音频功率放大器-低频电子线路实验报告
低频功率放大器实验报告
一、实验目的1. 理解低频功率放大器的基本原理和电路组成;2. 掌握低频功率放大器的调试方法;3. 测试和分析低频功率放大器的主要性能指标;4. 培养动手实践能力和分析问题能力。
二、实验原理低频功率放大器是一种将低频信号放大到足够大的功率,以驱动负载(如扬声器)的电路。
其主要组成部分包括输入级、驱动级和输出级。
输入级负责将微弱的信号放大到一定的幅度;驱动级负责将输入级放大的信号进一步放大,并提供足够的驱动电流;输出级负责将驱动级放大的信号输出到负载。
三、实验仪器与设备1. 低频功率放大器实验电路板;2. 晶体管;3. 负载电阻;4. 信号发生器;5. 交流毫伏表;6. 直流毫安表;7. 示波器;8. 万用表。
四、实验步骤1. 搭建低频功率放大器实验电路,包括输入级、驱动级和输出级;2. 调整电路参数,使放大器工作在最佳状态;3. 测试放大器的静态工作点,包括输出电压和电流;4. 测试放大器的电压放大倍数,分析负载电阻对放大倍数的影响;5. 测试放大器的非线性失真,分析产生失真的原因;6. 测试放大器的带宽,分析电路参数对带宽的影响;7. 测试放大器的效率,分析电路参数对效率的影响;8. 对实验数据进行整理和分析,撰写实验报告。
五、实验结果与分析1. 静态工作点测试:通过调整电路参数,使放大器工作在最佳状态。
测试结果显示,输出电压约为15V,输出电流约为0.5A。
2. 电压放大倍数测试:在输入信号为1V时,输出信号约为10V,电压放大倍数为10。
3. 非线性失真测试:通过调整输入信号幅度,观察输出信号的波形。
当输入信号幅度较大时,输出信号出现失真现象。
分析产生失真的原因是电路参数设置不当,导致放大器工作在非线性区域。
4. 带宽测试:在输入信号频率为20Hz到20kHz范围内,放大器具有良好的带宽。
分析电路参数对带宽的影响,发现适当调整电路元件参数,可以提高放大器的带宽。
5. 效率测试:通过测量输入功率和输出功率,计算放大器的效率。
低频功率放大器实验报告
低频功率放大器实验报告一、实验目的本实验旨在通过设计和制作低频功率放大器,了解放大器的基本原理、特性和工作方式,掌握放大器电路的设计方法和调试技巧。
二、实验原理1. 放大器基本原理放大器是一种将输入信号增加到更高电平的电路。
它可以增加信号的幅度、功率或电压,使得信号能够被更远距离传输或被更多设备使用。
放大器通常由一个输入端、一个输出端和一个控制元件组成。
2. 低频功率放大器的特点低频功率放大器是指工作频率在几千赫兹以下,输出功率在几瓦以下的放大器。
它具有以下特点:(1)输入电阻高;(2)输出电阻低;(3)增益高;(4)线性好;(5)失真小。
3. 放大器电路设计方法(1)选择合适的管子:根据需要选择合适的管子,如双极晶体管或场效应管等。
(2)确定工作点:根据管子参数和负载要求确定工作点。
(3)设计偏置电路:根据所选管子类型和工作点需求设计偏置电路。
(4)确定放大器电路拓扑结构:根据需求选择合适的放大器电路拓扑结构。
(5)计算元件参数:根据所选拓扑结构和工作点计算元件参数。
(6)布局和布线:根据设计要求进行布局和布线。
三、实验步骤1. 放大器电路设计本次实验采用晶体管作为放大器管子,以共射极放大器为基础,设计低频功率放大器电路。
具体步骤如下:(1)选择晶体管型号;(2)根据晶体管参数和负载要求确定工作点;(3)设计偏置电路;(4)选择合适的耦合电容和旁路电容;(5)计算元件参数。
2. 低频功率放大器制作按照设计要求进行元件选配、布局和布线,制作低频功率放大器。
3. 低频功率放大器测试将信号源接入输入端,将示波器接入输出端,调节偏置电位器使得输出波形不失真。
测量并记录输入信号幅度、输出信号幅度、增益等数据,并对数据进行分析和比较。
四、实验结果与分析经过测试,本次实验制作的低频功率放大器实现了预期的功能。
在输入信号频率为1kHz、幅度为10mV的情况下,输出信号幅度为1.2V,增益为120倍。
在输入信号频率为10kHz、幅度为10mV的情况下,输出信号幅度为1.0V,增益为100倍。
低频功率放大器实验报告
低频功率放大器实验报告低频功率放大器实验报告引言低频功率放大器是一种常见的电子设备,用于放大低频信号。
本实验旨在通过搭建低频功率放大器电路并进行实验验证,探究其工作原理和性能特点。
一、实验目的本实验的主要目的是:1. 了解低频功率放大器的基本原理和工作方式;2. 学习搭建低频功率放大器电路的方法;3. 测试低频功率放大器的性能指标,如增益、频率响应等。
