微波技术与天线期末复习
微波技术与天线期末复习
在低频电路中,电阻、电容、电感和电导都是以集 在低频电路中,电阻、电容、 总参数的形式出现的, 总参数的形式出现的,连接元件的导线都是理想的短路 可任意延伸或压缩。 线,可任意延伸或压缩。 随着频率的提高,电路元件的辐射损耗、导体损耗 随着频率的提高,电路元件的辐射损耗、 和介质损耗增加,电路元件的参数也随之变化。 和介质损耗增加,电路元件的参数也随之变化。
15、处于不同频谱的电磁波采用不同的分析方法,请完 15、处于不同频谱的电磁波采用不同的分析方法, 成下图的填空: 成下图的填空:
频率小于微波的无线电波
频率小于微波的无 线电 微波
电路分析
法
电路分析
场分析 法
法
微波
场分析
光学分析 法
法 法
频率大于微波的电磁波波
频率大于微波的 电磁波
光学分析
二.简答题(5小题,共40分) 简答题( 小题, 40分 1.(10分)什么是分布参数电路和集总参数电路?试列举 (10分 什么是分布参数电路和集总参数电路? 各三个分布参数和集总参数, 各三个分布参数和集总参数,对比微波技术与模拟电 路等课程, 路等课程,简述分布参数电路和集总参数电路的本质 区别。 区别。 在低频短路中,常常忽略元件连接线的分布参数效 在低频短路中, 认为电场能量全部集中在电容器中, 应,认为电场能量全部集中在电容器中,而磁场能量全 部集中在电感器中,电阻元件是消耗电磁能量的。 部集中在电感器中,电阻元件是消耗电磁能量的。由这 些集总参数元件组成的电路称为集总参数电路。 些集总参数元件组成的电路称为集总参数电路。 当频率提高到其波长和电路的几何尺寸可相比拟时, 当频率提高到其波长和电路的几何尺寸可相比拟时, 电场能量和磁场能量的分布空间很难分开, 电场能量和磁场能量的分布空间很难分开,而且连接元 件的导线的分布参数不可忽略,这种电路称为分布参数 件的导线的分布参数不可忽略,这种电路称为分布参数 电路。 电路。
微波技术与天线复习的题目选
微波技术与天线复习题选微波基本概念:微波通常是指波长为至的电磁波。
微波通常是指频率以到的电磁波。
以波长划分,微波通常分为波,波,波,波。
在微波工程中,C波段是指厘米波,χ波段是指厘米波。
L 波段是指厘米波,S波段是指厘米波。
微波炉是利用某些物质吸收微波能所产生的效应进行的。
微波波段中的mm和mm波可以无阻地通过大气游离层,是电磁波通讯的宇宙窗口。
传输线参量特性:当负载阻抗为时,无耗传输线为行驻波状态,此时传输线上反射系数的模驻波比为。
当负载阻抗为时,无耗传输线为行波状态,此时传输线上反射系数的模驻波比为。
当负载阻抗为时,无耗传输线为纯驻波状态,此时传输线上反射系数的模驻波比为。
传输线终端短路时,其反射系数的模|Г()|= ,驻波比= ,离负载λ/4处的输入阻抗只有当负载为时,才能产生行驻波状态,此时传输线上的反射系数的模介于和之间传输线上的负载给定后,沿无损耗传输线移动时,其反射系数Г()按下列规律变化:模,辐角按而变。
传输线处于行波工作状态时,沿线电压和电流具有相相位,它们各自的振幅保持,输入阻抗亦是个量,且等于阻抗。
传输线终端短路时,其反射系数的模|Г()|= ;传输线终端接匹配负载时,其反射系数的模|Г()|= 。
(设传输线为无损耗线)在阻抗圆图上沿等驻波比圆旋转时;顺时针旋转,代表传输线上参考面向方向移动,通时针旋转代表传输线上参考面向方向移动。
对串联等效短路应用圆图,对并联等效电路应用圆图。
当负载阻抗为时,传输线上为行驻波状态,此时传输线上的驻波比为。
求图示传播线电路A,B端的输入阻抗。
圆图基本概念:试画一阻抗圆图简图。
並标出感性半圆。
容性半圆、可调匹配圆及纯电抗圆。
在复平面上作出阻抗圆图的简图,并在上面标出短路点、开路点、匹配点、可调匹配圆。
在阻抗圆图上沿等圆旋一周,相当于在传输线上移动。
在阻抗圆图上,归一化电阻= 的圆称为可调圆。
在阻抗圆图上,归一化电抗= 的线称为纯线。
在阻抗圆图上,归一化电阻= 的点称为短路点,归一化电抗=的点称为开路点。
微波技术与天线复习要点
第一章 学习知识要点1.微波的定义— 把波长从1米到0.1毫米范围内的电磁波称为微波。
微波波段对应的频率范围为: 300M Hz ~3000GHz 。
在整个电磁波谱中,微波处于普通无线电波与红外线之间,是频率最高的无线电波,它的频带宽度比所有普通无线电波波段总和宽1000倍。
一般情况下,微波又可划分为分米波、厘米波和毫米波和亚毫米四个波段。
2.微波具有如下主要特点:1) 似光性;2) 穿透性;3) 宽频带特性与与信息性;4) 热效应特性;5)散射特性;6)非电离特性;7)抗低频干扰特性;8)视距传输特性;9)分布参数的不确定性;10)电磁兼容和电磁环境污染。
3.微波技术的主要应用:1) 在雷达上的应用;2) 在通讯方面的应用;3) 在科学研究方面的应用;4) 在生物医学方面的应用;5) 微波能的应用。
4.长线与短线长线:指几何长度L 与工作波长λ可相比拟的传输线,采用分布参数电路描述。
电长度满足L/λ≥0.05的传输线 称为长线。
短线:指几何长度L 与工作波长λ相比可以忽略的传输线,采用集总参数电路描述。
电长度满足L/λ<0.05的传输线 称为短线。
5.传输线分类:双导体传输线;封闭金属波导;介质传输线。
6.微波技术是研究微波信号的产生、传输、变换、发射、接收和测量的一门学科,它的基本理论是经典的电磁场理论,研究电磁波沿传输线的传播特性有两种分析方法。
一种是“场”的分析方法,即从麦克斯韦方程出发,在特定边界条件下解电磁波动方程,求得场量的时空变化规律,分析电磁波沿线的各种传输特性;另一种是“路”的分析方法,即将传输线作为分布参数电路处理,用克希霍夫定律建立传输线方程,求得线上电压和电流的时空变化规律,分析电压和电流的各种传输特性。
第二章 学习知识要点1. 传输线可用来传输电磁信号能量和构成各种微波元器件。
微波传输线是一种分布参数电路,线上的电压和电流是时间和空间位置的二元函数,它们沿线的变化规律可由传输线方程来描述。
微波技术与天线 必考知识点 复习
微波必考知识点复习1、微波是一般指频率从300M至3000GHz范围内的电磁波,其相应的波长从1m 至0.1mm。
从电子学和物理学的观点看,微波有似光性、似声性、穿透性、非电离性、信息性等重要特点。
2、导行波的模式,简称导模,是指能够沿导行系统独立存在的场型,其特点是:(1)在导行系统横截面上的电磁波呈驻波分布,且是完全确定的。
这一分布与频率无关,并与横截面在导行系统上的位置无关;(2)导模是离散的,具有离散谱;当工作频率一定时,每个导模具有唯一的传播常数;(3)导模之间相互正交,彼此独立,互不耦合;(4)具有截止特性,截止条件和截止波长因导行系统和因模式而异。
3、广义地讲,凡是能够导引电磁波沿一定的方向传播的导体、介质或由它们组成的导波系统,都可以称为传输线。
若按传输线所导引的电磁波波形(或称模、场结构、场分布),可分为三种类型:(1)TEM波传输线,如平行双导线、同轴线、带状线和微带线,他们都是双导线传输系统;(2)TE波和TM波传输线,如矩形、圆形、脊形和椭圆形波导等,他们是由金属管构成的,属于单导体传输系统;(3)表面波传输系统,如介质波导(光波导)、介质镜象线等,电磁波聚集在传输线内部及其表面附近沿轴线方向传播,一般是TE或TM波的叠加。
对传输线的基本要求是:工作频带宽、功率容量大、工作稳定性好、损耗小、易耦合、尺寸小和成本低。
一般地,在米波或分米波段,可采用双导线或同轴线;在厘米波段可采用空心金属波导管及带状线和微带线等;在毫米波段采用空心金属波导管、介质波导、介质镜像线和微带线;在光频波段采用光波导(光纤)。
以上划分主要是从减少损耗和结构工艺等方面考虑。
传输线理论主要包括两方面的内容:一是研究所传输波形的电磁波在传输线横截面内电场和磁场的分布规律(也称场结构、模、波型),称横向问题;二是研究电磁波沿传输线轴向的传播特性和场的分布规律,称为纵向问题。
横向问题要通过求解电磁场的边值问题来解决;各类传输线的纵向问题却有很多共同之处。
微波技术与天线复习题
