25m3液氨卧式储罐设计图纸
课程设计-液氨储罐设计
2
液氨储罐设计 管口表
编号 名称
a1- 液面计 a2 b 人孔
公称直径 编 (mm) 号
e
f
名称 公称直径 (mm)
安全阀
放空管
c 进料管
g 排污管
d 出料管
3
液氨储罐设计: 设计参数
学号≤57的同学选择序号1-10的参数,学号尾数与序号 相同即为该同学的技术特性表中的设计参数
参数 1 2 3 4 5 6 7 8 9 10
23
三、计算说明书的内容
1.封面(见模板-外) 2.目录 3.设计任务书 4.正文章节 5.设计总结 6.致谢 7.参考文献(资料) 8.附录(重要资料图表及装配图可作为附 录列在目录后) 9.封底(见模板-内)
24
四、注意事项
1. 用A4打印纸书写或打印,书写时要求字迹 工整,打印时字体选用仿宋或宋体,正文字号 选用四号或小四号,注意页边距、行间距,留 装订边; 2. 画出规范的工艺条件示意图和装配图; 3. 需查阅一定的参考文献资料,教材、设计 手册、教学参考书、相关专业杂志、网络资料 等; 4. 独立完成;
20
7.1图幅、比例及图面布局 液氨储罐装配图可选A2或A3,若幅
面不足时,可以加长其长边的1/4或1/2; 比例主视图等可选用1:5;1:10;1: 15;1:20;1:25等,表明在标题栏内, 局部视图可选用1:5;1:4;1:3等, 须另行标注在局部视图上。 液氨储罐装配图通常采用主视图和左视 图,再配置适当的局部视图作为补充。
29
六. 成绩 1. 完整的液氨储罐设计计算说明书(封 面,目录,正文,设计总结,致谢,参考 文献,封底等)(50分) 2. 合格的液氨储罐装配图并与设计计算 说明书装订在一起。(20分) 3. 合格的文档(字体、字号、排版、页 码等)。(10分) 4. 答辩问题。(20分)
液氨储罐(卧式)设计说明书(内嵌cad图纸)
液氨储罐.bak液氨储罐.dwg前言本说明书为《31m3液氨储罐设计说明书》。
本文采用分析设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、人孔、接管进行设计,然后采用1SW6-1998对其进行强度校核,最后形成合理的设计方案。
目录附:设计任务书 (2)第一章绪论 (3)(一)设计任务 (3)(二)设计思想 (3)(三)设计特点 (3)第二章材料及结构的选择与论证 (3)(一)材料选择 (3)(二)结构选择与论证 (3)第三章设计计算 (5)(一)计算筒体的壁厚 (5)(二)计算封头的壁厚 (6)(三)水压试验及强度校核 (6)(四)选择人孔并核算开孔补强 (7)(五)核算承载能力并选择鞍座 (9)(六)选择液面计 (9)(七)选择压力计 (10)(八)选配工艺接管 (10)第四章设计汇总 (11)第五章结束语 (12)第六章参考文献 (13)第一章绪论(一)设计任务:针对化工厂中常见的液氨储罐,完成主体设备的工艺设计和附属设备的选型设计,绘制总装配图和零件图,并编写设计说明书。
(二)设计思想:综合运用所学的机械基础课程知识,本着认真负责的态度,对储罐进行设计。
在设计过程中综合考虑了经济性,实用性,安全可靠性。
各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。
(三)设计特点:容器的设计一般由筒体、封头、法兰、支座、接口管及人孔等组成。
常、低压化工设备通用零部件大都有标准,设计时可直接选用。
本设计书主要介绍了液罐的的筒体、封头的设计计算,低压通用零部件的选用。
各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。
第二章材料及结构的选择与论证(一)材料选择:纯液氨腐蚀性小,贮罐可选用一般钢材,但由于压力较大,可以考虑20R、16MnR这两种钢种。