二、实验器材和原理1. 实验器材:(列出所使用的器材,如信号发生器、电阻、电容、晶体管等)2. 实验原理:(简要介绍低频功率放大器的工作原理,如输入信号经过放大器电路,经过放大后输出)三、实验步骤1. 搭建低频功率放大器电路:(详细描述电路的搭建步骤,包括所使用的元件和其连接方式)2. 连接信号发生器和示波器:(将信号发生器连接到放大器的输入端,将示波器连接到放大器的输出端)3. 调节信号发生器和示波器:(调节信号发生器的频率和幅度,观察示波器上的输出信号)4. 测量和记录数据:(测量和记录放大器的增益、频率响应等数据,可以使用示波器和其他测量仪器)四、实验结果和分析1. 实验数据:(列出实验测得的数据,如输入信号频率、幅度,输出信号频率、幅度等)2. 数据分析:(根据实验数据进行分析,计算并比较放大器的增益、频率响应等性能指标)3. 结果讨论:(对实验结果进行讨论,分析可能的误差来源,探讨实验结果与理论预期的一致性)五、实验总结1. 实验心得:(简要总结实验过程中的体会和收获,如对低频功率放大器的理解加深,实验操作技巧的提升等)2. 实验改进:(提出对实验的改进意见,如增加测量数据的次数,使用更精确的测量仪器等)3. 实验应用:(探讨低频功率放大器的实际应用领域,如音频放大器、通信设备等)结语通过本次实验,我们对低频功率放大器的原理和性能有了更深入的了解。
实验结果与理论预期相符,验证了低频功率放大器电路的可靠性和稳定性。
通过实验的过程,我们也提高了实验操作技巧和数据分析能力,为今后的学习和研究打下了基础。
音频放大器 实验报告
音响放大器的设计一、 设计任务1) 功能要求:具有话筒扩音、音调控制、音量控制,卡拉OK 伴唱2) 已知条件:集成功率放大器LM386 1个,10K 欧姆高阻话筒一个(咪头,要加上拉电阻),输出电压为5mV ,集成运放LM324一只, +VCC = +9V ,8Ω/2W 负载电阻RL 1只,8Ω/4W 扬声器1只,MP3一台(连接输入线一条)3) 主要技术指标:额定功率 Po ≥0.3W(γ <3%);4) 负载阻抗 RL=8Ω;5) 截止频率fL=50Hz ,fH=20kHz ;6) 音调控制特性 1kHz 处增益为0dB ,125Hz 和8kHz 处有±12dB 的调节范围,A VL=A VH ≥20dB ;7) 话放级输入灵敏度 5mV ;8) 输入阻抗 Ri>>10K Ω。
二、 实验器材实验所需元件、示波器、万用表、覆铜板、函数发生器、热转印机、钻孔机、环保腐蚀液、变压器、MP3、喇叭等等三、 功能模块组成和增益分配图 1功能模块组成 话筒输入5mv 话音放大器(4.7倍)音频输入100mv 混合前置放大(3倍)音调控制器(0.8倍)功率放大器(30倍)扬声器+9V 电源四、功能模块设计(一)工作电源(+9V)电源模块由实验室稳压试验箱经过J1、J2接入电路模块,S1为电源开关,W1是7809稳压芯片,期中C3、C4为电源输入的滤波电容,C5、C6为电源输出的滤波电容,D1为发光二极管做上电指示用,P2为4个短接到地上的排针接口,作为测试用的接口。
图2稳压模块(二)话筒输入和话音放大器由于话筒的输出信号一般只有5mV左右,输出阻抗高。
所以话音放大器用来不失真地放大声音信号,输入阻抗需远大于话筒的输出阻抗,且符合阻抗匹配。
第一级设计成增益为:A V1=1+R2/R4=47K/10K=4.7,R2 =75KΩ; R4=10KΩ,放大后输出电压为V o1按设计要求应该达到24mv,原理图如下:图3话音放大器(三)音频输入和混合前置放大器混合前置放大器的作用是将MP3输出的音乐信号与话音混合放大,音频信号输出100MV,话音信号放大3倍,此级电路的电压放大倍数可以表示为:VO2 = - [ (R1/R5)*VO1 + (R1/R9)*V12 ]A V2= VO2/VO1=3其中R11为调节此级电路的输入阻抗的变阻器,用以控制此级电路的音量调控。
低频功率放大器实验报告(共)doc(一)
低频功率放大器实验报告(共)doc(一)引言概述:低频功率放大器是电子工程中常见的一种电路,其主要作用是将输入信号放大到一定的功率级别。
本实验报告将对低频功率放大器进行研究和实验,并整理出以下五个大点进行阐述。
正文:一、低频功率放大器的基本原理1.低频功率放大器的定义和作用2.低频功率放大器与其他功率放大器的区别3.低频功率放大器的工作原理简介4.低频功率放大器的常见电路结构5.低频功率放大器的特点和应用领域二、低频功率放大器的电路设计1.电路设计的基本流程2.选择合适的放大器电路拓扑3.硬件设计考虑因素4.电路参数的优化方法5.仿真软件在低频功率放大器设计中的应用三、低频功率放大器的实验步骤1.实验所需器材和元件的准备2.组装电路板的步骤3.连接电路的方法和注意事项4.实验中所需仪器的使用方法5.实验步骤的具体操作和测量方法四、低频功率放大器实验结果与数据分析1.实验中所得的电流、电压等数据记录2.不同输入信号下的输出功率测量3.实验结果与设计参数之间的对比分析4.实验中可能存在的误差和改进措施5.实验结果对低频功率放大器设计的指导意义五、低频功率放大器的改进与展望1.现有低频功率放大器的局限和不足2.针对不足之处的改进方向和方法3.新型低频功率放大器的发展趋势4.低频功率放大器在未来的应用前景5.对本实验的总结和建议总结:通过本实验,我们对低频功率放大器的基本原理、电路设计、实验步骤和结果进行了详细的研究和分析。
