微波技术与天线—重修学习作业

合集下载

《微波技术与天线》傅文斌-习题标准答案-第4章

《微波技术与天线》傅文斌-习题标准答案-第4章

《微波技术与天线》傅文斌-习题答案-第4章————————————————————————————————作者:————————————————————————————————日期:238第4章 无源微波器件4.1微波网络参量有哪几种?线性网络、对称网络、互易网络的概念在其中有何应用? 答 微波网络参量主要有转移参量、散射参量、阻抗参量和导纳参量。

线性网络的概念使网络参量可用线性关系定义;对二口网络,对称网络的概念使转移参量的d a =,散射参量的2211S S =,阻抗参量的2211Z Z =,导纳参量的2211Y Y =。

互易网络的概念使转移参量的1=-bc ad ,散射参量的2112S S =,阻抗参量的2112Z Z =,导纳参量的2112Y Y =。

4.2推导Z 参量与A 参量的关系式(4-1-13)。

解 定义A 参量的线性关系为()()⎩⎨⎧-+=-+=221221I d cU I I b aU U 定义Z 参量的线性关系为⎩⎨⎧+=+=22212122121111I Z I Z U I Z I Z U⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=c d c c bc ad ca Z Z Z Z 122211211Z 4.3从I S S =*T出发,写出对称互易无耗三口网络的4个独立方程。

解 由对称性,332211S S S ==;由互易性,2112S S =,3113S S =,3223S S =。

三口网络的散射矩阵简化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112313231112131211S S S S S S S S S S 由无耗性,I S S =*T,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001*11*23*13*23*11*12*13*12*11112313231112131211S S S S S S S S S S S S S S S S S S39得1213212211=++S S S0*2313*1112*1211=++S S S S S S 0*1113*2312*1311=++S S S S S S 0*1123*2311*1312=++S S S S S S4.4二口网络的级联如图所示。

微波技术与天线(第二版)刘学观课后习题答案

微波技术与天线(第二版)刘学观课后习题答案

微波技术与天线(第二版)刘学观课后习题答案
微波技术与天线(第二版)刘学观课后习题答案
微波技术与天线(第二版)刘学观课后习题答案
微波技术与天线(第二版)刘学观课后习题答案
微波技术与天线(第二版)刘学观课后习题答案
微波技术与天线(第二版)刘学观课后习题答案
微波技术与天线(第二版)刘学观课后习题答案
word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案word格式可编辑专业知识整理分享微波技术与天线第二版刘学观课后习题答案