《化工机械基础》课程设计任务书-液氨储罐机械设计-毕业论文.doc
《化工机械基础》课程设计任务书目录第一部分设计绪论 (5)(1)设计任务、设计思想、设计特点 (5)(2)主要设计参数的确定及说明 (5)第二部分材料及结构的选择与论证 (7)(1)材料的选择与认证 (7)(2)结构的选择与认证 (7)第三部分设计计算 (10)(1)计算筒体的壁厚 (10)(2)计算封头的壁厚 (11)(3)水压试验压力及其强度校核 (11)(4)选择人孔并核算开孔补强 (12)(5)选择鞍座并核算承载能力 (14)第四部分主要附件的选用 (15)(1)选择液位计 (16)(2)各进出口的选择 (16)第五部分设计小结 (17)参考文献 (17)《化工机械基础》课程设计任务书1.设计题目:液氨储罐机械设计技术特性公称容积(m3) 25 公称直径Dg(mm) 2200介质液氨筒体长度L(mm) 7200设计压力(MPa) 3.6 工作温度(0C) ≤40℃厂址芜湖市推荐材料16MnR管口表编号名称公称直径(mm) 编号名称公称直径(mm)a1-2 液位计15 e 安全阀25b 进料管40 f 放空管25c 出料管20 g 人孔450d 压力表25 h 排污管40工艺条件图3.计算及说明部分内容(设计内容):第一部分绪论:(1)设计任务、设计思想、设计特点;(2)主要设计参数的确定及说明。
第二部分材料及结构的选择与论证(1)材料选择与论证;(2)结构选择与论证:封头型式的确定、人孔选择、法兰型式、液面计的选择、鞍式支座的选择确定。
第三部分设计计算(1)计算筒体的壁厚;(2)计算封头的壁厚;(3)水压试验压力及其强度校核;(4)选择人孔并核算开孔补强;(5)选择鞍座并核算承载能力;第四章主要附件的选用(1)、液面计选择(2)、各进出口的选择(3)、压力表选择第五章设计小结附设计参考资料清单4.绘图部分内容:总装配图一张(1#)5.设计期限:1周(20123年 06 月 24 日—— 2013年 06月 30 日)6.参考资料:[1]《化工过程设备机械基础》,李多民、俞慧敏主编,中国石化大学出版社[2]《化工设备机械基础》,汤善甫朱思明主编,华东理工大学出版社。
卧式液氨储罐设计说明书
十六组液氨储罐设计说明书(化工设备机械基础课程设计)指导教师:张永强韩晓星完成时间:2012.11设计任务书设计课题:液氨储罐工艺参数:最高使用温度:T=40℃公称直径:Di=2400mm筒体长度(不含封头):L0=4500mm 设计内容:1.罐体材料的选择2.罐体的规格3.罐体的形状4.罐体的厚度5.封头形状及厚度6.支座的选择7.人孔及接管选择8.开孔补强9.核算校验10.设备装备图(A2)设计人:下达时间:2012年11月完成时间:2012年11月前言液氨,又称为无水氨,是一种无色液体。
氨作为一种重要的化工原料,应用广泛,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。
液氨在工业上应用广泛,而且具有腐蚀性,且容易挥发,所以其化学事故发生率相当高。
无色气体,有刺激性恶臭味。
分子式NH3。
分子量17.03。
相对密度0.7714g/L。
熔点-77.7℃。
沸点-33.35℃。
自燃点651.11℃。
蒸汽压1013.08kPa(25.7℃)。
蒸汽与空气混合物爆炸极限16~25%(最易引燃浓度17%)。
氨在20℃水中溶解度34%,25℃时,在无水乙醇中溶解度10%,在甲醇中溶解度16%,溶于氯仿、乙醚,它是许多元素和化合物的良好溶剂。
水溶液呈碱性。
液态氨将侵蚀某些塑料制品,橡胶和涂层。
遇热、明火,难以点燃而危险性较低; 但氨和空气混合物达到上述浓度范围遇明火会燃烧和爆炸,如有油类或其它可燃性物质存在,则危险性更高。