通过对实验数据和理论参数的对比分析,我们得出了一些改进和优化低频功率放大器的方法和方向。
未来随着科技的发展,低频功率放大器在各个领域将有更广阔的应用前景。
本实验的过程使我们对低频功率放大器有了更深刻的理解,也为以后的研究和应用提供了有益的参考。
低频功率放大器实验报告
低频功率放大器实验报告实验目的:1.了解低频功率放大电路的基本原理和性能指标。
2.掌握测量低频功率放大电路的各种参数的方法和技巧。
3.分析低频功率放大电路的失真特性。
实验仪器:1.功率放大电路实验箱2.双踪示波器3.函数发生器4.直流电压源5.电子万用表6.各种被测元器件实验原理:低频功放电路是一种将输入信号在低频段进行放大的电路。
其输入信号的频率范围在几十赫兹至几千赫兹之间。
低频功放电路通常由放大级、直流偏置电路和输出级组成。
实验步骤:1.搭建低频功放电路。
2.设置函数发生器的输出信号频率为所需频率,幅度为所需幅度。
3.连接被测电路的输入端和输出端到示波器上。
4.调节函数发生器的频率和幅度,观察示波器上输出信号的波形和幅度。
5.测量放大电路的输入阻抗、输出阻抗和放大倍数。
6.通过调整放大电路中的元器件值,观察输出波形的变化。
7.测量放大电路的频率响应和失真程度。
实验结果和分析:通过实验测得的放大电路参数和实测的波形可以得出以下结论:1.输入阻抗:输入阻抗是指电路对信号源的等效输入电阻,通常用输入端电阻表示。
在本实验中,测得的输入阻抗为XXX欧姆。
2.输出阻抗:输出阻抗是指电路对负载的等效输出电阻,是输出端电压与输出端电流之比。
在本实验中,测得的输出阻抗为XXX欧姆。
3.放大倍数:放大倍数是指输出端电压与输入端电压之比。
在本实验中,测得的放大倍数为XXX倍。
4.频率响应:频率响应是指电路的增益随频率变化的情况。
在本实验中,通过测量不同频率下的放大倍数,绘制出了频率响应曲线。
5.失真程度:失真是指信号在放大过程中发生的非线性失真,表现为输出信号的非线性变形。
在本实验中,通过观察输出波形的变化,可以分析失真的特点和程度。
实验结论:通过实验,我们深入了解了低频功率放大电路的基本原理和性能指标。
掌握了测量和分析低频功放电路的各种参数的方法和技巧,并分析了低频功放电路的失真特性。
实验结果表明,我们所搭建的低频功放电路在一定频率范围内具有较好的放大性能和较低的失真程度,可以满足实际应用的需求。
电子线路课程设计 实验报告(语音放大电路、汽车尾灯、可编程放大器)
电子线路课程设计实验报告学生姓名学号专业班级二O一九年六月三十日一、语音放大电路1、电路图与仿真电路2、电路分析该电路由三个LM324运放和一个LM386运放组成。
LM324系列器件带有真差动输入的四运算放大器,具有真正的差分输入。
该电路需要三个集成运放,LM324正好满足了这个要求。
LM386是一种音频集成功放,具有自身功耗低、更新内链增益可调整、电源电压范围大、外接元件少和总谐波失真小等优点的功率放大器,广泛应用于录音机和收音机之中。
电路最后通过一个LM386输出,实现语音放大的功能。
3、仿真结果蓝色波形为输入波形,红色波形为输出波形。
输入一个vpp为20mv的正弦波,输出一个vpp约为2.099v的正弦波,电路放大倍数大约为104.95倍。
因此仿真电路用的LM1877而不是LM386,仿真结果可能守到影响(输出波形略有失真)。
4、实际测试测得波形有失真,可能是因为噪声干扰,也可能是因为焊接的时候连线有错误或焊接不到位。
焊接实物:正面背面正面布局较为合理,但焊接时飞线较多,既给焊接带来一定难度,也不易检查,布局更合理的话可以减少飞线。
一、汽车尾灯1、电路图与仿真电路+5V2、电路分析该电路由七个芯片组成,分别是74LS08(2个)(与门)、74LS138(译码器)、74LS86(异或门)、74LS76(JK触发器)、74LS10(三输入与非门)、74LS04(非门)。
该电路用到的芯片都是十分基本的芯片,电路虽然用到的芯片较多,但结构其实十分简单,连线也很方便。
通过JK触发器和两路开关控制译码器的输入端,从而控制发光二极管的亮灭,根据两路开关有四种可能,发光二极管发光情况也有四种。
3、仿真结果两个开关均断开,六个发光二极管构成流水灯。
闭合S2,断开S1,左边三个发光二极管不亮,右边三个二极管构成流水灯。
闭合S1,断开S2,右边三个发光二极管不亮,左边三个发光二极管构成流水灯。
两开关均闭合,六个发光二极管都不亮。
低频功率放大器实验报告(共)doc(二)2024
低频功率放大器实验报告(共)doc(二)引言:本实验报告旨在研究低频功率放大器的原理和性能,并探讨其在实际应用中的意义。
通过使用实验测量和分析的方法,我们将对低频功率放大器进行深入研究,并总结实验结果。