微波技术与天线复习题一、填空题1微波与电磁波谱中介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段,其频率范围从300MHz至3000GHz,通常以将微波波段划分为分米波、厘米波、毫米波和亚毫米波四个分波段;2对传输线场分析方法是从麦克斯韦方程出发,求满足边界条件的波动解,得出传输线上电场和磁场的表达式,进而分析传输特性;3无耗传输线的状态有行波状态、驻波状态、行、驻波状态;4在波导中产生各种形式的导行模称为波导的激励,从波导中提取微波信息称为波导的耦合,波导的激励与耦合的本质是电磁波的辐射和接收,由于辐射和接收是互易的,因此激励与耦合具有相同的场结构; 5微波集成电路是微波技术、半导体器件、集成电路的结合;6光纤损耗有吸收损耗、散射损耗、其它损耗,光纤色散主要有材料色散、波导色散、模间色散;7在微波网络中用“路”的分析方法只能得到元件的外部特性,但它可以给出系统的一般传输特性,如功率传递、阻抗匹配等,而且这些结果可以通过实际测量的方法来验证;另外还可以根据微波元件的工作特性综合出要求的微波网络,从而用一定的微波结构实现它,这就是微波网络的综合;8微波非线性元器件能引起频率的改变,从而实现放大、调制、变频等功能;9电波传播的方式有视路传播、天波传播、地面波传播、不均匀媒质传播四种方式;10面天线所载的电流是沿天线体的金属表面分布,且面天线的口径尺寸远大于工作波长,面天线常用在微波波段;11对传输线场分析方法是从麦克斯韦方程出发,求满足边界条件的波动解,得出传输线上电场和磁场的表达式,进而分析传输特性;12微波具有的主要特点是似光性、穿透性、宽频带特性、热效应特性、散射特性、抗低频干扰特性;13对传输线等效电路分析方法是从传输线方程出发,求满足边界条件的电压、电流波动解,得出沿线等效电压、电流的表达式,进而分析传输特性,这种方法实质上在一定条件下是“化场为路”的方法;14传输线的三种匹配状态是负载阻抗匹配、源阻抗匹配、共轭阻抗匹配;15波导的激励有电激励、磁激励、电流激励三种形式;16只能传输一种模式的光纤称为单模光纤,其特点是频带很宽、容量很大,单模光纤所传输的模式实际上是圆形介质波导内的主模HE,11它没有截止频率;17微波网络是在分析场分布的基础上,用路的分析方法,将微波元件等效为电抗或电阻元件,将实际的导波传输系统等效为传输线,从而将实际的微波系统简化为微波网络;18微波元件是对微波信号进行必要的处理或变换,微波元件按变换性质可以分为线性互易元器件、非线性互易元器件、非线性元器件三大类;19研究天线的实质是研究天线在空间产生的电磁场分布,空间任意一点的电磁场都满足麦克斯韦方程和边界条件,因此求解天线问题实质是求解电磁场方程并满足边界条件;20横向尺寸远小于纵向尺寸并小于波长的细长结构天线称为线天线,它们广泛地应用于通信、雷达等无线电系统中,它的研究基础是等效传输线理论;21用口径场方法求解面天线的辐射场的方法是:先由场源求得口径面上的场分布,再求出天线的辐射场,分析的基本依据是惠更斯――菲涅尔原理;二、问答题1、抛物面天线的工作原理是什么8分答:置于抛物面天线焦点的馈源将高频导波能量转变成电磁波能量并投向抛物反射面,如果馈源辐射理想的球面波,而且抛物面口径尺寸为无限大时,则抛物面就把球面波变为理想的平面波,能量沿Z轴正向传播,其它方向的辐射为零,从而获得很强的方向性;2、什么是视距传播简述其特点;8分1) 发射天线和接收天线处于相互能看得见的视线范围内的传播方式叫视距传播;……………………….3 2)特点为: (5)a.())(1012.4321m h h r V ⨯+=b.大气对电波将产生热吸收和谐振吸收衰减;c.场量:F re f a E E jkr-=)(θθθ 3.什么是微波其频率范围是多少它分为几个波段答:微波在电磁波谱中介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段,其频率范围从300MHz 至3000GHz,通常以将微波波段划分为分米波、厘米波、毫米波和亚毫米波四个分波段;7分 4.什么是波导的激励和耦合激励与耦合的本质是什么激励与耦合的场结构是否相同5分答:在波导中产生各种形式的导行模称为波导的激励,从波导中提取微波信息称为波导的耦合,波导的激励与耦合的本质是电磁波的辐射和接收,由于辐射和接收是互易的,因此激励与耦合具有相同的场结构;5.微波具有的哪些主要特点6分答:微波具有的主要特点是似光性、穿透性、宽频带特性、热效应特性、散射特性、抗低频干扰特性;6.天线研究的实质是什么 并阐述抛物面天线的工作原理9分答:①研究天线的实质是研究天线在空间产生的电磁场分布,空间任意一点的电磁场都满足麦克斯韦方程和边界条件,因此求解天线问题实质是求解电磁场方程并满足边界条件;②置于抛物面天线焦点的馈源将高频导波能量转变成电磁波能量并投向抛物反射面,如果馈源辐射理想的球面波,而且抛物面口径尺寸为无限大时,则抛物面就把球面波变为理想的平面波,能量沿Z 轴正向传播,其它方向的辐射为零,从而获得很强的方向性; 7.什么是天波传播天波静区的含义是什么5分答:1发射天线发射出的电波,在高空中被电离层反射后到达接收点的传播方式叫天波传播;……….2 3)当min 0θθ<时,以发射天线为中心的一定半径内不能有天波到达,从而形成一个静区,这个静区叫天波的静区;………..3 四、解答题1、已知工作波长mm 5=λ,要求单模传输,试确定圆波导的半径,并指出是什么模式 10分解:1明确圆波导中两种模式的截止波长: a a CTM CTE 6127.2;4126.30111==λλ (4)2题意要求单模传输,则应满足:a a 4126.36127.2<<λ (3)3结论:在mm a mm 91.147.1<<时,可保证单模传输,此时传输的模式为主模TE11 (3)2、一卡塞格伦天线,其抛物面主面焦距:m f 2=,若选用离心率为5.2=e 的双曲副反射面,求等效抛物面的焦距;5分 解:1写出等效抛物面的焦距公式: (3)f e e Af f e 11-+== (2) 将数据代入得: (2)m f e 67.4=3、已知圆波导的直径为5cm,填充空气介质,试求 1) TE11、TE01、TM01三种模式的截止波长2) 当工作波长分别为7cm,6cm,3cm 时,波导中出现上述哪些模式; 3)当工作波长为cm 7=λ时,求最低次模的波导波长;12分解:1求截止波长.................3 TE11:mm a CTE 3150.854126.311==λ TM01:mm a CTM 3175.656127.201==λ TE01:mm a CTE 9950.406398.101==λ 2判断. (6)a .当工作波长1170CTE mm λλ<=时,只出现主模TE11;b .当工作波长0111,60CTM CTE mm λλλ<=,便出现TE11,TM01;c .当工作波长01,0111,30CTE CTM CTE mm λλλλ<=,便出现TE11,TM01,TE01;3求波导波长 (3)mm cg 4498.122)(122=-==λλλβπλ4、一卡塞格伦天线,其抛物面主面焦距:m f 2=,若选用离心率为4.2=e 的双曲副反射面,求等效抛物面的焦距;5分 解:1写出等效抛物面的焦距公式: (3)f e e Af f e 11-+== 2将数据代入得: (2)m f e 86.4=五.计算题共 61分,教师答题时间30分钟例 1- 4设无耗传输线的特性阻抗为50Ω, 工作频率为300MHz, 终端接有负载Zl=25+j75Ω, 试求串联短路匹配支节离负载的距离l1及短路支节的长度l2;解: 1求参数由工作频率f=300MHz, 得工作波长λ=1m;终端反射系数101111Z Z Z Z e j +-=Γ=Γφ =+=1071.1j e 驻波系数 8541.61111=Γ-Γ+=ρ2求长度第一波腹点位置 0881.0411max ==φπλl m调配支节位置 1462.01arctan 21max 1=+=ρπλl l m 调配支节的长度 1831.01arctan 22=-=ρρπλl 图 2 - 3 给出了标准波导BJ-32各模式截止波长分布图;例2-1 设某矩形波导的尺寸为a=8cm,b=4cm; 试求工作频率在3GHz 时该波导能传输的模式; 解:λλλλλλλ<=+=<==>====∴=)(0715.02)(08.02)(16.022)(1.03)122c c c 110110m ba ab m b m a m fcGHzf TM TE TE )计算模式波长并判断求波长3结论可见,该波导在工作频率为3GHz 时只能传输TE10模 例 6 -3确定电基本振子的辐射电阻;解: 1电基本振子的远区场设不考虑欧姆损耗, 则根据式6 -2 -4知电基本振子的远区场为kr r IlE j e sin π60j-=θλθ 2求辐射功率将其代入式6 -3 -7得辐射功率为∑∑=⎪⎭⎫ ⎝⎛=⎰⎰R I r Il r P 2π20π22221d d sin sin 60π240ϕθθθλπ 3 所以辐射电阻为22π80⎪⎭⎫⎝⎛=∑λl R例6-4一长度为2hh<<λ中心馈电的短振子, 其电流分布为:)1()(0hz I z I -=, 其中I0为输入电流, 也等于波腹电流Im 试求:① 短振子的辐射场电场、 磁场; ② 辐射电阻及方向系数; ③ 有效长度;解: 