配电系统的防雷与接地

合集下载

电力配电系统的防雷与接地技术分析温志刚

电力配电系统的防雷与接地技术分析温志刚

电力配电系统的防雷与接地技术分析温志刚发布时间:2021-12-23T06:50:38.169Z 来源:《中国电力企业管理》2021年9月作者:温志刚[导读] 我国社会经济水平提高,电力资源供应的需求也不断增长,电力供应也需要进行技术革新来满足不断提升的电力需求。

国网冀北电力有限公司乐亭县供电分公司温志刚河北省唐山市乐亭县 063600摘要:我国社会经济水平提高,电力资源供应的需求也不断增长,电力供应也需要进行技术革新来满足不断提升的电力需求。

电网是通过人力架设、创建起来的一种基础设施,在人们的生产与生活中发挥了非常积极的作用,当电网遭遇雷击等特殊天气,电网的正常运行就会受到阻碍,为人们的生产与生活带来不便,严重的情况下还会威胁到设备与人身安全。

如果变电所接地存在问题,连接不恰当等更容易让电网遭受雷击。

电网被破坏绝大部分因素都是由于雷击,但是如果接地方式正确、防雷系统良好,变电所的正常运行就可以得到很好的保证,可以避免供电所信号中断等情况的发生。

关键词:电力配电系统;防雷接地技术引言电力行业高速发展,电力企业通过配电网给人们输送电能、提供电力服务,配电网建设是基础而必要的环节,需要提高对电力配电系统的重视度。

电力配电系统运行过程中雷电灾害难以避免,需要从设计层面着手做好雷电预防。

在电力配电系统进行防雷接地设计时,需要综合考虑各方面内容,通过防雷与接地技术提高电力配电系统运行的稳定性与安全性。

1电力配电系统的防雷与接地技术的重要性电力系统的直接输送设备就是配电网,也是保证电力系统正常运行的基础保障。

建设电力系统的基本要求就是可靠的配电网,其直接影响到电力配电系统的正常运行。

电力配电系统运行时受到各类因素影响,如安装不当、设施老化、人为因素德国,造成电路发生安全问题。

在这样的背景下,电力企业已经认识到配电网防雷的重要性,通常选择安装避雷装置以降低雷击事故发生率,但这些远远不能达到线路防雷需求。

就我国配电网防雷工程现状来说,仅仅安装防雷设备无法完全解决雷电事故。

工厂变配电系统的防雷与接地探索

工厂变配电系统的防雷与接地探索
设 备 及其 他 装 置 的外 露 金 属 可 导 电部分 统 统 用 导 体 作 良好 电气
连接 以实现电位相等 。 因为雷 电现象发生 时将产生峰值非常大 的雷 电流 , 而雷电流流经之处将形成相对 大地电位而言很高的 过 电压, 此过电压容易使仍处于大地 电位的电气 、 电子设备和工
4 . 2室内设备的防雷

技 术 应 用
工厂变配电系统的防雷与接地探索
王长 成 ( 重庆三峡 职业 学院, 重庆 4 0 4 1 5 5 )
摘 要 : 随 着近 几 年电网改造 和工厂变配 电系统 自 动化 的建设 及 设备 更新 , 由于大 家对这些设 备 的防雷接地 保护 认识 不到位 , 以致雷 电事
故 频发 , 我们 必须加 强工厂变配电系统雷 电防护问题的认 识与研究 , 根 据 实际情况 , 采取 切 实可行 的防雷和接地 方案 , 本文建筑物 的防雷与接地
工厂变配 电系统及其内部电气设备的防雷性能受建筑物本 体防雷性能的直接 影响, 任 何建筑 内部系统及设备防雷 的第一
道防线应该是建筑物本体的防雷, 因 此 工 厂 变 配 电 系 统 的 防 雷
与接地离不开建筑物 的防雷与接地, 所 以我们在考虑系 统防雷
时应 首先高度 重视建筑物 本身的防雷。 对 于建筑物及 电气 、 电 子设备防雷的接 地装置按照 国家最新 的G B 5 0 0 5 4 -9 5 标准规 定 应采 用等电位连接 , 而不再采 用传统上独立 的接地 网。 等 电位 连接就是将建筑物 的人 工接 地体 、自然接地体和室内各种 电气
射 的屏 蔽接 地 。
对于雷电活动 强烈地段 的架 空线路部分要加 设避雷线或 者安 装避雷器。 系统 中的 电缆线路 , 常常是在 电缆终端处 安装阀式 避雷器 。 同时要 将电缆终端的金属屏蔽、 铠装 和避雷器的一端 与接地装 置按要求连接起 来, 达到 良好的电气性能。 低压配 电 线路 的防雷主要是在变压器低压侧 的出口处安装低 压避雷器和 跌落式熔断器 , 同时变压器 的低压侧要 作 良好接 地 , 并在干线 和分支线终端处要重 复接地 , 而线路较长时重复接 地不得少于 3 处。 防雷接地 装置的接地 电阻不应 大于4 Q, 重复接地 装置 的 接地 电阻不得大于1 0 Q。 中性点直接接 地的低压供配电系统 的 中性线应在 电源处接 地 。 为防止雷 电波沿 线路侵 入用户时, 其 进户线的绝缘子铁 角应接地 , 此接 地装置的接地 电阻可为3 0 Q 以下, 这一点对于一户一表 改造 工程中应引起高度重 视。

民用建筑低压供配电系统的接地与防雷技术

民用建筑低压供配电系统的接地与防雷技术

民用建筑低压供配电系统的接地与防雷技术摘要:低压配电系统是民用建筑电气系统的基本组成部分,配电系统由于电气设备绝缘损坏、大自然雷电或其他原因,会对建筑物或电气设备产生破坏作用并威胁人身安全。

针对这样的情况,建筑物一般采取防雷措施和安全接地系统,以避免危险事故发生。

本文重点探讨了民用建筑低压供配电系统的接地与防雷技术。

关键词:民建;接地;防雷一、民用建筑低压供配电系统的防雷接地目的在建筑物供配电设计中,接地系统设计占有重要的地位,因为它关系到供电系统的可靠性,安全性。

不管哪类建筑物,在供电设计中总包含有接地系统设计。

而且,随着建筑物的要求不同,各类设备的功能不同,接地系统也相应不同。

雷电是一种常见的自然现象,具有一定的可预见性。

气象卫星的顺利升空使得雷电的发生预测更具准确性,而且只要掌握常规的避雷方法,一般都可以躲避雷电的危害。

而且通过生活经验也可预测雷电的发生,根据云的颜色和厚度来预测雷电的准确度还是很高的。

当要发生雷电之前,将所有的电闸断开,就可以很大程度上避免雷击。

此外,由于建筑物里的导体是很多的,还有许多导电性能优良的金属导体,在导体没有通电的情况下也可能会产生雷击的现象。

防雷接地可以有效地防止这一现象发生。

以上就是配电系统进行防雷接地保护的目的。

二、民用建筑低压供配电系统的接地与防雷技术(一)建筑物的防雷与接地要想完善民建变配电系统的防雷性能,首先就要考虑民建变配电系统建筑物的防雷性能,因为最先进的防雷害措施就是根本不让雷电进入到系统内部,而在民建变配电系统的建筑物上就将雷电隔离,将雷电的破坏性释放殆尽,只有这样才能最大限度的保证变配电系统的安全。