正文:I. 低频功率放大器的基本原理1. 放大器的定义和分类2. 低频信号的特点3. 低频功率放大器的基本电路结构4. 放大器的工作原理及特性II. 低频功率放大器的设计要点1. 放大器的增益和频率响应要求2. 功率放大器的线性度要求3. 设计时应考虑的功耗和效率问题4. 输入和输出阻抗的匹配设计5. 选择合适的元件和器件参数III. 实验测量及数据分析1. 实验所使用的仪器和测量方法2. 测量输入输出特性曲线3. 测量增益与频率响应曲线4. 测量功率放大器的效率和功耗5. 数据分析和结果总结IV. 低频功率放大器的应用案例1. 音频放大器的设计和应用2. 实验室仪器中的低频功率放大器应用3. 低频放大器在通信系统中的应用4. 摄像和电视设备中的低频功率放大器应用5. 汽车音响系统中的低频功率放大器应用V. 总结与结论1. 实验结果的分析和总结2. 低频功率放大器的优点和限制3. 对未来发展的展望和建议总结:通过本次实验,我们深入研究了低频功率放大器的原理和性能,并从设计要点、实验测量和数据分析、应用案例等方面进行了综合讨论。
我们发现低频功率放大器在各种应用领域中都发挥着重要作用,并具有许多优点。
然而,我们也意识到该技术还存在一些限制,并提出了未来研究的方向和建议,以进一步改进和提高该技术在实际应用中的性能和可靠性。
低频(模拟)音频功率放大器实训报告
实训报告实训名称:低频/模拟电子技术实习专业:移动通信技术班级: 1012班学号: 07101246 姓名:指导老师:实训时间: 2011.5.23-5.271、学习整机的安装技术与工艺;2、了解扩音机的主要参数及掌握其测试方法;3、提高读整机电路图、电路板图的能力;4、提高手工焊接水平与装配工艺水平;5、学习使用运算放大器,了解运算放大器的主要参数;6、认识元件的封装。
会测试元件的好坏。
7、安装并调试扩音机,会排除可能出现的故障。
8、能测试扩音机的主要参数。
9、列举改进本扩音机的音质几个措施。
功率放大器套件一套、示波器、毫伏表、稳压电源、信号产生器、万用表、失真度测试仪、烙铁、镊子等。
三、实训内容(按时间顺序写)1.23号(周一)上午,房老师给我们分析功放的原理和实训的具体内容和注意事项,同时让同学们对功放原理进行熟悉;2.23号(周一)下午,发放实训必要的元器件,测试元器件的参数及是否有损坏;3.24号(周二),一整天的时间让学生们各自动手对功放进行实物焊接,如果做好的同学可以看书对功放进一步了解,同时总结功放的实验必要资料;4.25号(周三),还没有焊接完毕的同学继续进行焊接和调整,焊接调整好的给老师帮忙调试观察是否成功,并指出实验的不足,以便继续调整;5.26号(周四),到实验室测试直流工作点,关键点的波形,同时老师对仪器的使用进行讲解在测试出波形的同时让同学们掌握必要简单仪器的使用;6.进行总结测试,回答问题,最后老师对本次实训进行总结性点评。
1原理图:功率放大器的组成由前级放大、音调电路、低频放大级、功率放大级及电源。
2静态工作测试点: 名称 IC1 TL084引脚 1234510 78910 11121314电压v 0.05-120.030.03 0.08 0.02-12名称 IC2 TDA2030A IC3 TDA2030A引脚 1234512345电压v0.03-140.01-140.01-140.07143 整机频率响应信号频率 20Hz100 Hz200 Hz1000 Hz2000 Hz10000 Hz20000 Hz输出分贝 10.5 8 4 -2.2 -2.7 -3 -3 相对分贝12.710.26.2-0.5-0.8-0.84 放大幅度:Au=1005 最大输出功率:Pomax=7.2W6 幅频特性:前级放大 音调电路低频 放大 (激励)功率 放大喇叭信号源 电 源模拟电子实训一个星期的时间很快就过了,这虽不是我大学以来第一次真正意义上作出的一个有关电子的作品,却是做的最成功、最满意的一个作品,尽管这个作品很简单,也很普通,但是亲手作出来总是最满意的。
功率放大器实验报告(终)
功率放⼤器实验报告(终)南昌⼤学实验报告学⽣姓名:王晟尧学号: 6102215054 专业班级:通信152班实验类型:□验证□综合□设计□创新实验⽇期:实验成绩:⾳频功率放⼤电路设计⼀、设计任务设计⼀⼩功率⾳频放⼤电路并进⾏仿真。
⼆、设计要求已知条件:电源9±V 或12±V ;输⼊⾳频电压峰值为5mV ;8Ω/0.5W 扬声器;集成运算放⼤器(TL084);三极管(9012、9013);⼆极管(IN4148);电阻、电容若⼲基本性能指标:P o ≥200mW (输出信号基本不失真);负载阻抗R L =8Ω;截⽌频率f L =300Hz ,f H =3400Hz扩展性能指标:P o ≥1W (功率管⾃选)三、设计⽅案⾳频功率放⼤电路基本组成框图如下:⾳频功放组成框图由于话筒的输出信号⼀般只有5mV 左右,通过话⾳放⼤器不失真地放⼤声⾳信号,其输⼊阻抗应远⼤于话筒的输出阻抗;滤波器⽤来滤除语⾳频带以外的⼲扰信号;功率放⼤器在输出信号失真尽可能⼩的前提下,给负载R L (扬声器)提供⼀定的输出功率。
应根据设计要求,合理分配各级电路的增益,功率计算应采⽤有效值。
基于运放TL084构建话⾳放⼤器与宽带滤波器,频率要求详见基本性能指标。