1此短振子可以看成是由一系列电基本振子沿z 轴排列组成的, 如图 6 -9 所示;2z 轴上电基本振子的辐射场为:z z I r E r k d )(e sin 60jd j '-'=θλπθ 3整个短振子的辐射场为z r z I E hh r jk d e )(sin 60j ⎰-''=θλπθ 由于辐射场为远区, 即r>>h, 因而在yOz 面内作下列近似:θcos z r r -≈'rr 11≈' λπ/2=k所以dz e hz I re k j E hhjkz jkr⎰---=θθθcos 0)1(sin 304进一步变换整个短振子的辐射场 令积分:ϑθθcos )cos sin(2cos 1k kh dz e F hh jkz ==⎰-θθθθθ222cos 2cos )2cos (sin 4cos )cos sin(2hk kh k kh dz e h z F hhjkz +-==⎰- 则221cos )2cos sin(21⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+θθk kh h F F 因为h<<λ, 所以F1+F2≈h 因而有)sin (300θθkh r e I j E jkr-=jkr e rkhI jE H -==θπηθϕsin 405求辐射电阻 辐射功率为ϕθθϕππθd d H E p sin 21200*∑⎰⎰=将θE 和θH 代入上式, 同时考虑到∑∑=R I p 2021 短振子的辐射电阻为22)(80λπhR =∑6方向系数为5.1sin ),(4202==⎰⎰ππϕθθϑθπd d F D由此可见, 当短振子的臂长h >>λ时, 电流三角分布时的辐射电阻和方向系数与电流正弦分布的辐射电阻和方向系数相同, 也就是说, 电流分布的微小差别不影响辐射特性;因此, 在分析天线的辐射特性时, 当天线上精确的电流分布难以求得时, 可假设为正弦电流分布, 这正是后面对称振子天线的分析基础; 7有效长度现在我们来讨论其有效长度; 根据有效长度的定义, 归于输入点电流的有效长度为hdz hz I I h hhein =-=⎰-)1(0这就是说, 长度为2h 、电流不均匀分布的短振子在最大辐射方向上的场强与长度为h 、电流为均匀分布的振子在最大辐射方向上的场强相等, 如图 6 -10 所示; 由于输入点电流等于波腹点电流, 所以归于输入点电流的有效长度等于归于波腹点电流的有效长度, 但一般情况下是不相等的;接收天线理论例8-4画出两个平行于z 轴放置且沿x 方向排列的半波振子, 在d=λ/4、ζ=π/2时的H 面和E 面方向图;解:1 H 面方向图函数将d=λ/4、ζ=-π/2 代入式8-2-11,得到H 面方向图函数为)1(cos 4πcos )(H -=ϕϕF 8-2-14天线阵的H 面方向图如图8-11,在由图8-11可见,在0=ϕ时辐射最大,而在πϕ=时辐射为零,方向图的最大辐射方向沿着阵的轴线这也是端射阵;请读者自己分析其原因;2 E 面方向图函数将d=λ/4、ζ=π/2代入式8-2-10 ,得到E 面方向图函数为)1(sin 4πcos sin cos 2cos )(-⎪⎭⎫ ⎝⎛=θθθπθE F 8-2-15 显然,E 面的阵方向图函数必须考虑单个振子的方向性;图8-12示出了利用方向图乘积定理得出的E 面方向图;由图8-12可见, 单个振子的零值方向在θ=0°和θ=180° 处, 阵因子的零值在θ=270°处, 所以, 阵方向图共有三个零值方向, 即θ=0°、θ=180°、θ=270°, 阵方向图包含了一个主瓣和两个旁瓣;例 9 -1设有一矩形口径a ×b 位于xOy 平面内, 口径场沿y 方向线极化, 其口径场的表达式为:axE S y 21-= , 即相位均匀, 振幅为三角形分布, 其中|x|≤2a ; 求:① xOy 平面即H 平面方向函数; ② H 面主瓣半功率宽度; ③ 第一旁瓣电平; ④ 口径利用系数; 解:1远区场的一般表达式 根据远区场的一般表达式:1)求?=H EaxE E Sy S 21-==和s s dy dx dS =一并代入上式, 并令ϕ=0得 : (sin cos sin sin 1cos 2S S jkR jk x y S M Se E j E e ds R θϕθϕθλ-++=⋅⎰⎰最后积分得22/2/sin 21ψψ⋅⋅=S A E H其中,2cos 1e j θλ+⋅=-R A jkRab S = 2sin θψka =3求H 面方向函数 所以其H 面方向函数为2cos 12/sin )2/sin sin()(2θθθθ+=ka ka F H 4求主瓣半功率波瓣宽度 由求得主瓣半功率波瓣宽度为/2sin sin 01cos 2(1)2S S jkR a jkx jkx S Se j b x e e dx R aθθθλ--+⎡⎤=⋅-+⎣⎦⎰/2/sin /2/1cos 212S jkR a b s jkx SH S S a b s e x E j e dx dy R a θθλ---+⎡⎤=⋅-⎢⎥⎣⎦⎰⎰sin(sin )4sin 4kaka θθ=aH λθ7325.0=5第一旁瓣电平为 )(2605.0log 2010dB -= 6求方向系数 将λR S E 2max=和πη720)21(2122222Sdy dx a x P bb S S a a S =-=⎰⎰--∑代入9-2-12得方向系数:4342⋅=λπS D 所以口径利用系数 υ=;可见口径场振幅三角分布与余弦分布相比,主瓣宽度展宽, 旁瓣电平降低, 口径利用系数降低;1 综合类设无耗传输线的特性阻抗为50Ω, 工作频率为300MHz, 终端接有负载Zl=25+j75Ω, 试求串联短路匹配支节离负载的距离1l 及短路支节的长度2l 只需要求一种情况16分;解: 1求参数由工作频率f=300MHz, 得工作波长λ=1m;终端反射系数101111Z Z Z Z e j +-=Γ=Γφ =+=1071.1j e 驻波系数 8541.61111=Γ-Γ+=ρ2求长度第一波腹点位置:0881.0411max ==φπλl m 调配支节位置: 1462.01arctan 21max 1=+=ρπλl l m 调配支节的长度:1831.01arctan 22=-=ρρπλl 2三基类试证明工作波长λ, 波导波长λg 和截止波长λc 满足以下关系10分: 22cgc g λλλλλ+=证明:1明确关系式kπλ2=1 22β+=c k k 2cc k λπ2=3 gλπβ2=42结论将23、4代入1中得结论2222)2()2(22gcc g gckλλλλλπλπππλ+=+==3 一般综合试求图示网络的A 矩阵, 并确定不引起附加反射的条件12分;附:解:1将网络分解成两个并联导纳和短截线网络的串接,于是网络的A 矩阵为:[][][][]321A A A A =2查表得到网络的A 矩阵为:[]⎥⎥⎦⎤⎢⎢⎣⎡--+-=⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=θθθθθθθθθθθθsin cos sin sin cos 2sin sin cos 101cos sin sin cos 10120000000000B jB Z j jB jZ Z B jB Z j jZ jBA000Z DCZ BAZ Z in =++=则:θcot 200Y B =4一般综合一长度为2hh<<λ中心馈电的短振子, 其电流分布为:)1()(0hz I z I -=, 其中I0为输入电流, 也等于波腹电流Im , 已知短振子的辐射场电场、 磁场表达式为:)sin (300θθkh r e I j E jkr-= 、 jkr e rkhI jE H -==θπηθϕsin 40试求: ①辐射电阻 ②方向系数; ③ 有效长度;15分 解: 1求短振子的辐射电阻 由于短振子的辐射场为:)sin (300θθkh r e I j E jkr-=jkr e rkhI jE H -==θπηθϕsin 40则辐射功率为ϕθθϕππθd d r H E p sin 212200*∑⎰⎰=将θE 和θH 代入上式, 同时考虑到∑∑=R I p 2021 短振子的辐射电阻为22)(80λπhR =∑2方向系数为5.1sin ),(4202==⎰⎰ππϕθθϑθπd d F D3有效长度归于输入点电流的有效长度为h dz hz I I h hhein =-=⎰-)1(05三基类有两个平行于z 轴并沿x 轴方向排列的半波振子, 已知半波振子的方向函数为:;sin )cos 2cos(θθπ阵因子为:2cos ψ,其中ξϕθψ+=cos sin kd ;当d=λ/4, ζ=π/2时,试分别求其E 面和H 面方向函数, 