《微波技术与天线》习题答案

《微波技术与天线》习题答案

第一章1-1解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> , 此传输线为长线。

1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===⨯<< ,此传输线为短线。

1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其为分布参数。

用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。

1-4 解: 特性阻抗050Z ====Ωf=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cmB 1=ωC 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r Uz U e U e ββ''-'=+()()2201j z j z i r I z U e U e Z ββ''-'=- 将 2223320,2,42i r U V U V z πβλπλ'===⋅= 代入33223420220218j j z U eej j j Vππλ-'==+=-+=-()3412020.11200z I j j j A λ'==--=- ()()()34,18cos 2j te z uz t R U z e t V ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ ()()()34,0.11cos 2j te z i z t R I z e t A ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ 1-6 解: ∵Z L=Z 0∴()()220j z i r U z U e U β''==()()()212321100j j z z Uz e U z e πβ''-''==()()()()611100,100cos 6jU z e V u z t t V ππω'=⎛⎫=+ ⎪⎝⎭1-7 解: 210.20.2130j L e ccmfπρρλ-Γ=-=-==Γ+==由 011L L L Z Z +Γ=-Γ 得 0110.2100150110.2L LL Z Z -Γ+===Ω+Γ- 由 ()()()22max0.20.2j z j z L z e e z πββ-'-''Γ=Γ==Γ= 得 max1max120,7.54z z cm λπβ''-===1-8 解: (a) ()(),1inin Z z z ''=∞Γ=(b) ()()0100,0in in Z z Z z ''==ΩΓ=(c) ()()00012200,3in in in in Z Z Z z Z z Z Z -''==ΩΓ==+(d) ()()02200,1/3inin Z z Z z ''==ΩΓ=1-9 解: 1 1.21.510.8ρ+Γ===-Γmax 0min 75,33Z Z Z Z ρρ==Ω==Ω1-10 解: min2min124z z cm λ''=-=min1120.2,0.514L z ρππβρλ-'Γ===⨯=+ min1min120.2j z z L e β'-'Γ=-=Γ∴ 2420.20.2j jLeeππ⨯-Γ=-=1-11 解: 短路线输入阻抗 0in Z jZ tg l β= 开路线输入阻抗 0in Z jZ ctg l β=-a) 00252063inZ jZ tgjZ tgj πλπλ=⨯=Ω b) 002252033in Z jZ tg jZ tg j πλπλ=⨯=-Ωc) 0173.23inZ jZ ctgj π=-=-Ωd) 02173.23in Z jZ ctg j π=-=Ω1-12 解: 29.7502050100740.6215010013oj L L L Z Z j j e Z Z j -++Γ=Γ====++1-13 解: 表1-41-17 解: 1350.7j Le Γ=1-18 解: minmax0.6U K U == min143.2o z β'= 用公式求 min1min100min1min111L j tg z K jtg z Z Z Z jtg z jKtg z ρββρββ''--==''-- 0.643.25042.8522.810.643.2oojtg j j tg -==-Ω-⨯ 用圆图求 ()42.522.5LZ j =-Ω短路分支线的接入位置 d=0.016λ时()0.516B =-最短分支线长度为 l=0.174λ()0.516B =-1-19 解: 302.6 1.4,0.3,0.30.16100LL lZ j Y j λ=-===+由圆图求得 0.360.48in Z j =+ 1824in Z j =+Ω1.01 1.31in Y j =- ()0.020.026in Y j S =-1-20 解: 12LY j =+ 0.5jB j =()()()()0.150.6 1.460.150.60.960.20.320.380.2 1.311.54in in in in Y j Y jB j Y j Z j λλλλ=-+=-=+=-∴ 6577inZ j =-Ω 1-21 解: 11 2.5 2.50.20.2L L Y j j Z ===+- 并联支节输入导纳 min 2.5B ctg l β=-=- min 0.061l λ=此时 1/2.5LZ '= 500/2.5200LZ '==Ω(纯电阻)变换段特性阻抗 0316Z '==Ω 1-22 解: 1/0.851.34308.66o o Larctg ϕ=-=-= 由 max120L z ϕβ'=-= 得 max10.43z λ'= 由 min12Lz ϕβπ''=-=- 得 min10.1804L z ϕπλλπ+'== 1-23 解: 原电路的等效电路为由 1inZ j '+= 得 1inZ j '=-向负载方向等效(沿等Γ图)0.25电长度得 1inin Z Z ''='则 ininY Z '''=由inin in Y Y j Z ''''''=+= 得 12in inY Z j j ''''=-=-由负载方向等效0.125电长度(沿等Γ图)得12LY j =+ 0.20.4L Z j =-1-24 答: 对导行传输模式的求解还可采用横向分量的辅助标位函数法。

2023年大学_微波技术与天线(王新稳著)课后答案下载

2023年大学_微波技术与天线(王新稳著)课后答案下载

2023年微波技术与天线(王新稳著)课后答案下载2023年微波技术与天线(王新稳著)课后答案下载绪篇电磁场理论概要第1章电磁场与电磁波的基本概念和规律1.1 电磁场的四个基本矢量1.1.1 电场强度E1.1.2 高斯(Gauss)定律1.1.3 电通量密度D1.1.4 电位函数p1.1.5 磁通密度B1.1.6 磁场强度H1.1.7 磁力线及磁通连续性定理1.1.8 矢量磁位A1.2 电磁场的基本方程1.2.1 全电流定律:麦克斯韦第一方程1.2.2 法拉第一楞次(Faraday-Lenz)定律:麦克斯韦第二方程1.2.3 高斯定律:麦克斯韦第三方程1.2.4 磁通连续性原理:麦克斯韦第四方程1.2.5 电磁场基本方程组的微分形式1.2.6 不同时空条件下的麦克斯韦方程组1.3 电磁场的媒质边界条件1.3.1 电场的边界条件1.3.2 磁场的边界条件1.3.3 理想导体与介质界面上电磁场的边界条件1.3.4 镜像法1.4 电磁场的能量1.4.1 电场与磁场存储的能量1.4.2 坡印廷(Poyllfing)定理1.5 依据电磁场理论形成的电路概念1.5.1 电路是特定条件下对电磁场的简化表示1.5.2 由电磁场方程推导出的电路基本定律1.5.3 电路参量1.6 电磁波的产生——时变场源区域麦克斯韦方程的解 1.6.1 达朗贝尔(DAlembert)方程及其解1.6.2 电流元辐射的电磁波1.7 平面电磁波1.7.1 无源区域的时变电磁场方程1.7.2 理想介质中的均匀平面电磁波1.7.3 导电媒质中的均匀平面电磁波1.8 均匀平面电磁波在不同媒质界面的入射反射和折射 1.8.1 电磁波的极化1.8.2 均匀平面电磁波在不同媒质界面上的垂直入射 1.8.3 均匀平面电磁波在不同媒质界面上的斜入射__小结习题上篇微波传输线与微波元件第2章传输线的基本理论2.1 传输线方程及其解2.1.1 传输线的电路分布参量方程2.1.2 正弦时变条件下传输线方程的解2.1.3 对传输线方程解的讨论2.2 无耗均匀传输线的工作状态2.2.1 电压反射系数2.2.2 传输线的工作状态2.2.3 传输线工作状态的测定2.3 阻抗与导纳厕图及其应用2.3.1 传输线的匹配2.3.2 阻抗圆图的构成原理2.3.3 阻抗圆图上的特殊点和线及点的移动2.3.4 导纳圆图2.3.5 圆图的应用举例2.4 有损耗均匀传输线2.4.1 线上电压、电流、输入阻抗及电压反射系数的'分布特性 2.4.2 有损耗均匀传输线的传播常数2.4.3 有损耗均匀传输线的传输功率和效率__小结习题二第3章微波传输线3.1 平行双线与同轴线3.1.1 平行双线传输线3.1.2 同轴线3.2 微带传输线3.2.1 微带线的传输模式3.2.2 微带线的传输特性3.3 矩形截面金属波导3.3.1 矩形截面波导中场方程的求解3.3.2 对解式的讨论3.3.3 矩形截面波导中的TElo模3.3.4 矩形截面波导的使用3.4 圆截面金属波导3.4.1 圆截面波导中场方程的求解3.4.2 基本结论3.4.3 圆截面波导中的三个重要模式TE11、TM01与TE01 3.4.4 同轴线中的高次模3.5 光波导3.5.1 光纤的结构形式及导光机理3.5.2 单模光纤的标量近似分析__小结习题三第4章微波元件及微波网络理论概要4.1 连接元件4.1.1 波导抗流连接4.1.2 同轴线——波导转接器4.1.3 同轴线——微带线转接器4.1.4 波导——微带线转接器4.1.5 矩形截面波导——圆截面波导转接器4.2 波导分支接头……微波技术与天线(王新稳著):内容简介本书是在作者三十多年教学及科研实践基础上编写而成的,系统讲述电磁场与电磁波、微波技术、天线的基本概念、理论、分析方法和基本技术。