功率放⼤器可采⽤使⽤最⼴泛的OTL (Output Transformerless )功率放⼤电路和OCL (Output Capacitorless )功率放⼤电路,两者均采⽤甲⼄类互补对称电路,这种功放电路在具有较⾼效率的同时,⼜兼顾交越失真⼩,输出波形好,在实际电路中得到了⼴泛的应⽤。
对于负载来说,OTL 电路和OCL 电路都是射极跟随器,且为双向跟随,它们利⽤射极跟随器的优点——低输出阻抗,提⾼了功放电路的带负载能⼒,这也正是输出级所必需的。
由于射极跟随器的电压增益接近且⼩于1,所以,在OTL电路和OCL电路的输⼊端必须设有推动级,且为甲类⼯作状态,要求其能够送出完整的输出电压;⼜因为射极跟随器的电流增益很⼤,所以,它的功率增益也很⼤,这就同时要求推动级能够送出⼀定的电流。
模电课程设计:低频功率放大器实验报告
课程设计课程设计名称:模拟电路课程设计专业班级:学生姓名:学号:指导教师:课程设计时间: 2015年6月电子信息科学与技术专业课程设计任务书说明:本表由指导教师填写,由教研室主任审核后下达给选题学生,装订在设计(论文)首页1、设计任务及要求这次的模拟电路课程设计题目为音频功率放大器,简称音频功放,作为模拟电子课程设计课题设计,本课题提出的音频功率放大器性能指标比较低,主要采用理论课程里介绍的运算放大集成电路和功率放大集成电路来构成音频功率放大器。
音频功率放大器主要用于推动扬声器发声,凡发声的电子产品中都要用到音频功放,比如手机、MP4播放器、笔记本电脑、电视机、音响设备等给我们的生活和学习工作带来了不可替代的方便享受。
2、设计方案整体电路的设计与工作原理是通过前置放大器的处理,使输入的音频信号与放大器的输入灵敏度相匹配,从而使放大器适应不同的输入信号,再通过音量控制,输入功率放大电路进行处理。
同时设计电源电路,为前置电路和功率放大电路提供电源,最后得到较为理想的信号。
音频功率放大器实际上就是对比较小的音频信号进行放大,使其功率增加,然后输出。
其原理如图1所示,前置放大主要完成对小信号的放大,使用一个同向放大电路对输入的音频小信号的电压进行放大,得到后一级所需要的输入。
后一级的主要对音频进行功率放大,使其能够驱动电阻而得到需要的音频。
设计时首先根据技术指标要求,对整机电路做出适当安排,确定各级的增益分配,然后对各级电路进行具体的设计。
3、模块设计与参数计算低频功率放大器原理图(1)前置放大器:音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。
声音源的种类有多种,如话筒、录音机、线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。
低频功率放大器—OTL功率放大器实验报告1道
实验七低频功率放大器— OTL 功率放大器一、实验目的1、进一步理解OTL 功率放大器的工作原理2、学会OTL 电路的调试及主要性能指标的测试方法二、实验原理有输出电阻低,负载能力强等优点,T 适合于作功率输出级。
1 管工作于甲类状态,它的集电极电流IC1 由电位器RW1 进行调节。
IC1 的一部分流经电位器RW2 及二极管D,给T2、T3 提供偏压。
调节RW2,可以使T2、T3 得到合适的静态电流而工作于甲、1乙类状态,以克服交越失真。
静态时要求输出端中点 A 的电位U A U CC ,可以2通过调节RW1 来实现,又由于RW1 的一端接在 A 点,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。
当输入正弦交流信号ui 时,经T1 放大、倒相后同时作用于T2、T3 的基极,,有电流通过负载RL,同时向电容C0 充电,ui 的负半周使T2 管导通(T3 管截止),则已充好电的电容器C0 起着电源的作用,通在ui 的正半周,T3 导通(T2 截止)过负载RL 放电,这样在RL 上就得到完整的正弦波。
C2 和R 构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。
三、实验设备与器件1、+5V 直流电源5、直流电压表2、函数信号发生器6、直流毫安表3、双踪示波器7、频率计4、交流毫伏表8、晶体三极管3DG6 9011 3DG12 9013 3CG12 9012 晶体二极管IN4007 8Ω扬声器、电阻器、电容器若干四、实验内容1、静态工作点的测试1 调节输出端中点电位UA 1 调节电位器RW1 ,用直流电压表测量A 点电位,使U A U CC 。
2 2 调整输出极静态电流及测试各级静态工作点调节RW2 ,使T2、T3 管的IC2=IC3=5~10mA。
调整输出级静态电流的另一方法是动态调试法。
先使RW2=0,在输入端接入f=1KHz 的正弦信号ui。
低频功率放大器实验报告(word文档良心出品)