8分解:1由方向图乘积定理:二元阵的方向函数等于元因子和阵因子方向函数之乘积,于是有:;2cos sin )cos 2cos()(ψθθπθ=F其中:ξϕθψ+=cos sin kd 2当00=ϕ时,得到E 面方向函数:;)sin 1(4cos sin )cos 2cos()(θπθθπθ+=E F3当090=θ时,得到H 面方向函数:;)cos 1(4cos)(ϕπθ+=H F1 综合类 一均匀无耗传输线的特性阻抗为70Ω,负载阻抗为Zl=70+j140Ω, 工作波长λ=20cm;试计算串联支节匹配器的位置和长度16分;解:1求终端反射系数 0010145707.0∠=+-=ΓZ Z Z Z 2求驻波比8.51111=Γ-Γ+=ρ3求串联支节的位置cm l 5.21arctan 2411=+=ρπλφπλ 4调配支节的长度: cm l 5.31arctan 22=-=ρρπλ 2三基类设某矩形波导的尺寸为a=8cm,b=4cm; 试求工作频率在3GHz 时该波导能传输的模式;10分 解:λλλλλλλ<=+=<==>====∴=)(0715.02)(08.02)(16.022)(1.03)122c c c 110110m ba ab m b m a m fcGHzf TM TE TE )计算模式波长并判断求波长3结论可见,该波导在工作频率为3GHz 时只能传输TE10模 3一般综合试求如图所示并联网络的S 矩阵;14分解:1写出参数方程21u u = )(221i u Y i -+=2根据入射波、反射波与电压、电流的关系:111b a u +=,111b a i -= 222b a u +=,222b a i -=3由1、2变换得到:211222a Ya Y Yb +++-=212222a YYa Yb +-+=4结论[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+++-=Y Y YY YY S 222222 4一般综合长度为2hh<<λ沿z 轴放置的短振子, 中心馈电, 其电流分布为Iz=Im·sinkh-|z|, 式中k=2π/λ, 知短振子的辐射场电场、 磁场表达式为:θθsin 3022h k r e I j E jkr m -≈ 、πηθθϕ120E E H == 试求短振子的 ① 辐射电阻; ② 方向系数;③ 有效长度归于输入电流;13分 解:1求短振子的辐射电阻 由于短振子的辐射场为:θθsin 3022h k re I j E jkr m-≈ 、 πηθθϕ120E E H == 将θE 和θH 代入上式,则辐射功率为42022max2200)(10sin sin 240sin 21kh d d E r d d H E p ===⎰⎰⎰⎰*∑ππϕππθϕθθθπϕθθ同时考虑到∑∑=R I p m 221短振子的辐射电阻为4)(20kh R =∑2方向系数为5.1sin ),(4202==⎰⎰ππϕθθϑθπd d F D3有效长度归于输入点电流的有效长度为h dz z h k I I h hhmm ein =-=⎰-)(sin5 三基类六元均匀直线阵的各元间距为λ/2, 求: ① 天线阵相对于ψ的归一化阵方向函数;② 分别求出工作于边射状态和端射状态的方向函数; 8分 解:1由公式;2sin2sin1)(ψψψN NA =当N=6时则得天线阵相对于ψ的归一化阵方向函数:;2sin3sin 61)(ψψψ=A 其中ξϕθψ+=cos sin kd2求工作于边射状态和端射状态的方向函数 ①当0=ξ时为边射阵的归一化方向函数;)cos 2sin()cos 3sin(61)(ϕπϕπψ=A②当πξ==kd 时为端射阵的归一化方向函数;))1(cos 2sin ))1(cos 3sin 61)(++=ϕπϕπψA1综合类设某一均匀无耗传输线的特性阻抗为Ω=500Z ,终端接有未知负载1Z 现在传输线上测得电压最大值和最小值分别是100mV 和20mV ,第一电压波节位置离负载31min λ=l ,试求该负载的阻抗1Z ;16分解:15minmax ==V V ρ (3)232111=+-=Γρρ…………3 33;344111min πφλλφπλ==+=l ……….3 431132πφj j e e =Γ=Γ…………..3 501101010113.644.8211;∠=Γ-Γ+=+-=ΓZ Z Z Z Z Z …………4 2、一般综合如图求双端口网络的[]Z 矩阵和[]Y 矩阵12分解:1由[]Z 矩阵的定义:…………….6 C A I Z Z I V Z +===01111221021121Z Z I V Z C I ====C B I Z Z I V Z +===022221则:[]⎥⎦⎤⎢⎣⎡++=C B C C C A Z Z Z Z Z Z Z2求[]Y (6)[][]⎥⎦⎤⎢⎣⎡+--+++==-C A C C C B C B A B A Z Z Z Z Z Z Z Z Z Z Z Z Y )(11 3、一般综合设矩形波导宽边cm a 5.2=,工作频率为:GHz f 10=,用4gλ阻抗变换器匹配一段空气波导和一段56.2=r ε的波导,如图求匹配介质的相对介电常数'r ε及变换器的长度;12分解:1各部分的等效特性阻抗如图2根据传输线的四分之一波长阻抗变换性:r r Z Z Z εε0020•=⎪⎪⎪⎭⎫⎝⎛',得6.1=='r r εε;………………5 3求波导波长:cm cm fcr 37.2;3='='==ελλλ波导波长为:cm ag 69.2)2(12='-'=λλλ……………..4 4求变换器的长度:cm l g67.04==λ (3)4三基类型直立振子天线的高度m h 10=,其电流分布表达式为:)(sin )(z h I z I m -=β,当工作波长m 300=λ,求它归于波腹电流的有效高度10分解:1写出表达式2sin2)(sin )(2hI dzz h I dz z I h I mhm hen m βββ=-==⎰⎰2求有效高度m hh en 12sin 22≈=ββ1、综合类设有一无耗传输线,终端接有负载)(30401Ω-=j Z ,求:1、要使传输线的驻波比最小,则该传输线上的特性阻抗是多少 2、此时的最小反射系数及驻波比是多少 3、离终端最近的波节点位置在何处19分 解:1求?0=Z (7)a.2202200101130)40(30)40(+++-=+-=ΓZ Z Z Z Z Z b.求?01=∂Γ∂Z030402022=-+Z ,得:Ω=500Z 2求反射系数及驻波比 (7)a.230101131πj e Z Z Z Z =+-=Γb.21111=Γ-Γ+=ρ3求?1min =z (5)⎪⎪⎩⎪⎪⎨⎧=-=πφλφπλ2344001min z ,代入得:λ811min =z2、一般综合如图求终端接匹配负载时的输入阻抗,并求出输入端匹配条件;14分解:1、求?=in Z (8)2由匹配条件: (6)0Z Z in =求得:BZ B X 21202+=;一般取:001,Z B Z X ==;3、一般综合如图,有一驻波比为的标准失配负载,标准波导的尺寸为2012cm b a ⨯=⨯,当不考虑阶梯不连续性电容时,求失配波导的窄边尺寸1b ;14分解:1根据等效传输线理论,设波导的主模为TE10,则其等效特性阻抗: (4)000)1()12()1(1)1(1jBZ BX B X j BX Z jBjX Z jX jB Z jB Z in +--+-=++++=10121001;TE e TE e Z abZ Z a b Z ==2求反射系数…………5 10102121b b b b Z Z Z Z e e e e +-=+-=Γ3求?1=b ……………5 2727.011=+-=Γρρ,求出:57.01=b 4、三基类确定沿Z 轴放置的电基本振子的方向系数10分 解:1写出电基本振子的归一化方向函数 θϕθsin ),(=F ……………..3 2求D 5.1sin sin 4202==⎰⎰ππϕθθθπd d D (7)2、B 综合类设有一无耗传输线,终端接有负载)(30401Ω-=j Z ,求:1、要使传输线的驻波比最小,则该传输线上的特性阻抗是多少 2、此时的最小反射系数及驻波比是多少 3、离终端最近的波节点位置在何处19分 解:1求0=Z (7)a.2202200101130)40(30)40(+++-=+-=ΓZ Z Z Z Z Z b.