在建筑物的防雷性能中最重要的就是建筑物本身的防雷性能,在建筑物的防雷技术领域,最新的国家建筑物防雷规范中明确指出,等电位防雷接地线能够有效的减少雷电对建筑物本身和建筑物内部电气设备的影响,所以在建筑物的防雷措施中等电位防雷线连接,已经开始取代传统上独立的接地网络连接。

配电系统的防雷与接地

配电系统的防雷与接地

配电系统的防雷与接地一、防雷措施1. 减少雷击风险的设计高大建筑物和高架电线杆可以成为雷电击中的目标,因此在设计配电系统时,应尽量避免将电线杆或电杆直接连接到建筑物上。

另外,建筑物应具备可靠的避雷设施,如避雷针、避雷网等,用于吸收和分散雷电的能量。

2. 安装避雷装置在配电系统的输入端和输出端分别安装适当的避雷装置,以保护设备不受雷电的干扰和损坏。

避雷装置通常包括避雷器和避雷器引下线,通过将雷电引入地下或接地系统,使其能够得到有效的分散和排放。

3. 使用耐雷设备在配电系统中,应使用能够抵抗雷电干扰和损坏的设备和材料。

例如,选择具有良好耐压、耐高温、耐腐蚀等特性的电缆和开关设备,以减少雷击对系统的影响。

二、接地措施1. 构建良好的接地系统配电系统的接地系统是保证系统安全和稳定运行的重要组成部分。

良好的接地系统应包括合适的接地电极、接地回路以及接地装置,以确保系统的电荷得到有效的分散和排放。

2. 选择合适的接地电极接地电极是将电流引入地下的主要手段,因此选择合适的接地电极对系统的接地效果至关重要。

通常使用的接地电极包括接地棒、接地网和接地块等,可以根据实际情况选择合适的接地电极进行安装。

3. 接地回路的设计与布置配电系统的接地回路应具备足够的导电能力,以确保电荷能够快速、有效地通过接地回路流回地下。

为了提高接地回路的导电能力,可以采用并联多个接地电极、增加接地导线的横截面积等方式。

4. 定期检测和维护为了保证接地系统的正常运行,应定期对接地电极、接地回路及接地装置进行检测和维护。

如果发现接地系统存在故障或损坏,应及时修复或更换,以保证系统的接地效果。

总结:防雷与接地是配电系统中非常重要的安全措施,可以有效减少雷电对系统的影响,并保证系统的稳定运行。

在设计和安装配电系统时,应注意遵循相关的设计规范和标准,并选择适当的设备和材料,以提高系统的防雷能力和接地效果。

此外,定期检测和维护接地系统也是确保其正常运行的关键步骤。

10kV配电线路防雷

10kV配电线路防雷

10kV配电线路防雷雷电是一种自然天气现象,产生的电流和电压都非常大,因此对于电力设备和线路构成了巨大的威胁。

10kV配电线路是城市电网的重要组成部分,防雷工作对于确保电网正常运行和居民用电安全至关重要。

本文将介绍10kV配电线路的防雷措施。

一、设备接地设备接地是防止雷击电流通过设备或线路引起设备损坏的重要手段。

10kV配电线路的设备接地应符合国家相关标准和规范,并依据现场实际情况选择合适的接地方式,如土壤接地、接地网接地等。

设备接地电阻应符合要求,保证设备接地良好,为线路的防雷提供可靠的基础。

二、避雷器避雷器是防止雷电高压通过线路引起设备中毁灭性击穿的主要措施。

10kV配电线路中应设置避雷器,它是保护线路设备不被雷电击穿的第一道防线。

避雷器的额定击穿电压应适应线路电压等级,并应定期检测和维护,确保其正常工作状态。

避雷器的安装位置应根据电网的实际情况确定,一般选在10kV变压器的输入侧或母线柜附近。

三、接地引下保护器接地引下保护器是保护设备在雷电入侵时迅速放电到地,减少雷电对设备的危害的重要设备。

它通过与设备的地线连接,当雷电入侵时,引下保护器快速放电到地,将雷电瞬间释放。

接地引下保护器的选择和布置应根据线路的实际情况确定,以达到最佳的防雷效果。

四、防护屏蔽10kV配电线路通常会穿过建筑物、树木或其他高大物体附近,这些物体会成为雷电击中线路的潜在风险。

在这些区域应设置防护屏蔽,减小雷电击中线路的可能性。

防护屏蔽可以采用导线网或金属罩等形式,将线路包裹在以形成一个保护层,减少雷电的侵害。

五、定期巡视和检测定期巡视和检测是10kV配电线路防雷工作的重要内容。

通过定期巡视和检测,可以及时发现和排除设备接地不良、避雷器失效、接地引下保护器故障等问题,确保线路的防雷设施处于良好状态。

定期巡视和检测的频率应根据实际情况确定,一般为每年1-2次。

六、培训和宣传防雷工作涉及到多个方面的知识和技能,因此要加强对工作人员的培训和宣传。

接地与防雷安全要求

接地与防雷安全要求

接地与防雷安全要求
(1) 所有电气设备的金属外壳以及和电气设备连接的金属构架等,除有特殊规定外,均应有可靠的接地(零)保护。

(2) 在施工现场专用的中性点直接接地的供电系统中,必须采用接零保护,且须设专用保护零线,不得与工作零线共用。

(3) 专用保护零线应由工作接地线或由配电室的零线或第一级漏电保护器电源侧的零线引出。

(4) 在中性点不直接接地供电系统中,则必须采用接地保护。

(5) 所有电气设备的保护零线应以并联方式与零干线连接。

零线上严禁装设开关或熔断器。

(6) 严禁利用大地做零线或相线。

(7) 重复接地线与保护线相连,与电气设备相连接的保护零线应用截面不小于2.5mm攩2攪的绝缘多股铜线。

保护零线除须在配电室或总配电箱处做重复接地外,还必须在配电线路中间处和末端处作重复接地。

(8) 施工现场的塔式起重机,井字架和金属脚手架,当其高度超过20m时,要设置防雷和重复接地装置,其接地电阻不大于10欧姆。

配电系统的防雷与接地问题

配电系统的防雷与接地问题

配电系统的防雷与接地问题摘要:变电站是集中分配和变换电能电压与电流的场所,也是维系电厂与电力系统之间的纽带,承担着电压变换与分配的重要任务,如果变电站发生雷击事故,不仅会对电厂造成巨大的经济损失,还可能引发一系列的安全问题,所以加强变电站配电系统的防雷工作是不可忽视的问题。