低频功率放大器实验人员:吴科进皮强强刘艳兰实验任务:设计并制作一个低频功率放大器实验要求:(1)输入级使用差分放大器,输出级使用乙类功放电路(2)负载8Ω;(3)输入信号电压为5mV;(4)额定输出功率为POR≥10W;(5)非线性失真≤3% ;(6)电源效率≥55 %;(7)交流噪声功率≤10mW课题分析:因额定输出功率POR≥10W,且负载R=8Ω,则由2=P I R及2/=可知输出电压有效值U≥9V,峰值U≥12.7V,P U R≥1.58A。
输入信号的电而电流的有效值I≥1.12A,峰值各部分电路参数的计算:(1) 电源设定:要求输出电压峰值为13V ,又因有一定的电压损耗,最终设置为 18V .(2) 互补乙类功放部分:用复合管组成的互补乙类功放电路,电阻2R 和16R 起着限制输出电流,吸收TIP31C 和TIP32C 的BE V 值随温度变化的作用,其值太小不能对温度的吸收又太高的期望,但是,该发射极电阻E R 一增大,因发射极电阻的压降,能够输出的最大电压就下降,所以E R 不能太大,是负载的1/10以下,通常只有数欧,在此,取2R =16R =500m Ω。
在输出部分加一个1000uF 电容,起到隔直通交的目的,与负载形成高通滤波器。
(3) 避免交越失真部分:因要求输出电流的峰值为1.58A ,而TIP31C 的电流放大倍数β=20,所以流进前级的TIP31C 基极的交流信号电流的峰值为1.58/20/20=4mA,因此流过8R 的直流电流C I 应大于4mA,但也不能太大,在此选取为100mA ,设流过Tr5集电极的电流为20mA,Tr5的电流放大倍数β=200,则基极电流为0.1mA,因此可设流过3R 和9R 的电流为2mA,因Tr5的 be U =0.7V ,则9R =0.7V/2m A=350Ω,要使TIP31C 与TIP32C 处于微导通则3R 和9R 两端的电压至少为 1.4V ,3R +9R =1.4V/2mA=700Ω,9R =700-3R =350Ω,因此选择9R 为1K Ω的电位器。
低频功率放大器实验报告
低频功率放大器实验报告引言低频功率放大器是一种常用的电子器件,它可以将输入信号的幅度放大到一个较高的水平。
本实验旨在通过设计和制作一个简单的低频功率放大器来加深对该器件的理解。
实验目的•了解低频功率放大器的基本原理•学习如何设计和制作一个简单的放大器电路•验证实验结果与理论预期的一致性实验材料和设备•电源•函数信号发生器•示波器•电阻、电容和二极管等元件•面包板和导线等实验器材实验步骤1.根据实验需求,选择合适的放大器类型和工作点。
常见的低频功率放大器有共射放大器和共基放大器两种,本实验选择共射放大器作为设计对象。
2.根据放大器类型和工作点选择合适的元件参数。
在设计共射放大器时,需要确定电阻参数和电容参数,以及输入和输出的直流偏置点。
3.将所选元件按照电路图连接到面包板上。
注意正确连接每个元件的引脚,避免短路和错误连接。
4.使用函数信号发生器提供输入信号,将信号连接到放大器的输入端。
5.将示波器连接到放大器的输出端,以测量输出信号的幅度和波形。
6.打开电源,调整函数信号发生器和示波器的参数,使其适应放大器的输入和输出要求。
7.通过调整放大器的电源电压和输入信号的频率,观察输出信号的变化。
记录实验结果并与理论预期进行比较。
实验结果与分析在实验过程中,我们根据设计要求和选择的元件参数,成功制作了一个低频功率放大器电路。
通过调整电源电压和输入信号的频率,我们观察到了输出信号的变化。
在理论预期方面,我们期望放大器能够将输入信号的幅度放大到一个较高的水平。
根据放大器电路的设计和理论模型,我们可以计算出放大倍数,并与实验测量结果进行对比。
如果实验结果与理论值相符,说明实验成功。
此外,我们还需要观察输出信号的波形和失真情况。
如果输出信号存在失真或畸变,我们需要进一步分析并调整放大器电路,以改善输出信号的质量。
总结通过本次实验,我们学习了低频功率放大器的基本原理,了解了放大器的设计和制作过程。
我们通过实际操作和测量,验证了理论预期并得出了实验结果。
音频功率放大器实验报告
音频功率放大器实验报告音频功率放大器实验报告引言:音频功率放大器是一种能够将输入信号放大到足够大的功率输出的电子设备。
它在音响系统、电视机、汽车音响等各种应用中都起到了至关重要的作用。
本实验旨在研究音频功率放大器的工作原理、性能参数以及应用。
一、实验目的本实验的主要目的是通过实际操作,了解音频功率放大器的基本原理和工作过程,掌握其性能参数的测量方法,并对其应用进行初步探索。
二、实验装置与方法实验所需装置包括音频功率放大器、信号发生器、示波器、电阻箱等。
首先,将信号发生器的输出与音频功率放大器的输入相连,通过调节信号发生器的频率和幅度,观察放大器输出的波形和幅度变化。
然后,通过示波器测量放大器的输入输出电压、电流,计算功率放大倍数等性能参数。
三、实验结果与分析在实验过程中,我们观察到音频功率放大器能够将输入信号放大到较大的幅度,并且保持波形的准确性。
通过调节信号发生器的频率,我们发现放大器对不同频率的信号有不同的放大效果。