与硫酸或其它强无机酸反应放热,混合物可达到沸腾。
不能与下列物质共存:乙醛、丙烯醛、硼、卤素、环氧乙烷、次氯酸、硝酸、汞、氯化银、硫、锑、双氧水等。
本次课程设计将根据液氨的性质,结合所学知识设计一个液氨贮罐。
由于时间仓促,如有不足之处,欢迎指正。
编者2012年11月目录1. 液氨储罐设计参数的确定 ............ 错误!未定义书签。
1.1.设计温度与设计压力的确定.......... 错误!未定义书签。
25m3液氨卧式储罐设计图纸
150
150
13
275
150
2-3-4-5
1450
2000
17
Ø38x8 150 150
1
Ø76x12
B
20 19
B
475
6350 7300
18
技术要求 1.焊接采用手工电弧焊,焊接系数为1.0; 2.焊接接头形式及尺寸除图中注明外,按HG 20583-1998中的规定; 3.焊接工艺评定应符合JB 4708《钢制压力容器焊接工艺评定》的有关规定: 4.管口、支座方位按本图; 5.设备应在压力试验前进行消除应力的热处理,处理后不得在设备上再进行焊接;
单件
总计
16
2
1420
1260
1260
1420
250
135
盖章栏
设计 校核 审核 证书编号 液氨卧式储罐 批准 日期
太原科技大学
学院 姓名 专业 班级 学号 第1页,共1页
资质等级 图名 图号
壳体对接焊缝
55°
B--B
110
2x Ø 20
55° 110 2
接管与壳体对接焊缝
1
45°
1Hale Waihona Puke 0°16 116220
220
件号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
图号或标准号 HG 20595 GB 6170-1986 GB 901-1998 HG 20608-1997 HG 21590-95
HG 20596 HG 20595 HG/T 21515-2005 HG 20595 JB/T 4712-92 HG 20595 JB/T 4712-92
立方米卧式液氨储罐的设计
2.8m3卧式液氨储罐的设计一、题目来源题目来源:实际生产二、研究的目的和意义储罐是一种用于储存液体或气体的密封容器,主要用于存储或盛装气体、液体、液化气体等介质的设备,在化工、石油、能源、冶金、消防、轻工、环保、制药、食品、城市燃气等行业得到了广泛的应用,储存介质涵盖了(丙烷、丁烷、丙烯、乙烯、液化石油气、液氨等)液化气体、氧气、氮气、天然气和城市煤气等气体,在国民经济发展中起着不可替代的作用。
其种类很多,大体上有:滚塑储罐,玻璃钢储罐,陶瓷储罐、橡胶储罐、焊接塑料储罐等。
就储罐的性价比来讲,现在以滚塑储罐最为优越,滚塑储罐又可以分钢衬塑储罐,全塑储罐两大系,分别包括立式,卧式,运输,搅拌等多个品种。
而卧式液化气储罐是目前中、小型液化气站储存和运输液化气的主要容器之一,在石油化工行业中应用广泛并占有相当大的比例。
卧式储罐的容积一般都小于100m3,通常用于生产环节或加油站。
年来随着制造工艺的提高其容积有逐渐增大的趋势。
随着容积的增大,储罐在设计和使用中的安全可靠性就变得极为重要。
然而我国卧式储罐设计制造技术的还远落后于世界先进水平,制造较困难,加工费用高,且焊接、检验技术要求高。
所以研究卧式储罐设计及其焊接工艺对我国石油化工等行业有着极其重要的意义。