本文从变电站配电系统的接地与防雷内容进行分析,研究了变电站配电系统对接地设计的要求。

关键词:变电站;配电系统;防雷与接地引言:现代的电力系统得到了快速的发展,在工程承建时,变电站配电系统通常由土建企业施工,那么就可能存在施工人员对防雷接地重视程度不足的问题,或是由于技术操作不规范而导致防雷接地施工的质量不合格,针对变电站配电系统的防雷与接地问题,技术人员应当寻求更有效的线路防雷保护措施,并对施工质量加以严格的要求,以保护变电站配电系统中的各项设备。

自然界中产生的雷电伴随着高电压,如果击中变电站配电系统,会瞬间释放大量的电荷,可能导致变电站配电系统瘫痪,或者损坏相关电气设备,将雷电以接地的方式进行引流,才使保护变电站配电系统的良策。

一、变电站配电系统的接地与防雷的相关内容(一)接地电阻接地电阻是指电流在流经地面以后,由流经点和某点之间的物理值概念,即为接地极与电位为零的远方接地极之间的欧姆定律电阻。

在变电站配电系统防雷接地中测量电阻值时,假设雷电流在地下疏散40后电流值等于0,由于土壤结构的不同,接地电阻值也会存在不同[1]。

(二)接地种类变电站配电系统中的接地种类包括工作接地、雷电保护接地、过电压保护接地、防静电保护接地等等。

工作接地就是电力系统的电气装置中,为保护系统的运行所设置的必要的接地;雷电保护接地是专为雷电保护装置设置向大地泄放雷电流的接地;过电压保护接地是为消除雷击和过电压对周围造成的影响而设置的接地;防静电接地是为了消除生产过程中产生的静电而产生的接地。

除此之外,还有屏蔽接地,是为了防止雷电产生的电磁干扰对通信和计算机系统所采取的接地措施;保护接地是包括电气设备的金属外壳、配电装置的构架与线路塔杆等等,绝缘损坏是可能会带电,为防止造成人员触电的危险事故,设置接地措施可以避免危险事故的发生。

2024年配电系统的防雷与接地(三篇)

2024年配电系统的防雷与接地(三篇)

2024年配电系统的防雷与接地雷电的危害,大家是有目共睹的。

然而,近几年随着电网的改造,特别是城网改造和变电所自动化系统的建设,大家可能对这些设备的防雷接地保护还是认识不足,以致造成了多起雷害事故,造成自动化系统的瘫痪和一些电网设备事故,损失是比较严重的。

因此,我们有必要探讨一下供、配电系统的防雷接地问题,为设计和施工人员提供一定的帮助。

1电力线路的防雷与接地1.1输电线路的防雷与接地输电线路的防雷,应根据线路的电压等级、负荷性质和系统运行方式,并结合当地地区雷电活动的强弱、地形地貌特点及土壤电阻率高低等情况,通过技术经济比较,采用合理的防雷方式。

(1)35kV线路不宜全线架设避雷线,一般在变电所的进线段架设1~2km的避雷线,同时在雷电活动强烈的地段架设避雷线,或者安装线路金属氧化物避雷器。

(2)110kV线路应全线架设避雷线,山区应采用双避雷线;但在年平均雷暴日数不超过15日或运行经验证明雷电活动轻微的地区,可不架设避雷线。

(3)220kV线路应全线架设避雷线,同时应采用双避雷线。

对于架设避雷线的线路,应注意杆塔上避雷线对边导线的保护角,一般采用20°~30°保护角,同时做好杆塔的接地。

根据土壤电阻率的不同,杆塔的工频接地电阻,不宜大于表1所列数值。

表1杆塔的接地电阻地壤电阻率(Ω·m)100及以下100以上至500500以上至1000工频接地电阻(Ω)101520对于35kV线路装设的金属氧化物避雷器的技术参数,一般应满足以下条件:①持续运行电压(有效值)不小于40.8kV;②额定电压(有效值)不小于51kV;③直流1mA参考电压不小于73kV(范围在73~74kV之间);④标准放电电流5kA等级下残压(峰值)不大于:雷电冲击134kV、操作冲击114kV、陡波冲击154kV。

⑤xxμs方波电流(峰值)200A。

⑥对绝缘配置,根据线路污秽等级要求确定。

与输电线路一样,配电线路的防雷也可采用避雷线或者避雷器,对于不同电压等级和不同线路采取的措施也不一样。

10kV配电线路防雷

10kV配电线路防雷

10kV配电线路防雷10kV配电线路是城市和乡村电网的重要组成部分,它承担着将高压电能分配到不同的用电场所的重要任务。

而在电力系统中,防雷工作也显得尤为重要,特别是在雷电活跃的夏季,雷击给配电线路带来的损失不容忽视。

在10kV配电线路建设和维护中,防雷工作尤为重要。

10kV配电线路的防雷措施包括以下几个方面:1. 设计防雷:在设计阶段,可以采用合理的线路结构,避免穿越雷区和高危区域,减少雷击风险。

合理选址、线路架设、接地等设计工作可以有效地提高线路的防雷能力。

2. 地线设置:地线是10kV配电线路防雷的重要组成部分,它将雷电击中的电荷导入地下,减少了对线路本身和设备的影响。

合理设置地线可以有效地降低线路的雷击风险。

3. 避雷器安装:避雷器是10kV配电线路防雷的关键设备之一,通过合理设置避雷器,可以将雷击引入地线,保护线路和设备不受雷击的影响。

避雷器的选型和安装位置非常关键,需要根据具体情况进行合理的设计和安装。

4. 设备接地:10kV配电线路中的各种设备都需要接地,以确保在雷击时能够及时排除雷电,保护设备不受损坏。

合理的设备接地设计可以有效提高线路的抗雷击能力。

1. 施工中的防雷措施:在10kV配电线路的施工中,应该根据实际情况采取合理的防雷措施,避免在雷电活跃时进行高空作业和金属焊接等易受雷击的工作,确保施工人员的人身安全。