求1=∂Γ∂Z030402022=-+Z ,得:Ω=500Z 2求反射系数及驻波比 (7)a.230101131πj e Z Z Z Z =+-=Γb.21111=Γ-Γ+=ρ3求?1min =z (5)⎪⎪⎩⎪⎪⎨⎧=-=πφλφπλ2344001min z ,代入得:λ811min =z2、一般综合如图求双端口网络的[]Z 矩阵和[]Y 矩阵15分解:1由[]Z 矩阵的定义:…………….6 C A I Z Z I V Z +===01111221021121Z Z I V Z C I ====C B I Z Z I V Z +===022221则:[]⎥⎦⎤⎢⎣⎡++=C B C C CA Z Z Z Z Z Z Z2求[]Y (6)[][]⎥⎦⎤⎢⎣⎡+--+++==-C A C C C B C B A B A Z Z Z Z Z Z Z Z Z Z Z Z Y )(113、一般综合设矩形波导宽边cm a 5.2=,工作频率为:GHz f 10=,用4gλ阻抗变换器匹配一段空气波导和一段56.2=r ε的波导,如图求匹配介质的相对介电常数'r ε及变换器的长度;12分解:1各部分的等效特性阻抗如图 2根据传输线的四分之一波长阻抗变换性:r r Z Z Z εε0020•=⎪⎪⎪⎭⎫ ⎝⎛',得6.1=='r r εε; (5)3求波导波长:cm cm f c r 37.2;3='='==ελλλ 波导波长为:cm a g 69.2)2(12='-'=λλλ……………..4 4求变换器的长度:cm l g67.04==λ (3)4三基类型直立振子天线的高度m h 10=,其电流分布表达式为:)(sin )(z h I z I m -=β,当工作波长m 300=λ,求它归于波腹电流的有效高度10分解:1写出表达式2sin 2)(sin )(200hI dz z h I dz z I h I mh m h en m βββ=-==⎰⎰2求有效高度 m hh en 12sin 22≈=ββ。
微波与天线技术 复习重点
第一章1、天线的任务:用来辐射或接收无线电波的专用装置。
发射天线的作用:是将高频电流(或导波)能量变成电磁波能量,向规定的方向发射出去。
接收天线的作用:是将来自一定方向的无线电波能量还原为高频电流(或导波)能量,经过馈线送入接收机的输入回路。
天线的分类:按波长分:长波天线、中波天线、短波天线、超短波天线和微波天线;按结构分:线天线和面天线。
线天线一般用于长、中、短波。
面天线一般用于微波波段。
2、电基本振子的近场区为什么称为感应场? 远区场又称辐射场?因电基本振子可看成是由很短的传输线展开的,具有很大的容抗,电动势滞后于电流接近于90度,因而是电场滞后于磁场90度,所以又称感应场。
我们把电磁波能量离开场源流向空间不再返回的现象称为辐射。
因此电基本振子远区场称为辐射场。
3、天线的电参数的重要性:天线是无线电设备的重要部分,天线性能好坏将直接影响整个系统的性能指标。
因此,定量表征天线性能、功能的物理量就是天线的电参数,为选择和设计天线提供依据。
发射天线的电参数有哪些:天线的方向性及方向性参数、天线的效率与增益系数、天线的极化特性、天线的工作频带宽度、天线的有效长度、输入阻抗。
4、方向图各参数:D 为天线的方向系数、G 为天线的增益、ηA 为天线的效率。
D 用dB 表示时取10 lg, G=ηA D 。
通常超短波和微波天线的ηA 近似为1。
5、天线的输入阻抗的定义Z in =U o /Io U 为馈电点的高频电压。
Io 为该点电流。
辐射阻抗:将天线辐射的功率看成是被一个等效阻抗所吸收的功率,这个等效电阻就是辐射阻抗Z r 。
频带宽度:把天线的各种特性参数不超过规定变化范围的频率范围称为天线的频带宽度,简称天线宽度。
窄带天线:Δf f o×100% Δf=f max -f min 对宽带天线:常用f max /f min 表示。
6、S=D λ24π,S 称为接收天线的有效接收面积。
它代表接收天线吸收外来电波的能力。
微波技术与天线复习知识要点资料讲解
微波技术与天线复习知识要点资料讲解本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March《微波技术与天线》复习知识要点绪论微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。
微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。
两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)= Z in(z+λ/2)2、λ/4变换性: Z in(z)- Z in(z+λ/4)=Z02证明题:(作业题)均匀无耗传输线的三种传输状态(要会判断)参数行波驻波行驻波|Γ|010<|Γ|<1ρ1∞1<ρ<∞Z1匹配短路、开路、纯电抗任意负载能量电磁能量全部被负载吸收电磁能量在原地震荡1.行波状态:无反射的传输状态匹配负载:负载阻抗等于传输线的特性阻抗沿线电压和电流振幅不变电压和电流在任意点上同相2.纯驻波状态:全反射状态负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数传输线的三类匹配状态(知道概念)负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。
源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。
此时,信号源端无反射。
共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。
微波技术与天线总复习题及其答案
微波技术与天线基础总复习题一、填空题1、微波是一般指频率从 至 范围内的电磁波,其相应的波长从 至 。
并划为 四个波段;从电子学和物理学的观点看,微波有 、 、 、 、 等重要特点。
2、无耗传输线上的三种工作状态分别为: 、 、 。
3、传输线几个重要的参数:(1) 波阻抗: ;介质的固有波阻抗为 。
(2) 特性阻抗: ,或 ,Z 0=++I U 其表达式为Z 0= ,是一个复数; 其倒数为传输线的 .(3) 输入阻抗(分布参数阻抗): ,即Z in (d)= 。
传输线输入阻抗的特点是: a) b) c) d)(4) 传播常数:(5) 反射系数:(6) 驻波系数:(7) 无耗线在行波状态的条件是: ;工作在驻波状态的条件是: ;工作在行驻波状态的条件是: 。
4、负载获得最大输出功率时,负载Z 0与源阻抗Z g 间关系: 。
5、负载获得最大输出功率时,负载与源阻抗间关系: 。
6、史密斯圆图是求街均匀传输线有关 和 问题的一类曲线坐标图,图上有两组坐标线,即归一化阻抗或导纳的 的等值线簇与反射系数的 等值线簇,所有这些等值线都是圆或圆弧,故也称阻抗圆图或导纳圆图。
阻抗圆图上的等值线分别标有 ,而 和 ,并没有在圆图上表示出来。
导纳圆图可以通过对 旋转180°得到。
阻抗圆图的实轴左半部和右半部的刻度分别表示 或 和 或 。
圆图上的电刻度表示 ,图上0~180°是表示 。
7、阻抗匹配是使微波电路或系统无反射运载行波或尽量接近行波的技术措施,阻抗匹配主要包括三个方面的问题,它们是:(1);(2);(3)。
8、矩形波导的的主模是模,导模传输条件是,其中截止频率为,TE10模矩形波导的等效阻抗为,矩形波导保证只传输主模的条件是。
9、矩形波导的管壁电流的特点是:(1)、(2)、(3)。
10、模式简并现象是指,主模也称基模,其定义是。
单模波导是指;多模传输是。
11、圆波导中的主模为,轴对称模为,低损耗模为。
微波技术与天线复习提纲 简答题及答案
1. 为什么空心的金属波导内不能传播TEM 波?空心金属波导内不能存在TEM 波。
这是因为:如果内部存在TEM 波,则要求磁场完全在波导的横截面内,而且是闭合曲线。
有麦克斯韦第一方程可知,闭合曲线上磁场的积分等于与曲线相交链的电流。
由于空心金属波导中不存在轴向即传播方向的传导电流,故必要求有传播方向的位移电流,由位移电流的定义式可知,要求一定有电场存在,显然这个结论与TEM 波的定义相矛盾,所以,规则金属内不能传输TEM 波。
2. 说明圆波导中TE01模为什么具有低损耗特性。
答:TE 01模磁场只有径向和轴向分量,故波导管壁电流无纵向分量,只有周向电流。
因此当传输功率一定时,随着频率升高,管壁的热损耗将单调下降,故其损耗相对其它模式来说是低的,故可将工作在TE 01模的圆波导用于毫米波的远距离传输或制作高Q 值的谐振腔。
3. 列出微波等效电路网络常用有 5 种等效电路的矩阵表示,并说明矩阵中的参数是如何测量得到的。