《微波技术与天线》题集

《微波技术与天线》题集

《微波技术与天线》题集一、选择题(每题2分,共20分)1.微波的频率范围是:A. 300 MHz - 300 GHzB. 300 kHz - 300 MHzC. 300 GHz - 300 THzD. 300 Hz - 300 kHz2.微波在自由空间传播时,其衰减的主要原因是:A. 散射B. 反射C. 绕射D. 折射3.下列哪种天线常用于微波通信?A. 偶极子天线B. 螺旋天线C. 抛物面天线D. 环形天线4.微波传输线中,最常用的传输线是:A. 同轴线B. 双绞线C. 平行线D. 光纤5.微波器件中,用于反射微波的器件是:A. 微波晶体管B. 微波二极管C. 微波反射器D. 微波振荡器6.在微波电路中,常用的介质材料是:A. 导体B. 绝缘体C. 半导体D. 超导体7.微波集成电路(MIC)的主要优点是:A. 高集成度B. 低功耗C. 低成本D. 大尺寸8.微波通信中,用于调制微波信号的常用方法是:A. 调幅B. 调频C. 调相D. 脉冲编码调制9.下列哪种效应是微波加热的主要机制?A. 热辐射效应B. 电磁感应效应C. 介电加热效应D. 光电效应10.在雷达系统中,发射天线的主要作用是:A. 接收目标反射的微波信号B. 发射微波信号照射目标C. 处理接收到的微波信号D. 放大微波信号二、填空题(每空2分,共20分)1.微波的波长范围是_____至_____毫米。

2.微波在自由空间传播时,其传播速度接近光速,约为_____米/秒。

3.抛物面天线的主要优点是具有较高的_____和_____。

4.微波传输线中,同轴线的内导体通常采用_____材料制成。

5.微波器件中,用于产生微波振荡的器件是_____。

6.微波加热中,被加热物体必须是_____材料。

7.微波集成电路(MIC)是在_____基片上制作的微波电路。

8.雷达系统中,接收天线的主要作用是_____。

9.微波通信中,为了减小传输损耗,通常采用_____方式进行传输。

微波技术与天线部分课后答案

微波技术与天线部分课后答案

微波技术与天线
* 1、1设一特性阻抗为得均匀传输线终端接负载,求负载反射系数,在离负载,及处得输入阻抗及反射系数分别为多少?
解:
1、3设特性阻抗为得无耗传输线得驻波比,第一个电压波节点离负载得距离为,试证明此时得终端负载应为
证明:
* 1、5试证明无耗传输线上任意相距λ/4得两点处得阻抗得乘积等于传输线特性阻抗得平方。

证明:令传输线上任意一点瞧进去得输入阻抗为,与其相距λ/4处瞧进去得输入阻抗为,则有:
=
所以有:
故可证得传输线上相距得二点处阻抗得乘积等于传输线得特性阻抗。

