初一数学图形(上)习题解析
人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)
人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)一、选择题1.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个B解析:B【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒D解析:D【分析】 根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D .【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.4.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n + C解析:C【分析】由条件可知EC+DF=m-n ,又因为E ,F 分别是AC ,BD 的中点,所以AE+BF=EC+DF=m-n ,利用线段和差AB=AE+BF+EF 求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E 是AC 的中点,F 是BD 的中点,∴AE=EC ,DF=BF ,∴AE+BF=EC+DF=m-n ,∵AB=AE+EF+FB ,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.5.已知∠AOB=40°,∠BOC=20°,则∠AOC的度数为( )A.60°B.20°C.40°D.20°或60°D解析:D【分析】考虑两种情形①当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.【详解】解:如图当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°,故答案为20°或60°,故选D.【点睛】本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算. 6.体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q C解析:C【分析】根据点和圆的位置关系,知最好成绩在P点.【详解】P点与O点距离最长,且在有效范围内,所以最好成绩在P点.【点睛】考查了点和圆的位置关系.7.已知线段AB=6cm,反向延长线段AB到C,使BC=83AB,D是BC的中点,则线段AD的长为____cmA.2 B.3 C.5 D.6A 解析:A【分析】由BC =83AB 可求出BC 的长,根据中点的定义可求出BD 的长,利用线段的和差关系求出AD 的长即可.【详解】∵BC =83AB ,AB=6cm , ∴BC=6×83=16cm , ∵D 是BC 的中点,∴BD=12BC=8cm , ∵反向延长线段AB 到C ,∴AD=BD-AB=8-6=2cm ,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.8.22°20′×8等于( ).A .178°20′B .178°40′C .176°16′D .178°30′B解析:B【分析】根据角的换算关系即可求解.【详解】22°×8=176°,20′×8=160′=2°40′,故22°20′×8=176°+2°40′=178°40′故选B.【点睛】本题考查了角的度量单位以及单位之间的换算,掌握'160︒=,''160'=是解题的关键. 9.如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有三条水路、两条陆路,从B 地到C 地有4条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A .10种B .20种C .21种D .626种C解析:C【分析】本题只需分别数出A 到B 、B 到C 、A 到C 的条数,再进一步分析计算即可.【详解】观察图形,得:A到B有5条,B到C有4条,所以A到B到C有5×4=20条,A到C一条.所以从A地到C地可供选择的方案共21条.故选C.【点睛】解决本题的关键是能够有顺序地数出所有情况.10.下列说法不正确的是()A.两条直线相交,只有一个交点B.两点之间,线段最短C.两点确定一条直线D.过平面上的任意三点,一定能作三条直线D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题11.如图,点C、D在线段AB上,D是线段AB的中点,AC=13AD ,CD=4cm ,则线段AB的长为_____cm【分析】根据AC=ADCD=4cm求出再根据是线段的中点即可求得答案【详解】∵AC=ADCD=4cm∴∴∵是线段的中点∴∴故答案为【点睛】本题考查了线段中点的几何意义以及求线段的长根据题目中的几何语解析:12【分析】根据AC=13AD ,CD=4cm ,求出AD,再根据D是线段AB的中点,即可求得答案.【详解】∵AC=13AD ,CD=4cm ,∴12433CD AD AC AD AD AD =-=-== ∴6AD =,∵D 是线段AB 的中点,∴212AB AD ==∴12AB cm =故答案为12【点睛】 本题考查了线段中点的几何意义以及求线段的长,根据题目中的几何语言列出等式,是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =AB+BC=4cm ,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式a b c-的值是_________. 【解析】【分析】将此正方体的表面展开图折叠成正方体观察abc 分别对应的值即可得出答案【详解】将图中所示图形折叠成正方体后a 与4相对应b 与2相对应c 与-1相对应∴∴【点睛】由平面图形的折叠及立体图形的解析:34- 【解析】【分析】将此正方体的表面展开图折叠成正方体,观察a ,b ,c 分别对应的值,即可得出答案.【详解】将图中所示图形折叠成正方体后,a 与4相对应,b 与2相对应,c 与-1相对应, ∴1a 4=,1b 2=,c 1=- ∴3=-4a b c - 【点睛】由平面图形的折叠及立体图形的表面展开图的特点解题.14.下午3:40时,时钟上分针与时针的夹角是_________度.130【分析】分别求出时针走过的度数和分针走过的度数用分针走过的度数减去时针走过的度数即可得出答案【详解】时针每小时走30°分针每分钟走6°∴下午3:40时时针走了3×30°+×30°=110°分针解析:130【分析】分别求出时针走过的度数和分针走过的度数,用分针走过的度数减去时针走过的度数,即可得出答案.【详解】时针每小时走30°,分针每分钟走6°∴下午3:40时,时针走了3×30°+4060×30°=110° 分针走了40×6°=240°∴夹角=240°-110°=130°【点睛】本题考查的是钟面角问题,易错点在于计算时针走过的度数时,往往大部分人只计算了前面3个小时时针走过的度数,容易忽略后面40分钟时针也在走.15.看图填空.(1)AC =AD -_______=AB +_______,(2)BC +CD =_______=_______-AB ,(3)AD =AC+___.CDBCBDADCD 【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC (2)BC+CD=BD=AD-AB (3)AD=AC+CD 故答案为:CD ;BC ;BD ;AD解析:CD BC BD AD CD【分析】根据线段之间的和差关系进行解答即可得答案.【详解】(1)AC=AD-CD=AB+BC ,(2)BC+CD=BD=AD-AB,(3)AD=AC+CD,故答案为:CD;BC;BD;AD;CD【点睛】本题主要考查线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.16.如图所示,∠BOD=45°,那么不大于90°的角有___个,它们的度数之和是____.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE=90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA,即和为90°,而有的角相加等于∠BOD,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD,∠EOC,∠EOB,∠EOA,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA共10个;它们的度数之和是(∠EOD+∠DOA)+(∠EOC+∠COA)+(∠ EOB+∠BOA)+[(∠DOC+∠COB)+∠DOB]+∠EOA=90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.17.如图,点C是线段AB的中点,点D,E分别在线段AB上,且ADDB=23,AEEB=2,则CDCE的值为____.【分析】由线段中点的定义可得AC=BC=AB根据线段的和差关系及==2可得出CDCE与AB的关系进而可得答案【详解】∵点C是线段AB的中点∴AC=BC=AB∵==2BD=AB-ADAE=AB-BE∴解析:3 5【分析】由线段中点的定义可得AC=BC=12AB,根据线段的和差关系及ADDB=23,AEEB=2,可得出CD、CE与AB的关系,进而可得答案.【详解】∵点C是线段AB的中点,∴AC=BC=12AB,∵ADDB =23,AEEB=2,BD=AB-AD,AE=AB-BE,∴AD=25AB,BE=13AB,∵CD=AC-AD,CE=BC-BE,∴CD=12AB-25AB=110AB,CE=12AB-13AB=16AB,∴CDCE=11016ABAB=35,故答案为3 5【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.18.(1)比较两条线段的长短,常用的方法有_________,_________.(2)比较两条线段a和b的大小,结果可能有种情况,它们是_______________.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大解析:(1)度量比较法,叠合比较法;(2)3,a>b、a=b、a<b【分析】(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;(2)两条线段a和b的大小有三种情况.【详解】(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.【点睛】本题考查了比较线段的长短,是基础题型,是需要识记的知识.19.如图所示,能用一个字母表示的角有________个,以点A为顶点的角有________个,图中所有大于0°小于180°的角有________个.37【分析】根据角的概念和角的表示方法依题意求得答案【详解】能用一个字母表示的角有2个:∠B∠C;以A为顶点的角有3个:∠BAD∠BAC∠DAC;大于0°小于180°的角有7个:∠BAD∠BAC∠D解析:3 7【分析】根据角的概念和角的表示方法,依题意求得答案.【详解】能用一个字母表示的角有2个:∠B,∠C;以A为顶点的角有3个:∠BAD,∠BAC,∠DAC;大于0°小于180°的角有7个:∠BAD,∠BAC,∠DAC,∠B,∠C,∠ADB,∠ADC.故答案为2,3,7.【点睛】利用了角的概念求解.从一点引出两条射线组成的图形就叫做角.角的表示方法一般有以下几种:1.角+3个大写英文字母;2.角+1个大写英文字母;3.角+小写希腊字母;4.角+阿拉伯数字.20.已知∠A=67°,则∠A的余角等于______度.23【解析】∵∠A=67°∴∠A的余角=90°﹣67°=23°故答案为23解析:23【解析】∵∠A=67°,∴∠A的余角=90°﹣67°=23°,故答案为23.三、解答题21.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OE是射线OB的反向延长线.(1)求射线OC的方向角;(2)求∠COE的度数;(3)若射线OD平分∠COE,求∠AOD的度数.解析:(1)射线OC的方向是北偏东70°;(2)∠COE=70°;(3)∠AOD=90°.【分析】(1)先求出∠AOC=55°,再求得∠NOC的度数,即可确定OC的方向;(2)根据∠AOC=55°,∠AOC=∠AOB,得出∠BOC=110°,进而求出∠COE的度数;(3)根据射线OD平分∠COE,即可求出∠COD=35°再利用∠AOC=55°求出答案即可.【详解】(1)∵射线OA的方向是北偏东15°,射线OB的方向是北偏西40°即∠NOA=15°,∠NOB=40°,∴∠AOB=∠NOA+∠NOB=55°,又∵∠AOB=∠AOC,∴∠AOC=55°,=°,∴∠NOC=∠NOA+∠AOC=15°+ 55°70∴射线OC的方向是北偏东70°.(2)∵∠AOB=55°,∠AOB=∠AOC,∴∠BOC=∠AOB+∠AOC=55°+55°=110°,又∵射线OD是OB的反向延长线,∴∠BOE=180°,∴∠COE=180°-110°=70°,(3)∵∠COE=70°,OD平分∠COE,∴∠COD=35°,∴∠AOD=∠AOC+∠COD=55°+35°=90°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.24.如图,点C为线段AD上一点,点B为CD的中点,且6cmBD=.AC=,2cm(1)图中共有多少条线段?(2)求AD的长.解析:(1)6条;(2)10cm【分析】(1)根据线段的定义,即可得到答案;(2)由点B 为CD 的中点,即可求出CD 的长度,然后求出AD 的长度.【详解】解:(1)根据题意,图中共有6条线段,分别是AC ,AB ,AD ,CB ,CD ,BD . (2)因为点B 是CD 的中点,2cm BD =,所以24cm CD BD ==,所以10cm AD AC CD =+=.【点睛】本题考查了线段中点的有关计算,以及线段的定义,解题的关键是熟练掌握线段有关的计算问题.25.如图,直线AB 与CD 相交于点O ,∠AOE=90°.(1)如图1,若OC 平分∠AOE,求∠AOD 的度数;(2)如图2,若∠BOC=4∠FOB ,且OE 平分∠FOC ,求∠EOF 的度数.解析:(1)135°;(2)54°【分析】(1)利用OC 平分∠AOE ,可得∠AOC =12∠AOE =12×90°=45°,再利用∠AOC+∠AOD=180°,即可得出.(2)由∠BOC=4∠FOB ,设∠FOB=x°,∠BOC=4x°,可得∠COF=∠COB-∠BOF=3x°,根据OE 平分∠COF ,可得∠COE=∠EOF=12∠COF=32x°,即可得出. 【详解】(1)∵∠AOE=90°,OC 平分∠AOE ,∴∠AOC =12∠AOE =12×90°=45°, ∵∠AOC+∠AOD=180°,∴∠AOD=180°-∠AOC=180°-45°=135°,即∠AOD的度数为135°.(2)∵∠BOC=4∠FOB,∴设∠FOB=x°,∠BOC=4x°∴∠COF=∠COB-∠BOF=4x°-x°=3x°∵OE平分∠COF∴∠COE=∠EOF=12∠COF=32x°∵32x+x=90°∴x=36,∴∠EOF=32x°=32×36°=54°即∠EOF的度数为54°.【点睛】本题考查了角平分线的性质、方程思想方法、数形结合方法,考查了推理能力与计算能力.26.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。
北师大版数学初一上册第一章丰富的图形世界截一个几何体练习题含解析
北师大版数学初一上册第一章丰富的图形世界截一个几何体练习题含解析2.如图,用一个平面去截一个正方体,截面相同的是( )A、①与②B、③与④C、①与③④D、①与②,③与④3.用平面去截以下几何体,截面的形状不可能是圆的几何体是( )A、球B、圆锥C、圆柱D、正方体4.以下关于截面的说法正确的选项是( )A、截面是一个平面图形B、截面的形状与所截几何体无关C、同一个几何体,截面只有一个D、同一个几何体,截面的形状都相同5.用一个平面去截一个几何体,不能截得三角形截面的几何体是( )A、圆柱B、圆锥C、三棱柱D、正方体6.用平面去截以下几何体,能截得长方形、三角形、等腰梯形三种形状的截面,这个几何体是( )7. 用一个平面去截以下六个几何体,能得到长方形截面的几何体有( )A、2个B、3个C、4个D、5个8.有一个圆锥体,用一个平面从不同的位置去截它,如图①~④,能得到不同的截面,正确的有( )A、1种B、2种C、3种D、4种9. 一个几何体的一个截面是三角形,那么原几何体一定不是以下图形中的( )A、圆柱和圆锥B、球体和圆锥C、球体和圆柱D、正方体和圆锥10. 用一个平面截去正方体的一个角,那么截面不可能是( )A、锐角三角形B、等腰三角形C、等腰直角三角形D、等边三角形11. 如图①,大正方体上截去一个小正方体后,可得到图②的几何体.设原大正方体的表面积为S,图②中几何体的表面积为S′,那么S′与S的大小关系是( )A、S′>SB、S′=SC、S′<S D .不能确定12. 如图①,一个物体的外形是长方体,其内部构造不详.用一组水平的平面截这个物体时,得到了一组(自下而上)截面,截面形状如图②,这个长方体的内部构造可能是____.13. 用一个平面去截一个正方体,图中画有阴影的部分是截面,下面有关截面画法正确的序号有.14. 如图是一个棱长为2 cm的立方体,假设要把它截成八个棱长1 c m的小立方体,至少需截____次.15. (1)把一个三棱柱分割成四个小三棱柱,你能找出多少种不同的分割方法?请把你的想法与同伴进行交流;(2)在一个圆柱体中你能用一个平面截出一个三角形吗?能截出一个半圆吗?在什么条件下,你能截出一个正方形?16. 如图,用一个平面去截一个正方体,如果截去的几何体是一个三棱锥,请回答以下问题:(1)截面一定是什么图形?(2)剩下的几何体可能有几个顶点?17.如图①是一个正方体,不考虑边长的大小,它的平面展开图为图②,四边形APQC是截正方体的一个截面.问截面的四条线段AC,CQ,QP,PA分别在展开图的什么位置上?18. 一个圆柱的底面半径是10 cm,高是18 cm,把这个圆柱放在水平桌面上,如下图.(1)如果用一个平面沿水平方向去截这个圆柱,所得的截面是什么形状?(2)如果用一个平面沿竖直方向去截这个圆柱,所得的截面是什么形状?(3)怎样截时所得的截面是长方形且长方形的面积最大,请你画出这个截面并求其面积.1---11 DDDAA DBDCC B12. 圆锥13. ②③④14. 315. 解:(1)分割方法有:①横割三次;②横割一次,竖割一次;③竖割三次等(2)一个圆柱体中用一个平面不能截出三角形;不能截出半圆;圆柱的高等于底面圆的直径时,能截出一个正方形16. 解:(1)三角形(2)剩下的几何体可能有7个顶点、或8个顶点、或9个顶点、或10个顶点17. 解:线段AC,CQ,QP,PA分别在展开图的面ABCD,BCGF,EFGH,EFBA上18. 解:(1)所得的截面是圆(2)所得的截面是长方形(3)当平面沿竖直方向且经过两个底面的圆心时,截得的长方形面积最大.这时,长方形的一边等于圆柱的高,另一边等于圆柱的底面直径.那么这个长方形的面积为:10×2×18=360(cm2).图略。
人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)
