高三等差数列复习专题百度文库

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题

1.已知数列{}n a 的前项和2

21n S n =+,n *∈N ,则5a =( )

A .20

B .17

C .18

D .19 2.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8

B .10

C .12

D .14

3.在等差数列{}n a 中,3914a a +=,23a =,则10a =( ) A .11 B .10

C .6

D .3

4.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( )

A .29

B .38

C .40

D .58

5.已知等差数列{}n a 中,前n 项和2

15n S n n =-,则使n S 有最小值的n 是( )

A .7

B .8

C .7或8

D .9

6.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则12

15

a b =( ) A .

3

2

B .

7059

C .

7159

D .85

7.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10

B .9

C .8

D .7

8.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60

B .120

C .160

D .240

9.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161

B .155

C .141

D .139

10.设等差数列{}n a 、{}n b 的前n 项和分别是n S 、n T .若237

n n S n T n =+,则6

3a b 的值为

( ) A .

5

11

B .38

C .1

D .2

11.在函数()y f x =的图像上有点列{},n n x y ,若数列{}n x 是等比数列,数列{}n y 是等差数列,则函数()y f x =的解析式可能是( ) A .3(4)f x x =+

B .2

()4f x x =

C .3()4x

f x ⎛⎫= ⎪⎝⎭

D .4()log f x x =

12.等差数列{}n a 的前n 项和为n S ,已知58a =,36S =,则107S S -的值是( ) A .48

B .60

C .72

D .24

13.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列

{}n a ,已知11a =,2

2a

=,且满足()211+-=+-n

n n a a (n *∈N ),则该医院30天入

院治疗流感的共有( )人

A .225

B .255

C .365

D .465

14.已知等差数列{}n a 的前n 项和为n S ,且2

n S n =.定义数列{}n b 如下:

()*1m m b m m

+∈N 是使不等式()

*

n a m m ≥∈N 成立的所有n 中的最小值,则13519 b b b b +++

+=( )

A .25

B .50

C .75

D .100

15.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103

B .107

C .109

D .105

16.已知递减的等差数列{}n a 满足22

19a a =,则数列{}n a 的前n 项和取最大值时n =( )

A .4或5

B .5或6

C .4

D .5

17.在数列{}n a 中,11a =,且11n

n n

a a na +=+,则其通项公式为n a =( ) A .

21

1n n -+

B .2

1

2n n -+

C .22

1

n n -+

D .2

2

2

n n -+

18.已知数列{}n a 是公差不为零且各项均为正数的无穷等差数列,其前n 项和为n S .若

p m n q <<<且()

*,,,p q m n p q m n N +=+∈,则下列判断正确的是( )

A .22p p S p a =⋅

B .p q m n a a a a >

C .1111p q m n a a a a +<+

D .

1111p q m n

S S S S +>+ 19.已知等差数列{}n a 的前n 项和为n S ,且310179a a a ++=,则19S =( ) A .51

B .57

C .54

D .72

20.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺

相关文档
最新文档