答:(1)阻抗参量当端口②开路时,I 2=0,网络阻抗参量方程变为:221111221112112111I I U Z I U Z I U U Z Z I I ======则当端口①开路时, I 1=0,网络阻抗参量方程变为:(2)导纳参量当端口②短路时,U 2=0,网络导纳参量方程变为:当端口①短路时,U 1=0,网络导纳参量方程变为:(3)转移参量当端口②开路时,I 2=0,网络转移参量方程变为:当端口②短路时,U 2=0,网络转移参量方程变为:A 11:端口②开路时,端口①到端口②电压传输系数的倒数; A 21:端口②开路时,端口①与端口②之间的转移导纳;111122222212122222I I U Z I U Z I U U Z Z I I ======则11122122Y Y Y Y Y ⎡⎤=⎢⎥⎣⎦2211112211121121110UUI Y U I Y U I I Y Y U U ======则11112222221212222200U U I Y U I Y U I I Y Y U U ======则11112221212222U A A U U A I A A I I ⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦22111212121111212200I I U A U I A U U I A A U U ======则()()()()2211221222111222220UUU A I I A I U I A A I I ===-=-==--则A 22:端口②短路时,端口①到端口②电流传输系数的倒数; A 12:端口②短路时,端口①与端口②之间的转移阻抗。
微波技术与天线复习提纲
微波技术与天线复习提纲微波技术与天线复习提纲(2011级)一、思考题1.什么是微波?微波有什么特点?2.试解释一下长线的物理概念,说明以长线为基础的传输线理论的主要物理现象有哪些?一般是采用哪些物理量来描述?3.均匀传输线如何建立等效电路,等效电路中各个等效元件如何定义?4.均匀传输线方程通解的含义5.如何求得传输线方程的解?6.试解释传输线的工作特性参数(特性阻抗、传播常数、相速和波长)7.传输线状态参量输入阻抗、反射系数、驻波比是如何定义的,有何特点,并分析三者之间的关系8.均匀传输线输入阻抗的特性,与哪些参数有关?9.均匀传输线反射系数的特性10.简述传输线的行波状态,驻波状态和行驻波状态。
11.什么是行波状态,行波状态的特点12.什么是驻波状态,驻波状态的特性13.分析无耗传输线呈纯驻波状态时终端可接那几种负载,各自对应的电压电流分布14.介绍传输功率、回波损耗、插入损耗15.阻抗匹配的意义,阻抗匹配有哪三者类型,并说明这三种匹配如何实现?16.负载获得最大输出功率时,负载与源阻抗间关系:17.史密斯圆图是求解均匀传输线有关和问题的一类曲线坐标图,图上有两组坐标线,即归一化阻抗或导纳的的等值线簇与的等值线簇,所有这些等值线都是圆或圆弧,故也称阻抗圆图或导纳圆图。
导纳圆图可以通过对旋转180°得到。
阻抗圆图的上半部分呈性,下半部分呈性。
Smith圆图与实轴左边的交点为点,与横轴右边的交点为点。
Smith圆图实轴上的点代表点,左半轴上的点为电压波点,右半轴上的点为电压波点。
在传输线上负载向电源方向移动时,对应在圆图上应旋转,反之在传输线上电源向负载方向移动时,对应在圆图上应旋转。
18.T EM、TE和TM波是如何定义的?什么是波导的截止性?分别说明矩形波导、圆波导、同轴线、带状线和微带线的主模是什么?19.简述述矩形波导传输特性的主要参数定义:相移常数,截至波长,截至波数,波导波长,相速度,TE波和TM波的波阻抗20.导波系统中截止波长、工作波长和波导波长的区别。
微波技术与天线复习知识要点
《微波技术与天线》复习知识要点绪论微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。
微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~0.1mm微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。
两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)= Z in(z+λ/2)2、λ/4变换性: Z in(z)- Z in(z+λ/4)=Z02证明题:(作业题)均匀无耗传输线的三种传输状态(要会判断)参数行波驻波行驻波|Γ|010<|Γ|<1ρ1∞1<ρ<∞Z1匹配短路、开路、纯电抗任意负载能量电磁能量全部被负载吸收电磁能量在原地震荡1.行波状态:无反射的传输状态匹配负载:负载阻抗等于传输线的特性阻抗沿线电压和电流振幅不变电压和电流在任意点上同相2.纯驻波状态:全反射状态负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数传输线的三类匹配状态(知道概念)负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。
源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。
此时,信号源端无反射。
共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。
共轭匹配的目的就是使负载得到最大功率。
传输线的阻抗匹配(λ/4阻抗变换)(P15和P17)阻抗圆图的应用(*与实验结合)史密斯圆图是用来分析传输线匹配问题的有效方法。
《电磁场微波技术与天线》总复习填空题选择题
《电磁场微波技术与天线》总复习填空题选择题《电磁场微波技术与天线》习题及参考答案⼀、填空题:1、静⽌电荷所产⽣的电场,称之为_静电场_;电场强度的⽅向与正电荷在电场中受⼒的⽅向__相同_。
2、电荷之间的相互作⽤⼒是通过电场发⽣的,电流与电流之间的相互作⽤⼒是通过磁场发⽣的。
3、⽮量场基本⽅程的微分形式是:V A ρ=?? 和 J A =?? ;说明⽮量场的散度和旋度可以描述⽮量场在空间中的分布和变化规律。
4、⽮量场基本⽅程的积分形式是:dV dS A V V S ρ??=?? 和 dS J s dl A l ?=??;说明⽮量场的环量和通量可以描述⽮量场在空间中的分布和变化规律。
5、⽮量分析中的两个重要定理分别是⾼斯定理和斯托克斯定理, 它们的表达式分别是: dS A dV A S v ??= 和dS rotA dl A s l ?= 。
6、静电系统在真空中的基本⽅程的积分形式是:∮D s ·d S =q 和?E ·d =0。
7、静电系统在真空中的基本⽅程的微分形式是:V ρ=??和0=??。
8、镜象法的理论依据是静电场的唯⼀性定理。
基本⽅法是在所求场域的外部放置镜像电荷以等效的取代边界表⾯的感应电荷或极化电荷。
9、在两种媒质分界⾯的两侧,电场→E 的切向分量E 1t -E 2t =_0__;⽽磁场→B 的法向分量 B 1n -B 2n =__0__。
10、法拉弟电磁感应定律的⽅程式为E n =-dtd φ,当d φ/dt>0时,其感应电流产⽣的磁场将阻⽌原磁场增加。
11、在空间通信中,为了克服信号通过电离层后产⽣的法拉第旋转效应,其发射和接收天线都采⽤圆极化天线。
12、长度为2h=λ/2的半波振⼦发射天线,其电流分布为:I (z )=I m sink (h-|z|)。
13、在介电常数为e 的均匀各向同性介质中,电位函数为 2211522x y z ?=+-,则电场强度E =5x y z xe ye e --+ 。
微波技术与天线复习题答案
微波技术与天线复习题答案《微波技术与天线》习题答案章节微波传输线理路1.1设⼀特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输⼊阻抗及反射系数分别为多少?解:31)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ(⼆分之⼀波长重复性)31)25.0(-=ΓλΩ-∠=++=ο79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之⼀波长阻抗变换性)Ω=100)5.0(λin Z (⼆分之⼀波长重复性)1.2求外导体直径分别为0.25cm 和0.75cm 的空⽓同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗abZ rln600ε= 则空⽓同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600aε当MHz f 300=时的波长:m f c rp 67.0==ελ1.3题设特性阻抗为0Z 的⽆耗传输线的驻波⽐ρ,第⼀个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--?=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--?=∴=++?=由两式相等推导出:对于⽆耗传输线⽽⾔:)(Θ1.4传输线上的波长为:m fr2cg ==ελ因⽽,传输线的实际长度为: m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输⼊反射系数为: 961.051Γ=Γ-lj in eβ根据传输线的4λ的阻抗变换性,输⼊端的阻抗为:Ω==2500120R ZZ in1.5试证明⽆耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平⽅。