人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)一、选择题1.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A沿着正方体的棱长爬行到点B的长度为()A.0 B.1 C.2 D.3B解析:B【分析】将图1折成正方体,然后判断出A、B在正方体中的位置关系,从而可得到AB之间的距离.【详解】解:将图1折成正方体后点A和点B为同一条棱的两个端点,得出AB=1,则小虫从点A沿着正方体的棱长爬行到点B的长度为1.故选B.【点睛】本题主要考查的是展开图折成几何体,判断出点A和点B在几何体中的位置是解题的关键.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°A 解析:A【分析】根据题意各种角的关系直接可求出题目要求的角度.【详解】因为∠AOD =40°,∠BOC =50°,所以∠COD =90°,又因为OM ,ON 分别平分∠BOC 和∠AOD ,所以∠N OD+∠M OC =45°,则∠MON=∠N OD+∠M OC+∠COD=135°.【点睛】本题考查了角平分线的知识,掌握角平分线的性质是解决此题的关键.4.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .16B 解析:B【分析】按图形将要求的线段ED 可转化成已知线段.ED=EC+CD=12BC+3AC ,而BC 、AC 都可根据题中比例求得,于是线段ED 可求.【详解】解:根据题意画图:因为:1:3AC CB =,且8AB =,所以2AC =,6BC =.由题意可知:113632922ED EC CD BC AC =+=+=⨯+⨯=, 故选:B .【点睛】本题考查的线段的相关运算,根据题意画好图形是关键,利用图形进行线段间的转化是解题突破口.5.某正方体的平面展开图如下图所示,这个正方体可能是下面四个选项中的( ).A.B.C.D. A解析:A【分析】根据正方体的展开与折叠.可以动手折叠看看,充分发挥空间想象能力解决也可以.【详解】根据题意及图示只有A经过折叠后符合.故选:A.【点睛】此题考查几何体的展开图,解题关键在于空间想象力.6.如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D两点表示的数分别为-5和6,点E为BD的中点,在数轴上的整数点中,离点E最近的点表示的数是()A.2 B.1C.0 D.-1A解析:A【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4, ∴|6-E|=4, ∴点E 所表示的数是:6-4=2.∴离线段BD 的中点最近的整数是2.故选:A .【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.7.已知α∠和β∠互补,且αβ∠>∠,则有下列式子:①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个D .1个B解析:B【分析】根据余角和补角的概念进行角度的计算即可得解.【详解】∵9090ββ︒-∠+∠=︒,∴①正确;∵α∠和β∠互补,∴180αβ∠+∠=︒,∴901809090αβ∠-︒+∠=︒-︒=︒,∴②正确,⑤错误; ∵()11180909022αββββ∠+∠+∠=⨯︒+∠=︒+∠≠︒, ∴③错误; ∵()()11118090222αββαβ∠-∠+∠=∠+∠=⨯︒=︒, ∴④正确;∴①②④正确,故选:B.【点睛】 本题主要考查了余角和补角的含义,熟练掌握相关角度的计算是解决本题的关键. 8.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A.8B.7C.6D.4C解析:C【分析】确定原正方体相对两个面上的数字,即可求出和的最小值.【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故选:C.【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.9.由A站到G站的某次列车,运行途中停靠的车站依次是A站——B站—C站——D站——E站——F站——G站,那么要为这次列车制作的火车票有()A.6种B.12种C.21种D.42种C解析:C【解析】【分析】从A出发要经过6个车站,所以要制作6种车票,从B出发要经过5个车站,所以要制作5种车票,从C出发要经过4个车站,所以要制作4种车票,从D出发要经过3个车站,所以要制作3种车票,从E出发要经过2个车站,所以要制作2种车票,从F出发要经过1个车站,所以要制作1种车票,把车票数相加即可得解.【详解】共需制作的车票数为:6+5+4+3+2+1=21(种).故选C.【点睛】本题从A站出发,逐站求解即可得到所有可能的情况,不要遗漏.10.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确C解析:C【分析】用直线的表示方法解答,通常直线用两个大写字母或一个小写字母表示.【详解】∵通常直线用两个大写字母或一个小写字母表示,例直线AB ,直线a .故选C .【点睛】本题考查了几何中直线的表示方法,是最基本的知识.二、填空题11.线段AB =12cm ,点C 在线段AB 上,且AC =13BC ,M 为BC 的中点,则AM 的长为_______cm.5【分析】可先作出简单的图形进而依据图形分析求解【详解】解:如图∵点C 在AB 上且AC=BC ∴AC=AB=3cm ∴BC=9cm 又M 为BC 的中点∴CM=BC=45cm ∴AM=AC+CM=75cm 故答案为解析:5【分析】可先作出简单的图形,进而依据图形分析求解.【详解】解:如图,∵点C 在AB 上,且AC=13BC , ∴AC=14AB=3cm ,∴BC=9cm ,又M 为BC 的中点, ∴CM=12BC=4.5cm ,∴AM=AC+CM=7.5cm . 故答案为7.5.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC AB+BC=4cm,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于________.142°【解析】【分析】根据对顶角相等求出∠AOC的度数再根据角平分线的定义求出∠AOM的度数然后根据平角等于180°列式计算即可得解【详解】解:∵∠BOD=76°∴∠AOC=∠BOD=76°∵射线解析:142°【解析】【分析】根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.【详解】解:∵∠BOD =76°,∴∠AOC=∠BOD =76°,∵射线OM平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°,∴∠BOM=180°-∠AOM=180°-38°=142°.故答案为142°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.14.同一条直线上有三点A,B,C,且线段BC=3AB,点D是BC的中点,CD=3,则线段AC的长为______.4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC和AB再利用线段的和差计算即可【详解】解:(1)当点C在AB的延长线上时如图1∵点D解析:4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况,画出图形,分别利用线段中点的定义和已知条件求出BC和AB,再利用线段的和差计算即可.【详解】解:(1)当点C在AB的延长线上时,如图1,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=AB+BC=2+6=8;(2)当点C在BA的延长线时,如图2,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=BC-AB=6-2=4.故答案为:4或8.【点睛】本题考查了线段中点的定义、两点间的距离和线段的和差等知识,正确分类、画出图形、熟练掌握线段中点的概念和线段的和差计算是解题的关键.15.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.16.某产品的形状是长方体,长为8cm,它的展开图如图所示,则长方体的体积为_____cm3.192【分析】根据已知图形得出长方体的高进而得出答案【详解】解:设长方体的高为xcm 则长方形的宽为(14-2x )cm 根据题意可得:14-2x+8+x+8=26解得:x=4所以长方体的高为4cm 宽为6解析:192【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm ,则长方形的宽为(14-2x )cm ,根据题意可得:14-2x+8+x+8=26,解得:x=4,所以长方体的高为4cm ,宽为6cm ,长为8cm ,长方形的体积为:8×6×4=192(cm 3);故答案为:192【点睛】本题考查几何体的展开图、一元一次方程的应用及几何体的体积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.如图,折一张长方形纸的一角,使角的顶点落在A′处,且使得∠ABA′=90°,BC 为折痕,若BD 为∠A′BE 的平分线,则∠CBD =________°.90【分析】根据折叠的性质及平角的定义求出根据BD 为∠A′BE 的平分线得到根据角的和差计算求出答案【详解】∵∠ABA′=90°∴∵BD 为∠A′BE 的平分线∴∴故答案为:90【点睛】此题考查折叠的性质解析:90【分析】根据折叠的性质及平角的定义求出45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,根据BD 为∠A′BE 的平分线,得到45A BD '∠=︒,根据角的和差计算求出答案.【详解】∵∠ABA′=90°,∴45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,∵BD 为∠A′BE 的平分线,∴45A BD '∠=︒,∴90CBD A BC A BD ∠∠∠=+=''︒故答案为:90.【点睛】此题考查折叠的性质:折叠前后的对应角角相等,利用平角求角的度数,角平分线的性质,掌握图形中各角的位置关系是解题的关键.18.如图,上午6:30时,时针和分针所夹锐角的度数是_____.15°【分析】计算钟面上时针与分针所成角的度数一般先从钟面上找出某一时刻分针与时针所处的位置确定其夹角再根据表面上每一格30°的规律计算出分针与时针的夹角的度数【详解】∵时针12小时转一圈每分钟转动 解析:15°【分析】计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.【详解】∵时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°,∴时针1小时转动30°,∴6:30时,分针指向刻度6,时针和分针所夹锐角的度数是30°×12=15°. 故答案是:15°.【点睛】考查了钟面角,解题时注意,分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.19.如图,将一副三角板叠放一起,使直角的顶点重合于点O ,则∠AOD +∠COB 的度数为___________度. 180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB据此即可求解【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB=∠COD+∠AOB=90°+90°=180°故答案是:180【解析:180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB,据此即可求解.【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB =∠COD+∠AOB=90°+90°=180°.故答案是:180.【点睛】本题考查了三角板中角度的计算,正确把∠AOD+∠COB转化成∠COD+∠AOB是解决本题的关键.20.如图,::2:3:4AB BC CD=,AB的中点M与CD的中点N的距离是3cm,则BC=______.5cm【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm求出MB=xcmCN=2xcm得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm∵M是解析:5cm【分析】运用方程的思想,设AB=2xcm,BC=3xcm,CD=4xcm,求出MB=xcm,CN=2xcm,得出方程x+3x+2x=3,求出即可.【详解】解:设AB=2xcm,BC=3xcm,CD=4xcm,∵M是AB的中点,N是CD的中点,∴MB=xcm,CN=2xcm,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm.故答案为:1.5cm.【点睛】本题考查了求两点之间的距离的应用,关键是能根据题意得出关于x的方程.三、解答题21.如图,已知线段AB和CD的公共部分1134BD AB CD==,线段AB、CD的中点E、F之间的间距是10cm,求AB、CD的长.解析:AB=12cm,CD=16cm【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE=1.5xcm和CF=2xcm,再根据EF=AC-AE-CF=2.5xcm,且E、F之间距离是EF=10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【详解】设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5xcm,CF=12CD=2xcm.∴EF=AC-AE-CF=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点睛】本题考查了线段中点的性质,设好未知数,用含x的式子表示出各线段的长度是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,是一个几何体的表面展开图.(1)该几何体是________;A .正方体B .长方体C .三棱柱D .四棱锥(2)求该几何体的体积.解析:(1)C ;(2)4【分析】(1)本题根据展开图可直接得出答案.(2)本题根据体积等于底面积乘高求解即可.【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C .(2)由图已知:该几何体底面积为等腰三角形面积12222=⨯⨯=;该几何体的高为2; 故该几何体体积=底面积⨯高=22=4⨯.【点睛】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.24.已知线段10cm AB =,在直线AB 上取一点C ,使16cm AC =,求线段AB 的中点与AC 的中点的距离.解析:13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=. ②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论.25.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.解析:(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线以及射线的定义画出图形即可;(2)利用角的定义作射线DC,DB即可;(3)连接AC,与BD的交点即为所求.【详解】解:(1)如图所示:直线AB、射线AD即为所求;(2)如图所示:∠CDB即为所求;(3)如图所示:点P即为所求.【点睛】此题主要考查了直线、射线以及角的定义,正确把握相关定义是解题关键.26.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点.(1)用1个单位长度表示1cm,请你在数轴上表示出A,B, C三点的位置;(2)把点C到点A的距离记为CA,则CA=______cm.(3)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA−AB的值是否会随着t的变化而改变?请说明理由.解析:(1)数轴见解析;(2)6;(3)CA−AB的值不会随着t的变化而改变,理由见解析;【分析】(1)在数轴上表示出A,B,C的位置即可;(2)求出CA的长即可;(3)不变,理由如下:当移动时间为t秒时,表示出A,B,C表示的数,求出CA-AB的值即可做出判断.【详解】(1)如图:(2)CA=4−(−2)=4+2=6cm,(3)不变,理由如下:当移动时间为t秒时,点A. B. C分别表示的数为−2+t、−5−2t、4+4t,则CA=(4+4t)−(−2+t)=6+3t,AB=(−2+t)−(−5−2t)=3+3t,∵CA−AB=(6+3t)−(3+3t)=3∴CA−AB的值不会随着t的变化而改变.【点睛】此题考查数轴,两点间的距离,整式的加减,列代数式,解题关键在于结合数轴进行解答. 27.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.28.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长.(2)若CE=5cm,求DB的长.解析:(1)AB=18;(2)DB=15.【分析】(1)由线段中点的定义可得CD=12AC,CE=12BC,根据线段的和差关系可得DE=12AB,进而可得答案;(2)根据中点定义可得AC=BC,CE=BE,AD=CD,根据线段的和差关系即可得答案.【详解】(1)∵D是AC的中点,E是BC的中点.∴CD=12AC,CE=12BC,∵DE=CD+CE=9,∴12AC+12BC=12(AC+BC)=9,∵AC+BC=AB,∴AB=18.(2)∵C是AB的中点,D是AC的中点,E是BC的中点,∴AC=BC,CE=BE=12BC,,AD=CD=12AC,∴AD=CD=CE=BE,∴DB=CD+CE+BE=3CE,∵CE=5,∴DB=15.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.。
七年级数学上册平面图形的认识(一)(提升篇)(Word版 含解析)
一、初一数学几何模型部分解答题压轴题精选(难)1.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=42°,则∠OGA=________;(2)若∠GOA= ∠BOA,∠GAD= ∠BAD,∠OBA=42°,则∠OGA=________;(3)将(2)中的“∠OBA=42°”改为“∠OBA= ”,其它条件不变,求∠OGA的度数.(用含的代数式表示)(4)若OE将∠BOA分成1︰2两部分,AF平分∠BAD,∠ABO= (30°< α <90°),求∠OGA的度数.(用含的代数式表示)【答案】(1)21°(2)14°(3)解:∵∠BOA=90°,∠OBA=α,∴∠BAD=∠BOA+∠ABO=90°+α,∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD∴∠GAD=30°+ α,∠EOA=30°,∴∠OGA=∠GAD−∠EOA= α.(4)解:当∠EOD:∠COE=1:2时,∴∠EOD=30°,∵∠BAD=∠ABO+∠BOA=α+90°,∵AF平分∠BAD,∴∠FAD= ∠BAD,∵∠FAD=∠EOD+∠OGA,∴2×30°+2∠OGA=α+90°,∴∠OGA= α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得到∠OGA= α−15°,即∠OGA的度数为α+15°或α−15°.【解析】解:(1)∵∠BOA=90°,∠OBA=42°,∴∠BAD=∠BOA+∠ABO=132°,∵AF平分∠BAD,OE平分∠BOA,∠BOA=90°,∴∠GAD= ∠BAD=66°,∠EOA= ∠BOA=45°,∴∠OGA=∠GAD−∠EOA=66°−45°=21°;故答案为21°;⑵∵∠BOA=90°,∠OBA=42°,∴∠BAD=∠BOA+∠ABO=132°,∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD,∴∠GAD=44°,∠EOA=30°,∴∠OGA=∠GAD−∠EOA=44°−30°=14°;故答案为14°;【分析】(1)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(2)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(3)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(4)讨论:当∠EOD:∠COE=1:2时,利用∠BAD=∠ABO+∠BOA=α+90°,∠FAD=∠EOD+∠OGA得到2×30°+2∠OGA=α+90°,则∠OGA= α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得∠OGA= α-15°.2.已知:如图1,点M是线段AB上一定点,AB=12cm,C、D两点分别从M、B出发以1cm/s、2cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AM=4cm,当点C、D运动了2s,此时AC=________,DM=________;(直接填空)(2)当点C、D运动了2s,求AC+MD的值.(3)若点C、D运动时,总有MD=2AC,则AM=________(填空)(4)在(3)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.【答案】(1)2;4(2)解:当点C、D运动了2 s时,CM=2 cm,BD=4 cm∵AB=12 cm,CM=2 cm,BD=4 cm∴AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD=12﹣2﹣4=6 cm(3)4(4)解:①当点N在线段AB上时,如图1,∵AN﹣BN=MN,又∵AN﹣AM=MN∴BN=AM=4∴MN=AB﹣AM﹣BN=12﹣4﹣4=4∴ = = ;②当点N在线段AB的延长线上时,如图2,∵AN﹣BN=MN,又∵AN﹣BN=AB∴MN=AB=12∴ = =1;综上所述 = 或1【解析】【解答】解:(1.)根据题意知,CM=2cm,BD=4cm,∵AB=12cm,AM=4cm,∴BM=8cm,∴AC=AM﹣CM=2cm,DM=BM﹣BD=4cm,故答案为:2,4;(3.)根据C、D的运动速度知:BD=2MC,∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM,∵AM+BM=AB,∴AM+2AM=AB,∴AM= AB=4,故答案为:4;【分析】(1)根据运动速度和时间分别求得CM、BD的长,根据线段的和差计算可得;(2)由题意得CM=2 cm、BD=4 cm,根据AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD可得答案;(3)根据C、D的运动速度知BD=2MC,再由已知条件MD=2AC求得MB=2AM,所以AM= AB;(4)分点N在线段AB上时和点N在线段AB的延长线上时分别求解可得.3.如图1,点A、B分别在数轴原点O的左右两侧,且 OA+50=OB,点B对应数是90.(1)求A点对应的数;(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P向左运动,速度为8个单位长度/秒,设它们运动时间为t秒,问当t为何值时,点M、N之间的距离等于P、M之间的距离;(3)如图3,将(2)中的三动点M、N、P的运动方向改为与原来相反的方向,其余条件不变,设Q为线段MN的中点,R为线段OP的中点,求22RQ﹣28RO﹣5PN的值.【答案】(1)解:如图1,∵点B对应数是90,∴OB=90.又∵ OA+50=OB,即 OA+50=90,∴OA=120.