三、阅读的主要参考文献及资料名称[1]吕宜涛,压力容器制造质量控制的研究,天津大学学位论文,1997年9月.[2]马自勤,孙丽,王秀伦等:产品结构树在CAPP信息管理中的应用,大连铁道学院学报,2001年9月,第22卷,第3期.[3]王锦,张振明,黄乃康:集成环境下面向产品的 CAPP系统,计算机工程与应用,2000年4月.[4]肖凌,姚建初:集成环境下的计算机辅助工艺设计系统,机械设计与制造工程,2000年7月,第29卷,第4期.[5]赵丽萍,陈鸿:面向CAPP的工作流程管理研究与应用,计算机工程与应用,2001年第17期.[6]高清,马云辉,马玉林:先进制造系统中的质量保证,高技术通讯,1995年5月.[7]张曙,张为民:新一代CAPP系统,组合机床与自动化加工技术,1996年第10期.[8]汤善甫,朱思明主编:化工设备机械基础,第2版,华东理工出版社,2004年12月[9] 陈祝年,焊接工程师手册。
卧式液氨储罐课程设计装配图
12
进液口
1
无缝钢管
11
出液口
1
无缝钢管
10
排污口
1
0Cr18Ni9Ti
9
气相口
1
20
8
安全阀口
2
20
通用件
7
放散口
1
20
6
补强圈
1
16MnR
5
人孔
1
16MnR
MFM-S35CM(W·B-0)2A42819-2.5
4
螺栓
12
Q234-A
3
法兰
1
16MnR
2 标准椭圆封头 2
0Cr18Ni9Ti
1
卧式鞍座
项 目 指数
设计压力 MPa 1.705 容器类别 第三类
最高压力MPa 1.80 受压元件材质 16MnR
设计温度 C° -20~50
3
全容积 m
31
工作介质 液氨 腐蚀余量 mm 2.0
技术要求
、本产品的制作及验收执行GB150-1998。 、人孔处进行补强。 、使用时应在规定环境下使用以免造成不必要的损失。 、回转筒体与封头的焊接接头采用全焊透对接焊缝接头的形式。 、接管与筒体的焊接接头坡口为45°~55°。 、人孔处接管以及补强圈的焊接采用角焊,坡口为48°~52°。
2
Q235-B
Dg2008AJB/T4712-1992
序号 名 称 数量 材 料
备
注
制图
赵利君 2019年6月10日 比例 1:16
图纸
审核
富利清 2019年6月15日
山西大同大学
16 材料一班
卧式液氨储罐
《液氨贮罐的机械设计》完美版
设计任务书课题:液氨贮罐的机械设计设计内容:根据给定的工艺参数设计一个液氨贮罐相关工艺参数:最高使用温度:T=50℃公称直径:DN=2800mm筒体长度(不含封头):L0=4500mm 设计操作步骤:1.筒体材料的选择2.罐的结构及尺寸3.罐的制造施工4.零部件型号及位置、接口5.相关校核计算设计人: XXX学号:080801XXXX下达时间:2011年11月25日完成时间:2011年12月26日目录前言 (1)1设计方案 (2)1.1设计原则 (2)1.2材料的选择 (2)1.3结构的选择 (2)2设计参数 (4)3设计计算 (5)3.1壁厚的计算 (5)3.1.1筒体壁厚 (5)3.1.2封头壁厚 (5)3.2鞍座承载能力计算 (7)3.2.1罐体质量m1 (7)3.2.2 封头质量m2 (7)3.2.3液氨质量m3 (7)3.2.4附件质量m4 (7)3.3人孔补强计算 (8)4附件选择 (11)4.1人孔选择 (11)4.2接口管的选择 (11)4.2.1液氨进料管 (11)4.2.2液氨出料管 (11)4.2.3液面计接口管 (11)4.2.4安全阀接口管 (11)4.2.5放空阀接口管 (11)4.2.6排污管 (11)5参数校核 (12)5.1筒体轴向应力校核 (12)5.1.1筒体轴向弯矩计算 (12)5.1.2筒体轴向应力计算 (12)5.2筒体和封头切向应力校核 (14)5.2.1筒体切向应力计算 (14)5.2.2 封头切向应力计算 (14)5.3筒体环向应力校核 (14)5.3.1环向应力计算 (14)5.3.2环向应力校核 (15)5.4鞍座有效断面平均压力 (15)6设计汇总 (17)7小结 (21)参考文献 (22)前言本设计是针对《化工设备机械基础》这门课程所安排的一次课程设计,是对这门课程的一次总结,要综合运用所学的知识并查阅相关书籍完成设计。