《微波技术与天线》试题真题(A卷)
任课教师
考场教室
准考证号:
2. BJ-100 型矩形波导( a b 22.86 10.16mm 2 )填充相 订 对介电常数 r 2.1 的介质,信号频率 f 10GHz ,求
班级:
―――――――――――――――装
TE10 波的相波长 P 和相速度 vP 。
姓名:
第 6页 共 7页
1. 微波是指频率范围为 300MHz~3000GHz 的电磁波,它 有着不同于其它无线电波的特点,诸如 _____________________ 、 ____________________ 、 ______________________、_____________________、
学
院
考
试
专
用
纸
3. 求电长度为 ,特性阻抗为 Z 0 的传输线段的散射参量矩阵。
4. 今 有 一 段 矩 形 波 导 , 当 终 端 短 路 时 , 测 得 某 一 波 节 位 置 d1 15cm ,相邻另一个波节位置 d 3 17cm ;当终端接喇叭天线后, 从 d1 向波源方向测得最近波节点位置 d 2 16.5cm ,驻波比 2 ,
线―――――――――――――――――――――――-
第 5 页 共 7页
中
国
民
航
学
院 考 试 专 用 纸
三、计算题(每题 10 分,共 40 分)
1. 均匀无耗传输线终端接 Z L 100 ,测得终端电压反射 系数的相角 2 180 和电压驻波比 1.5 。 计算终端电 压反射系数 2 和传输线特性阻抗 Z 0 。
其中11te模的场分布和矩形波导中的场分布很相似因此圆波导中11te模很容易通过矩形波导中过渡得到而且11te模的最长容易实现单模传输
uestc微波技术与天线复习题
(1 分)
是二次辐射源。
惠更斯元远区辐射场特点为: 1)远区辐射场为 TEM 波(球面波); 2)为单向辐射,辐射方向图绕法线轴旋转对称; 3)最大辐射方向为其正法线方向;
5、 简述双反射面天线(卡赛格伦天线)结构,并简述其工作原理。 答: 双反射面天线由主反射器(旋转抛物面)、副反射器(双 曲面)和辐射器(馈源)三部分组成。(2 分,图形上标示也可) 主反射面焦点与副反射面一个焦点重合,馈源置于福反 射面另一焦点位置。(1 分) 馈源发射的电磁波经副反射面反射后,所有射线反向延 长线汇聚于 P2,即可等效为馈源位于 F2 点的抛物面天线; 反射波再经主反射面反射,到达口 径面时经过的波程相等,从而获得平面波。(3 分)
Z0
l2
Z0
Z0
l1
ZL = RL + jX L
答:1、将负载阻抗归一化后,在圆图上确定对应点 A(在圆图上方);(1分) 2、以圆图中心 OA 为半径作等反射系数圆,与匹配圆交于 B 点;(1分) 3、l1 段实现负载阻抗变换,使得变换后的阻抗实部等于传输线特性阻抗(归一化阻抗实部等于
1);(1 分) 4、 l2 段抵消变换后的阻抗电抗部分,使总的阻抗等于传输线特性阻抗,实现匹配;(1 分) 3、在图上标出 l1,l2 。(正确在图上标出 l1,l2 各 1 分)
1、均匀无耗传输线上任意位置处的驻波系数都相等。
(√)
2、矩形波导中不能传输 TEM 波。
(√)
3、扼流式法兰盘可以用于宽带应用需求的情况下。
(×)
4、当发射天线为左旋圆极化时,用右旋圆极化天线接收也可以接收到信号。 ( × )
5、将任意两种天线按照一定规律排列起来,并进行馈电,即可形成二元天线阵。( × )
微波技术与天线考试重点复习归纳
微波技术与天线考试重点复习归纳第⼀章1.均匀传输线(规则导波系统):截⾯尺⼨、形状、媒质分布、材料及边界条件均不变的导波系统。
2.均匀传输线⽅程,也称电报⽅程。
3.⽆⾊散波:对均匀⽆耗传输线, 由于β与ω成线性关系, 所以导⾏波的相速v p 与频率⽆关, 称为⽆⾊散波。
⾊散特性:当传输线有损耗时, β不再与ω成线性关系, 使相速v p 与频率ω有关,这就称为⾊散特性。
11010010110cos()sin()tan()()tan()cos()sin()in U z jI Z z Z jZ z Z z Z U Z jZ z I z jz Z ββββββ++==++02p rv fλπλβε===任意相距λ/2处的阻抗相同, 称为λ/2重复性z1 终端负载221021101()j z j zj zj zZ Z A ez eeZ Z A eββββ----Γ===Γ+ 1101110j Z Z eZ Z φ-Γ==Γ+ 终端反射系数均匀⽆耗传输线上, 任意点反射系数Γ(z)⼤⼩均相等,沿线只有相位按周期变化, 其周期为λ/2, 即反射系数也具有λ/2重复性4.00()()()in in Z z Z z Z z Z -Γ=+ 0()1()()()1()in U z Z Z Z Z I z Z +Γ==-Γ111ρρ-Γ=+ 1111/1/1Γ-Γ+=-+=+-+-U U U U ρ电压驻波⽐其倒数称为⾏波系数, ⽤K 表⽰5.⾏波状态就是⽆反射的传输状态, 此时反射系数Γl =0, 负载阻抗等于传输线的特性阻抗, 即Z l =Z 0, 称此时的负载为匹配负载。
综上所述, 对⽆耗传输线的⾏波状态有以下结论: ①沿线电压和电流振幅不变, 驻波⽐ρ=1;②电压和电流在任意点上都同相; ③传输线上各点阻抗均等于传输线特性阻抗6终端负载短路:负载阻抗Z l =0, Γl =-1, ρ→∞, 传输线上任意点z 处的反射系数为Γ(z)=-e-j2βz此时传输线上任意⼀点z 处的输⼊阻抗为0()tan in Z Z jZ zβ=①沿线各点电压和电流振幅按余弦变化, 电压和电流相位差 90°, 功率为⽆功功率, 即⽆能量传输; ②在z=n λ/2(n=0, 1, 2, …)处电压为零, 电流的振幅值最⼤且等于2|A 1|/Z 0, 称这些位置为电压波节点;在z=(2n+1)λ/4 (n=0, 1, 2, …)处电压的振幅值最⼤且等于2|A 1|, ⽽电流为零, 称这些位置为电压波腹点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末复习
一、填空题(不写解答过程,将正确的答案写在每小题的 空格内。每小空格1分,大空格2分。错填或不填均无分。 共30分): 1、传输线的工作特性参数主要有 传输线的工作特性参数主要有 特性阻抗 、 常数 、 相速 和波长 。 传播
2、驻波比的取值范围为 驻波比的取值范围为 1≤ρ<∞ ;当传输线上全 1≤ρ< 反射时, 此时驻波比ρ 反射时,反射系数 1 ,此时驻波比ρ= ∞ 。 α γ α j α 称为衰减常数 3、= +β中称为 传播常数 , 称为衰减常数、它表示 衰减常数、 传输线上波行进单位长度幅值的变化 , β 称为 相移常 它表示传输线上波行进单位长度相位的变化 传输线上波行进单位长度相位的变化。 数,它表示传输线上波行进单位长度相位的变化。 4、特性阻抗50欧的均匀传输线终端接负载Z1为20j欧、50 特性阻抗50欧的均匀传输线终端接负载Z 20j欧 50欧的均匀传输线终端接负载 20欧时 传输线上分别形成① 欧时, 欧,20欧时,传输线上分别形成① 纯驻波 ② 纯 行波 ③ 行驻波 。
Z1 = Z 0
纯驻波状态的负载: 纯驻波状态的负载: (1)终端短路,即 Z = 0 终端短路, 1 (2)终端开路,即 Z = ∞ 终端开路, 1 终端接纯电抗(电容或电感), ),即 (3)终端接纯电抗(电容或电感),即
Z1 = jX
行驻波状态的负载: 行驻波状态的负载: (1)当负载阻抗为大于特性阻抗的纯电阻时 当负载阻抗为大于特性阻抗的纯电阻时, (1)当负载阻抗为大于特性阻抗的纯电阻时,终端为 电压波腹、电流波节点; 电压波腹、电流波节点;当负载阻抗为小于特性阻 抗的纯电阻时,终端为电压波节、电流波腹点; 抗的纯电阻时,终端为电压波节、电流波腹点; (2)当终端接一感性负载时,在终端既不是电压的波 (2)当终端接一感性负载时, 当终端接一感性负载时 腹点,也不是电压波节点, 腹点,也不是电压波节点,但离开终端第一个出现的 是电压波腹、电流波节点; 是电压波腹、电流波节点; (3)当终端接一容性负载时,在终端既不是电压的波 (3)当终端接一容性负载时, 当终端接一容性负载时 腹点,也不是电压波节点, 腹点,也不是电压波节点,但离开终端第一个出现的 是电压波节、电流波腹点。 是电压波节、电流波腹点。