∴点A所对应的数是﹣120(2)解:依题意得,MN=|(﹣120+7t)﹣2t|=|﹣120+5t|,PM=|2t﹣(90﹣8t)|=|10t﹣90|,又∵MN=PM,∴|﹣120+5t|=|10t﹣90|,∴﹣120+5t=10t﹣90或﹣120+5t=﹣(10t﹣90)解得t=﹣6或t=14,∵t≥0,∴t=14,点M、N之间的距离等于点P、M之间的距离(3)解:依题意得RQ=( 45+4t)﹣(﹣60﹣4.5t)=105+8.5t,RO=45+4t,PN=(90+8t)﹣(﹣120﹣7t)=210+15t,则22RQ﹣28RO﹣5PN=22(105+8.5t)﹣28(45+4t)﹣5(210+15t)=0【解析】【分析】(1)根据点B对应的数求得OB的长度,结合已知条件和图形来求点A 所对应的数;(2)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t;(3)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t,并求出RQ,RO 及PN,再求出22RQ﹣28RO﹣5PN的值.4.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为________度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1逆时针旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.【答案】(1)90(2)解:如图3,∠AOM﹣∠NOC=30°.设∠AOC=α,由∠AOC:∠BOC=1:2可得∠BOC=2α.∵∠AOC+∠BOC=180°,∴α+2α=180°.解得α=60°.即∠AOC=60°.∴∠AON+∠NOC=60°.①∵∠MON=90°,∴∠AOM+∠AON=90°.②由②﹣①,得∠AOM﹣∠NOC=30°;(3)(ⅰ)如图4,当直角边ON在∠AOC外部时,由OD平分∠AOC,可得∠BON=30°.因此三角板绕点O逆时针旋转60°.此时三角板的运动时间为:t=60°÷15°=4(秒).(ⅱ)如图5,当直角边ON在∠AOC内部时,由ON平分∠AOC,可得∠CON=30°.因此三角板绕点O逆时针旋转240°.此时三角板的运动时间为:t=240°÷15°=16(秒).【解析】【解答】解:(1)由旋转的性质知,旋转角∠MON=90°.故答案是:90;【分析】(1)根据旋转的性质知,旋转角是∠MON;(2)如图3,利用平角的定义,结合已知条件“∠AOC:∠BOC=1:2”求得∠AOC=60°;然后由直角的性质、图中角与角间的数量关系推知∠AOM﹣∠NOC=30°;(3)需要分类讨论:(ⅰ)当直角边ON在∠AOC外部时,旋转角是60°;(ⅱ)当直角边ON在∠AOC内部时,旋转角是240°.5.如图1,已知线段AB=16cm,点C为线段AB上的一个动点,点D、E分别是AC和BC 的中点.(1)若点C恰为AB的中点,求DE的长;(2)若AC=6cm,求DE的长;(3)试说明不论AC取何值(不超过16cm),DE的长不变;(4)知识迁移:如图2,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD、OE 分别平分∠AOC和∠BOC,试说明∠DOE=65°与射线OC的位置无关.【答案】(1)解:∵点C恰为AB的中点,∴AC=BC= AB=8cm,∵点D、E分别是AC和BC的中点,∴DC= AC=4cm,CE= BC=4cm,∴DE=8cm(2)解:∵AB=16cm,AC=6cm,∴BC=10cm,由(1)得,DC= AC=3cm,CE= CB=5cm,∴DE=8cm(3)解:∵点D、E分别是AC和BC的中点,∴DC= AC,CE= BC,∴DE= (AC+BC)= AB,∴不论AC取何值(不超过16cm),DE的长不变(4)解:∵OD、OE分别平分∠AOC和∠BOC,∴∠DOC= ∠AOC,∠EOC= ∠BOC,∴∠DOE=∠DOC+∠EOC= (∠AOC+∠BOC)= ∠AOB=65°,∴∠DOE=65°与射线OC的位置无关【解析】【分析】(1)由点C恰为AB的中点,得到AC=BC的值,再由点D、E分别是AC和BC的中点,求出DE的值;(2)由(1)得,DC= AC的值,CE= CB的值,得到DE的值;(3)由点D、E分别是AC和BC的中点,得到不论AC取何值(不超过16cm),DE 的长不变;(4)由OD、OE分别平分∠AOC和∠BOC,根据角平分线定义,得到∠DOE=∠DOC+∠EOC=(∠AOC+∠BOC)=∠AOB,得到∠DOE=65°与射线OC的位置无关. 6.根据下图回答问题:(1)如图1,CM平分∠ACD,AM平分∠BAC,∠MAC+∠ACM=90°,请判断AB与CD的位置关系并说明理由;(2)如图2,当∠M=90°且AB与CD的位置关系保持(1)中的不变,当直角顶点M移动时,问∠BAM与∠MCD是否存在确定的数量关系?并说明理由;(3)如图3,G为线段AC上一定点,点H为直线CD上一动点且AB与CD的位置关系保持(1)中的不变,当点H在射线CD上运动时(点C除外)∠CGH+∠CHG与∠BAC有何数量关系?猜想结论并说明理由.【答案】(1)∵CM平分∠ACD,AM平分∠BAC,∴∠BAC=2∠MAC,∠ACD=2∠ACM,∵∠MAC+∠ACM=90°,∴∠BAC+∠ACD=180°,∴AB∥CD;(2)∠BAM+∠MCD=90°,理由:如图,过M作MF∥AB,∵AB∥CD,∴MF∥AB∥CD,∴∠BAM=∠AMF,∠FMC=∠DCM,∵∠M=90°,∴∠BAM+∠MCD=90°;(3)∠BAC=∠CHG+∠CGH.理由:过点G作GP∥AB,∵AB∥CD∴GP∥CD,∴∠BAC=∠PGC,∠CHG=∠PGH,∴∠PGC=∠CHG+∠CGH,∴∠BAC=∠CHG+∠CGH.【解析】【分析】(1)已知CM平分∠ACD,AM平分∠BAC,根据角平分线的定义可得∠BAC=2∠MAC,∠ACD=2∠ACM,再由∠MAC+∠ACM=90°,即可得∠BAC+∠ACD=180°,根据同旁内角互补,两直线平行即可得AB∥CD;(2)∠BAM+∠MCD=90°,过M作MF∥AB,即可得MF∥AB∥CD,根据平行线的性质可得∠BAM=∠AMF,∠FMC=∠DCM,再由∠M=90°,即可得∠BAM+∠MCD=90°;(3)∠BAC=∠CHG+∠CGH,过点G作GP∥AB,即可得GP∥CD,根据平行线的性质可得∠BAC=∠PGC,∠CHG=∠PGH,所以PGC=∠CHG+∠CGH,即可得∠BAC=∠CHG+∠CGH.7.如图,已知点,且,满足 .过点分别作轴、轴,垂足分别是点A、C.(1)求出点B的坐标;(2)点M是边上的一个动点(不与点A重合),的角平分线交射线于点N,在点M运动过程中,的值是否变化?若不变,求出其值;若变化,说明理由. (3)在四边形的边上是否存在点,使得将四边形分成面积比为1:4的两部分?若存在,请直接写出点的坐标;若不存在,说明理由.【答案】(1)解:由得:,解得:∴点的坐标为(2)解:不变化∵轴∴BC∥x轴∴∵平分∴∴∴(3)解:点P可能在OC,OA边上,如下图所示,由(1)可知,BC=5,AB=3,故矩形的面积为15若点P在OC边上,可设P点坐标为,则三角形BCP的面积为,剩余部分面积为,所以,解得,P点坐标为;若点P在OA边上,可设P点坐标为,则三角形BAP的面积为,剩余部分面积为,所以,解得,P点坐标为 .综上,点的坐标为, .【解析】【分析】(1)由绝对值和算术平方根的非负性可知由两个非负数的和为0,则这两个数都为0,由此可列出关于,的二元一次方程组,解之即可得出B点坐标;(2)根据平行线和角平分线的性质可证明,所以比值不变化;(3)点P只能在OC,OA边上,表示出两部分的面积,依比值求解即可.8.(1)思考探究:如图①,的内角的平分线与外角的平分线相交于点,请探究与的关系是________.(2)类比探究:如图②,四边形中,设,,,四边形的内角与外角的平分线相交于点 .求的度数.(用,的代数式表示)(3)拓展迁移:如图③,将(2)中改为,其它条件不变,请在图③中画出,并直接写出 ________.(用,的代数式表示)【答案】(1)(2)解:延长、,交于点 .,由(1)知:∴ .(3)【解析】【解答】解:(1)∵平分,平分,∴,∵是的外角∴∵是的外角∴( 3 )延长,交于点 . 作与外角的平分线相交于点 . 如图:,【分析】(1)利用角平分线求出∠PCD= ∠ACD,∠PBD= ∠ABC,再利用三角形的一个外角定理即可求出.(2)延长BA、CD交于点F,然后根据(1)的结题可得到∠P的表达式.(3)延长AB、DC交于F,然后根据(1)的结题可得到∠P的表达式.9.已知,与两角的角平分线交于点P,D是射线上一个动点,过点D的直线分别交射线,,于点E,F,C.(1)如图1,若,,,求的度数;(2)如图2,若,请探索与的数量关系,并证明你的结论;(3)在点运动的过程中,请直接写出,与这三个角之间满足的数量关系:________.【答案】(1)解:∵PA、PB是∠BAM、∠ABN的角平分线,∴∠BAP=∠PAE= ∠BAM= ,∠ABP=∠PBE= ∠ABN= ,∴∠BPC=∠BAP+∠ABP= ;(2)解:,理由如下:∵PA、PB是∠BAM、∠ABN的角平分线,∴设,,∵,∴,∵,∴,又∵,∴,∴;(3)【解析】【解答】解:(3)∵PA、PB是∠BAM、∠ABN的角平分线,∴设,,∵,∴,如图,当点P在线段BD上时,,∴;如图,当点P在线段BD的延长线上时,,即,∴,即;故答案为:.【分析】(1)根据角平分线的性质结合三角形外角的性质即可求解;(2)设,,根据角平分线的性质结合四边形内角和定理即可求解;(3)分点P在线段BD上和点P在线段BD的延长线上两种情况讨论即可求解.10.如图1,已知,是等边三角形,点为射线上任意一点(点与点不重合),连结,将线段绕点逆时针旋转得到线段,连结并延长交射线于点.(1)如图1,当时, ________ ,猜想 ________ ;(2)如图2,当点为射线上任意一点时,猜想的度数,并说明理由;【答案】(1)30;60(2)解:结论:,如图:∵,∴在和中,,,∴∴.∴∴;【解析】【解答】证明:(1)∵∠ABC=90°,△ABE是等边三角形,∴∠ABE=60°,∴∠EBF=30°;猜想:;理由如下:如图,∵,,∴,∵,,∴,∴,∴,∴;故答案为:30;60;【分析】(1)∠EBF与∠ABE互余,而∠ABE=60°,即可求得∠EBF的度数;先证明∠BAP=∠EAQ,进而得到△ABP≌△AEQ,证得∠AEQ=∠ABP=90°,则∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°,∠QFC=∠EBF+∠BEF,即可得到答案;(2)先证明∠BAP=∠EAQ,进而得到△ABP≌△AEQ,证得∠AEQ=∠ABP=90°,则∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°,∠QFC=∠EBF+∠BEF,即可得到答案.11.(1)如图,已知C为线段AB上的一点,AC=60cm,M、N分别为AB、BC的中点.①若BC=20cm,则MN=________cm;②若BC=acm,则MN=________cm.(2)如图,射线OC在∠AOB的内部,∠AOC=60°,OM平分∠AOB,射线ON在∠BOC 内,且∠MON=30°,则ON平分∠BOC吗?并说明理由.【答案】(1)30;30(2)解:平分理由:∵OM分别平分∠AOB,∴∠BOM= ∠AOB= (∠AOC+∠BOC)=30°+ ∠BOC.又∵∠BOM=∠MON+∠BON=30°+∠BON,∴∠BON= ∠BOC.∴ON平分∠BOC.【解析】【解答】解:(1)①∵BC=20,N为BC中点,∴BN= BC=10.又∵M为AB中点,∴MB= AB=40.∴MN=MB-BN=40-10=30.故答案为30;②当BC=a时,AB=60+a,BN= a,MB= AB=30+ a,∴MN=MB-BN=30.故答案为30;【分析】(1)①由已知得到AB=80,根据线段中点求出MB和BN的值,计算MB-BN即可得结果;②分别用a表示出BN、MB,根据MN=MB-BN计算即可;(2)根据OM分别平分∠AOB,用∠BOC表示出∠BOM,再用∠BON表示出∠BOM,两个式子进行比较即可得出结论.12.问题情景:如图1,AB//CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过点P作PE//AB,∴∠PAB+∠APE=180°.∵∠PAB=130°,∴∠APE=50°∵AB//CD,PE//AB,∴PE//CD,∴∠PCD+∠CPE=180°.∵∠PCD=120°,∴∠CPE=60°∴∠APC=∠APE+∠CPE=110°.问题迁移:如果AB与CD平行关系不变,动点P在直线AB、CD所夹区域内部运动时,∠PAB,∠PCD的度数会跟着发生变化.(1)如图3,当动点P运动到直线AC右侧时,请写出∠PAB,∠PCD和∠APC之间的数量关系?并说明理由.(2)如图4,AQ,CQ分别平分∠PAB,∠PCD,请直接写出∠AQC和∠APC的数量关系________.(3)如图5,点P在直线AC的左侧时,AQ,CQ仍然平分∠PAB,∠PCD,请直接写出∠AQC和角∠APC的数量关系________【答案】(1)∠PAB+∠PCD=∠APC理由:如图3,过点P作PF∥AB,∴∠PAB=∠APF,∵AB∥CD,PF∥AB,∴PF∥CD,∴∠PCD=∠CPF,∴∠PAB+∠PCD=∠APF+∠CPF=∠APC,即∠PAB+∠PCD=∠APC故答案为:∠PAB+∠PCD=∠APC(2)(3)2∠AQC+∠APC=360°【解析】【解答】(2)理由:如图4,∵AQ,CQ分别平分∠PAB,∠PCD,∴∠QAB= ∠PAB,∠QCD= ∠PCD,∴∠QAB+∠QCD= ∠PAB+ ∠PCD= (∠PAB+∠PCD),由(1),可得∠PAB+∠PCD=∠APC,∠QAB+∠QCD=∠AQC∴∠AQC= ∠APC故答案为:∠AQC= ∠APC;(3)2∠AQC+∠APC=360°理由:如图5,过点P作PG∥AB ,∴∠PAB+∠APG=180°,∵AB∥CD,PG∥AB,∴PG//CD,∴∠PCD+∠CPG=180°,∴∠PAB+∠APG+∠PCD+∠CPG=360°,∴∠PAB+∠PCD+∠APC=360°,∵AQ,CQ分别平分∠PAB,∠PCD,∴∠QAB= ∠PAB,∠QCD= ∠PCD,∴∠QAB+∠QCD= ∠PAB+ ∠PCD= (∠PAB+PCD)由(1)知,∠QAB+∠QCD=∠AQC,∴∠AQC= (∠PAB+∠PCD)2∠AQC=∠PAB+∠PCD,∵∠PAB+∠PCD+∠APC=360°,∴2∠AQC+∠APC=360°.【分析】(1)过点P作PF∥AB,可得∠PAB=∠APF,根据AB∥CD,PF∥AB,可得∠PCD=∠CPF,所以∠PAB+∠PCD=∠APF+∠CPF=∠APC,即可证得∠PAB+∠PCD=∠APC;(2)已知AQ,CQ分别平分∠PAB,∠PCD,根据角平分线性质,可得∠QAB= ∠PAB,∠QCD= ∠PCD,∠QAB+∠QCD= ∠PAB+ ∠PCD= (∠PAB+∠PCD),再根据(1)结论,即可证明∠AQC= ∠APC.(3)过点P作PG∥AB,根据平行线的性质可得∠PAB+∠APG=180°,由已知可得PG//CD,∠PCD+∠CPG=180°,证明得∠PAB+∠PCD+∠APC=360°,,再根据AQ,CQ分别平分∠PAB,∠PCD,可得∠QAB+∠QCD= ∠PAB+ ∠PCD= (∠PAB+∠PCD),即可证明得出结论2∠AQC+∠APC=360°.。
人教版初中七年级数学上册第二章《整式的加减》经典习题(含答案解析)
1.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C解析:C【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 2.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.4.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2.故答案选B.考点:列代数式.5.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.6.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 7.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.8.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c === B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B 解析:B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=.故选:B .【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 9.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.10.一个多项式与²21x x -+的和是32x -,则这个多项式为( )A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- C解析:C【分析】 根据题意列出关系式,去括号合并即可得到结果.【详解】∵一个多项式与x 2-2x+1的和是3x-2,∴这个多项式=(3x-2)-(x 2-2x+1)=3x-2-x 2+2x-1=253x x -+-.故选:C .【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 11.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B 解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.12.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0B 解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0,解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 13.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B 解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.14.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误; 235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.15.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 1.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子. (4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2).【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答.【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子.故答案为:(4n+2).【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.2.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, …则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯ =111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-( =11002101⨯ =50101. 3.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.4.如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.5.已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a-b)千米/时,则顺流速度为_____千米/时3b【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式+++--计算即可求解.()[()(2)]a b a b a b【详解】解:依题意有+++--a b a b a b()[()(2)]=+++-+a b a b a b[2]=+++-+2a b a b a b=(千米/时).3b故顺流速度为3b千米/时.故答案为:3b.【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.6.有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】这列数可以写为12,33,54,75,因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n个数为211nn-+.故答案为:211nn-+.【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键.7.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a,b的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab分子用ab表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子解析:ab-aa b+=ab×aa b+【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a,b,分子用a,b表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积.设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.8.在括号内填上恰当的项:22222x xy y -+-=-(_____________________).【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.9.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.10.图中阴影部分的面积为______. 【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可.【详解】解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键.11.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.1.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值. 解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --, 当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.2.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