2. 定期巡检维护:10kV配电线路的防雷工作需要定期进行巡检和维护,及时发现并排除线路中的缺陷和故障,确保线路的正常运行和抗雷击能力。

3. 防雷设备的检测维护:对于避雷器、接地装置等防雷设备,需要定期进行检测和维护,以确保其正常工作并及时更换损坏的设备,保证线路的防雷性能。

10kV配电线路防雷工作的重要性不言而喻。

对于城市和乡村的电网来说,雷击对配电线路和设备的损坏往往是不可估量的,甚至可能带来电网瘫痪和事故。

加强10kV配电线路的防雷工作,提高线路的防雷能力,不仅可以保障电网的正常运行,还能有效避免损失和事故的发生。

配电系统的防雷与接地

配电系统的防雷与接地

配电系统的防雷与接地是保障系统安全可靠运行的重要措施。

防雷是指对于雷电冲击,通过合理布置和选用防雷设施,减少雷电对电力设备的危害,保护系统的正常运行。

而接地是指将电力设备的金属外壳或导体与地面建立好的接地系统相连接,以达到安全接地的目的,防止电流通过人体或设备引起电击或火灾。

1. 防雷措施:为了降低雷击对配电系统设备的影响,需要采取以下防雷措施:(1)避雷针和接闪装置:通过在建筑物或塔桅上安装避雷针或接闪装置,将引雷点置于较高处,使其成为闪电击中的最佳选择,以避免闪电直接击中设备。

(2)金属外壳和屏蔽:为了减少雷电电磁场的干扰,电力设备的金属外壳和屏蔽结构应使用导电材料,并保持良好的接地连接,以形成雷电流循环路径。

(3)避雷母线和避雷器:在配电系统中使用避雷母线和避雷器,可以将雷击流引入地下,从而保护设备。

避雷器一般安装在变压器输入、输出两侧,以引接过电压,保护变压器和其他设备。

(4)电力故障指示器和避雷装置:配电系统中的电力故障指示器和避雷装置可以及时发现电力系统中可能存在的短路故障和电源故障,以防止雷电对设备的损害,并保护人身安全。

(5)屏蔽和绝缘:对于高压设备和线路,应采取屏蔽和绝缘措施,减少雷电冲击对设备的影响。

同时,在设备内部也需要确保绝缘性能良好,以避免雷电对内部电路的损害。

2. 接地措施:配电系统的接地是指将设备的金属外壳或导体与地面建立良好的接地连接,以形成足够的接地回路,以达到以下目的:(1)安全接地:通过良好的接地,可以将电器设备的金属部分或导体与地面保持同志电位,避免触电危险,确保人身安全。

(2)电流回路:接地可以提供一个低阻抗的电流回路,当设备发生故障或雷击时,电流可以顺利地通过接地系统消散,避免对设备造成损害。

(3)抑制噪声:接地可以有效抑制电网中的电磁干扰和高频噪声,减少对设备的干扰。

(4)防止电位上升:在发生电流冲击或短路故障时,接地系统可以迅速将故障电流引入地下,避免设备或人员因过大电位差引起电击或伤害。

配电系统的防雷与接地

配电系统的防雷与接地
维普资讯
防 、信通 与 子I 界 雷通 、讯 电 学
配 电 系统 的 防雷与接 地
口熊激J
摘 要 : 文分析 1k 本 0 V配 网 防 雷 中的 线 路 运 行 的 防 雷 和 1 k 0 V变 压 器 的 防 雷 。 目前 1 k 线 路 的 防 雷 主 要依 0V 靠 1 k 氧 化 锌 避 雷 器 来 实 现 , 文 阐述 了在 重 雷 区 1 k 0V 本 0 V避 雷 器 的 安 装 有 效 距 离 。 本 文 分析 了 1 k 0 V架 空绝 缘线路 、 电缆 线 路 长 期 运 行 情 况 带来 的 雷 电破 坏 情 况 及 解 决 方 法 。针 对 1 k 0 V架 空 线 路与 电缆 线 路 混合 使 用情 况 日益 增 加 的 情 况 , 文 分析 了由 于 架 空 线 路 和 电缆 线 路 两 种 不 同 波 阻 抗 形 成 电波 叠 加 , 成 电 缆 线 路 的破 本 造
坏。1 k 0 V配 电变压器避 雷器 与中性点同一地 点接地时 , 由于接地 电阻在大 雷电流作用下形成 的中性点 电位升
高 , 而 引 起 1 k 配 电 变 压 器 的 损 坏 , 提 出解 决 方法 。 从 0V 并
关 键 词 :0 V 防 雷 : 空 线 路 ; 空 绝 缘 线 : 1k 架 架 电缆 : 变压 器 ; 雷器 避
1 配 电线 路 的防雷 与接 地
与 输 电线 路 一 样 , 电线 路 的 防 雷 也 可 采 用避 雷 线 或者 避 配 雷器 , 对于 不 同 电压 等 级 和 不 同线 路采 取 的 措 施 也 不 一样 。 ( )0 V裸 导 线 线 路 。 对 于 1 k 裸 导 线 路 , 架 设 避 雷 11 k 0V 可 线 , 由于 成 本 高 , 工 不 方 便 , 重 要 的 负 荷 外 ( 本 市 大 丰 但 施 除 如 水 厂 线 )基 本 上 都 不 采 用 避 雷 线 ; 是 在 一 些 雷 电 活动 频 繁 的 , 而 线 段 , 装 避 雷 器 , 时按 照 要 求 做 好 杆 塔 的 接 地 , 有 效 地 降 安 同 能 低 雷害 。 相 隔 多 远 距 离 安 装 一 组 避 雷 器 和 如 何 选 型 呢 ? 根 据 U 2XI /≤ U0得 出 : + Xav 5 %

配电系统的防雷与接地范本(2篇)

配电系统的防雷与接地范本(2篇)

