图形的变换知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五部分图形的变换
平移、旋转和翻折是几何变换中的三种基本变换。所谓几何变换就是根据确定的法则,对给定的图形(或其一部分)施行某种位置变化,然后在新的图形中分析有关图形之间的关系。
一、平移
(1)平移的定义:在平面内,将一个图形整体沿某一方向由一个位置平移到另一个位置,图形的这种移动,叫做平移变换,简称平移,平移前后互相重合的点叫做对应点。
(2)平移的性质:
①对应点的连线平行(或共线)且相等
②对应线段平行(或共线)且相等,平移前后的两条对应线段的四个端点所围成的四边形为平行四边形(四个端点共线除外)
③对应角相等,对应角两边分别平行,且方向一致。
(3)用坐标表示平移:如果把一个图形各个点的横坐标都加上(或减去)一个正数a,纵坐标不变,相应的新图形就是把原图形向右(或向左)平移a个单位长;如果把一个图形各个点的纵坐标都加上(或减去)一个正数a,横坐标不变,相应的新图形就是把原图形向上(或向下)平移a个单位长。(从坐标来讲:向正方向平移为加,逆方向平移为减)
(4)平移的两个要素:平移方向、平移距离
(5)平移作图的步骤和方法:将原图形的各个特征点按规定的方向平移,得到相应的对称点,再将各对称点进行相应连接,即得到平移后的图形,方法有如下三种:平行线法、对应点连线法、全等图形法。
平移求阴影部分面积
二、旋转
旋转的定义:
在平面内,将一个图形绕一个定点沿某个方向转动一个角度成为与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫做旋转中心,图形转动的角叫做旋转角.
旋转具有以下特征:
(1)对应点与旋转中心的连线所成夹角等于旋转角;
(2)对应点到旋转中心的距离相等;
(3)对应角、对应线段相等;
(4)图形的形状和大小都不变。
(5)对应线段的垂直平分线都经过旋转中心
常见的旋转模型:(利用旋转做辅助线的思路)
三、旋转类型题目
1、正三角形类型
在正ΔABC 中,P 为ΔABC 内一点,将ΔABP 绕A 点按逆时针方向旋转60°,使得AB 与AC 重合。经过这样旋转变化,将图(1-1-a )中的PA 、PB 、PC 三条线段集中于图(1-1-b )中的
一个ΔP'CP中,此时ΔP'AP也为正三角形。
2、正方形类型
在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转90°,使得BA与BC重合。经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。
3、等腰直角三角形类型
在等腰直角三角形ΔABC中,∠C=90°, P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转90°,使得AC与BC重合。经过这样旋转变化,在图(3-1-b)中的一个ΔP'CP为等腰直角三角形。
旋转求阴影部分的面积
图形的轴对称
1.轴对称定义:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2.轴对称图形性质:
①角的平分线上的点到这个角的两边的距离相等。
②线段垂直平分线上的点到这条线段两个端点的距离相等。
③等腰三角形的“三线合一”;对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。
利用对称性求阴影部分的面积
中心对称
1、定义
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质
(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
对称点
1、关于原点对称的点的特征
两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)
2、关于x轴对称的点的特征
两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)
3、关于y轴对称的点的特征
两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)
4、关于直线y=x(一三象限角平分线)对称的点的特征
两个点关于y=x对称时,它们的坐标中,横纵坐标交换位置,即点P(x,y)关于y=x的对称点为P’(y,x)
5、关于直线y= - x(二四象限角平分线)对称的点的特征
两个点关于y= - x对称时,它们的坐标中,横纵坐标先交换位置,再互为相反数,即点P(x,y)关于y=x的对称点为P’(-y,-x)