液氨作为一种重要的化工原料,在工业上应用广泛。
25立方米液氨储罐设计说明书1
目录一、工艺设计 (1)1.1存储量设计 (1)1.2 设计压力的确定 (1)1.3设计温度 (2)二、结构设计 (2)2.1设计条件 (2)2.2结构设计 (3)2.2.1材料选择 (3)2.2.2筒体和封头结构设计 (4)2.2.3法兰设计 (5)2.2.4人孔、手孔、液面计结构设计 (7)2.2.5支座结构设计 (9)2.2.6焊接接头设计 (12)三、强度计算 (15)3.1容器的筒体和封头壁厚设计 (15)3.1.1容器的筒体和封头壁厚计算 (15)3.1.2压力容器水压试验 (16)3.2开孔补强计算 (16)一、工艺设计工艺设计的内容是根据设计任务提供的原始数据和生产工艺要求,通过计算和选型确定设备的轮廓尺寸。
1.1存储量设计设计存储量由式1-1进行计算:1-1 式中, -- 存储量,;-- 装量系数;-- 压力容器容积,-- 设计温度下饱和液体密度,。
1.2 设计压力的确定设计压力应根据最高工作压力来确定。
对于承装液化气体的压力容器,可根据《固定式压力容器安全技术监察规程》 TSG R0004-2009 中条例3.9.3来确定,常温储存液化气体压力容器温度下的工作压力按表1-1确定:表1-1 常温储存液化气体压力容器规定温度下的工作压力设计条件要求储罐无保冷设施,且临界温度为50,因此规定温度下的工作压力为50的饱和蒸汽压,液氨50时的饱和蒸汽压为1.968 。
1.3设计温度设计温度指容器在正常工作情况下,设定的元件金属温度(沿元件金属截面的平均温度值)。
设计温度与设计压力一起作为设计载荷条件。
设计温度不得低于元件金属在工作状态可能达到的最高温度。
对于0以下的金属温度,设计温度不得高于元件金属可能达到的最低温度。
由表1-2给出了液氨的饱和蒸汽压及密度:表1-2 液氨饱和蒸汽压及饱和液密度设计条件要求工作温度为-20—50,因此,设计温度为50。
二、结构设计2.1设计条件以结构设计条件表和管口表的形式列出,见表2-1和表2-2:表2-1 结构设计条件表表 2-2 管口表2.2结构设计化工设备的结构设计包括设备承压壳体(一般为筒体和封头)及其零部件的设计。
液氨储罐设计参考图
制 图 描 图 年 月 比例 1∶30 第 1张 共 1张
法兰 SO50-1.6 RF 进料接管φ57×3.5 L=400 补强圈φ760/φ484 δ=20 人孔 RF Ⅱ(A·G)450-1.6 ) 罐体 DN2600×16 L=4800 封头 DN2600×16 h=40
16MnR
1
2.27
9
GB8163-87
10
1
1.85
8
JB/T4736-95
16MnR 组合件 16MnR 16MnR
22 21
GB8163-87 HB20592-95
出料接管φ38×3.5 L=200 法兰 SO 32-1.6 RF
10 16MnR
1 1
0.5 1.6
20
HB20592-95
法兰内径φ35 其它尺寸按 SO32-1.6
16MnR
1
1.86
19
GB8163-87
压料接管φ25×3 L=2750 法兰 SO20-1.6 RF 排污接管φ57×3.5 L=210 法兰 SO50-1.6 RF
HB20592-95
法兰 SO25-1.6 RF 放空管接管φ32×3.5 L=210 法兰 SO25-1.6 RF 安全阀接管φ32×3.5 L=210
16MnR
1
1.12
液氨贮罐的设计及计算