配电系统的防雷与接地范本配电系统是现代工业生产和民用建筑中不可或缺的关键设施之一。

然而,频繁的雷电活动给配电系统带来了很大的挑战,因为它们可能导致设备损坏、系统故障甚至火灾等严重后果。

因此,在设计和安装配电系统时,必须重视防雷措施和接地系统的建设。

本文将详细介绍配电系统的防雷与接地范本。

一、防雷范本1. 选择合适的设备防雷措施的第一步是选择具有良好防雷性能的设备。

对于配电系统来说,主要的设备包括变压器、开关柜、电缆等。

这些设备应具有防雷等级符合国家标准要求,并经过权威机构的检测和认证。

2. 合理布置设备在设计和布置配电系统时,应考虑雷电冲击的传播路径和能量分散问题。

首先,应将设备布置在有利于雷电放电扩散和分散的位置。

其次,设备之间的间距应根据设备的防雷等级和供电要求进行合理规划,避免因电气设备之间的相互干扰而引发雷电事故。

3. 安装避雷装置为了有效地防范雷电对配电系统的影响,必须安装合适的避雷装置。

避雷装置不仅能够减少雷电对设备的直接冲击,还能引导雷电电流通过合适的导体通道,将雷电能量导入地下。

常见的避雷装置包括避雷针、避雷网和避雷线等。

安装避雷装置时,应根据设备的特点和周围环境的条件进行合理布置。

4. 导引和耦合装置的安装为了进一步提高配电系统的防雷性能,可以安装导引和耦合装置。

导引装置的作用是引导雷电电流尽快地传导和扩散,减少电流对设备的影响。

耦合装置则可以将雷电冲击与设备分离,减少雷电对设备的直接侵害。

导引和耦合装置的选择和安装位置应根据具体的配电系统特点和环境条件进行合理设计。

二、接地范本1. 设计合理的接地系统配电系统的接地系统是保证系统安全运行的重要组成部分。

在设计接地系统时,应根据配电网络的规模和特点进行合理规划。

首先,应确定合适的接地电阻的目标值,以确保接地系统的正常运行。

其次,应根据配电系统的整体结构和布置,合理确定接地线路的长度和布置形式。

最后,应选择合适的接地方式,如电力接地和电子设备接地等。

电力配电系统的防雷与接地技术 杨潮彬

电力配电系统的防雷与接地技术 杨潮彬

电力配电系统的防雷与接地技术杨潮彬摘要:随着我国现代化建设的不断推进,电力配电系统也成为了我们日常生活中用电的基本保障,而配电系统的运作安全性也直接决定了人们日常生活和发展的用电安全。

而雷电是一种不可控的自然现象,不但会造成严重的大范围瘫痪现象,影响人们的用电体验,同时也会造成严重的危险事故,而且线路和设备经受雷击所导致的损坏,也会导致巨大的经济损失。

所以,针对电力配电系统进行防雷接地设计便是至关重要的,在保证电力系统的运作稳定的同时也保证了人们的用电安全。

关键词:电力配电系统;防雷;接地技术一、防雷接地工作原理防雷接地的设计是以雷击原理为基础,其设计的主要目的是通过人为设计使雷电产生的能量可向大地泄入,对建筑物和用电设备达到有效的保护作用。

由于受蒸发作用的影响,水分进入大气后遇到冷空气会凝结成冰晶,积雨云便形成了。

随着大气运动的云层在此过程中会带上电荷,使大地和云层之间出现类似于电容器的带相反电荷的电荷感应,这些电荷量聚集到一定程度就会把大气层击穿,进而产生雷击。

人们通过对该原理进一步分析设计出运用金属导体对雷电电流进行吸引的防雷接地设备,提前把接地网络设置在大地内部,电流通过网络向大地导入,达到减少建筑物遭雷电中较强电流破坏的目的。

二、雷击现象对电力配电系统的危害雷击作为一种常见的自然现象,当大气中出现大量正负两种电荷的雷云时,若是两种不同电荷的雷云相互接触,或是距离过近,以及雷云和地面凸出建筑或物体接近时,这时候便会在物体和雷云之间产生强烈的反应,进而导致一种气体性放点情况,这便是雷电。

自然界经常出现的雷击形式主要有感应雷、直击雷和雷电侵入波等。

若是动物或人遭受雷击,那么会造成严重的伤亡现象,而若是电力配电系统以及设备遭受雷击,那么会瞬间造成高压冲击,破坏设备和配电系统的绝缘层,造成短路甚至是爆炸等危险事件,同时也会导致大范围停电现象,对人们的用电稳定性带来不利的影响。

除此之外,雷击还会导致较为强烈的电排斥力,当建筑物遭受雷击时也会导致其结构的损坏甚至整体坍塌等。

配电系统的防雷与接地分析

配电系统的防雷与接地分析
护 器需 要具 有 4 0 k A( 8 / 2 0 s )的通 流容 量 , 这种 模 式 的级 数
放 点是 从接 入 一级 防护 电流接 入 的 电流 进行 第 二次 电流 释 放 和 防护工 作 , 通 过浪 涌 保护 起 限制 电流大 小使 , 其 电流进 入 规 定 范 围 内后 继续 向 内传 导 , 其后接 设备 功率不 限 。 第三 级 电源 防 雷施 工 : 第 三 级 防护 是针对 于 一 些 电学 精 密

肿u
配电系统的防雷与接地分析
ቤተ መጻሕፍቲ ባይዱ黄 鑫
( 惠 州博 罗供 电局 , 广 东惠州
5 1 6 0 0 0 )
摘 要 我 国各 个领 域 的建设 都 离不 开 电力支持 , 现 在我 国人 均用 电量很 大 。配 电系统将 电 力合 理 准确地进 行分 配 与 运输 , 配 电 系统 对 于我们 而言是 非常重要 的 , 做好 配 电系统 的保 护工作 具有 重 大意 义。本文 结合 实 际经验 , 对 配 电系 统 的 防雷接 地工 程进 行 了分析 , 并提 出 了设计 方案 。 关键 词 雷 电作 用方 案设计 ; 配 电 系统 防雷 中图 分类号 : T M 7 文献 标识码 : A 文章 编号 : 1 6 7 1 — 7 5 9 7( 2 O 1 3 )1 5 — 0 0 8 2 — 0 1
的破 坏 。
在我 国要求 在进 入建 筑物前 的 1 5 m 位 置必须将 外 界部 分金 属线 路 管道 经 过低 电流 电源 浪 涌 保护 器 后 才 可 以接入 建 筑 物 主 体 , 将 电流 经过 电气保 护 设备 后 降低 到规 定 范围 内才 可 以 引入 到大 地之 内降低 高压 电流 带来 的损失 和破坏 。 第二 级 浪涌 保 护器 : 作 为 次 级 防雷 器 , 这 一 级 电源 浪 涌 保