1、6 设某一均匀无耗传输线特性阻抗为Z0=50Ω,终端接有未知负载Z1。

现在传输线上测得电压最大值与最小值分别为100mV与20mV,第一个电压波节得位置离负载l min1=λ/3,试求该负载阻抗Z1。

解: 根据驻波比得定义: ρ=|U max|/|U min|=100/20=5
反射系数得模值 |Г1|=ρ-1/ρ+1=2/3
由 l min1=λФ1/4(pai)+λ/4=λ/3
求得反射系数得相位Ф1=(pai)/3,因而复反射系数Г1=2e j(pai)/3/3
负载阻抗为 Z1=Z0(1+Г1)/(1-Г1)=82、4 64、30
*
*例2-1 设某矩形波导得尺寸为a=8cm,b=4cm,试求工作频率在3GHz时该波导能传输得模式。

解: 由f=3GHz,得λ=c/f=0、1m
λcTE10=2a=0、16m>λλcTE01=2b=0、08m<λλcTM11=2ab/ a2+b2=0、0715m<λ
可见,该波导在工作频率为3GHz时只能传输TE10模。

*。

《电磁场微波技术与天线》习题参考答案

《电磁场微波技术与天线》习题参考答案

《电磁场微波技术与天线》习题及参考答案一、填空题:1、静止电荷所产生的电场,称之为_静电场_;电场强度的方向与正电荷在电场中受力的方向__相同_。

2、电荷之间的相互作用力是通过 电场 发生的,电流与电流之间的相互作用力是通过磁场发生的。

3、矢量场基本方程的微分形式是:V A ρ=⋅∇和 J A =⨯∇ ;说明矢量场的散度和 旋度 可以描述矢量场在空间中的分布和变化规律。

4、矢量场基本方程的积分形式是:dV dS A V V S ρ⎰⎰=⋅⋅和 dS J s dl A l ⋅=⋅⎰⎰;说明矢量场的环量和 通量 可以描述矢量场在空间中的分布和变化规律。

5、矢量分析中的两个重要定理分别是高斯定理和斯托克斯定理, 它们的表达式分别是:dS A dV A S v ⋅⎰=⋅∇⎰ 和dS rotA dl A s l ⋅=⋅⋅⎰⎰。

6、静电系统在真空中的基本方程的积分形式是:∮D s ·d S =q 和⎰E·d =0。

7、静电系统在真空中的基本方程的微分形式是:V D ρ=⋅∇和0=⨯∇E 。

8、镜象法的理论依据是静电场的唯一性定理 。

基本方法是在所求场域的外部放置镜像电荷以等效的取代边界表面的感应电荷或极化电荷 。

9、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =_0__;而磁场→B 的法向分量B 1n -B 2n =__0__。

10、法拉弟电磁感应定律的方程式为E n =-dtd φ,当d φ/dt>0时,其感应电流产生的磁场将阻止原磁场增加。

11、在空间通信中,为了克服信号通过电离层后产生的法拉第旋转效应,其发射和接收天线都采用圆极化天线。

12、长度为2h=λ/2的半波振子发射天线,其电流分布为:I (z )=I m sink (h-|z|) 。

13、在介电常数为的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。

微波技术与天线答案

微波技术与天线答案

1-1 解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> 此传输线为长线1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===⨯<<此传输线为短线1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其为分布参数。