人教版初中七年级数学上册第四单元《几何图形初步》经典复习题(含答案解析)
一、选择题1.如图所示,OA 是北偏东30°方向的一条射线,若∠AOB =90°,则OB 的方位角是( )A .北偏西30°B .北偏西60°C .北偏东30°D .北偏东60° 2.已知点P 是CD 的中点,则下列等式中正确的个数是( )①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个 B .2个C .3个D .4个 3.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC 内,且∠DOE =60°,∠BOE =13∠EOC ,则下列四个结论正确的个数有( ) ①∠BOD =30°;②射线OE 平分∠AOC ;③图中与∠BOE 互余的角有2个;④图中互补的角有6对.A .1个B .2个C .3个D .4个4.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°5.如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是( )A .∠AOD+∠BOE=60°B .∠AOD=12∠EOCC .∠BOE=2∠COD D .∠DOE 的度数不能确定6.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( ) A . B . C . D . 7.如图,已知线段12AB =,延长线段AB 至点C ,使得12BC AB =,点D 是线段AC 的中点,则线段BD 的长是( ).A .3B .4C .5D .68.如图,CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( ).A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转 9.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,EF EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒10.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π 11.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A .8B .7C .6D .4 12.若∠A=20°18′,∠B=20°15″,∠C=20.25°,则有( ) A .∠A >∠B >∠C B .∠B >∠A >∠C C .∠A >∠C >∠B D .∠C >∠A >∠B 13.一个小立方块的六个面分别标有字母A ,B ,C ,D ,E ,F ,从三个不同的方向看形如图所示,则字母D 的对面是( )A .字母AB .字母FC .字母ED .字母B 14.由A 站到G 站的某次列车,运行途中停靠的车站依次是A 站——B 站—C 站——D 站——E 站——F 站——G 站,那么要为这次列车制作的火车票有( )A .6种B .12种C .21种D .42种15.下列说法不正确的是( )A .两条直线相交,只有一个交点B .两点之间,线段最短C .两点确定一条直线D .过平面上的任意三点,一定能作三条直线二、填空题16.长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为___ (结果保留π). 17.如图所示,128∠=︒,272∠=︒,OC 平分BOD ∠,则COD ∠=________.18.如图,点C 是线段AB 的中点,点D ,E 分别在线段AB 上,且AD DB =23,AE EB =2,则CD CE的值为____.19.如图,点C ,M ,N 在线段AB 上,且M 是AC 的中点,CN :NB=1:2,若AC=12,MN=15,则线段AB 的长是_______.20.如图所示,能用一个字母表示的角有________个,以点A 为顶点的角有________个,图中所有大于0°小于180°的角有________个.21.如图是一个多面体的表面展开图,则折叠后与棱AB 重合的棱是________.22.25°20′24″=______°.23.把命题“等角的余角相等”改写成“如果……那么……”的形式:__________________________. 是______命题(填“真”或“假”)24.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若17MN cm =,则BD =__cm .25.已知∠A=67°,则∠A 的余角等于______度.26.已知线段MN=16cm ,点P 为任意一点,那么线段MP 与NP 和的最小值是_____cm .三、解答题27.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;(3)若C 在线段AB 延长线上,且满足AC ﹣BC=b cm ,M ,N 分别是线段AC ,BC 的中点,你能猜想MN 的长度吗?请写出你的结论(不需要说明理由)28.如图,∠AOC :∠COD :∠BOD=2:3:4,且A ,O ,B 三点在一条直线上,OE ,OF 分别平分∠AOC 和∠BOD ,OG 平分∠EOF ,求∠GOF 的度数。
人教版 七年级(上)数学 第一章 有理数 有理数的加减 (含解析)
第 2 讲有理数的加减知识定位讲解用时:3分钟A、适用范围:人教版初一,基础一般;B、知识点概述:本讲义主要用于人教版初一新课,本节课我们要学习有理数的加法,有理数的减法;核心部分是有理数加减法的混合运算。
知识梳理讲解用时:20分钟有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.3.运算律:有理数加法运算律加法交换律文字语言两个数相加,交换加数的位置,和不变符号语言a+b=b+a加法结合律文字语言三个数相加,先把前两个数相加,或者先把后两个数相加,和不变符号语言(a+b)+c=a+(b+c)要点诠释:交换加数的位置时,不要忘记符号.课堂精讲精练【例题1】我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图1表示的是计算3+(﹣4)的过程.按照这种方法,图2表示的过程应是在计算()A.(﹣5)+(﹣2)B.(﹣5)+2 C.5+(﹣2)D.5+2【答案】C【解析】解:由图1知:白色表示正数,黑色表示负数,所以图2表示的过程应是在计算5+(﹣2),故选:C.讲解用时:3分钟解题思路:由图1可以看出白色表示正数,黑色表示负数,观察图2即可列式.教学建议:引导学生读懂题目信息是解题的关键.1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,减法是加法的逆运算.要点诠释:(1)任意两个数都可以进行减法运算.(2)几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2.法则:减去一个数,等于加这个数的相反数,即有:.要点诠释:将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.()a b a b-=+-有理数的减法难度: 3 适应场景:当堂练习例题来源:无【练习1.1】在下列执行异号两数相加的步骤中,错误的是()①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的和作为结果的绝对值A.①B.②C.③D.④【答案】D【解析】解:执行异号两数相加的步骤:①求两个有理数的绝对值,正确;②比较两个有理数绝对值的大小,正确;③将绝对值较大数的符号作为结果的符号,正确;④将两个有理数绝对值的和作为结果的绝对值,错误.故选:D.讲解用时:2分钟解题思路:根据有理数加法法则:①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,进而判断即可.教学建议:强调有理数加减法的运算法则难度: 3 适应场景:当堂例题例题来源:无【例题2】如图,乐乐将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a、b、c分别标上其中的一个数,则a﹣b+c的值为()A.﹣1B.0C.1D.3【答案】C【解析】解:∵5+1﹣3=3,每行、每列、每条对角线上的三个数之和相等,∴a+5+0=33+1+b=3c﹣3+4=3,∴a=﹣2,b=﹣1,c=2,∴a﹣b+c=﹣2+1+2=1,故选:C.讲解用时:3分钟解题思路:根据三个数的和为依次列式计算即可求解.教学建议:根据表格,先求出三个数的和是解题的关键.难度: 3 适应场景:当堂例题例题来源:无【练习2.1】下列说法:①所有有理数都能用数轴上的点表示;②符号不同的两个数互为相反数;③有理数包括整数和分数;④两数相加,和一定大于任意一个加数.()A.3个B.2个C.1个D.0个【答案】B【解析】解:①所有有理数都能用数轴上的点表示,正确;②符号不同的两个数互为相反数,相加为零此时互为相反数,故此选项错误;③有理数包括整数和分数,正确;④两数相加,和一定大于任意一个加数,两负数相加则不同,故此选项错误,故选:B.讲解用时:2分钟解题思路:直接利用互为相反数以及有理数的定义和有理数加减运算法则分别判断得出答案.教学建议:此题主要考查了有理数的加法运算以及相反数的定义等知识,正确掌握运算法则是解题关键.难度: 3 适应场景:当堂练习例题来源:无【例题3】计算:(﹣3)+(+15.5)+(﹣6)+(﹣5)【答案】0【解析】解:原式=(﹣3﹣6)+(15.5﹣5)=﹣10+10=0.讲解用时:3分钟解题思路:原式结合后,相加即可求出值.教学建议:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.难度: 3 适应场景:当堂练习例题来源:无【练习3.1】已知a为正数,b为负数,且|a|=4,|b|=6,求a+b的值.【答案】﹣2【解析】解:因为a为正数,|a|=4,所以a=4,因为b为负数,|b|=6,所以b=﹣6,所以a+b=4+(﹣6)=﹣2.讲解用时:3分钟解题思路:先依据绝对值的性质求得a、b的值,最后依据加法法则进行计算即可.教学建议:巩固有理数的加法、绝对值的性质,熟练掌握相关法则是解题的关键.难度: 3 适应场景:当堂例题例题来源:无【例题4】下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时数).现在的北京时间是上午8:00.(1)求现在纽约时间是多少?(2)斌斌现在想给远在巴黎的姑妈打电话,你认为合适吗?时差/时纽约﹣13巴黎﹣7东京+1芝加哥﹣14【答案】(1)现在纽约时间是晚上7点;(2)不合适.【解析】解:(1)现在纽约时间是晚上7点;(2)现在巴黎时间是凌晨1点,不合适.讲解用时:3分钟解题思路:(1)根据时差求出纽约时间即可;(2)计算出巴黎的时间,即可做出判断.教学建议:熟练掌握运算法则是解本题的关键.难度: 3 适应场景:当堂例题例题来源:无【练习4.1】在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.【答案】(1)(2)x+y=13【解析】解:(1)2+3+4=9,9﹣6﹣4=﹣1,9﹣6﹣2=1,9﹣2﹣7=0,9﹣4﹣0=5,如图所示:(2)﹣3+1﹣4=﹣6,﹣6+1﹣(﹣3)=﹣2,﹣2+1+4=3,如图所示:x=3﹣4﹣(﹣6)=5,y=3﹣1﹣(﹣6)=8,x+y=5+8=13.讲解用时:4分钟解题思路:(1)根据三个数的和为2+3+4=9,依次列式计算即可求解;(2)先求出下面中间的数,进一步得到右上面的数,从而得到x、y的值,相加可求x+y的值.教学建议:根据表格,先求出三个数的和是解题的关键,也是本题的突破口.难度: 3 适应场景:当堂练习例题来源:无【例题5】列式计算:(1)已知甲、乙两数之和为﹣2020,其中甲数是﹣7,求乙数;(2)已知x是5的相反数,y比x小﹣7,求x与﹣y的差.【答案】(1)﹣2013;(2)﹣3【解析】解:(1)根据题意知乙数为﹣2020﹣(﹣7)=﹣2020+7=﹣2013;(2)根据题意知x=﹣5,y=x﹣(﹣7)=﹣5+7=2,则x﹣(﹣y)=﹣5﹣(﹣2)=﹣3.讲解用时:3分钟解题思路:(1)根据题意知乙数为﹣2020﹣(﹣7),计算可得;(2)由题意得x=﹣5,y=x﹣(﹣7)=﹣5+7=2,再代入x﹣(﹣y)计算可得.教学建议:本题主要考查有理数的加法,解题的关键是根据题意列出算式并熟练掌握有理数的加减运算法则.难度: 3 适应场景:当堂例题例题来源:无【练习5.1】已知有理数a,b,c在数轴上的位置如图所示,且|a|=1,|b|=2,|c|=4.求3b+2a ﹣c的值.【答案】8.【解析】解:∵a、c在原点的左侧,b在原点的右侧,∴b>0,c<0,a<0,∵|a|=1,|b|=2,|c|=4,∴a=﹣1,b=2,c=﹣4,∴3b+2a﹣c=6﹣2+4=8.讲解用时:3分钟解题思路:根据a 、b 、c 在数轴上的位置可知b >0,c <0,a <0,再根据|a|=1,|b|=2,|c|=4可求出a 、b 、c 的值,代入3b+2a ﹣c 进行计算即可. 教学建议:这题考查的是数轴的特点及绝对值的性质,属较简单题目. 难度: 3 适应场景:当堂练习 例题来源:无【例题6】某单位一周中收支情况如下:524.5+元,274.3-元,490+元,100-元,29.7+元,123.6-元,232.1-元.问该单位这一周,总共收入多少元?总共支出多少元?收支相抵后,余额是多少元?【答案】共收入1044.2元,共支出730元,收支相抵后,余额为314.2元.【解析】()524.5++()490+()+29.7=1044.2+解:共收入为:元,()274.3+-()100-()+123.6-()+232.1730-=- 共支出为:元()2.3147302.1044=-+ 收支相抵为:元.讲解用时:3分钟解题思路:利用收入与支出的概念和有理数的混合运算即可解决教学建议:引导学生理解有理数的加法的实际应用.难度: 3 适应场景:当堂例题 例题来源:无【练习6.1】(1)()()()()()1789614------+--;(2)21513263⎛⎫⎛⎫⎛⎫⎛⎫--+---- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (3)()()1112 6.5 6.3625⎛⎫⎡⎤---+--- ⎪⎢⎥⎝⎭⎣⎦. 【答案】(1)8;(2)0;(3) 6.1-.【解析】()()()()()178961417896148------+--=-++-+=(1);215121151155503263332632666⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--+----=-+-+=--+=-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2); ()111112 6.5 6.3612 6.412 6.4 6.12522⎛⎫⎡⎤⎛⎫⎛⎫=---+-=---=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭⎝⎭原式(3).讲解用时:4分钟 解题思路:利用有理数减法的运算法则即可解决,括号前面是负号时,去括号要注意变号.教学建议:注意跟学生强调变号问题难度: 3 适应场景:当堂练习 例题来源:无【例题7】 如果2113x ⎛⎫+-= ⎪⎝⎭,那么x 等于______. 【答案】322=x 或223x =-. 【解析】2113x ⎛⎫+-= ⎪⎝⎭解:因为,2211233x ⎛⎫=--= ⎪⎝⎭所以, 322=x 223x =-所以或.讲解用时:3分钟解题思路:利用绝对值的代数意义和有理数的加减法运算法则即可求出结果 教学建议:熟练掌握绝对值的代数意义是解本题的关键.难度: 3 适应场景:当堂例题 例题来源:无【练习7.1】若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.(1)直接写出a+b ,cd ,m 的值;(2)求m+cd+的值.【答案】(1)a+b=0,cd=1,m=±2.(2)3或﹣1.【解析】解:(1)∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2, ∴a+b=0,cd=1,m=±2.(2)当m=2时,m+cd+=2+1+0=3; 当m=﹣2时,m+cd+=﹣2+1+0=﹣1. 讲解用时:4分钟解题思路:(1)根据互为相反数的和为0,互为倒数的积为1,绝对值的意义,即可解答;(2)分两种情况讨论,即可解答.教学建议:解决本题的关键是熟记倒数、相反数、绝对值的意义.难度: 3 适应场景:当堂练习 例题来源:无课后作业【作业1】如果规定运算()()23a b a b ⊗=---,求73124⎛⎫⊗- ⎪⎝⎭的值. 【答案】1253- 【解析】7373795=2331241246412⎡⎤⎛⎫⎛⎫⎛⎫⊗--⨯--⨯-=--=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 讲解用时:4分钟难度: 2 适应场景:练习题 例题来源:无【作业2】计算:123456789101112201720182019+--++--++--+++-.【答案】0.【解析】123456789101112201720182019+--++--++--+++-()()()()504123456789101112201720182019=+--++--++--+++-对括号 45042016=-⨯+20162016=-+0=.讲解用时:4分钟难度: 4 适应场景:练习题 例题来源:无【作业3】 计算:21150543236-+---. 【答案】31. 【解析】211521154543236322=-+--=-+--原式2111543223=-+-= 讲解用时:5分钟难度: 3 适应场景:练习题 例题来源:无。
初一数学立体图形试题答案及解析
初一数学立体图形试题答案及解析1.将一个正方体沿着某些棱剪开,展成一个平面图形,至少需要剪的棱的条数是()A.5B.6C.7D.8【答案】C【解析】如果把一个正方体剪开展平的图画出来,发现最多有5条棱没剪(没剪的棱为两个正方形的公共边),正方体总共12条棱,∴ 12-5=7(条),∴至少所需剪的棱为7条.2.如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,求的值.【答案】4【解析】解:由于正方体的平面展开图共有六个面,其中面“”与面“3”相对,面“”与面“-2”相对,面“”与面“10”相对,则,,,解得,,.故.3.下列图形能围成一个无盖正方体的是(填序号)【答案】①②④⑤.【解析】通过叠纸或空间想象能力可知,①②④⑤可以围成一个无盖正方体.另可根据正方体的11种展开图,因为本题是无盖的,要少一个正方形,也可以得到①②④⑤可以围成一个无盖正方体.【考点】 1、立体图形;2、正方体的展开图.4.下列图中,左边的图形是立方体的表面展开图,把它折叠成立方体,它会变右边的()【答案】C【解析】本题考查正方体的表面展开图及空间想象能力.在验证立方体的展开图式,要细心观察每一个标志的位置是否一致,然后进行判断.根据展开图中各种符号的特征和位置,可得能变成的是C.故选C.【考点】几何体的折叠点评:易错易混点:学生对相关图的位置想象不准确,从而错选,解决这类问题时,不妨动手实际操作一下,即可解决问题.5.在正方体的表面画有如图(1)中所示的粗线,图(2)是其展开图的示意图,但只在A面上画有粗线,那么将图(1)中剩余两个面中的粗线画入图(2)中,画法正确的是【答案】A【解析】根据正方体的表面展开图的特征结合动手操作即可作出判断.由题意得画法正确的是第一个图形,故选A.【考点】正方体的表面展开图点评:解答此类正方体的表面展开图的问题不仅要熟练掌握正方体的表面展开图的特征,还要由动手操作的意识.6.一个正方体的表面展开如图所示,则正方体中的A所在面的对面所标的字是()A.深B.圳C.大D.会【答案】B【解析】正方体的平面展开图的特征:相对面展开后间隔一个正方形.由图可得正方体中的A所在面的对面所标的字是圳,故选B.【考点】正方体的平面展开图点评:本题属于基础应用题,只需学生熟练掌握正方体的平面展开图的特征,即可完成.7.用一个平面去截一个正方体,截面不可能是()A.四边形B.五边形C.六边形D.七边形【答案】D【解析】根据正方体的特征依次分析各选项即可作出判断.因为正方体一共6个面,故截面不可能是七边形,故选D.【考点】正方体的截面点评:本题属于基础应用题,只需学生熟练掌握正方体的特征,即可完成.8.在同一平面内用游戏棒搭4个大小一样的等边三角形,至少要根游戏棒;在空间搭4个大小一样的等边三角形,至少要根游戏棒.【答案】9,6【解析】由题可知:因为4个等边三角形需12根游戏棒,但可共用3根,所以至少要9根游戏棒;因为空间可以共棱,所以至少要6根游戏棒.【考点】规律的探索,数字的变化点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律。