供电工程电气供电系统的防雷与接地ppt课件

供电工程电气供电系统的防雷与接地ppt课件
接地电流、对地电压 及接地电流电位分布图
1-接地体 2-流散电场 3-接地电流的地中电位分布
IE
3 1
2
≈20m
1 2
UE
续上页
(三)接地类型 1. 功能性接地 为保证电力系统和电气设备达到正常工作要求而进行的接地,例如电 源中性点的直接接地或经消弧线圈等的接地,又称工作接地。
2. 保护性接地 为了保证电网故障时人身和设备的安全而进行的接地。包括:
E E
5
1-接地体 2-接地干线 3-接地支线 4-电气设备 5-连接扁钢
2024/1/27
续上页 (二) 接地电流与对地电压 电气设备在发生接地故障时,电流将
通过接地体以半球形向大地中散开,如图 所示。
在距离接地体越远的地方,半球的球 面积越大,其散流电阻越小,相对于接地 点处的电位就越低。
电气设备的接地部分,如:接地的外 露可导电部分和接地体等,与零电位的 “大地”之间的电位差,称为接地部分的 对地电压。
变配电所中一般需要通过装设阀式避雷器或氧化锌避雷器对变压器进 行雷电侵入波的防护。
避雷器的选择,必须使其伏秒特性与变压器伏秒特性合理配合,并且 避雷器的残压必须小于变压器绝缘耐压所能允许的程度。
避雷器应尽可能靠近变压器安装。避雷器接地线应与变压器低压侧 接地中性线及金属外壳连在一起接地。
续上页
1~2km 架空线
安全保护接地
为防止由带电导体的绝缘损坏所造成人体受到 间接电击,而将电气设备的外露可导电部分进 行的接地。
过电压保护接地 为防止过电压对电气设备和人身安全的危害而 进行的接地,如防雷接地。
防静电接地
为了消除静电对电气设备和人身安全的危害而 进行的接地。
3. 功能性与保护性合一的接地(如屏蔽接地)

接地与防雷措施

接地与防雷措施

接地与防雷措施一、TN-S接零保护系统1、工程采用TN-S接零保护系统,工作零线(N线)必须通过总漏电保护器,保护零线(PE线)必须由电源进线零线重复接地处或总漏电保护器电源侧零线处,引出形成局部TN-S接零保护系统。

2、施工现场临时用电采用三级配电、逐级保护,电源首、末端及线路中间分别设置重复接地,接地电阻不大于10Ω。

所有接地处设置接地标志。

3、保护零线采用黄/绿双色线,严格与相线、工作零线相区别,杜绝混用。

保护接零线的截面积与工作零线相同,且不小于干线截面积的50%,机械强度满足线路敷设方式的要求(架空敷设不小于10mm的铜芯绝缘线)。

4、不得有一部分电气设备接零保护,而另一部分设备接地保护,保护零线不经过开关、熔断器。

5、TN-S接零保护系统中,电器设备的金属外壳必须与PE连接。

下列设备不带电的外露可导电部分应保护接零:1)配电装置的金属箱体、框架及靠近带电部分的金属围栏和金属门;2)电机、变压器、电器、照明灯具、手持电动工具金属外壳;3)电动传动装置的金属部件;4)配电柜与金属柜金属部件。

二、重复接地1、一级箱处PE线做不少于二组重复接地,接地极采用50*50*5热镀锌角钢长度为2.5m,接地线采用40*4的热镀锌扁钢与接地体焊接,接地电阻不大于10Ω。

2、二级箱处PE线做一组重复接地,接地极采用50*50*5热镀锌角钢长度为2.5米,接地线采用40*4的热镀锌扁钢与接地体焊接,接地电阻不大于10Ω。

3、保护零线在配电系统的中间处和末端处做重复接地。

保护零线每处重复接地装置的接地电阻值不大于10Ω。

4、塔吊回路,在专用箱设置重复接地,接地电阻小于4 。

接地体采用50*50*5长度2.5m的热镀锌角钢,间隔5m打入地下。

接地线采用40*4的热镀锌扁钢与接地体焊接,保证接地体和PE线端子做良好的电气连接。

三、防雷接地现场塔吊防雷接地安装采用镀锌40*4扁钢和镀锌Φ20圆钢,三根圆钢两根扁钢焊接为一组,扁钢为三面施焊,圆钢与扁钢搭接焊为圆钢6倍D,圆钢长度2.5m垂直打入地下,留出焊接部分,焊完后,刷防锈漆做防腐处理,每台塔吊两组接地极装置,每组留一处检测点,两组之间设一个短接点,方便分组摇测,塔吊防雷接地电阻值不大于4Ω,摇测时间是每季度一次,雨季施工期间增加摇测频次,并认真做好遥测记录。