用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。

1-4 解: 特性阻抗 90101210 1.66510500.66610L L Z C C --⨯====Ω⨯ f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cmB 1=ωC 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ ()()2201j z j z i r I z U e U e Z ββ''-'=- 将 2223320,2,42i r U V U V z πβλπλ'===⋅= 代入 33223420220218j j z Ueej j j V ππλ-'==+=-+=-()3412020.11200z Ij j j A λ'==--=- ()()()34,18cos 2j te z u z t R U z e t V ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ ()()()34,0.11cos 2j t e z i z t R I z e t A ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''==()()()212321100j j z z U z e U z e πβ''-''==()()()()611100,100cos 6jU z e V u z t t V ππω'=⎛⎫=+ ⎪⎝⎭1-7 解:210.20.2130j L e ccm fπρρλ-Γ=-=-==Γ+==由 011L L L Z Z +Γ=-Γ 得 0110.2100150110.2L L L Z Z -Γ+===Ω+Γ-由 ()()()22max 0.20.2j z j z L z e e z πββ-'-''Γ=Γ==Γ= 得 max1max120,7.54z z cm λπβ''-===1-8 解: (a) ()(),1in in Z z z ''=∞Γ= (b) ()()0100,0in in Z z Z z ''==ΩΓ= (c) ()()00012200,3in in in in Z Z Z z Z z Z Z -''==ΩΓ==+(d) ()()02200,1/3in in Z z Z z ''==ΩΓ= 1-9 解: 1 1.21.510.8ρ+Γ===-Γ 0max 0min 75,33Z Z Z Z ρρ==Ω==Ω1-10 解: min2min124z z cm λ''=-= min1120.2,0.514L z ρππβρλ-'Γ===⨯=+min1min120.2j z z Le β'-'Γ=-=Γ ∴ 2420.20.2j jL eeππ⨯-Γ=-=1-11 解: 短路线输入阻抗 0in Z jZ tg l β= 开路线输入阻抗 0in Z jZ ctg l β=- a) 00252063in Z jZ tgjZ tgj πλπλ=⨯=ΩBb) 002252033in Z jZ tgjZ tg j πλπλ=⨯=-ΩBc) 0173.23in Z jZ ctgj π=-=-Ω d) 02173.23in Z jZ ctg j π=-=Ω1-12 解: 29.7502050100740.6215010013o j L L L Z Z j j e Z Z j -++Γ=Γ====++1-13 解: 表1-4短路线长度 0.182λ 0.25λ0.15λ 0.62λ 输入阻抗in Z j2.2 ∞j1.38 j0.94 输入导纳in Y-j0.46-j0.024-j1.061-14 解: 表1-5 开路线长度 0.1λ 0.19λ0.37λ 0.48λ 输入阻抗in Z -j1.38 -j0.4j0.94 j7.9 输入导纳in Yj0.73j2.5-j1.06-j0.131-15 解: 表1-6负载阻抗L Z0.3+j1.3 0.5-j1.6 30.25 0.45-j1.2 -j2.0驻波比ρ 9.16 1.86 3 4 5.7 ∞ 反射系数Γ0.80.30.50.60.711-16 解: 表1-7 负载阻抗L Z 0.8+j 0.3-j1.1 ∞ j1.0 1.0 6+j3输入阻抗in Z 0.488-j0.61 0.23+j0.85-j1 1 0.13-j0.067输入阻抗in Z (Ω) 24.4-j30.5 11.5+j42.3-j50 50 6.67-j3.331-17 解: 1350.7oj L e Γ= 1-18 解: minmax0.6U K U == min143.2o z β'= 用公式求min1min10min1min111L j tg z K jtg z Z Z Z jtg z jKtg z ρββρββ''--==''-- 0.643.25042.8522.810.643.2oojtg j j tg -==-Ω-⨯ 用圆图求 ()42.522.5L Z j =-Ω短路分支线的接入位置 d=0.016λ时()0.516B =- 最短分支线长度为 l=0.174λ()0.516B =- 1-19 解: 302.6 1.4,0.3,0.30.16100L L lZ j Y j λ=-===+ 由圆图求得 0.360.48in Z j =+ 1824in Z j =+Ω 1.01 1.31in Y j =- ()0.020.026in Y j S =- 1-20 解: 12L Y j =+ 0.5jB j =()()()()0.150.6 1.460.150.60.960.20.320.380.2 1.31 1.54in in in in Y j Y jB j Y j Z j λλλλ=-+=-=+=-∴ 6577in Z j =-Ω 1-21 解: 11 2.5 2.50.20.2L L Y j j Z ===+- 并联支节输入导纳 min 2.5B ctg l β=-=- min 0.061l λ=此时 1/2.5L Z '= 500/2.5200LZ '==Ω(纯电阻) 变换段特性阻抗 0010000010010316L Z Z Z ''===Ω 1-22 解: 1/0.851.34308.66o o L arctg ϕ=-=-=由 max120L z ϕβ'=-= 得 max10.43z λ'= 由 min12L z ϕβπ''=-=- 得 min10.1804L z ϕπλλπ+'== 1-23 解: 原电路的等效电路为由 1in Z j '+= 得 1in Z j '=- 向负载方向等效(沿等Γ图)0.25电长度 得 1in in Z Z ''='则 in in Y Z '''=由in in in Y Y j Z ''''''=+= 得 12in in Y Z j j ''''=-=- 由负载方向等效0.125电长度(沿等Γ图)得 12L Y j =+ 0.20.4L Z j =-1-24 答: 对导行传输模式的求解还可采用横向分量的辅助标位函数法。

《微波技术与天线》习题集规范标准答案

《微波技术与天线》习题集规范标准答案

《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少?解:1)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++=ο79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性)Ω=100)5.0(λin Z (二分之一波长重复性)1.2求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。

解:同轴线的特性阻抗abZ rln600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ1.3题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(Θ1.4传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为:m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。

《微波技术与天线》习题答案

《微波技术与天线》习题答案

ln b 43.9 a
当 f 300MHz 时的波长:
p
f
c r
0.67m
1.3 题
设特性阻抗为 Z0 的无耗传输线的驻波比 ,第一个电压波节点离负载的距离为
.
.
lmin1 ,试证明此时的终端负载应为
Z1
Z0
1 j j
t anlmin1 t anlmin1
证明:
对于无耗传输线而言:
Z in(lmin 1)
1.11
设特性阻抗为 Z0 50 的均匀无耗传输线,终端接有负载阻抗 Z1 100 j75 为复
阻抗时,可用以下方法实现λ/4 阻抗变换器匹配:即在终端或在λ/4 阻抗变换器前并接一段
终端短路线, 如题 1.11 图所示, 试分别求这两种情况下λ/4 阻抗变换器的特性阻抗 Z01 及短
路线长度 l。 (最简便的方式是:归一化后采用 Smith 圆图计算)
1 e j0.8 3
(0.5) 1 (二分之一波长重复性) 3
(0.25) 1 3
Zin (0.2 )
Z0
Z1 Z0
jZ0 jZ1
t an l t an l
29.43
2 3.7 9
Zin(0.25) 502 /100 25 (四分之一波长阻抗变换性)
Zin(0.5) 100
(二分之一波长重复性)
令并联短路线和负载并联后的输入阻抗为 Z 2 .
Z 2 =1/ Re[Y1] 156 则 Z 01 Z0Z2 =88.38
(2)
令 4
特性阻抗为 Z 01 ,并联短路线长为 l
Z in2 Z01
Z1 Z01 j t an Z01 Z1 j t an
4