(必考题)七年级数学上册第四单元《几何图形初步》-解答题专项复习题(含答案解析)
一、解答题1.已知线段10cm AB =,在直线AB 上取一点C ,使16cm AC =,求线段AB 的中点与AC 的中点的距离.解析:13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点, 所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=. ②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论. 2.如图是由若干个正方体形状的木块堆成的,平放于桌面上。
其中,上面正方体的下底面的四个顶点恰是下面相邻正方体的上底面各边的中点,如果最下面的正方体的棱长为1.(1)当只有两个正方体放在一起时,这两个正方体露在外面的面积和是 ; (2)当这些正方体露在外面的面积和超过8时,那么正方体的个数至少是多少?(3)按此规律下去,这些正方体露在外面的面积会不会一直增大?如果会,请说明理由;如果不会,请求出不会超过哪个数值?(提示:所有正方体侧面面积加上所有正方体上面露出的面积之和,就是需求的面积,从简单入手,归纳规律.)解析:(1)7;(2)4个;(3)不会,理由见解析【分析】(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(2)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n-]×4<1+2×4=9,即按此规律堆下去,总面积最大不会超过9.【详解】解:(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(3)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,∴这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n-]×4<1+2×4=9,∴按此规律堆下去,总面积最大不会超过9.【点睛】此题考查了立体图形的表面积问题.解决本题的关键是得到上下正方体的一个面积之间的关系,从而即可得出依次排列的正方体的一个面的面积,这里还要注意把最下面的正方体看做是5个面之外,上面的正方体都是露出了4个面.解决本题的关键是得到上下正方体的一个面积之间的关系.3.古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”解析:34个【分析】在最后一次送了一半加三个,篮子的李子没有剩余,可以知道最后一次的一半就是三个,所以上一次剩余6个,6个加上送的2个合计8个,为第二次的一半,可以知道第一次送出后还有16个,16在加上第一次送的1个为17个,所以最初一共有34个.【详解】用逆推法:解: ()32221234⎡⎤⨯+⨯+⨯=⎣⎦(个)【点睛】送出一半又3个的时候,剩余为0,直接可以知道一半就是3个.4.如图,有一只蚂蚁想从A 点沿正方体的表面爬到G 点,走哪一条路最近?(1)请你利用部分平面展开图画出这条最短的路线,并说明理由.(2)探究若这只蚂蚁在正方体上爬行的最短路线,请你找出所有的最短路线,并画出示意. 解析:如图①,(1)见解析,理由:两点之间线段最短;(2)见解析.【分析】(1)先把正方体展开,根据两点之间线段最短,即可得出由A 爬到G 的最短途径.(2)分情况讨论, 作图解答即可.【详解】(1)如图①,理由:两点之间线段最短.(2)如图②,这种最短路线有4条.【点睛】本题考查了几何体的展开图和最短路线问题,把几何体展开为平面图形是解决“怎样爬行最近”这类问题的关键.5.已知A ,B ,C 三点,他们所表示的数分别是5,-3,a.(1)求线段AB 的长度AB ;(2)若AC=6,求a 的值;(3)若d=3a ++5a -,求d 的最小值,并判定d 与AB .解析:(1)8;(2)a =11或-1;(3)8,d =AB .【分析】(1)线段AB 的长等于A 点表示的数减去B 点表示的数;(2)AC =|A 点表示的数-C 点表示的数|,然后解方程即可;(3)要想使d 的最小,点C 一定在A 、B 两点之间,且最小值为8.【详解】(1)AB =5-(-3)=8;(2)AC =5a -=6,解得:a =11或-1;即在数轴上,若 C 点在A 点左边,则a =-1,若C 点在A 点右边,则a =11;(3)要想使d 的最小,点C 一定在A 、B 两点之间,且最小值为8,所以d =AB .【点睛】本题考查了数轴上两点之间的距离,利用数轴上求线段长度的方法,找出等量关系,解决问题.6.如图,一个五棱柱的盒子(有盖),有一只蚂蚁在A 处发现一只虫子在D 处,立刻赶去捕捉,你知道它怎样去的吗?请在图中画出它的爬行路线,如果虫子正沿着DI 方向爬行,蚂蚁预想在点I 处将它捕捉,应沿着什么方向?请在图中画出它的爬行路线.解析:第一问:如图沿线段AD爬行;第二问取线段E J的中点M,连结AM和MI,此路线为蚂蚁爬行的路线.【分析】根据两点之间线段最短,结合图形得出蚂蚁爬行的路线.【详解】解:第一问:如图沿线段AD爬行;第二问取线段E J的中点M,连结AM和MI,此路线为蚂蚁爬行的路线.理由都是:两点之间线段最短.【点睛】本题考查了几何体的展开图与两点之间线段最短,利用展开图的性质得出答案是解题的关键.7.说出下列图形的名称.解析:依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形.【分析】根据平面图形:一个图形的各部分都在同一个平面内可得答案.【详解】根据平面图形的定义可知:它们依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形.此题考查认识平面图形,解题关键在于掌握其定义对图形的识别.8.[阅读理解]射线OC 是AOB ∠内部的一条射线,若1,2COA BOC ∠=∠则我们称射线OC 是射线OA 的伴随线.例如,如图1,60 20AOB AOC COD BOD ∠=∠=∠=∠=,,则12AOC BOC ∠=∠,称射线OC 是射线OA 的伴随线:同时,由于12BOD AOD ∠=∠,称射线OD 是射线OB 的伴随线.[知识运用] (1)如图2,120AOB ∠=,射线OM 是射线OA 的伴随线,则AOM ∠= ,若AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线,则NOC ∠的度数是 .(用含α的代数式表示)(2)如图,如180AOB ∠=,射线OC 与射线OA 重合,并绕点O 以每秒3的速度逆时针旋转,射线OD 与射线OB 重合,并绕点O 以每秒5的速度顺时针旋转,当射线OD 与射线OA 重合时,运动停止,现在两射线同时开始旋转.①是否存在某个时刻t (秒),使得COD ∠的度数是20,若存在,求出t 的值,若不存在,请说明理由;②当t 为多少秒时,射线OC OD OA 、、中恰好有一条射线是其余两条射线的伴随线. 解析:(1)40︒,16α;(2)①存在,当20t =秒或25秒时,∠COD 的度数是20︒;②当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.【分析】(1)根据伴随线定义即可求解;(2)①利用分类讨论思想,分相遇之前和之后进行列式计算即可;②利用分类讨论思想,分相遇之前和之后四个图形进行计算即可.(1)∵120AOB ∠=,射线OM 是射线OA 的伴随线, 根据题意,12AOM BOM ∠=∠,则111204033AOM AOB ∠=∠=⨯︒=︒; ∵AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线, ∴111233BON AON AOB α∠=∠=∠=,1122BOC AOB α∠=∠=, ∴111236NOC BOC BON ααα∠=∠-∠=-=; 故答案为:40︒,16α; (2)射线OD 与OA 重合时,180365t ==(秒), ①当∠COD 的度数是20°时,有两种可能: 若在相遇之前,则1805320t t --=,∴20t =;若在相遇之后,则5318020t t +-=,∴25t =;所以,综上所述,当20t =秒或25秒时,∠COD 的度数是20°;②相遇之前:(i )如图1,OC 是OA 的伴随线时,则12AOC COD ∠=∠, 即()13180532t t t =--, ∴907t =; (ii )如图2,OC 是OD 的伴随线时,则12COD AOC ∠=∠, 即11805332t t t --=⨯, ∴36019t =; 相遇之后: (iii )如图3,OD 是OC 的伴随线时, 则12COD AOD ∠=∠, 即()153********t t t +-=-, ∴1807t =; (iv )如图4,OD 是OA 的伴随线时,则12AOD COD ∠=∠, 即()118053t 5t 1802t -=+-, ∴30t =;所以,综上所述,当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.【点睛】 本题是几何变换综合题,考查了角的计算,考查了动点问题,解题的关键是理解题意,学会用分类讨论的思想思考问题.9.小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm ,长方形的长为8cm ,请计算修正后所折叠而成的长方体的表面积和体积.解析:(1)多余一个正方形,图形见解析;(2)表面积为:210cm 2;体积为:200cm 3.【分析】(1)根据长方体的展开图判断出多余一个正方形;(2)根据表面积=四个长方形的面积+两个正方形的面积,体积=底面积×高分别列式计算即可得解.【详解】解:(1)多余一个正方形,如图所示:(2)表面积为:225285450160210()cm ⨯+⨯⨯=+=,体积为:2358200()cm ⨯=【点睛】本题考查了几何体的展开图以及长方体的表面积、体积的求法,熟练掌握长方体的展开图是解题的关键.10.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且22AB =,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为()0t t >秒.(1)数轴上点B 表示的数是___________;点P 表示的数是___________(用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P Q 、同时出发,问多少秒时P Q 、之间的距离恰好等于2?(3)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.解析:(1)14-,85t -;(2)2.5秒或3秒;(3)线段MN 的长度不发生变化,其值为11,图形见解析.【分析】(1)根据点B 和点P 的运动轨迹列式即可.(2)分两种情况:①点P Q 、相遇之前;②点P Q 、相遇之后,分别列式求解即可. (3)分两种情况:①当点P 在点A B 、两点之间运动时;②当点P 运动到点B 的左侧时, 分别列式求解即可.【详解】(1)14-,85t -;(2)分两种情况:①点P Q 、相遇之前,由题意得32522t t ++=,解得 2.5t =.②点P Q 、相遇之后,由题意得32522t t -+=,解得3t =.答:若点P Q 、同时出发,2.5或3秒时P Q 、之间的距离恰好等于2;(3)线段MN 的长度不发生变化,其值为11,理由如下:①当点P 在点A B 、两点之间运动时: 11111()221122222MN MP NP AP BP AP BP AB =+=+=+==⨯=; ②当点P 运动到点B 的左侧时,1111()112222MN MP NP AP BP AP BP AB =-=-=-==; ∴线段MN 的长度不发生变化,其值为11.【点睛】本题考查了数轴动点的问题,掌握数轴的性质是解题的关键.11.如图所示,A ,B 两条海上巡逻船同时在海面发现一不明物体,A 船发现该不明物体在他的东北方向(从靠近A 点的船头观测),B 船发现该不明物体在它的南偏东60︒的方向上(从靠近B 点的船头观测),请你试着在图中确定这个不明物体的位置.解析:见解析【分析】根据题意这个不明物体应该在这两个方向的交叉点上,根据图示方向在A 点向东北方向作一条线,在B 点向南偏东60°方向作一条线,交点即是. 【详解】根据题意,分别以A 和B 所在位置作出不明物体所在它们的方向上的射线, 两线的交点D 即为不明物体所处的位置. 如图所示,点D 即为所求:.【点睛】本题考查了方位角在生活中的应用,灵活运用所学知识解决问题是解题的关键. 12.如图,已知点O 为直线AB 上一点,将一个直角三角板COD 的直角顶点放在点O 处,并使OC 边始终在直线AB 的上方,OE 平分BOC ∠. (1)若70DOE ∠=︒,则AOC ∠=________;(2)若DOE α∠=,求AOC ∠的度数.(用含α的式子表示)解析:(1)140︒;(2)2α 【分析】(1)由70DOE ︒∠=,90COD ︒∠=,可以推出COE ∠的度数,又因为OE 平分BOC ∠,所以可知BOC ∠的度数,180BOC ︒-∠的度数即可解决;(2)由DOE α∠=,90COD ︒∠=,可以推出COE ∠=90α︒-,又因为OE 平分BOC ∠,以可知BOC ∠=2COE ∠=1802α︒-,180BOC ︒-∠即可解决. 【详解】解:(1)∵70DOE ︒∠=,90COD ︒∠=, ∴907020COE ︒︒︒∠=-=. ∵OE 平分BOC ∠,∴20COE BOE ︒∠=∠=,∴1801802140AOC BOC COE ︒︒︒∠=-∠=-∠=. 故答案为140︒.(2)∵DOE α∠=,90COD ︒∠=, ∴90COE α︒∠=-. ∵OE 平分BOC ∠,∴21802BOC COE α︒∠=∠=-,∴()180********AOC BOC αα︒︒︒∠=-∠=--=. 【点睛】本题主要考查了角平分线的定义,平角和直角,熟练各概念是解决本题的关键. 13.如图,一个点从数轴上的原点开始,先向左移动2cm 到达A 点,再向左移动3cm 到达B 点,然后向右移动9cm 到达C 点.(1)用1个单位长度表示1cm ,请你在数轴上表示出A ,B , C 三点的位置; (2)把点C 到点A 的距离记为CA ,则CA=______cm.(3)若点B 以每秒2cm 的速度向左移动,同时A .C 点分别以每秒1cm 、4cm 的速度向右移动.设移动时间为t 秒,试探索:CA−AB 的值是否会随着t 的变化而改变?请说明理由. 解析:(1)数轴见解析;(2)6;(3)CA−AB 的值不会随着t 的变化而改变,理由见解析; 【分析】(1)在数轴上表示出A ,B ,C 的位置即可; (2)求出CA 的长即可;(3)不变,理由如下:当移动时间为t 秒时,表示出A ,B ,C 表示的数,求出CA-AB 的值即可做出判断. 【详解】 (1)如图:(2)CA=4−(−2)=4+2=6cm , (3)不变,理由如下: 当移动时间为t 秒时,点A. B. C 分别表示的数为−2+t 、−5−2t 、4+4t , 则CA=(4+4t)−(−2+t)=6+3t ,AB=(−2+t)−(−5−2t)=3+3t , ∵CA−AB=(6+3t)−(3+3t)=3∴CA−AB 的值不会随着t 的变化而改变. 【点睛】此题考查数轴,两点间的距离,整式的加减,列代数式,解题关键在于结合数轴进行解答. 14.如图所示,长度为12cm 的线段AB 的中点为点M ,点C 将线段MB 分成:1:2MC CB =,求线段AC 的长度.解析:8cm 【解析】 【分析】设MC =xcm ,由MC :CB =1:2得到CB =2xcm ,则MB =3x ,根据M 点是线段AB 的中点,AB =12cm ,得到AM =MB 12=AB 12=⨯12=3x ,可求出x 的值,又AC =AM +MC =4x ,即可得到AC 的长. 【详解】设MC =xcm ,则CB =2xcm , ∴MB =3x .∵M 点是线段AB 的中点,AB =12cm , ∴AM =MB 12=AB 12=⨯12=3x , ∴x =2,而AC =AM +MC , ∴AC =3x +x =4x =4×2=8(cm ). 故线段AC 的长度为8㎝. 【点睛】本题考查了两点间的距离:两点的连线段的长叫两点间的距离.也考查了方程思想的运用.15.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =; (2)如果2t s =时,1CD cm =,试探索AP 的值. 解析:(1)①3cm ;②见解析;(2)9AP =或11cm. 【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论. 【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=,∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=, ∴2433CD CP PB DB cm =+-=+-=; ②∵8,12AP AB ==,∴4,82BP AC t ==-, ∴43DP t =-,∴2434CD DP CP t t t =+=+-=-, ∴2AC CD =; (2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=, ∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=, 综上所述,9AP =或11cm. 【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.16.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了 条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:已知这个长方体纸盒高为20cm ,底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm ,求这个长方体纸盒的体积. 解析:(1)8;(2)见解析;(3)200000立方厘米 【分析】1)根据长方体总共有12条棱,有4条棱未剪开,即可得出剪开的棱的条数; (2)根据长方体的展开图的情况可知有4种情况;(3)设底面边长为acm ,根据棱长的和是880cm ,列出方程可求出底面边长,进而得到长方体纸盒的体积. 【详解】解:(1)由图可得,小明共剪了8条棱,故答案为:8.(2)如图,粘贴的位置有四种情况如下:(3)∵长方体纸盒的底面是一个正方形,∴可设底面边长acm,∵长方体纸盒所有棱长的和是880cm,长方体纸盒高为20cm,∴4×20+8a=880,解得a=100,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.【点睛】本题主要考查了几何展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.17.如图,长度为12cm的线段AB的中点为M,点C将线段MB分成两部分,且MC CB ,则线段AC的长度为________.:1:2解析:8cm【分析】先由中点的定义求出AM,BM的长,再根据MC:CB=1:2的关系,求MC的长,最后利用AC=AM+MC得其长度.【详解】∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.故答案为:8cm.【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键.同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.18.如图,射线ON ,OE ,OS ,OW 分别表示以点O 为中心的北,东,南,西四个方向,点A 在点O 的北偏东45︒方向,点B 在点O 的北偏西30方向.(1)画出射线OB ,若BOC ∠与AOB ∠互余,请在图(1)或备用图中画出BOC ∠; (2)若OP 是AOC ∠的平分线,直接写出AOP ∠的度数.(不需要计算过程) 解析:(1)见解析;(2)45︒或30. 【分析】(1)根据题意作出图形即可;(2)根据角平分线的定义即可得到结论. 【详解】(1)如图所示,BOC ∠与BOC '∠即为所求.(2)AOP ∠的度数为45︒或30︒. ∵∠AON=45°,∠BON=30°, ∴∠AOB=75°, ∵∠BOC 与∠AOB 互余, ∴∠BOC=∠BOC′=15°, ∴∠AOC=90°,∠AOC=60°, ∵OP 是∠AOC 的角平分线, ∴∠AOP=45°或30°. 【点睛】本题主要考查了方向角的定义,余角的定义,作出图形,正确掌握方向角的定义是解题关键.19.如图,点C 为线段AD 上一点,点B 为CD 的中点,且6cm AC =,2cm BD =.(1)图中共有多少条线段? (2)求AD 的长. 解析:(1)6条;(2)10cm 【分析】(1)根据线段的定义,即可得到答案;(2)由点B 为CD 的中点,即可求出CD 的长度,然后求出AD 的长度. 【详解】解:(1)根据题意,图中共有6条线段,分别是AC ,AB ,AD ,CB ,CD ,BD . (2)因为点B 是CD 的中点,2cm BD =, 所以24cm CD BD ==, 所以10cm AD AC CD =+=. 【点睛】本题考查了线段中点的有关计算,以及线段的定义,解题的关键是熟练掌握线段有关的计算问题.20.如图,是一个几何体的表面展开图.(1)该几何体是________;A .正方体B .长方体C .三棱柱D .四棱锥 (2)求该几何体的体积. 解析:(1)C ;(2)4 【分析】(1)本题根据展开图可直接得出答案. (2)本题根据体积等于底面积乘高求解即可. 【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C .(2)由图已知:该几何体底面积为等腰三角形面积12222=⨯⨯=;该几何体的高为2;故该几何体体积=底面积⨯高=22=4⨯. 【点睛】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可. 21.