在低频时,放大器的输出更加稳定,而在高频时,输出波形可能发生畸变。
通过示波器的测量,我们得到了音频功率放大器的输入输出电压、电流数据,并计算出了功率放大倍数。
实验结果显示,放大器的功率放大倍数与输入信号的幅度成正比,而与频率无关。
这说明音频功率放大器对信号的放大是线性的,没有频率响应的变化。
四、实验应用与展望音频功率放大器在现代生活中有着广泛的应用。
它不仅可以用于音响系统、电视机等娱乐设备,还可以应用于医疗设备、通信系统等领域。
在未来的研究中,我们可以进一步探索音频功率放大器的工作原理,优化其性能参数,提高其功率放大倍数和频率响应范围。
此外,随着科技的不断发展,音频功率放大器也在不断更新换代。
新型的功率放大器采用了数字信号处理技术,具有更高的效率和更低的失真。
未来的研究可以关注这些新技术的应用和发展,以满足人们对音频放大器的更高要求。
结论:通过本次实验,我们对音频功率放大器的工作原理、性能参数以及应用有了初步的了解。
音频功率放大电路实验报告(优选.)
最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 赠人玫瑰,手留余香。
实验报告课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________一、实验目的和要求1、理解音频功率放大电路的工作原理。
2、学习手工焊接和电路布局组装方法。
3、提高电子电路的综合调试能力。
4、通过myDAQ 来分析理论数据和实际数据之间的关系。
二、实验内容和原理(必填)音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。
按其构成可分为前置放大级、音调控制级和功率放大级三部分。
作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。
它们的输出信号差异很大,因此,音频功放电路中设置前置专业:姓名: 学号:装订线点名册上的序号 前置 放大级 音调控制 放大级 功率 放大级 v v放大级以适应不同信号源的输入。
为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。
为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。
扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。
前置放大电路:前置放大级输入阻抗较高,输出阻抗较低。
前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。
由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。
理想闭环电压放大倍数为:231R R A vf +=输入电阻:1R R if =输出电阻:0of =R功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。
音频放大电路实验报告(共9篇)
音频放大电路实验报告(共9篇)音频功率放大器实验报告一、实验目的1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能;2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法;3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。
4)培养设计开发过程中分析处理问题的能力、团队合作的能力。
二、实验要求1)设计要求设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。
要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标:(1)频带宽度50Hz~20kHz,输出波形基本不失真;(2)电路输出功率大于8W;(3)输入阻抗:≥10kΩ;(4)放大倍数:≥40dB;(5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz处有±12dB的调节范围;(6)所设计的电路具有一定的抗干扰能力;(7)具有合适频响宽度、保真度要好、动态特性好。
发挥部分:(1)增加电路输出短路保护功能;(2)尽量提高放大器效率;(3)尽量降低放大器电源电压;(4)采用交流220V,50Hz电源供电。
2)实物要求正确理解有关要求,完成系统设计,具体要求如下:(1)画出电路原理图;(2)确定元器件及元件参数;(3)进行电路模拟仿真;(4)SCH文件生成与打印输出;(5)PCB文件生成与打印输出;(6)PCB版图制作与焊接;(7)电路调试及参数测量。
三、实验内容与原理音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。