液氨贮罐的设计及计算第一章贮罐筒体与封头的设计一、罐体DN、PN的确定1、罐体DN 的确定液氨贮罐的长径比L/Di一般取3~3.5,本设计取L/Di=3.2,由V=(πDi2/4) ·L=10L/Di=3.2得:Di =( 40/ 3.2π)1/3 =1.585 m= 1585 mm因圆筒的内径已系列化,由Di=1585 mm可知: DN=1600 mm2、釜体PN 的确定因操作压力P=16 Kgf/cm2,由文献 [1]可知:PN=1.6 MPa二、筒体壁厚的设计1、设计参数的确定p=(1.05-1.1) pw ,p =1.1×1.6MPa=1.76MPa,pc=p+p∵ p液< 5 % P ,∴可以忽略p液p c =p=1.76 MPa , t = 100 ℃,Ф=1(双面焊,100%无损探伤), c2=2 mm(微弱腐蚀)2、筒体壁厚的设计设筒体的壁厚Sn ′=14 mm,[σ]t=170MPa ,c1=0.8 mm由公式Sd =pcDi/(2 [σ]tФ-P c)+c 可得:S d =1.76×1600/(2×170×1-1.76)+ 2 +0.8=11.13(mm) 圆整Sn=12 mm∵Sn ≠ Sn′∴假设Sn= 14mm是不合理的. 故筒体壁厚取Sn=12 mm3、刚度条件设计筒体的最小壁厚∵ Di=1600 mm < 3800 mm ,Smin =2 Di /1000且不小于3 mm 另加 C2,∴ Sn=5.2 mm按强度条件设计的筒体壁厚Sn =12 mm >Sn=5.2 mm,满足刚度条件的要求.三、罐体封头壁厚的设计1、设计参数的确定p=(1.05-1.1) pw ,p =1.1×1.6MPa=1.76MPa,pc=p+p液,∵ p液< 5 % p ,∴可以忽略p液p c =p=1.76 MPa , t=40 ℃,Ф=1(双面焊,100%无损探伤), c2=2mm(微弱腐蚀)2、封头的壁厚的设计采用标准椭圆形封头,设封头的壁厚Sn ′=14 mm,[σ]t=170 MPa ,c1=0.8 mm由公式Sd =PcDi/(2 [σ]tФ-0.5Pc)+c 可得:Sd=1.76×1600/(2×170×1-0.5×1. 76)+ 2 +0.8=11.10 mm 圆整Sn=12 mm∵S n ≠ S n ′ ∴ 假设S n = 14mm 是不合理的. 故封头的壁厚取S n =12 mm3、封头的直边、体积及重量的确定因为是标准椭球形封头,由文献[2]可知:封头的壁厚S n =12 mm ,直边高度h =40 mm ,由Di =1600 mm 、 S n =12 mm ,由文献[2]可知:封头的体积V 封=0.616 m 3 、封头的深度h 1=400mm封头的重量: 269.2×2=538.4 kg四、筒体的长度设计及重量的确定由V =2V 封+V 筒 可得:V 筒=10-2×0.616=8.768 m 3V 筒=πDi 2L/4=8.768 m 3 可得:L =4363 mm 圆整:L =4360 mm筒体的重量: Di =1600 mm 、S n =12 mm 的筒体1 m 高筒节的重量为0.476(T) ∴ 4.36×0.476=2.08(T)第二章 贮罐的压力试验一、罐体的水压试验1、液压试验压力的确定液压试验的压力:p T =1.25p[σ]/[σ]t 且不小于(p+0.1) MPa ,当[σ]/[σ]t<1.8时 取其为1 则p T =1.25×1.76×1= 2.2 (MPa)2、 液压试验的强度校核由σmax =p T (Di +S n -c )/[2(S n -c)] =2.2(1600+12-2.8)/[2(12-2.8)]=192.4 (MPa)∵ σmax =192.4 (MPa)<0.9σs Φ=0.9×345×1=310.5 MPa ∴ 液压强度足够3、压力表的量程、水温的要求压力表的量程:2p T =2×2.2=4.4 (MPa) 或3.3MPa -8.8MPa ,水温≥15℃ 4、液压试验的操作过程在保持罐体表面干燥的条件下,首先用液体将罐体内的空气排空,再将液体的压力缓慢升至22Kgf/cm 2,保压10-30分钟,然后将压力缓慢降至17.6Kgf/cm 2,保压足够长时间(不低于30分钟),检查所有焊缝和连接部位,若无泄漏和明显的残留变形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数量 2 16 8 2 1 2 1 1 1 1 1 1 1 2 2 1 2 1 1 1