射线OA ,OB ,OC ,OD ,OE 有公共端点O .(1)若OA 与OE 在同一直线上,如图(1),试写出图中小于平角的角.(2)如图(2),若108AOC ︒∠=,(072)COE n n ︒∠=<<,OB 平分AOE ∠,OD平分COE ∠,求BOD ∠的度数.解析:(1)AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠;(2)54︒【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE ,进而求出即可. 【详解】(1)题图(1)中小于平角的角有AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠.(2)因为OB 平分AOE ∠,OD 平分COE ∠,108AOC ︒∠=,(072)COE n n ︒∠=<<,所以1111()2222BOD BOE DOE AOE COE AOE COE AOC ∠=∠-∠=∠-∠=∠-∠=∠.因为108AOC ∠=︒,所以54BOD ∠=︒ 【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE 、∠BOD 和∠BOD 的关系是解题的关键,22.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠. (1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示); (3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.解析:(1)15DOE ∠=︒;(2)12DOE a ∠=;(3)2AOC DOE ∠∠=,理由见解析. 【分析】(1)先根据补角的定义求出∠BOC 的度数,再由角平分线的性质得出∠COE 的度数,根据∠DOE =∠COD -∠COE 即可得出结论; (2)同(1)可得出结论;(3)先根据角平分线的定义得出∠COE =∠BOE =12∠BOC ,再由∠DOE =∠COD -∠COE 即可得出结论. 【详解】(1)∵COD ∠是直角,30AOC ∠=︒,180903060BOD ∴∠=︒-︒-︒=︒, 9060150COB ∴∠=︒+︒=︒, ∵OE 平分BOC ∠,1752BOE BOC ∴∠=∠=︒,756015DOE BOE BOD ∴∠=∠-∠=︒-︒=︒. (2)COD ∠是直角,AOC a ∠=, 1809090BOD a a ∴∠=︒-︒-=︒-, 9090180COB a a ∴∠=︒+︒-=︒-, ∵OE 平分BOC ∠,119022BOE BOC a ∴∠=∠=︒-,()11909022DOE BOE BOD a a a ∴∠=∠-∠=︒--︒-=.(3)2AOC DOE ∠=∠,理由是:180BOC AOC ∠=︒-∠,OE 平分BOC ∠,119022BOE BOC AOC ∴∠=∠=︒-∠,90COD ∠=︒,()909018090BOD BOC AOC AOC ∴∠=︒-∠=︒-︒-∠=∠-︒,()11909022DOE BOD BOE AOC AOC AOC ⎛⎫∴∠=∠+∠=∠-︒+︒-∠=∠ ⎪⎝⎭,即2AOC DOE ∠=∠. 【点睛】本题考查的是角的计算,熟知角平分线的定义、补角的定义是解答此题的关键. 23.已知,A 、B 是线段EF 上两点,已知EA :AB :BF=1:2:3,M 、N 分别为EA 、BF 的中点, 且MN=8cm ,求EF 的长. 解析:12cm 【解析】【分析】由已知设设EA=x ,AB=2x ,BF=3x ,根据线段中点性质得MN=MA+AB+BN=12x+2x+32x=4x=8,可得EF=EA+AB+BF=6x=12. 【详解】解:∵EA :AB :BF=1:2:3, 可以设EA=x ,AB=2x ,BF=3x , 而M 、N 分别为EA 、BF 的中点, ∴MA=12EA ,NB=12BF , ∴MN=MA+AB+BN=12x+2x+32x=4x , ∵MN=8cm , ∴4x=8, ∴x=2,∴EF=EA+AB+BF=6x=12, ∴EF 的长为12cm .【点睛】本题考核知识点:线段的中点.解题关键点:根据线段中点性质和线段的和差关系列出方程.24.已知线段14AB =,在线段AB 上有点C ,D ,M ,N 四个点,且满足AC :CD :1DB =:2:4,12AM AC =,且14DN BD =,求MN 的长. 解析:7或3 【分析】求出AC ,CD ,BD ,求出CM ,DN ,根据MN CM CD DN =++或MN CM CD ND =+-求出即可.【详解】 如图,14AB =,AC :CD :1BD =:2:4,2AC ∴=,4CD =,8BD =, 12AM AC =,14DN DB =, 1CM ∴=,2DN =,1427MN CM CD DN ∴=++=++=或1423MN CM CD ND =+-=+-=. 则MN 的长是7或3. 【点睛】本题考查了求出两点间的距离的应用及分类讨论的数学思想,关键是找找出线段间的数量关系.25.如图所示,点A 、O 、C 在同一直线上,OE 是BOC ∠的平分线,90EOF ∠=︒,()1420x ∠=+︒,()210x ∠=-︒.(1)求1∠的度数(请写出解题过程).(2)如以OF 为一边,在COF ∠的外部画DOF COF ∠=∠,问边OD 与边OB 成一直线吗?请说明理由.解析:(1)1140∠=︒;(2)边OD 与边OB 成一直线,理由详见解析.【分析】(1)因为OE 是∠BOC 的平分线 所以∠BOC=2∠2,再根据点A 、O 、C 在一直线上,求出∠1和∠2关于x 的关系式,列出等式求出x 的值;(2)根据∠EOF=∠EOC+∠COF=90°和∠EOC=12∠BOC ,∠FOC=12∠DOC ,12∠BOC+12∠DOC=90°,得出∠BOC+∠DOC=180°,进而可可判断边OD 与边OB 成一直线.【详解】(1)因为OE 是BOC ∠的平分线,所以22BOC ∠=∠,因为点A 、O 、C 在同一直线上,所以1180BOC ∠+∠=︒,又因为()1420x ∠=+︒,()210x ∠=-︒,所以()()420210180x x ++-=,解得:30x =,1140∠=︒(2)边OD 与边OB 成一直线.理由:因为90EOF EOC COF ∠=∠+∠=︒, 又因为12EOF BOC ∠=∠,12FOC DOC ∠=∠. ∴119022BOC DOC ∠+∠=︒, 即180BOC DOC ∠+∠=︒,所以点D 、O 、B 在同一直线上,即边OD 与边OB 成一直线.【点睛】本题主要考查角的计算和角平分线的知识点,解答本题的关键是熟练运用角之间的等量关系.26.如图,将一个长方形沿它的长或宽所在的直线旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm 和4cm ,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留π)解析:(1)圆柱;(2)它们的体积分别为3144cm π,396cm π【分析】(1)矩形旋转一周得到圆柱;(2)绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,从而可以计算出体积.【详解】解:(1)圆柱(2) 绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,21V r h π=264π=⨯⨯144π=绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,2246V π=⨯⨯96π=∴它们的体积分别为3144cm π,396cm π【点睛】本题主要考查的是圆柱的体积,熟记圆柱的体积公式是解题的关键.27.已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE =50°,求:∠BHF的度数.解析:∠BHF=115° .【分析】由AB∥CD得到∠AGE=∠CFG,由此根据邻补角定义可得∠GFD的度数,又FH平分∠EFD,由此可以先后求出∠GFD,∠HFD,继而可求得∠BHF的度数.【详解】∵AB∥CD,∴∠CFG=∠AGE=50°,∴∠GFD=130°;又FH平分∠EFD,∴∠HFD=1∠EFD=65°;2∵AB∥CD,∴∠BHF=180°-∠HFD=115°.【点睛】本题考查了平行线的性质,角平分线的定义,邻补角等知识,两直线平行时,应该想到它们的性质;由两直线平行的关系可以得到角之间的数量关系,从而达到解决问题的目的.28.把如图图形沿虚线折叠,分别能折叠成什么几何体(图中的五边形均为正五边形)?观察折成的几何体,回答下列问题:(1)每个几何体有多少条棱?哪些棱的长度相等?(2)每个几何体有多少个面?它们分别是什么图形?哪些面的形状、大小完全相同?解析:(1)第一个图形能折成一个正五棱锥,有10条棱,侧棱相等,底面上的五条棱相等;第二个图形能折成一个正五棱柱,有15条棱,上下底面上的棱相等,侧棱相等;(2)第一个几何体有6个面,分别是5个等腰三角形,1个正五边形,等腰三角形的形状、大小相同;第二个几何体有7个面,分别是5个长方形,2个正五边形,长方形的形状、大小相同,正五边形的形状、大小相同【分析】(1)由五棱锥与五棱柱的折叠及五棱锥与五棱柱的展开图解题.(2)根据五棱锥与五棱柱的特征即可求解.【详解】解:(1)图形(1)有10条棱,底面棱的长度相等,侧面棱的长度相等;图形(2)有15条棱,两个底面棱的长度相等,侧面棱的长度相等;(2)图形(1)有6个面,底面是五边形,侧面是形状、大小完全相同的三角形;图形(2)有7个面,底面是形状、大小完全相同的五边形,侧面是形状、大小完全相同的长方形.【点睛】本题考查了展开图折叠成几何体的知识,有一定难度,同时考查了学生的想象和动手能力.29.读下列语句,画出图形,并回答问题.(1)直线l经过A,B,C三点,且C点在A,B之间,点P是直线l外一点,画直线BP,射线PC,连接AP;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.解析:(1)见解析;(2)直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC.【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.30.线段AD=6cm,线段AC=BD=4cm ,E、F分别是线段AB、CD中点,求EF.解析:【分析】根据题意和图形可以求得线段EB、BC、CF的长,从而可以得到线段EF的长.【详解】∵E,F分别是线段AB,CD的中点,∴AB=2EB=2AE,CD=2CF=2FD,。
人教版七年级数学上册 几何图形初步(基础篇)(Word版 含解析)
一、初一数学几何模型部分解答题压轴题精选(难)1.(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(▲),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(▲),∴∠HEG=180°-∠CGE(▲),∴∠FEG=∠HFG+∠FEH=▲ .(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)解:∠GEF=∠BFE+180°−∠CGE,证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)解:∠GPQ+∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=∠BFE,∠CGP=∠CGE,在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.即∠GPQ+∠GEF=90°.【解析】【解答】(1)解:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.2.已知,AB//CD,(1)如图,若E 为DC 延长线上一点,AF、CG 分别为∠BAC、∠ACE 的平分线.(1)求证:AF//CG.(2)若 E 为线段 DC 上一点(E 不与 C 重合),AF、CG 分别为∠BAC、∠ACE的平分线,画出图形,试判断 AF,CG 的位置关系,并证明你的结论.【答案】(1)证明:∵AB//CD∴∠BAC=∠ACE,∵AF、CG 分别为∠BAC、∠ACE的平分线,∴∠CAF= ∠BAC, ∠ACG= ∠ACE,∴∠CAF=∠ACG∴AF//CG.(2)解:AF⊥CG,理由如下:如图,AF、CG 分别为∠BAC、∠ACE的平分线,∴∠1= ∠BAC,∠2= ∠ACD,∵AB//CD,∴∠BAC+∠ACD=180°,∴∠1+∠2= ∠BAC+ ∠ACD= (∠BAC+∠ACD)=90°,∴∠3=180°-(∠1+∠2)=90°,∴AF⊥CG.【解析】【分析】(1)根据二直线平行,内错角相等得出∠BAC=∠ACE,根据角平分线的定义得出∠CAF=∠ACG ,进而根据内错角相等,二直线平行得出AF∥CG;(2)根据题意作出图形,根据角平分线的定义得出∠1= ∠BAC,∠2= ∠ACD, 根据二直线平行,同旁内角互补得出∠BAC+∠ACD=180°,从而即可得出∠1+∠2= 90°,根据三角形的内角和定理得出∠3=90°,进而根据垂直的定义得出AF⊥CG.3.如图,已知,在的右侧,平分,平分,,所在直线交于点.(1)求的度数.(2)若,求的度数(用含的代数式表示).(3)将线段沿方向平移,使得点在点的右侧,其他条件不变,在图中画出平移后的图形,并判断的度数是否发生改变?若改变,求出它的度数(用含的式子表示);若不改变,请说明理由.【答案】(1)解:∵平分,,.(2)解:如图,过点作∵,,, .∵平分,平分,,,,,..(3)解:如图2为平移后的图形.的度数发生了改变.过点作,平分,平分,,,, .∵,,,,.【解析】【分析】(1)根据角平分线的定义即可求∠EDC的度数;(2)过点E作EF∥AB,根据平行于同一直线的两条直线互相平行得出AB∥CD∥EF,然后根据两直线平行内错角相等,即可求∠BED的度数;(3)∠BED的度数改变.过点E作EF∥AB,先由角平分线的定义可得:∠ABE=∠ABC,∠CDE=∠ADC,然后根据两直线平行内错角相等及同旁内角互补可得:,进而可由求得答案.4.如图,在△ABC中,CD是AB边上的高,CE是∠ACB的平分线.(1)若∠A=40°,∠B=76°,求∠DCE的度数;(2)若∠A=α,∠B=β,求∠DCE的度数(用含α,β的式子表示);(3)当线段CD沿DA方向平移时,平移后的线段与线段CE交于G点,与AB交于H点,若∠A=α,∠B=β,求∠HGE与α、β的数量关系.【答案】(1)解:∵∠A=40°,∠B=76°,∴∠ACB=64°.∵CE是∠ACB的平分线,∴∠ECB ∠ACB=32°.∵CD是AB边上的高,∴∠BDC=90°,∴∠BCD=90°﹣∠B=14°,∴∠DCE=∠ECB﹣∠BCD=32°﹣14°=18°;(2)解:∵∠A=α,∠B=β,∴∠ACB=180°﹣α﹣β.∵CE是∠ACB的平分线,∴∠ECB ∠ACB (180°﹣α﹣β).∵CD是AB边上的高,∴∠BDC=90°,∴∠BCD=90°﹣∠B=90°﹣β,∴∠DCE=∠ECB﹣∠BCD β α;(3)解:如图所示.∵∠A=α,∠B=β,∴∠ACB=180°﹣α﹣β.∵CE是∠ACB的平分线,∴∠ECB ∠ACB (180°﹣α﹣β).∵CD是AB边上的高,∴∠BDC=90°,∴∠BCD=90°﹣∠B=90°﹣β,∴∠DCE=∠ECB﹣∠BCD β α,由平移可得:GH∥CD,∴∠HGE=∠DCE β α.【解析】【分析】(1)根据三角形的内角和得到∠ACB的度数,根据角平分线的定义得到∠ECB的度数,根据余角的定义得到∠BCD=90°-∠B,于是得到结论;(2)根据角平分线的定义得到∠ACB=180°-α-β,根据角平分线的定义得到∠ECB= ∠ACB= (180°-α-β),根据余角的定义得到∠BCD=90°-∠B=90°-β,于是得到结论;(3)运用(2)中的方法,得到∠DCE=∠ECB-∠BCD= β- α,再根据平行线的性质,即可得出结论.5.如图①,△ABC的角平分线BD,CE相交于点P.(1)如果∠A=80∘,求∠BPC=.(2)如图②,过点P作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示).(3)将直线MN绕点P旋转。
初一数学上册找规律题型及真题练习题(含答案解析)
初一数学上册找规律题型及真题练习题(含答案解析)【找规律题目的类型】★设计类(1)用图形反映规律★数字类(1)与数阵有关的问题(2)等差型数列规律(3)等比型数列规律(4)含平方型数列规律(5)其它数列规律列举(6)循环型数列★计算类(1)根据已知等式探究规律(2)探究算式的计算规律★图形类(1)与视图、展开图有关的问题(2)几何图形变化规律题真题演练一、观察下列各算式:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?(2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?答案:(1)1004的平方(2)n+1的平方二、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __答案:23 30。
数列中每两个相邻数字间的差分别是1,2,3,4,5,6,7。
三、请填出下面横线上的数字。
1 123 5 8 ____ 21答案:13。
数列后面一个数是前面相邻两个数的和。
四、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?答案:34 。
考虑时,可以从第一个数开始,每3个数加一个括号(1,2,3),(2,3,4),(3,4,5),……一共加了33个括号,剩下的一个必是第100个。
每个括号的第一个数分别是1,2,3,……因此第100个数必然是34。
五、有一串数字 3 6 10 15 21___ 第6个是什么数?答案:28。
3+3=6 6+4=10 10+5=15 15+6=21 21+7=28, 所以第6个是28。
其实一般这类的规律题无非就是在数的基础上加减乘除,有些麻烦点的就是一个数乘上倍数后在加1或减1。
六、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( A )A.1 B.2 C.3 D.4七、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为___个.答案:33八、观察排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个答案:602、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称)答案:圆九、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9,1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.答案:10000。
部编数学七年级上册专题12几何图形初步章末重难点题型(13个题型)(解析版)含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题12 几何图形初步章末重难点题型(13个题型)一、经典基础题题型1 直线、射线、线段、角的基本概念题型2 角的表示、换算及比较大小题型3 直线、射线、线段的实际生活中的应用题型4 线段、角度中的计数问题题型5 作图问题题型6 与线段有关的计算题型7 实际背景下线段的计算问题题型8 钟面上的角度问题题型9 方位角问题题型10 一副直角三角形板中的角度问题题型11 与角平分线(角的和差)有关的计算题型12 余角、补角、对顶角的相关计算题型13 七巧板相关问题二、优选提升题题型1 直线、射线、线段、角的基本概念解题技巧:熟练掌握直线、射线、线段基本性质和概念。
最新初一上册数学练习题难一点的及答案解析优秀名师资料
初一上册数学练习题难一点的及答案解析精品文档初一上册数学练习题难一点的及答案解析时间:120分钟满分:100分姓名分数一、选择题1、下列说法正确的是A、非负有理数即是正有理数B、0表示不存在,无实际意义C、正整数和负整数统称为整数D、整数和分数统称为有理数2、下列说法正确的是A、互为相反数的两个数一定不相等B、互为倒数的两个数一定不相等C、互为相反数的两个数的绝对值相等D、互为倒数的两个数的绝对值相等3、绝对值最小的数是A、1B、0 C、– 1 D、不存在4、下列各对数中,数值相等的是A ,27与B ,32与C ,3×23与,32×D ―2与―35、在,5,,|,|,,|,3.5|,|,0.01|,,22,,212各数中,最大的数是A ,|,|B ,2C |,0.01|D ,2121 / 16精品文档6、有理数a,b如图所示位置,则正确的是A、a+b>0B、ab>0C、b-a|b|7、的相反数的倒数是A、11B、?C、D、–2448、计算??2??所得的结果是A、0B、3C、?3D、169、我国最长的河流长江全长约为6300千米,用科学记数法表示为A63×102千米B.3×102千米 C.3×104千米D6.3×103千米10、若某两位数的个位数字为a,十位数字为b,则此两位数可表示为A a + bB baC 10b + aD 10a + b二、填空题11、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为 ;地下第一层记作 ;数,2的实际意义为,数,9的实际意义为。
12、互为相反数的两数的和是,商是 ;互为倒数的两数的积是。
13、某数的绝对值是5,那么这个数是。
134756?2 / 16精品文档14、比a、b两数和的2倍大b的数是。
15、某商品降价25%以后的价格是m元,此商品降价前的价格是元。
北师大版七年级数学上册练习题4.5多边形和圆的初步认识1
4.5 多边形和圆的初步认识
1.(8分)如图
三角形的对角线有0条,四边形的对角线有2条,五边形的对角线有5条,六边形的对角线有9条.