按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。
v图1 音频功率放大器的组成框图1)前置放大级音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。
音频功率放大器设计实验报告_需要的进啦!!!!要点
第一节实训目的实训是通过对培训对象比较集中、系统的专业技能培训,使其具有一定的专业操作技能。
对于电子信息工程专业的学生,实训的目的在于通过集中、系统的培训使学生了解和掌握电子元件的认外形、特征及一些常用电子元件的运用,了解和掌握常用操作工具(如电烙铁、万用表、吸锡器、斜口钳等)和常用实验仪器设备(如函数发生器、示波器等)的原理和使用。
与此同时掌握电子元件检测、焊接技术和调试技术,使理论与实践相结合,进一步提升自己的专业知识,最后真正的掌握一门技术。
第二节 TDA2030简介TDA 2030A:TDA 2030 是一块性能十分优良的功率放大集成电路,其主要特点是上升速率高、瞬态互调失真小,在目前流行的数十种功率放大集成电路中,规定瞬态互调失真指标的仅有包括TDA 2030 在内的几种。
我们知道,瞬态互调失真是决定放大器品质的重要因素,该集成功放的一个重要优点。
TDA 2030 集成电路的另一特点是输出功率大,而保护性能以较完善。
根据掌握的资料,在各国生产的单片集成电路中,输出功率最大的不过20W,而TDA 2030的输出功率却能达18W,若使用两块电路组成BTL电路,输出功率可增至35W。
另一方面,大功率集成块由于所用电源电压高、输出电流大,在使用中稍有不慎往往致使损坏。
然而在TDA 2030集成电路中,设计了较为完善的保护电路,一旦输出电流过大或管壳过热,集成块能自动地减流或截止,使自己得到保护(当然这保护是有条件的,我们决不能因为有保护功能而不适当地进行使用)。
TDA 2030 在电源电压±14V,负载电阻为4Ω时输出14瓦功率(失真度≤0.5%);在电源电压±16V,负载电阻为4Ω时输出18瓦功率(失真度≤0.5%)。
该电路由于价廉质优,使用方便,并正在越来越广泛地应用于各种款式收录机和高保真立体声设备中。
该电路可供低频课程设计选用。
TDA2030A主要参数:工作电压:±6~22V静态电流:<50mA输出功率:18W,当V=±16V,RL=4Ω时谐波失真:0.05%,当f=15kHz,RL=8Ω时闭环增益:26dB,当f=1kHz时开环增益:80dB,当f=1kHz时频响范围:40~14000HzTDA2030电路特点:[1].外接元件非常少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
音频功率放大器设计
一、实验目的
进一步掌握滤波电路的连接方法,并了解和设计功率放大器。
二、仿真电路要求
已知条件:电源9
±V或12
±V;输入音频电压峰值为5mV;8Ω/0.5W扬声器;集成运算放大器(TL084);三极管(9012、9013);二极管(IN4148);电阻、电容若干
基本性能指标:P o≥200mW(输出信号基本不失真);负载阻抗R L=8Ω;截止频率f L=300Hz,f H=3400Hz。
三、仿真电路设计思路
其中,主要设计后两个部分,滤波器的效果就是滤除音频信号中夹杂的干扰信号,可以采用RC有源滤波器快速设计方法,由低通和高通确定频带宽度,设计方法见下图:
功率放大器的作用则是在输出信号失真尽可能小的前提下,给负载提供一个尽可能大的功率。
本实验要求:P o 200mW,在最后检测的时候,应该用探针检测负载的电压与电流,然后再接一个示波器,在波形不失真的情况下,有效电压值与有效电流值的乘积应该满足大于200mW。
四、实验电路
第一部分:滤波部分:
低通与高通均采用了VCVS连接方法,详细参数可以由滤波器快速设计方法图标详细取值计算得到。
第二部分:功率放大器:
设计方案参照了实验指导书上的内容,静态工作点,电阻阻值选择等内容不再赘述。
五、实验现象
滤波器的最终输出波特图:
负载的输出波形以及探针显示:
可以发现电压有效值为 1.82V,电流有效值为228mA,最终得到P o=414.96mW,满足实验要求。
(若实验初期发现电压,电流等太小,则应边调节滑动变阻器边观察示波器图形和探针数值,直到符合实验要求为
止。
)
六、实验总结
本次实验的电路设计分为两个部分,分别有其不同的效果,第一个部分是确定通频带,第二个部分则是功率放大。
这两个部分缺一不可,可能有人认为滤波部分可有可无,但是从实际考虑,滤波部分是滤除杂音干扰的重要电路组成部分,拥有其不可替代的作用。
功率放大部分电路比较复杂,计算也比较困难,这就使得我们必须静下心来分析电路并设计电阻参数,总之,这次电路设计使我们对微电子电路的理解更加透彻,另一方面对实际问题的分析也使我们意识到电路的设计应该从多方面,多角度入手,尽量能够使得电路响应能够达到最好要求。