【精品】《微波技术与天线》习题答案.docx

【精品】《微波技术与天线》习题答案.docx

《微波技术与天线》习题答案章节微波传输线理路1.1设一特性阻抗为50Q的均匀传输线终端接负载& =100Q,求负载反射系数L,在离负载0.22, 0.25/1及0.52处的输入阻抗及反射系数分别为多少?解:r i=(Z1-Z0)/(Z1+Z0) = l/3「(0.2人)=二〃"=:疽° 服「(0.5/1) = | (二分之一波长重复性)r(0.252) = -|Z,,(0.22) = Z o Zi + jZ°tan 例=29 43z _ 23.79g0 Z o + tan/?/Z,… (0.252) = 502/100 = 25Q (四分之一波长阻抗变换性)Z,,(0.52) = 100Q (二分之一波长重复性)1. 2求内外导体直径分别为0. 25cm和0. 75cm的空气同轴线的特性阻抗;若在两导体间填充介电常数& =2.25的介质,求其特性阻抗及f = 300MHz时的波长。

解:同轴线的特性阻抗Z0=-^ln-山.ah则空气同轴线Z.=601n- = 65.9Qa当&=2.25 时,Z0=4L In-= 43.90A a当f = 300MHz时的波长:C = 0.67m1.3题设特性阻抗为Z o的无耗传输线的驻波比p ,第一个电压波节点离负载的距离为/mini,试证明此时的终端负载应为Z] = Z0X—土_七耍min 1 1 u • .07X?-jtan/?/minl证明:对于无耗传输线而言:..7_ 7 *Z] +Zo/tan—mini■ i"— ° Z°+Z"tan% 函=ZJ P由两式相等推导出:Z|=Z°x上些久些Q — J tan 风顽11.4传输线上的波长为:C/f久=# = 2m因而,传输线的实际长度为:2I =里=0.5m4终端反射系数为:=R I-Z Q =_竺如96]&+Z。

微波技术与天线课后习题答案(西电版)

微波技术与天线课后习题答案(西电版)

★了解同轴线的特性阻抗及分类。

1.4习题及参考解答[I. 1]设一特性阻抗为50 Q的均匀传输线终端接负4k/<=100 Q.求负我反对系数巧・在离负裁0.2入・0.25入及0.5入处的输入阳抗及反对系数分别为多少?解终端反射系数为=& - Z。

= 100 — 50 =丄11 _ K _ 100 + 50 _ T根拥传输线上任怠一恵的反肘糸数和输入阳抗的公贰r(z)= r lC ^和= z。

;兰::二在离负载0.2入.0. 25A> 0.5入反射系数和输入阻抗分别为r(0.2A)= Y“初忌• r(0.25A)MZ.(0.2入)=29.43Z -23.79° Q・ Z in(0.25A) = 25 Q> Z lft(0.5A) = 100 Q[1.2]求内外导体直径分别为0.25 cm和0.75 cm的空气同轴线的持性阻抗。

若在两导体何塡充介电常数匕= 2.25的介质.求其特性阻抗及300 MHz时的波长。

解空气同轴线的持性阻抗为乙=60 In — = 65. 9 Qa塡充相对介电常数为€,=2.25的介质后.英持件阳抗为/=300 MHz时的波长为[1.3]设特性阻抗为乙的无耗传输线的址波比为"滾一个电爪波"•点离负我的距离为人讪.试证明此时终端负我应为r(0.5A) = Y证明根据输入阳抗公式Z: + jZ, tan" 乂Z o + jZ| tan/3 z在距负栈第一个波节点处的阻抗Z /(/“)=—P y Zl— j 乙I "1,3】Z.P将匕式整理即得17I318[I. 4] 何 持性阻抗为Z =50 Q 的无耗均匀传输线•导体间的媒质参敌为 £.=2.25 ・“, = 】,终瑞接仃&=】Q 的负我"/- 100 MHz 时•兀线长度为A/40试求: ①传输线实际长度'②负载终瑞反射系敌;③ 输入端反射系数'④ 输入瑞阻抗.解传输线上的波长= 2 m因而.传输线的实际长度/ = * = 0. 5 m4终瑞反射系数为…R]—Z 。

