最新初三九年级数学上册数学压轴题专题练习(解析版)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新初三九年级数学上册数学压轴题专题练习(解析版)

一、压轴题

1.阅读理解:

如图,在纸面上画出了直线l 与⊙O ,直线l 与⊙O 相离,P 为直线l 上一动点,过点P 作⊙O 的切线PM ,切点为M ,连接OM 、OP ,当△OPM 的面积最小时,称△OPM 为直线l 与⊙O 的“最美三角形”.

解决问题:

(1)如图1,⊙A 的半径为1,A(0,2) ,分别过x 轴上B 、O 、C 三点作⊙A 的切线BM 、OP 、CQ ,切点分别是M 、P 、Q ,下列三角形中,是x 轴与⊙A 的“最美三角形”的是 .(填序号)

①ABM ;②AOP ;③ACQ

(2)如图2,⊙A 的半径为1,A(0,2),直线y=kx (k≠0)与⊙A 的“最美三角形”的面积为

1

2

,求k 的值. (3)点B 在x 轴上,以B 为圆心,3为半径画⊙B ,若直线y=3x+3与⊙B 的“最美三角形”的面积小于

3

,请直接写出圆心B 的横坐标B x 的取值范围.

2.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点

P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速

度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点

P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时

间为ts . (1)如图①,

①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当38

83

a t ==

,时,证明:ADF CDF S S ∆∆=.

3.如图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点p 从A 开始折线A ——B ——C ——D 以4cm/秒的 速度 移动,点Q 从C 开始沿CD 边以1cm/秒的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点也随之停止运动,设运动的时间t (秒)

(1)t 为何值时,四边形APQD 为矩形.

(2)如图(2),如果⊙P 和⊙Q 的半径都是2cm ,那么t 为何值时,⊙P 和⊙Q 外切? 4.如图1,Rt △ABC 两直角边的边长为AC =3,BC =4.

(1)如图2,⊙O 与Rt △ABC 的边AB 相切于点X ,与边BC 相切于点Y .请你在图2中作出并标明⊙O 的圆心(用尺规作图,保留作图痕迹,不写作法和证明)

(2)P 是这个Rt △ABC 上和其内部的动点,以P 为圆心的⊙P 与Rt △ABC 的两条边相切.设⊙P 的面积为S ,你认为能否确定S 的最大值?若能,请你求出S 的最大值;若不能,请你说明不能确定S 的最大值的理由.

5.已知:在ABC 中,,90AC BC ACB ︒

=∠=,点F 在射线CA 上,延长BC 至点

D ,使CD CF =,点

E 是射线B

F 与射线DA 的交点.

(1)如图1,若点F 在边CA 上; ①求证:BE AD ⊥;

②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想. 6.问题发现:

(1)如图①,正方形ABCD 的边长为4,对角线AC 、BD 相交于点O ,E 是AB 上点(点E 不与A 、B 重合),将射线OE 绕点O 逆时针旋转90°,所得射线与BC 交于点F ,则四边形OEBF 的面积为 . 问题探究:

(2)如图②,线段BQ =10,C 为BQ 上点,在BQ 上方作四边形ABCD ,使∠ABC =∠ADC =90°,且AD =CD ,连接DQ ,求DQ 的最小值; 问题解决:

(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD 中,∠ABC =∠ADC =90°,AD =CD ,AC =600米.其中AB 、BD 、BC 为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB +BD +BC 的最大值.

7.翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。你能和小菲一起解决下列各问题吗?(以下各问只要求写出必要的计算过程和简洁的文字说明即可。)

(1)如图①,小菲同学把一个边长为1的正三角形纸片(即△OAB )放在直线l 1上,OA 边与直线l 1重合,然后将三角形纸片向右翻转一周回到初始位置,求顶点O 所经过的路程;并求顶点O 所经过的路线;

图①

(2)小菲进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA边与直线l2重合,然后将正方形纸片向右翻转若干次.她提出了如下问题:

图②

问题①:若正方形纸片OABC接上述方法翻转一周回到初始位置,求顶点O经过的路程;问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是

41202

+

(3)①小菲又进行了进一步的拓展研究,若把这个正三角形的一边OA与这个正方形的一边OA重合(如图3),然后让这个正三角形在正方形上翻转,直到正三角形第一次回到初始位置(即OAB的相对位置和初始时一样),求顶点O所经过的总路程。

图③

②若把边长为1的正方形OABC放在边长为1的正五边形OABCD上翻转(如图④),直到正方形第一次回到初始位置,求顶点O所经过的总路程。

图④

相关文档
最新文档