3、(10分)无耗传输线有哪三种不同的工作状态?当无耗 (10分 无耗传输线有哪三种不同的工作状态? (10 传输线终端接哪三种负载时,传输线为纯驻波状态? 传输线终端接哪三种负载时,传输线为纯驻波状态? 当无耗传输线终端接哪三种负载时, 当无耗传输线终端接哪三种负载时,传输线为行驻波 状态? 行波状态传输线的特点? 状态? 行波状态传输线的特点? 无耗传输线有三种不同的工作状态: 无耗传输线有三种不同的工作状态: 行波状态; 纯驻波状态; 行驻波状态。 ① 行波状态; ② 纯驻波状态; ③ 行驻波状态。 行波状态传输线的特点: 行波状态传输线的特点: (1)沿线电压和电流的振幅不变,驻波比ρ=1 沿线电压和电流的振幅不变,驻波比ρ (2)线上任意点的电压和电流都同相 (3)传输线上各点输入阻抗均等于传输线的特性阻抗
( ( ( ( ( (
B ); D ); C ); E A F ); ); )。 )。
11、在导行波中 截止波长λc最长的 导行模称为该 11、 截止波长λc最长的 λc 导波系统的主模。 导波系统的主模。矩形波导的主模为 TE10 模, 因为该模式具有场结构简单、 稳定、 因为该模式具有场结构简单、 稳定、频带宽和损 耗小等特点, 耗小等特点, 所以实用时几乎毫无例外地工作在该 模式。 模式。 12、与矩形波导一样,圆波导中也只能传输TE波和TM波; 12、与矩形波导一样,圆波导中也只能传输TE波和TM波 TE波和TM 模是圆波导的主模, TE11 模是圆波导的主模, TM01 模是圆波导第一 个高次模, 模的损耗最低, 个高次模,而 TE01 模的损耗最低,这三种模式 是常用的模式。 是常用的模式。 13、在直角坐标系中,TEM波的分量 Ez 和 Hz 为零;TE 13、在直角坐标系中,TEM波的分量 为零; 波的分量Ez 为零;TM波的分量 为零。 波的分量Ez 为零;TM波的分量 Hz 为零。
1
(3)若 Z = j50Ω ,传输线上的驻波比ρ= 传输线上的驻波比ρ= ∞ 。
7、无耗传输线的终端短路和开路时,电压、电流曲线的 无耗传输线的终端短路和开路时,电压、 无耗传输线的终端短路和开路时 主要区别是终端开路时的电压、 主要区别是终端开路时的电压、电流曲线在终端处为 波腹、 波节; 电压 波腹、 电流 波节;阻抗分布曲线的主要区别 电路, 是终端开路时在终端处的等效一 并联谐振 电路, 电路。 终端短路时在终端处的等效一 串联谐振 电路。 8、一段长度 l(l< / 4)为的短路线和开路线的输入阻抗呈 一段长度 λ 纯电抗: 纯电抗:一段长度 l(l< / 4)为的短路线的输入阻抗为 λ λ 一纯 电感 ;一段长度 l(l< / 4) 为的开路线的输入 阻抗为一纯 电容 。 9、阻抗匹配具有三种不同的含义, 分别是负载阻抗匹配、 阻抗匹配具有三种不同的含义, 分别是负载阻抗匹配、 源阻抗匹配 和 共轭阻抗匹配 ,它们反映了传输 线上三种不同的状态。 线上三种不同的状态。阻抗匹配方法从实现手段上划 /4阻抗变换器法和支节调配器法 阻抗变换器法和支节调配器法。 分有串联 λ/4阻抗变换器法和支节调配器法。支节调 配器法又有 串联单支节调配器 法和 并联调配器 法。
10、圆图中的阻抗一般式为Z=R+jX,传输线特性阻抗为 10、圆图中的阻抗一般式为Z=R+jX, Z=R+jX 根据各点在下图所示的阻抗圆图中的位置, Z0,根据各点在下图所示的阻抗圆图中的位置,判断 其性质。 其性质。
B
短路点 O
A
F D
C
K 开路点 E
①R<Z0,X>0 Z0, R=Z0, ②R=Z0,X<0 ③R>Z0,X=0 Z0, ④R =0 ,X <0 ⑤R<Z0,X=0 Z0, Z0, ⑥R=Z0,X=0
分布电阻R 分布电阻R 分布电感L 分布电感L 分布电容C 分布电容C 分布电导G 分布电导G ——传输线单位长度上的分布参数。 传输线单位长度上的分布参数。 传输线单位长度上的分布参数
频率提高后,导线中所流过的高频电流会产生集肤 频率提高后, 效应,使导线的有效面积减小,高频电阻加大, 效应,使导线的有效面积减小,高频电阻加大,而且沿 线各处都存在损耗,这就是分布电阻效应; 线各处都存在损耗,这就是分布电阻效应; 通高频电流的导线周围存在高频磁场, 通高频电流的导线周围存在高频磁场,这就是分布 电感效应; 电感效应;
Z 0 = 50Ω
Z1
z
Z
1
0
(1)若 Z = 50Ω ,在 z = 8cm 处的输入阻抗 Zin= Zin= 50 Ω; = 50Ω
1
(2)若 Z1 = 0 ,在 z = 2.5cm 处的输入阻抗 Zin= Zin= ∞ Ω;在 z = 5cm 处的输入阻抗 < 2 Zin呈 Zin= Zin= 0 Ω;当 0 z< .5cm 处,Zin呈 当处, Zin呈 感 性,当处, Zin呈 容 性。
在低频电路中,电阻、电容、电感和电导都是以集 在低频电路中,电阻、电容、 总参数的形式出现的, 总参数的形式出现的,连接元件的导线都是理想的短路 可任意延伸或压缩。 线,可任意延伸或压缩。 随着频率的提高,电路元件的辐射损耗、导体损耗 随着频率的提高,电路元件的辐射损耗、 和介质损耗增加,电路元件的参数也随之变化。 和介质损耗增加,电路元件的参数也随之变化。
2、(10分)为什么说TEM波传输线是惟一可以用分布参数 (10分 为什么说TEM波传输线是惟一可以用分布参数 TEM 的理论描述的? 的“路”的理论描述的? 在自由空间或波导中电磁波在传播中, 在自由空间或波导中电磁波在传播中,电场靠磁场 支持,磁场靠电场维系,彼此互为存在的前提。 支持,磁场靠电场维系,彼此互为存在的前提。电场线 和磁场线都是闭合的。 和磁场线都是闭合的。 在TEM波传输线中,t时刻的电场线是从一个导体的 TEM波传输线中, 波传输线中 正电荷发出落到另外一个导体的负电荷上,它们是靠正、 正电荷发出落到另外一个导体的负电荷上,它们是靠正、 负电荷支持的,不是闭合的曲线; 负电荷支持的,不是闭合的曲线; 磁场线是围绕导体的一圈圈封闭曲线, 磁场线是围绕导体的一圈圈封闭曲线,它们是由导 体上的电流激发的; 体上的电流激发的; 在任一时刻电磁场分量都是同相的, 在任一时刻电磁场分量都是同相的,与传输方向正 其横向场随空间横向变化而与静态场完全一样。 交;其横向场随空间横向变化而与静态场完全一样。 所以,TEM波的电场可由单值的电压确定,磁场可 所以,TEM波的电场可由单值的电压确定, 波的电场可由单值的电压确定 由单值电流维系。因此,TEM波传输线是惟一可以用分 由单值电流维系。因此,TEM波传输线是惟一可以用分 布参数的“ 的理论描述的。 布参数的“路”的理论描述的。
5、下图为无耗终端开路线的驻波特性图, 下图为无耗终端开路线的驻波特性图, O’ 位置是 终端开路处, 终端开路处,短路线的作用是 等效在终端接无限大 阻抗即终端开路 。
α
6、有均匀传输线特性阻抗为50Ω,线上工作波长为 有均匀传输线特性阻抗为50Ω, 有均匀传输线特性阻抗为50Ω 10cm,如图所示: 10cm,如图所示:
又由于两线间有电压,故两线间存在高频电场, 又由于两线间有电压,故两线间存在高频电场, 这就是分布电容效应; 这就是分布电容效应; 由于两线间的介质并非理想介质而存在漏电流, 由于两线间的介质并非理想介质而存在漏电流,这 相当于两线间并联一个电导,这就是分布电导效应。 相当于两线间并联一个电导,这就是分布电导效应。 由于传输线的分布参数效应,使传输线上的电压、 由于传输线的分布参数效应,使传输线上的电压、 电流不仅是时间的函数,而且是空间位置的函数。 电流不仅是时间的函数,而且是空间位置的函数。 所以,除了传输TEM波的传输线可由单值的电压确 所以,除了传输TEM波的传输线可由单值的电压确 TEM 磁场可由单值电流维系, 定,磁场可由单值电流维系,大部分的传输线都没有确 切的电压、电流的意义, 切的电压、电流的意义,并且也没有在空间可以单另分 开的电感、电容、电阻等元件, 开的电感、电容、电阻等元件,它们也都需要从电磁场 的理论出发讨论传输线的传输特性。 的理论出发讨论传输线的传输特性。低频电流的本质属 于短线,在其上的电磁场分布因其是静态场的,所以才 于短线,在其上的电磁场分布因其是静态场的, 有静态场的概念来描述,而微波传输线为长线, 有静态场的概念来描述,而微波传输线为长线,不能用 静态场的概念描述。 静态场的概念描述。电磁场理论都能够阐述这两种情况