配电线路的防雷措施

配电线路的防雷措施

配电线路的防雷措施
配电架空线路受到需击时,需电冲击波就向导线两端流动。

这种流动的冲击波称为进行波。

为了保护与线路连接的电气设备不受进行波的冲击,在10kV及以下的配电系统中,主要依靠阀型避雷器作为防雷保护。

10kV配电线路是三相三线制中性点不接地的供电方式,因此,发生单相接地时往往不会造成开关掉闸。

所以在防雷保护中,主要是防止相间短路,常采用的保护措施有:
(1)10kV架空线路,大多使用混疑土杆,铁质横担对于雷电冲击波相当于自然接地状态。

为了防止雷击引起绝缘子击穿,造成导线相间短路,烧断导线,可采取提高瓷绝缘等级的办法,并定期进行清扫维护保持其耐压水平,防止和减少绝缘子击穿事故。

(2)配电线路上的柱上油路器和荷开关,由于绝缘水平不高,相间距离较小,应防正受雷击时引起闪络,造成短路。

通常在设备的一侧或两侧装设阀型避雷器进行保护。

其接地线要与被保护设备的金属外壳相连接,接地电阻值不大于10Ω。

(3)10kV配电线路相互交叉或与低压线路、通信线路等交叉时,其垂直距离应不小于2mo交叉档两端杆塔的瓷绝缘铁脚应可靠接地。

(4)低压配电线路绝缘水平较低,当遭受雷击时,雷电冲击波可能沿线路侵入室内,引起人身和设备事故。

为了降低雷电波的幅值,可以把引入线上的绝缘子螺杆接地,接地电阻不超过300。

为保护直人式电度表,特装设低压阀型避雷器作为防雷保护。

配电线路防雷接地技术规程

配电线路防雷接地技术规程

配电线路防雷接地技术规程一、引言配电线路的防雷接地技术是确保电力系统运行安全和稳定的重要环节之一。

为了有效防止雷击对电力设备造成损害,并保障电力供应可靠性,制定配电线路防雷接地技术规程是必要的。

本文将介绍配电线路防雷接地技术的相关要点和规范,供工程师、电力从业人员和相关人士参考。

二、配电线路防雷接地技术规程要求1. 防雷接地系统的设计防雷接地系统的设计应根据所在地区的地质、气候条件、雷电频率和设备性质等因素进行充分考虑。

接地系统的总体设计应满足以下要求:(1)合理布置:根据地形、设备布置和电力线路的特点等因素,合理布置接地装置。

(2)有效接地电阻:接地装置的电阻应在规定范围内,确保瞬态过电压能通过接地装置迅速分散。

(3)可靠性:接地装置应具有稳定的性能和可靠的工作寿命。

2. 接地装置的选择和安装根据现场情况选择合适的接地装置,包括接地电极、接地网和接地体。

选择和安装时应注意以下要点:(1)接地电极:选择合适的接地电极类型,如水平接地电极或垂直接地电极,以确保接地电极的有效接地。

(2)接地网:根据设备容量和雷电活动频率,合理配置接地网,保证接地电阻低于规定值。

(3)接地体:根据土质条件和工程要求选择合适的接地体材料和尺寸,确保接地效果。

3. 现场施工及验收在进行配电线路防雷接地工程施工时,应遵循以下程序:(1)施工前准备:组织施工队伍,确认施工计划和材料准备。

(2)定位和测量:根据设计要求,在现场确定接地装置的位置,并进行精确测量。

(3)施工过程控制:按照规范,进行接地电极、接地网和接地体的安装。

(4)完工验收:对施工完成的接地工程进行全面检查和测试,确保接地电阻符合规定范围。

4. 运维管理和检修配电线路防雷接地系统的正常运行需要定期的检修和维护。

相关管理和维护措施包括:(1)巡检:定期巡视接地装置,检查接地电阻、接地导体的连接情况。

(2)维护:保持接地装置的清洁,确保接地装置表面与土壤之间的良好接触。

工厂供电系统的防雷和接地

工厂供电系统的防雷和接地
2.外部过电压 外部过电压又称雷电过电压或大气过电压,它是由于电
力系统的导线或电气设备受到直接雷击或雷电感应而引起的 过电压。
二、雷电的基本知识
1. 雷电现象:雷云放电的过程称为雷电现象。
雷云→雷电先导→迎雷(回击)先导 →主放电阶段 →余辉阶段
2. 雷电流的特性
雷电流波形
➢波头:指雷电流从零上升到最大幅值这一部分,一般只有 1~4μs; ➢波尾:指雷电流从最大幅值 开始,下降到二分之一幅值所 经历的时间,约数十微妙。
雷电流的陡度:指雷电流在 波头部分上升的速度,即
di dt
雷电流波形图
3. 雷电过电压的基本形式
➢直击雷:雷电直接击中电气设备、线路、建筑物等物体。
➢感应雷:由雷电对线路、设备或其他物体的静电感应或电 磁感应而引起的过电压。
感应雷的形成过程如图所示。
➢雷电波侵入:架空线路 遭到直接雷击或感应雷而 产生的高电位雷电波,沿 架空线侵入变电所或其他 建筑物而造成危险。
1) 避雷针 避雷针通常采用镀锌圆钢或镀锌焊接钢管制成。
针长1m以下时,圆钢直径不小于12 mm,钢管直径不小于20 mm; 针长1~2m时,圆钢直径不小于16mm,钢管直径不小于25mm。
单支避雷针的保护范围
建筑物防雷类别 第一类防雷建筑物 第二类防雷建筑物 第三类防雷建筑物
滚球半径hr(m)
30 45 60
A
(a)
(2)两相触电(相间触电)
C B A C
(b)
A B C
Байду номын сангаас
(3)跨步电压触电
A B C
Ⅰ U

跨步 电压
20 m
S
(4)接触电压触电
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编号:AQ-JS-02372
( 安全技术)
单位:_____________________
审批:_____________________
日期:_____________________
WORD文档/ A4打印/ 可编辑
配电系统的防雷与接地
Lightning protection and grounding of distribution system
配电系统的防雷与接地
使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。

雷电的危害,大家是有目共睹的。

然而,近几年随着电网的改造,特别是城网改造和变电所自动化系统的建设,大家可能对这些设备的防雷接地保护还是认识不足,以致造成了多起雷害事故,造成自动化系统的瘫痪和一些电网设备事故,损失是比较严重的。

因此,我们有必要探讨一下供、配电系统的防雷接地问题,为设计和施工人员提供一定的帮助。

1电力线路的防雷与接地
1.1输电线路的防雷与接地
输电线路的防雷,应根据线路的电压等级、负荷性质和系统运行方式,并结合当地地区雷电活动的强弱、地形地貌特点及土壤电阻率高低等情况,通过技术经济比较,采用合理的防雷方式。

(1)35kV线路不宜全线架设避雷线,一般在变电所的进线段架设1~2km的避雷线,同时在雷电活动强烈的地段架设避雷线,或者安
装线路金属氧化物避雷器。

(2)110kV线路应全线架设避雷线,山区应采用双避雷线;但在年平均雷暴日数不超过15日或运行经验证明雷电活动轻微的地区,可不架设避雷线。

(3)220kV线路应全线架设避雷线,同时应采用双避雷线。

对于架设避雷线的线路,应注意杆塔上避雷线对边导线的保护角,一般采用20°~30°保护角,同时做好杆塔的接地。

根据土壤电阻率的不同,杆塔的工频接地电阻,不宜大于表1所列数值。

表1杆塔的接地电阻
地壤电阻率(Ω·m)100及以下100以上至500500以上至1000 工频接地电阻(Ω)101520
对于35kV线路装设的金属氧化物避雷器的技术参数,一般应满足以下条件:
①持续运行电压(有效值)不小于40.8kV;
②额定电压(有效值)不小于51kV;
③直流1mA参考电压不小于73kV(范围在73~74kV之间);
④标准放电电流5kA等级下残压(峰值)不大于:
雷电冲击134kV、操作冲击114kV、陡波冲击154kV。

⑤2000μs方波电流(峰值)200A。

⑥对绝缘配置,根据线路污秽等级要求确定。

1.2配电线路的防雷与接地
与输电线路一样,配电线路的防雷也可采用避雷线或者避雷器,对于不同电压等级和不同线路采取的措施也不一样。

(1)10kV裸导线线路。

对于10kV裸导线线路,原则上可以采用避雷线进行防雷保护,但由于成本高,施工不方便,目前基本上都不采用避雷线,而是在一些雷电活动频繁的线段安装避雷器,同时按照要求做好杆塔的接地。