微波技术与天线,课后答案

微波技术与天线,课后答案
《微波技术与天线》课后部分习题解答
1 第二章
2-3 传 输 线 电 路 图 如 图1所 示 。 问 : 图a中ab间 的 阻 抗Zab = 0对 吗 ? 图b中ab间 的阻抗Zab = ∞对吗?为什么? 解:
图 1: 题2-3图
Zin(z)
=
Z0
ZL Z0
+ jZ0tan(βz) + jZLtan(βz)
所以传输线上的电流、电压分布如图10所示。 2-31 ( ) 传输线阻抗匹配的方法有哪几种?哪些是窄频带的?哪些是 宽频带的? 答:
传输线阻抗匹配的方法主要有:λ/4阻抗变换器;宽带λ/4阻抗变换器;支 节匹配器和渐变匹配器。 其中λ/4阻抗变换器、 支节匹配器是窄带匹配; 宽带λ/4阻抗变换器、渐 变匹配器是宽带匹配;
(24)
所以有
ρ
=
ZL + jZ0tan(βz) Z0 + jZLtan(βz)
=
2
(25)
将z = λ/12,ZL = √RL + jXL,Z0 = 70代入式(25)中得: RL = 80,XL = 30 3
2-21 (√ ) 传输线长λ,特性阻抗为Z0,当终端负载分别为ZL = Z0,ZL = 0,ZL = j 3Z0时。 (1)计算相应的终端反射系数和驻波比; (2)画出相对电压振幅|U/U +|、相对电流振幅|I/I+|的沿线分布并标出其最
(20)
Γ
=
RL RL
− Z0 + Z0
当RL > Z0时 ,Γ(z)为 正 实 数 , 终 端 为 电 压 的 波 腹 点 , 则 有RL = Z0ρ,所以ρ = RL/Z0 当RL < Z0时,Γ(z)为负实数,终端为电压的波节点,则有RL = Z0/ρ,所 以ρ = Z0/RL 证毕。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微波技术与天线(重修学习作业)
教材:《微波技术与天线》(第三版),王新稳,李延平,李萍,电子工业出版社,2011
第一章传输线理论
1.1 长线理论
1)了解分布参数电路与传输线方程
2)传输线输入阻抗与反射系数
3)传输线工作状态分析,Smith圆图
4)传输线的阻抗匹配
1.2 波导与同轴线
1)导波系统一般分析,波导传输线
2)矩形波导,TE10模分析
学习重点:
1)传输线分析与计算,输入阻抗与驻波分析(习题1-7,1-8,1-10,1-45,1-46)2)阻抗匹配分析与设计;(习题1-21)
3)波导截止模式,矩形波导,TE10模分析;(习题1-25,1-30)
4)矩形波导传输模式与工作参数,矩形波导设计与分析;(习题1-49,1-50)
书本:26页,例1-2;28页,例1-4;40页,例1-10;
第二章微波网络
1)了解网络概念,微波元件等效网络;
2)散射矩阵S;双端口网络传输散射矩阵,工作特性参数
学习重点:1)无耗互易网络S参数,
2)S参数测量;(习题2-11,2-17,书本:105-107页)
第三章微波元件
1)阻抗匹配与变换元件
2)定向耦合元件,匹配双T
3)微波谐振器
学习重点:1)阻抗匹配;(习题3-2);矩形谐振器;(习题3-28)
2)定向器(习题3-17);匹配双T(习题3-21);
书本:152页,例3-6;
第四章天线基本理论
1)了解基本振子的辐射场;
2)对称振子的辐射场
3)发射天线的电参数;
4)接收天线理论;自由空间电波传播
学习重点:1)对称振子方向图(习题4-9);
2)天线电参数(习题4-20);电波传播与接收天线理论(习题4-28)
书本:198页,例4-2;199页,例4-3;
一、传输线理论
1-1)均匀无耗传输线特性阻抗50Ω,第一个电压波节点离负载λ/8,测得传输线上的电压驻波比为3,求终端的反射系数ΓL 与负载阻抗Z L ?
1-2) 已知长度l =1.25λ的均匀无耗传输线的特性阻抗Z0=500Ω,终端接负载Z L =(300+j400)Ω,已知传输信号波长λ=30cm ,求负载反射系数ΓL ?传输线驻波比ρ?离负载第一个电压波节点距离z min ?输入端阻抗Z in ?
1-3)均匀无耗传输线终端接负载阻抗100L Z =Ω,信号频率03f GHz =时测得终端电压反射系数相位角180o ϕ=和电压驻波比2ρ=。

求终端电压反射系数L Γ?传输线特性阻抗0Z ?第一个电压波腹点离负载的距离z max ?
1-4)特性阻抗Z0的无耗传输线馈电系统如图,信号源由长度为l 的传输线连接到一段总长为λ终端分别接负载R1与R2的传输线上,信号源内阻Rg=Z0。

