1)内角和为2014°,小明为什么不说不可能?(2)小华求的是几边形的内角和?(3)错把外角当内角的那个外角的度数你能求出来吗?它是多少度?【考点】多边形内角与外角.【分析】(1)n边形的内角和是(n﹣2)•180°,因而内角和一定是180度的倍数,依此即可作出判断;(2)多边形的内角一定大于0,并且小于180度,因而内角和再加上一个内角的值,这个值除以180度,所得数值比边数n﹣2要大,大的值小于1.则用2014除以180所得值,加上2,比这个数小的最大的整数就是多边形的边数;(3)用2014°﹣1980°即可.【解答】解:(1)∵n边形的内角和是(n﹣2)•180°,∴内角和一定是180度的倍数,∵2014÷180=11…34,∴内角和为2014°不可能;(2)依题意有(x﹣2)•180°<2014°,解得x<13.因而多边形的边数是13,故小华求的是十三边形的内角和;(2)13边形的内角和是(13﹣2)×180°=1980°,2014°﹣1980°=34°,因此这个外角的度数为34°.【点评】考查了多边形的内角与外角,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.18.(2015秋•盐津县校级月考)如图所示,在△ABC中,∠A=60°,B D﹨CE分别是AC﹨AB上的高,H是BD﹨CE的交点,求∠BHC的度数.【考点】多边形内角与外角.【分析】根据高的定义得∠ADB=∠AEC=90°,于是利用四边形内角和为360°可计算出∠EHD,然后根据对顶角相等得到∠BHC的度数.【解答】解:∵BD﹨CE分别是△ABC边AC﹨AB上的高,∴∠ADB=∠AEC=90°,而∠A+∠AEH+∠ADH+∠EHD=360°,∴∠EHD=180°﹣60°=120°,∴∠BHC=120°.【点评】本题考查了四边形的内角和以及三角形高的意义,解答此类题的关键是利用四边形的内角和为360°.19.(2014春•江阴市期末)探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?如图甲,∠FDC﹨∠ECD为△ADC的两个外角,则∠A与∠FDC+∠ECD的数量关系∠FDC+∠ECD=180°+∠A .探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?如图乙,在△ADC中,DP﹨CP分别平分∠ADC和∠ACD,则∠P与∠A的数量关系∠P=90°+∠A .探究三:若将△ADC改为任意四边形ABCD呢?已知:如图丙,在四边形ABCD中,DP﹨CP分别平分∠ADC和∠BCD,则∠P与∠A+∠B的数量关系∠P=(∠A+∠B).探究四:若将上题中的四边形ABCD改为六边形ABCDEF呢?如图丁则∠P与∠A+∠B+∠E+∠F的数量关系∠P=(∠A+∠B+∠E+∠F)﹣180°.探究五:如图,四边形ABCD中,∠F为四边形ABCD的∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的锐角,若设∠A=α,∠D=β;(1)如图①,α+β>180°,则∠F=∠F=(α+β)﹣90°;(用α,β表示)(2)如图②,α+β<180°,请在图中画出∠F,且∠F=∠F=90°﹣(α+β);(用α,β表示)(3)一定存在∠F吗?如有,直接写出∠F的值,如不一定,直接指出α,β满足什么条件时,不存在∠F.【考点】多边形内角与外角;三角形内角和定理;三角形的外角性质.【分析】探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC=∠ADC,∠PCD=∠ACD ,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可;探究四:根据六边形的内角和公式表示出∠EDC+∠BCD,然后同理探究二解答即可;探究五:①根据四边形的内角和定理表示出∠BCD,再表示出∠DCE,然后根据角平分线的定义可得∠FBC=∠ABC,∠FCE=∠DCE,三角形的一个外角等于与它不相邻的两个内角的和可得∠F+∠FBC=∠FCE,然后整理即可得解;②同①的思路求解即可;③根据∠F的表示,∠F为0时不存在.【解答】解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP﹨CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠DPC=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠ACD=180°﹣(∠ADC+∠ACD)=180°﹣(180°﹣∠A)=90°+∠A;探究三:∵DP﹨CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠DPC=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠BCD=180°﹣(∠ADC+∠BCD)=180°﹣(360°﹣∠A﹣∠B)=(∠A+∠B);探究四:六边形ABCDEF的内角和为:(6﹣2)•180°=720°,∵DP﹨CP分别平分∠EDC和∠BCD,∴∠PDC=∠EDC,∠PCD=∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠EDC﹣∠BCD=180°﹣(∠EDC+∠BCD)=180°﹣(720°﹣∠A﹣∠B﹣∠E﹣∠F)=(∠A+∠B+∠E+∠F)﹣180°即∠P=(∠A+∠B+∠E+∠F)﹣180°.故答案为:探究一:∠FDC+∠ECD=180°+∠A;探究二:∠P=90°+∠A;探究三:∠P=(∠A+∠B).探究四:∠P=(∠A+∠B+∠E+∠F)﹣180°;探究五:①,②.【点评】本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,此类题目根据同一个解答思路求解是解题的关键.。