(2)10kV绝缘线线路。

由于近几年城网改造,北京地区城镇线路基本上都换成了交联聚乙烯架空绝缘线,但其防雷措施与原来的裸导线线路的防雷措施并没有变化,致使发生了数十起雷击绝缘线断线事故。

对于架空绝缘线目前可采取以下防雷措施:①安装避雷线,此种方法避雷效果最好,但可行性和难度大,成本高。

②提高线路
绝缘子耐压水平,将10kV绝缘子换为防雷绝缘子,将大大提高防雷水平。

③在多雷区或者按照一定档距安装线路避雷器,减少雷击断线事故。

④延长闪烁路径,导致电弧容易熄灭,局部增加绝缘强度,如在导线与绝缘子相连处加强绝缘,以及采用长闪烁路径避雷器等。

⑤局部剥离绝缘导线,使之局部成为裸导线,从而电弧能在剥离部分滑动,而不是固定在某一点烧蚀,同时也可为以后施工提供一个挂地线点。

(3)低压配电线路。

低压线路应从变压器出口处安装低压避雷器或击穿保险器,同时做好接地,接地装置的接地电阻不应大于4Ω。

中性点直接接地的低压电力网中的中性线应在电源点接地。

低压配电线路,在干线和分支线终端处应重复接地,每年重复接地装置的接地电阻应不大于10Ω,对于较长的线路,重复接地应不少于3处。

特别是为防止雷电波沿低压配电线路侵入用户,对于接户线上的绝缘子铁角应接地,接地电阻应小于30Ω,这一点对于我们进行的一户一表改造工作尤其应引起重视。

1.3电力电缆线路的防雷与接地
电力电缆由于其本身结构特点和与其他电气设施连接的要求,根据不同电压等级采取不同的防雷方法。

对于35kV及以下电压等级的电力电缆,基本上应采取在电缆终端头附近安装避雷器,同时终端头金属屏蔽、铠装必须接地良好。

对于110kV及以上的高压电缆,当电缆线路遭受雷电冲击电压作用时,在金属护套的不接地端或交叉互连处会出现过电压,可能会使护层绝缘发生击穿,应采取以下保护方案之一:①电缆金属护套一端互连接地,另一端接保护器。

②电缆金属护套交叉互连,保护器Y0接线。

③电缆金属护套交叉互连,保护器Y接线或Δ接线。

④电缆金属护套一端互连接地加均压线。

⑤电缆金属护套一端互连接地加回流线。

2电气设备与电子设备的防雷与接地
2.1变电所设备的防雷与接地
变电所设备的防雷离不开建筑物的防雷,按照最新的国家强制性标准GB50054-95,对建筑物与设备的防雷接地应采用等电位连接,而不是传统上分别做独立的接地网。

所谓等电位连接,就是把建筑物本身和其内外各种导电物用导体(电气上)焊接起来,以保证等
电位。

由于雷电流峰值非常大,流经之处都立即升至很高的电位(相对于大地而言),因此对于附近尚处在大地电位的电气、电子设备和人产生旁侧闪烁,容易引起设备和人身事故。

所以等电位连接是防雷的关键措施这一。

(1)所内建筑物的防雷。

建筑物本身的防雷装置是建筑物内电气设备及系统防雷的第一道屏障,建筑物本身的防雷性能直接影响到内部的电气设备的防雷,因此首先必须重视建筑物本体的防雷。

现代建筑物防雷主要由顶部避雷带、网状接闪器、建筑物的梁、柱、楼板和四周墙体内的主钢筋作引下线,利用地下钢筋混凝土基础作为接地体。

在建筑物设计和施工时就要考虑到作为网状接闪器、引下线和接地体的钢筋网络之间的电气连接,使之成为较理想的"法拉第笼"式避雷器。

防雷网与建筑物钢筋混凝土相结合,已成为国内外公认的经济可靠的防雷方式,因此在设计、施工时都应预留从各层楼板、梁、柱内钢筋焊出接头,以便与室内外接地线相连。

(2)室外设备的防雷。

为了防止直击雷,室外可根据需要,安装一支或多支避雷针,计算其保护范围,以达到保护室外所有设备要求为原则。

同时对于室外架构母线和变压器中性点应加装避雷器保护,室外做一接地网,所有设备的接地引下线都与该接地体焊接,以保证等电位。

为了防止雷击产生过电压,各种设备的绝缘水平应能满足电压对该设备的绝缘要求,我们在设备定货和出厂试验时应严格把关,按照规程要求确保设备绝缘耐压水平,以防雷害击穿。

这种防雷结构有很多优点:①可避免"绕击";②能起"法拉第笼"的屏蔽作用,可大大削弱雷电电磁脉冲的侵入;③因建筑物各层的梁、柱、楼板、墙体的钢筋和金属管线等导电体在电气上已连成一体,做到几乎处处电位相等,从而保证了设备的安全;④"笼"式避雷装置的引下线是由为数众多的钢筋组成,大大分散了雷电流,并削弱了建筑物内信息设备所受到的脉冲电磁场冲击幅值;⑤接地体是分布在地下四周的钢筋混凝土基础,可形成均匀分布的均压网,与大地接触面广,接地电阻低且又稳定。

(3)室内设备的防雷。

室内各种金属屏、柜外皮均应与底座槽钢可靠焊接或用螺栓连接,保证接触良好,同时槽钢应与电缆沟道内的电缆支架用镀锌扁钢焊接起来,形成一个整体,与室外接地网形成一个完整的大接地网。

2.2计算机、通讯等自动化设备的防雷接地
大楼内计算机等电子设备的第一道保护屏障,由于通讯电台必须通过信号电缆与通讯塔上天线相连,因此对于通讯电缆外皮必须做好接地(多点重复接地),并与大楼的接地网连接起来形成等电位,同时可以加装避雷器。

对于通讯电台应加串口保护器如SD25-V24/24,其它电子设备的通讯接口都应加装相应的串口保护器,其实就是各种小防雷器(OBO、PHOENIX都有相应接口的保护器),这里就不再一一列举。

对于大楼内的电子设备,最重要的就是将各个独立的接地网连接成一个共用接地系统,其它如分开、独立、专用等接地方案都是不妥的,在工程中也没有实际意义。

对于所有大楼内的电气、电子设备,应该逐级采取防雷保护措施,首先做好大楼和电源的防雷接地,然
后在机房和各设备端口安装相应的避雷器,才能真正防止雷电波的侵入和反击。

3结束语
配电系统的防雷与接地应从工程设计阶段就认真加以考虑,根据各地的实际情况,采取切实可行的防雷方案,选用质量可靠的电气设备和可靠性高的防雷设备,同时真正按照等电位的原则,做好符合要求的共用接地网,综合考虑防雷与接地,只有这样我们的线路和设备才能避免遭受雷击的危害。

这里填写您的公司名字
Fill In Your Business Name Here。

相关文档
最新文档