通过分析上面的材料,请你说说十边形的对角线有多少条?你能总结出n边形的对角线有多少条吗?
2.(8分)一个圆和一个扇形的半径相等,已知圆的面积是30cm2,扇形的圆心角是36°.求扇形的面积.
【拓展延伸】
3.(10分)已知扇形的圆心角为120°,面积为300π.求扇形的弧长.
答案解析
1.【解析】十边形的对角线有=5×7=35(条),n边形的对角线有条.
2.【解析】设半径为r,则30÷π=r2,
==3(cm2).
答:扇形的面积是3cm2.
3.【解析】设扇形的半径为R,
根据题意,得300π=,
所以R2=900,
因为R>0,所以R=30.
所以扇形的弧长==20π.
【知识拓展】扇形的弧长公式
我们知道圆心角为n°,半径为R的扇形面积为,这个公式是借助扇形面积与圆面积的比而求出的.借助推导这一公式的思想方法,我们可以推导出其所对弧的长度的公式,即:
C 弧l =,则l 弧=×2πR=.。
初一七年级上册数学几何图形例题与解析
选择填空题(共30小题)1.用一个平面去截正方体,截面图形不可能是()A.B.C.D.2.用一个平面去截一个正方体,如果截去的几何体是一个三棱锥,那么截面可能是()A.三角形B.四边形C.五边形D.六边形3.下面四个图形是如图的正方体的表面展开图的是()A.B.C.D.4.如图是一个正方体线段AB,BC,CA是它的三个面的对角线下列图形中,是该正方体的表面展开图的是()A.B.C.D.5.如图,某工厂有三个住宅区,A、B、C各区分别住有职工15人、20人、45人,且这三个区在一条大道上(A、B、C三点共线),已知AB=1500m,BC=1000m,为了方便职工上下班,该工厂打算从以下四处中选一处设置接送车停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.A住宅区B.B住宅区C.C住宅区D.B、C住宅区中间D处6.如图所示,某公司员工住在A,B,C三个住宅区,已知A区有2人,B区有7人,C区有12人,三个住宅区在同一条直线上,且AB=150m,BC=300m,D是AC的中点.为方便员工,公司计划开设通勤车免费接送员工上下班,但因为停车位紧张,在A,B,C,D四处只能设一个通勤车停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠站应设在()A.A处B.B处C.C处D.D处7.线段AB=9,点C在线段AB上,且有AC=AB,M是AB的中点,则MC等于()A.3B.C.D.8.某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间9.如图,将一根绳子对折以后用线段AB表示,现从P处将绳子剪断,剪断后的各段绳子中最长的一段为60cm,若AP=PB,则这条绳子的原长为()A.100cm B.150cmC.100cm或150cm D.120cm或150cm10.一副三角板ABC、DBE,如图1放置,(∠D=30°、∠BAC=45°),将三角板DBE绕点B逆时针旋转一定角度,如图2所示,且0°<∠CBE<90°,则下列结论中正确的个数有()①∠DBC+∠ABE的角度恒为105°;②在旋转过程中,若BM平分∠DBA,BN平分∠EBC,∠MBN的角度恒为定值;③在旋转过程中,两块三角板的边所在直线夹角成90°的次数为2次;④在图1的情况下,作∠DBF=∠EBF,则AB平分∠DBF.A.1个B.2个C.3个D.4个11.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.AB=AD B.BH⊥ADC.S△ABC=BC•AH D.AC平分∠BAD12.过点P画AB的垂线,三角尺的放法正确的是()A.B.C.D.13.将一张正方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为B′、D′,若∠B′AD′=16°,则∠EAF的度数为()A.40°B.45°C.56°D.37°14.阳泉市郊区教科局提出开展“三有课堂”,某中学在一节体现“三有课堂”公开展示课上,李老师展示一幅图,条件是:C为直线AB上一点,∠DCE为直角,CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,各个小组经过讨论后得到以下结论:①∠ACF与∠BCH互余②∠FCG与∠HCG互补③∠ECF与∠GCH互补④∠ACD﹣∠BCE=90°,聪明的你认为哪些组的结论是正确的,正确的有()个.A.1B.2C.3D.415.正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“2”相对的面上的数字是()A.1B.3C.4D.5二.填空题(共15小题)16.如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为a,则正方体上小球总数为(用含a的代数式表示).17.把正方体的六个面分别涂上六种不同的颜色,且每个颜色都代表不同的数字,各个颜色所代表的数字情况如下表所示:颜色黄白红紫绿蓝花的朵数0﹣231﹣14将上述大小相同,颜色分布完全一样的四个正方体拼成一个如图所示的长方体,长方体水平放置,则:该长方体下底面四个正方形所涂颜色代表的数字的和是.18.如图,在长方体ABCD﹣EFGH中,与棱AB异面的棱有.19.一个小立方块的六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示,其中A、B、C、D、E、F分别代表数字﹣2、﹣1、0、1、2、3,则三个小立方块的下底面所标字母代表的数字的和为.20.如图,点C在线段AB上,且AC:BC=2:3,点D在线段AB的延长线上,且BD=AC,E为AD的中点,若AB=40cm,则线段CE=.21.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,OD是OB的反向延长线.(1)射线OC的方向是;(2)∠COD的度数是.22.如图,有公共端点P的两条线段MP,NP组成一条折线M﹣P﹣N,若该折线M﹣P﹣N上一点Q把这条折线分成相等的两部分,我们把这个点Q叫做这条折线的“折中点”.已知点D是折线A﹣C﹣B的“折中点”,点E 为线段AC的中点,CD=3,CE=5,则线段BC的长为.23.已知C为线段AB上一点,D为AC的中点,E为BC的中点,F为DE的中点.若AB=16CF,则=.24.工人师傅按照“最优化处理”打包多个同一款式长方体纸盒,其“最优化处理”是指:每相邻的两个纸盒必须以完全一样的面对接,最后打包成一个表面积最小的长方体,已知长方体纸盒的长xcm、宽ycm、高zcm都为整数,且x>y>z>1,x+z=2y,x+y+z+xy+xz+yz+xyz=439,若将六个此款式纸盒按“最优化处理”打包,其表面积为cm2.25.如图,将一张长方形纸片ABCD分别沿着BE、BF折叠,使边AB、CB均落在BD上,得到折痕BE、BF,则∠ABE+∠CBF=.26.将两个形状、大小完全相同的含有30°、60°的三角板PAB与PCD如图1放置,A、P、C三点在同一直线上,现将三角板PAB绕点P沿顺时针方向旋转一定角度,如图2,若PE平分∠APD,PF平分∠BPD,则∠EPF的度数是°.27.如图,点C是线段AB上一点,点M、N、P分别是线段AC,BC,AB的中点.AC=3cm,CP=1cm,线段PN =cm.28.一副三角板AOB与COD如图1摆放,且∠A=∠C=90°,∠AOB=60°,∠COD=45°,ON平分∠COB,OM平分∠AOD.当三角板COD绕O点顺时针旋转(从图1到图2).设图1、图2中的∠NOM的度数分别为α,β,α+β=度.29.如图,在∠AOB的内部有3条射线OC、OD、OE,若∠AOC=60°,∠BOE=∠BOC,∠BOD=∠AOB,则∠DOE=°.(用含n的代数式表示)30.一副三角尺按如图方式摆放,且∠1的度数比∠2的度数大50°,则∠2的大小为度.1.【考点】认识立体图形;截一个几何体.【专题】操作型;几何直观.【解答】解:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此不可能是七边形,故选:D.2.【考点】认识立体图形;截一个几何体.【专题】投影与视图;空间观念;模型思想;应用意识.【解答】解:如图,因为截去的几何体是一个三棱锥,而三棱锥的各个面都是三角形,所以截面为三角形,故选:A.3.【考点】几何体的展开图.【专题】投影与视图;空间观念;模型思想.【解答】解:将A折叠后,前面为“★”后面为“空白正方形”,上面为“◆”下面为“空白正方形”,右面为“●”左面为“空白正方形”故选:A.4.【考点】几何体的展开图.【专题】线段、角、相交线与平行线;空间观念.【解答】解:根据正方体展开图的特点分析,选项C是它的展开图.故选:C.5.【考点】线段的性质:两点之间线段最短.【专题】线段、角、相交线与平行线;数据分析观念.【解答】解:当停靠点在A区时,所有员工步行到停靠点路程和是:20×1500+45×2500=142500m;当停靠点在B区时,所有员工步行到停靠点路程和是:15×1500+45×1000=67500m;当停靠点在C区时,所有员工步行到停靠点路程和是:15×2500+20×1000=57500m;当停靠点在D区时,设距离B区x米,所有员工步行到停靠点路程和是:15×(1500+x)+20x+45(1000﹣x)=﹣10x+67500,由于k=﹣10,所以,x越大,路程之和越小,∴当停靠点在C区时,所有员工步行到停靠点路程和最小.故选:C.6.【专题】线段、角、相交线与平行线;应用意识.【解答】解:BD=(150+300)÷2﹣150=75(m),以点A为停靠点,则所有人的路程的和=7×150+12×(150+300)=6450m,以点B为停靠点,则所有人的路程的和=2×150+12×300=3900m,以点C为停靠点,则所有人的路程的和=2×(150+300)+7×300=3000m,以点D为停靠点,则所有人的路程的和=2×(150+300)÷2+7×75+12×(150+300)÷2=3675m.故停靠点的位置应设在点C.故选:C.7.【考点】两点间的距离.【专题】线段、角、相交线与平行线;推理能力.【解答】解:∵AB=9,∴AC=AB=3,∵M是AB的中点,∴AM=AB=∴MC=AM﹣AC=﹣3=故选:B.8.【专题】应用题;数形结合.【解答】解:∵当停靠点在A区时,所有员工步行到停靠点路程和是:15×100+10×300=4500m,当停靠点在B区时,所有员工步行到停靠点路程和是:30×100+10×200=5000m,当停靠点在C区时,所有员工步行到停靠点路程和是:30×300+15×200=12000m,当停靠点在A、B区之间时,设在A区、B区之间时,设距离A区x米,则所有员工步行路程之和=30x+15(100﹣x)+10(100+200﹣x),=30x+1500﹣15x+3000﹣10x,=5x+4500,∴当x=0时,即在A区时,路程之和最小,为4500米;综上,当停靠点在A区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在A区.故选:A.9.【专题】线段、角、相交线与平行线.【解答】解:当PB的2倍最长时,得PB=30cm,AP=PB=20cm,AB=AP+PB=50cm,这条绳子的原长为2AB=100cm;当AP的2倍最长时,得AP=30cm,AP=PB,PB=AP=45cm,AB=AP+PB=75cm,这条绳子的原长为2AB=150cm.故选:C.10.【解答】解:设旋转角度为x°,①当x>45°时,∠DBC+∠ABE=(x+60)°+(x﹣45)°=(2x+15)°>105°,于是此小题结论错误;②∠MBN=∠DBC﹣∠DBM﹣∠CBN=∠DBC﹣∠DBA﹣∠CBE=(60+x)°﹣(15+x)°﹣x°=52.5°,于是此小题的结论正确;③当旋转30°时,BD⊥BC,当旋转45°时,DE⊥AB,当旋转75°时,DB⊥AB,则在旋转过程中,两块三角板的边所在直线夹角成90°的次数为3次,于是此小题结论错误;④当BE在∠DBE外时,如下图所示,虽然∠DBF=∠EBF,但AB不平分∠DBF,于是此小题的结论错误.综上,正确的结论个数只有1个,故选:A.11.【解答】解:由作图可知,直线BC垂直平分线段AD,故BH⊥AD,故选:B.12.【解答】解:根据垂线的定义,选项C符合题意.故选:C.13.【解答】解:设∠EAD′=α,∠FAB′=β,根据折叠可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=16°,∴∠DAF=16°+β,∠BAE=16°+α,∵四边形ABCD是正方形,∴∠DAB=90°,∴16°+β+β+16°+16°+α+α=90°,∴α+β=21°,∴∠EAF=∠B′AD′+∠D′AE+∠FAB′=16°+α+β=16°+21°=37°.则∠EAF的度数为37°.故选:D.14.【解答】解:∵CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,∴∠ACF=∠FCD=∠ACD,∠DCH=∠HCB=∠DCB,∠BCG=∠ECG=∠BCE,∵∠ACB=180°,∠DCE=90°,∴∠FCH=90°,∠HCG=45°,∠FCG=135°∴∠ACF+∠BCH=90°,∠FCG+∠HCG=180°,故①②正确,∵∠ECF=∠DCE+∠FCD=90°+∠FCD,∠FCD+∠DCH=90°,∴∠ECF+∠DCH=180°,∵∠HCG≠∠DCH,∴∠ECF与∠GCH不互补,故③错误,∵∠ACD﹣∠BCE=180°﹣∠DCB﹣∠BCE=90°,故④正确.故选:C.15.【解答】解:由三个图形可看出与3相邻的数字有2,4,5,6,所以与3相对的数是1,由第一个图和第二个图可看出与4相邻的数有1,3,5,6,所以与4相对的数是2.故选:C.16【考点】列代数式;认识立体图形.【专题】整式;空间观念;运算能力.【解答】解:因为正方体有12条棱,所以12条棱上有12a个小球,但每个顶点处的小球被多计算2次,8个顶点就被多计算2×8=16次,所以正方体上小球总数为12a﹣16,故答案为:12a﹣16.17.【考点】正数和负数;专题:正方体相对两个面上的文字.【专题】投影与视图;空间观念.【解答】解:由四个正方体拼成一个的长方体上各个位置的颜色可知,“红”的邻面有蓝、黄、紫、白,因此其对面为“绿”,“黄”的邻面有蓝、红、白,由于“红”的对面是“绿”,因此“绿”是“黄”的邻面,故“黄”的对面为“紫”,于是“白”的对面为“蓝”,因此长方体下底面四个“小面”的颜色为绿、黄、紫、白,所以,所标数字的和为:(﹣1)+0+1+(﹣2)=﹣2,故答案为:﹣2.18.【考点】认识立体图形.【专题】几何图形;几何直观.