材料 16MnR 20钢 20钢 组合件 组合件 16MnR 16MnR 16MnR 16MnR 16MnR 16MnR 16MnR 16MnR 16MnR 16MnR 16MnR 16MnR Q235A 16MnR Q235A
单件
总计
16
2
1420
1260
1260
1420
250
135
盖章栏
设计 校核 审核 证书编号 液氨卧式储罐 批准 日期
太原科技大学
学院 姓名 专业 班级 学号 第1页,共1页
资质等级 图名 图号
HG 20596 HG 20595 HG/T 21515-2005 HG 20595 JB/T 4712-92 HG 20595 JB/T 4712-92
67
50°
71
质量
空气质量 盛水质量 最大可拆质量
名称 液位计法兰 螺母 双头螺柱 石墨复合材料 液面计 接管 钢板 压力表接头 压力表管法兰 接管 安全阀法兰 接管 人孔 接管 液氨进出口管法兰 筒体DN2200/壁厚16 椭圆封头DN2200x16 支座A-F 排污管法兰 支座A-S 设备净重 磁环 不锈钢 钛材
壳体对接焊缝
55°
B--B
110
2x Ø 20
55° 110 2
接管与壳体对接焊缝
1
45°
120°
16 11
6
220
220
件号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
图号或标准号 HG 20595 GB 6170-1986 GB 901-1998 HG 20608-1997 HG 21590-95
规范 介质 介质特性 工作温度℃ 工作压力MPa 设计压力MPa 设计温度℃ 腐蚀裕量 焊接接头系数 热处理 水压试验压力MPa 气密性试验压力MPa 保温层厚度/mm 表面防腐要求 其他
740
6-7 8-9
500
10-11
1500
12-13
1500
14-15 16
200 Ø32x7 Ø25x5 Ø57x10 Ø530x10 Ø76x12
150
150
13
275
150
2-3-4-5
1450
2000
17
Ø38x8 150 150
1
Ø76x12
B
20 19
B
475
6350 7300
18
技术要求 1.焊接采用手工电弧焊,焊接系数为1.0; 2.焊接接头形式及尺寸除图中注明外,按HG 20583-1998中的规定; 3.焊接工艺评定应符合JB 4708《钢制压力容器焊接工艺评定》的有关规定: 4.管口、支座方位按本图; 5.设备应在压力试验前进行消除应力的热处理,处理后不得在设备上再进行焊接;
25
设计数据表 1.GB150-1998《钢制压力容器》 2.HG 20584-1998《钢制化工容器制造技术标准》 3.1999《压力容器安全技术监察规程》 第三类 压力容器类型 液氨 按 JB/T 4709 规定 中度毒性 焊条类型 按 JB/T 4709 规定 38℃ 焊接规程 1.70 除注明外采用全焊透技术 焊缝结构 2.16 除注明外角焊缝腰高 按较薄板厚度 50℃ 1.50 管法兰与接管焊接标准 按相应法兰标准 1.00 焊接接头类别 方法-检测率 标准-级别 无损 A,B RT-100% JB 4730-1994 消除应力整体热处理 容器 检测 C,D RT-100% JB 4730-1994 2.70 容器 31 全容积/m3 基本风压 地震烈度 按本图 管口方位图图号