当接入点在距离R2为λ/4的B 点,问负载R1与R2应满足什么关系,信号源能输出最大功率?最大输出功率为多少?
1-5)特性阻抗Z 0=50Ω无耗传输线如图,负载阻抗Z L =(50-j50)Ω,通过并联短路支节与λ/4变换段实现匹配。

已知信号频率为3GHz ,求并联短路分支线的阻抗Zs ?变换段的特性阻抗Z1与长度l ?
1-6)如图所示传输线,B 支路为特性阻抗Z 0长度为λ/4的传输线端接阻抗2Z 0的终端;C 支路为特性阻抗Z 0长度为λ/2的传输线端接阻抗Z 0/2的终端;B 与C 并联在D 点连接源阻抗为Z 0的信号源。

求B 支路,C 支路与D 处的输入阻抗,,in
B
in
C
in
D
Z Z Z ?源端D 处的反射系数D Γ?
1-7)矩形波导BJ-100尺寸为a ×b=22.86mm ×10.16mm ,则波长为2cm ,3cm ,5cm 的信号能否在该波导中传输,能传输的信号存在哪些传输波型?问该波导的单模工作波长范围?
(注:11()2/18.57c TE mm λ==

1-8)矩形波导BJ-100尺寸为a ×b=22.86mm ×10.16mm ,信号频率f
=10GHz ,求该信号的工作模式与截止波长?主模的波导波长g λ,相移常数β,相速p v ,群速g v ,?
(注:11()2/18.57c TE mm λ==;1/0.75≈≈)
二、微波网络与微波元件
2-1)对互易双端口网络,输入端的反射系数为:122111221L
in L
S S S S ΓΓ=+
-Γ。

用阻抗法测得双端口网络的三
个反射系数为12/3M Γ=, 13/5S Γ=, 11O Γ=;求网络的散射矩阵S ?
2-2)设某系统如图所示,双端口网络为无耗互易对称网络,在终端参考面2T 处接匹配负载,测得距参考面1T 距离10.375g l λ=处为电压波节点,驻波比为2,求该双端口网络的散射矩阵?
2-3) 一个双端口网络,终端接负载0L Z Z ≠,假设网络参数矩阵S 已知;证明其输入端口的反射系数为:122111221L
in L
S S S S ΓΓ=+
-Γ。

11(/2)
1221=j S S e
θπ±注:无耗互易网络满足
2-4)如图所示的理想3dB 微带混合环耦合器,补齐S
散射参数矩阵
0000[]()()0()()()()0j j j j S --⎡⎤⎢⎥-⎥=
⎥⎥⎣⎦。

假设信号从端口(1)输入,分析其他3个端口的输出信号性质?
2-5)两段阻抗为010275,50Z Z =Ω=Ω的同轴线(注:同轴线特性阻抗
1
D
d ),采用介质套管构成的g λ/4段进行阻抗匹配。

已知工作频率为3GHz ,求介质的相对介电常数r ε及变换段的长度l ?
2-6) 已知匹配双T 的
S 矩阵为:001100
11[]11001100S ⎡⎤⎢
⎥-⎥=

⎥-⎣⎦。

当信号从端口(4)E 臂输入,其他端口接匹配负载时,分析其他3个端口的输出?如果匹配双T 接匹配源,且输入信号123a a a ==,求端口(4)输出信号b 4?
2-7) 一个填充空气的矩形谐振腔,其波导横截面尺寸为a ×b=2 cm ×1 cm ,长度为l =2 cm ;求该矩阵谐振腔的最低谐振模式,谐振波长λ?
三、天线基本理论
3-1)假设相距20 km 的两个微波中继站在空气中进行通信,工作频率为6 GHz ;发射功率为100 W ,发射天线的有效接收面积为1 m 2,接收天线有效接收面积0.01 m 2。

写出有效接收面积与方向系数的关系式?求发射与接收天线的方向系数D t 与D r ?接收天线的最大接收功率r P ?
3-2)已知某天线的发射功率为540π (W),频率为3 GHz ;天线的有效接收面积为24et A m =,求最大辐射方向上r =60 km 处P 点的电场强度max E 和功率密度r S ?在P 点用方向性系数D=144的接收天线
对准接收,求接收天线的有效接收面积e A 与接收功率r P ?
3-3) 写出电基本振子与半波对称振子天线的E 面方向函数F(θ, φ)?并给出电基本振子与半波对称振子天线E 面方向函数的半功率波瓣宽度HPBW 与方向系数D ?
3-4) 设计一个适用于450 MHz 的半波对称振子天线(忽略天线终端效应的影响)的长度?给出该天线E 面方向函数F(θ)与H 面方向函数F(φ)?
3-5)假设在相距20 km 的两个微波中继站之间进行通信,收发天线的增益均为20 dB (注:设天线效率100%η=),工作频率为900 MHz ;发射功率为5 W ,假设电波在自由空间中传播。

求接收天线的有效接收面积er A ?接收站的最大接收功率r P ?。

相关文档
最新文档