【解答】解:与棱AB异面的棱有:棱EH,FG,DH,CG,故答案为:EH,FG,DH,CG.19.【考点】专题:正方体相对两个面上的文字.【专题】投影与视图;空间观念.【解答】解:由图形可知:A与B、D、E、F是邻面,故A和C为对面;则B与A、C、E、F是邻面,故B和D为对面;故E和F为对面;则三个小立方块的下底面所标字母代表的数字的和为﹣1﹣2+1=﹣2.故答案为:﹣2.20.【考点】两点间的距离.【专题】线段、角、相交线与平行线;几何直观.【解答】解:∵AC:BC=2:3,BD=AC,∴设AC=BD=2x,BC=3x,∵AC+BC=2x+3x=40,解得:x=8,∴AC=BD=16cm,BC=24cm,∵E为AD的中点,∴AE=ED=(16×2+24)=28cm,∴EC=AE﹣AC=28﹣16=12cm.故答案为:12cm.21.【专题】计算题;线段、角、相交线与平行线;运算能力.【解答】解:(1)由图知:∠AOB=15°+40°=55°,∴∠AOC=55°∴∠NOC=∠NOA+∠AOC=15°+55°=70°∴射线OC在北偏东70°方向上.故答案为:北偏东70°(2)∵∠BOC=∠AOB+∠AOC=55°×2=110°,∴∠COD=180°﹣∠BOC=180°﹣110°=70°故答案为:70°22.【考点】两点间的距离.【专题】分类讨论;线段、角、相交线与平行线;推理能力.【解答】解:①如图,CD=3,CE=5,∵点D是折线A﹣C﹣B的“折中点”,∴AD=DC+CB∵点E为线段AC的中点,∴AE=EC=AC=5∴AC=10∴AD=AC﹣DC=7∴DC+CB=7∴BC=4;②如图,CD=3,CE=5,∵点D是折线A﹣C﹣B的“折中点”,∴BD=DC+BD∵点E为线段AC的中点,∴AE=EC=AC=5∴AC=10∴AD=AC+DC=13∴BD=13∴BC=BD+DC=16.综上所述,BC的长为4或16.故答案为4或16.23.【考点】两点间的距离.【专题】推理填空题;分类讨论;线段、角、相交线与平行线;运算能力.【解答】解:①当AC>BC,点F在点C左侧时,如图所示,∵D为AC的中点,E为BC的中点,F为DE的中点,AB=16CF.∴DC=AC,CE=,∴DE=(AC+BC)=AB,∴DF=DE=AB=4CF,∴CF=DC﹣DF=AC﹣4CF∴AC=10CF∴BC=AB﹣AC=6CF∴=;②当AC<BC,点F在点C右侧时,如图所示,∵D为AC的中点,E为BC的中点,F为DE的中点,AB=16CF.∴DC=AC,CE=,∴DE=(AC+BC)=AB,∴DF=DE=AB=4CF,∴CF=DF﹣DC=4CF﹣AC∴AC=6CF∴BC=AB﹣AC=10CF∴=;∴=或;故答案为:或.24.【考点】认识立体图形;几何体的表面积.【专题】投影与视图;空间观念;应用意识.【解答】解:∵x+y+z+xy+xz+yz+xyz=439,∴x+y+z+xy+xz+yz+xyz+1=440,∴(x+1)(y+1)(z+1)=440,∵x+z=2y,∴(x+1)+(z+1)=2(y+1),∵z+1≥3,y+1≥4,x+1≥5,其中5+11=2×8,∴x+1=11,y+1=8,z+1=5,解得x=10,y=7,z=4,最优化处理时,最大的表面被重叠,表面积为7×10×4+4×7×12+4×10×6=856(cm2).故答案为:856.25.【考点】角的计算.【专题】线段、角、相交线与平行线;矩形菱形正方形;几何直观;应用意识.【解答】解:由折叠得,∠ABE=∠DBE,∠CBF=∠DBF,∵∠ABE+∠DBE+∠CBF+∠DBF=∠ABC=90°,∴∠ABE+∠CBF=∠ABC=×90°=45°,故答案为:45°.26【考点】角平分线的定义;角的计算.【专题】线段、角、相交线与平行线;几何直观;应用意识.【解答】解:设三角板PAB绕点P沿顺时针方向旋转的角度为α,则∠APD=180°﹣60°﹣α=120°﹣α,∵PE平分∠APD,PF平分∠BPD,∴∠APE=∠EPD=∠APD=(120°﹣α)=60°﹣α,∠BPF=∠FPD=∠BPD=(180°﹣60°﹣30°﹣α)=45°﹣α∴∠EPF=∠EPD﹣∠FPD=60°﹣α﹣(45°﹣α)=15°,故答案为:15°27.如图,点C是线段AB上一点,点M、N、P分别是线段AC,BC,AB的中点.AC=3cm,CP=1cm,线段PN=cm.【考点】两点间的距离.【专题】线段、角、相交线与平行线.【解答】解:∵AP=AC+CP,CP=1cm,∴AP=3+1=4cm,∵P为AB的中点,∴AB=2AP=8cm,∵CB=AB﹣AC,AC=3cm,∴CB=5cm,∵N为CB的中点,∴CN =BC =cm,∴PN=CN﹣CP =cm.故答案为:.28.【专题】线段、角、相交线与平行线;几何直观;应用意识.【解答】解:如图1,∵ON平分∠COB,OM平分∠AOD.∴∠NOB=∠CON =∠BOC =(45°+∠BOD),∠MOD=∠MOA =∠AOD =(60°+∠BOD),∴∠MON=α=∠NOB+∠MOD﹣∠BOD =(45°+60°),如图2,∵ON平分∠COB,OM平分∠AOD.∴∠NOB=∠CON =∠BOC =(45°﹣∠BOD),∠MOD=∠MOA =∠AOD =(60°﹣∠BOD),∴∠MON=β=∠NOB+∠MOD+∠BOD =(45°+60°),∴α+β=45°+60°=105°,故答案为:105.29.【专题】线段、角、相交线与平行线;几何直观;应用意识.【解答】解:设∠BOE=x°,∵∠BOE =∠BOC,∴∠BOC=nx,∴∠AOB=∠AOC+∠BOC=60°+nx,∵∠BOD =∠AOB =(60°+nx )=+x,∴∠DOE=∠BOD﹣∠BOE =+x﹣x =,故答案为:.30.【解答】解:由图知:∠1+∠2+90°=180°,即∠1+∠2=90°,∵∠1﹣∠2=50°,∴∠1=70°,∠2=20°.故答案为20°.。
RJ人教版 初一七年级数学 上册第一学期 同步课堂补习练习题作业 第四章 几何图形初步(全章 分课时)
第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时认识立体图形和几何图形1、如图,左面是一些具体的物体,右面是一些立体图形,试找出与下面立体图形相类似的实物(用线连接).2、将一个直角三角形绕它的最长边(斜边)旋转一周,得到的几何体是( ).3、下列结论中正确的是( ).①圆柱由3个面围成,这3个面都是平面;②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面;③球仅由1个面围成,这个面是平面;④正方体由6个面围成,这6个面都是平面.A.①②B.②③C.②④D.①④4、下面几种图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱.其中属于立体图形的是( ).A.③⑤⑥ B.①②③C.③⑥ D.④⑤5、将如图所示的几何体进行分类,并说明理由.6、如图所示的八棱柱,它的底面边长都是5厘米,侧棱长都是6厘米,回答下列问题:(1)这个八棱柱一共有多少面?它们的形状分别是什么图形?哪些面的形状、面积完全相同?(2)这个八棱柱一共有多少条棱?多少个顶点?(3)沿一条侧棱将其侧面全部展开成一个平面图形,这个图形是什么形状?面积是多少?参考答案1、答案:如图所示:2、解析:答案:D3、解析:4、解析:三角形、长方形、正方形、圆是平面图形;正方体、圆锥、圆柱是立体图形. 答案:A5、分析:几何体的分类不是唯一的.我们应先观察各个几何体,努力发现其共同点,然后可根据其共同点来进行适当的分类.解:若按柱体、锥体、球体来分类:(2)(3)(5)(6)是柱体,(4)是锥体,(1)是球体; 若按几何体的面是否含有曲面来分类,则(1)(4)(6)是旋转体,(2)(3)(5)是多面体.6、解:(1)这个八棱柱一共有10个面,上下两个底面是八边形,八个侧面都是长方形;上下两个底面的形状、面积完全相同,八个侧面形状、面积完全相同.(2)这个八棱柱一共有24条棱,16个顶点.(3)沿一条侧棱将其侧面全部展开成一个平面图形,这个图形是长方形,长为5×8=40(厘米),宽为6厘米,所以面积是40×6=240(平方厘米).第四章 几何图形初步4.1几何图形4.1.1 几何图形与平面图形第2课时 从不同的方向看立体图形和立体图形的展开图一、选择题1.由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是( ).2.如图所示的四种物体中,哪种物体最接近于圆柱( ).3.如图是一正方体纸盒的展开图,每个面上都标注了字母或数字,则面a在展开前所对的面上的数字是().A.2 B.3 C.4 D.54.按如图所示的图形中的虚线折叠可以围成一个棱柱的是().5.如图所示,下列图形绕着虚线旋转一周得到圆锥体的是()6.将左图中的正方体纸盒沿所示的粗线剪开,其平面展开图的示意图为()A.B.C.D.二、填空题7.五棱柱有________个顶点,________条棱,________个面.8.柱体包括________和________,锥体包括________和________.9.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“超”相对的字是________.10.(内蒙古赤峰)如图所示是一个几何体的三视图,则这个几何体是________.11.圆锥的底面是__________形,侧面是__________的面,侧面展开图是__________形. 12.当笔尖在纸上移动时,形成_______,这说明:_____;表针旋转时,形成了一个,这说明:;长方形纸片绕它的一边旋转,形成的几何图形就是,这说明: .三、解答题13.如图所示是一个长方体的展开图,每个面上都标注了字母,请根据要求回答问题:(1)如果面A在多面体的上面,那么哪一面会在下面?(2)如果面F在多面体的后面,从左面看是面B,那么哪一面会在上面?(3)从右面看是面A,从上面看是面E,那么哪一面会在前面?14.如图所示是一个机器零件从正面看和从上面看所得到的图形,求该零件的体积(π取底面积×高).3.14,单位:mm)(提示:V=圆柱15. 如图所示的一张硬纸片,它能否折成一个长方体盒子?若能,说明理由,并画出它的立体图形,计算它的体积.参考答案一、选择题1.B;2.A;3.B;【解析】要求面a在展开前所对的面上的数字,我们可以把正方体的展开图折叠起来,则面a、2、3、4按照第一、三个对应,第二、四个对应,于是面a在展开前所对的面上的数字为3.4. C ;【解析】A、D中两个底面不能放在同一侧,B中侧面个数与底面边数不等,故选C.5. D ;【解析】选项A、B、C、D中的图形旋转一周分别形成圆台、球、圆柱和圆锥,故选D.6. C;【解析】由正方体的表面展开图的特点再结合实际操作,便可得解.二、填空题7. 10, 15, 7 ;【解析】五棱柱上底面有5个顶点,下底面有5个顶点,共10个顶点;上、下底面各有5条棱,竖直有5条棱,共15条棱;7个面,其中5个侧面,2个底面.8. 圆柱,棱柱;圆锥,棱锥9. 自;【解析】要弄清立体图形与其平面展开图各部分间的关系,需要较强的空间想象能力,这种能力是建立在动手操作、认真观察与善于思考的基础上.10.三棱柱(或填正三棱柱);【解析】考查空间想象能力.11.圆,曲,扇;【解析】动手操作或空间想象,便得答案.12.一条线,点动成线;圆面,线动成面;圆柱体,面动成体三、解答题13.解:(1)如果面A在多面体的上面,那么面C会在下面.(2)如果面,在多面体的后面,从左面看是面C,那么向外折时面C会在上面,向里折时面A会在上面.(3)从右面看是面A,从上面看是面E,那么向外折时从前面看是面B,向里折时从前面看是面D.14.解:22032302540400482π⎛⎫⨯⨯+⨯⨯=⎪⎝⎭(mm3),即该零件的体积为40048 mm3.提示:由该零件从正面看和从上面看所得到的图形可以确定该零件是由上、下两部分组成的,上面是一个高为32 mm,底面直径为20 mm的圆柱;下面是一个长为30 mm,宽为25 mm,高为40 mm的长方体,零件的体积是圆柱与长方体体积之和.15. 【解析】解:能折成一个长方体盒子,因为符合长方体的平面展开图的所有条件,该几何体的立体图形如图所示.此长方体的长为5m,宽为2m,高为3m,所以它的体积为:5×2×3=30(m3).第四章几何图形初步4.1几何图形4.1.2 点、线、面、体1.下面几何体中,全是由曲面围成的是()A.圆锥B.正方体C.圆柱D.球2.下列立体图形中面数相同的是()①圆柱;②圆锥;③正方体;④四棱柱A.①④B.①②C.②③D.③④3.观察如图所示的棱锥,回答下列问题:(1)这个图形是平面图形还是立体图形?(2)图中有多少个顶点?多少条线段?多少个平面? (3)图中有哪些平面图形?4.如图,把长方形纸片沿图中虚线剪开得两个形状、大小相同的三角形,将这两个三角形拼在一起,使得有一条相等的边是共有的,能拼出多少种不同的几何图形(平面)?请你尝试画出来.(不包括原长方形的拼法)5. 图绕虚线旋转得到的实物图是()6. 如图,右边的几何体是由左边的哪个图形绕虚线旋转一周形成的( )7. 如图,长方形绕它的一条边MN 所在的直线旋转一周形成的几何体是( )8.下列有六个面的几何体的个数是()①长方体;②圆柱;③四棱柱;④正方体;⑤三棱柱A.1个B.2个C.3个D.4个9.天空中的流星划过后留下的光线,给我们以什么样的形象()A.点B.线C.面D.体10.在以下四个几何体中,其侧面展开图不是平面图形的是()A.圆柱B.棱柱C.球D.圆锥11.将如图所示放置的一个直角三角形ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体从正面看是()12.(8分)如图,把下列平面图形(1)~(6)绕虚线旋转一周,便能形成A ~F 的某个几何体,请找出来.参考答案 1、D 2、D3、解:(1)立体图形 (2)图中有5个顶点,8条线段,5个平面 (3)平面图形有:点、线段、角、三角形、长方形 4、解:五种,分别是:5、D6、A7、C8、C9、B 10、C 11、B12、解:(1)~(6)分别对应C ,D ,B ,A ,F ,E第四章 几何图形初步 4.2 直线、射线、线段 第1课时 直线、射线、线段1.手电筒射出的光线,给我们的形象是( ). A .直线 B .射线 C .线段 D .折线2.下列各图中直线的表示法正确的是( ).3.点P 在线段EF 上,现有四个等式①PE=PF;②PE=12EF;③12EF=PE;④2PE=EF;其中能表示点P 是EF 中点的有( )A .4个B .3个C .2个D .1个 4.如图中分别有直线、射线、线段,能相交的是( ).5.如图所示,点C 、B 在线段AD 上,且AB =CD ,则AC 与BD 的大小关系是A .AC >BDB .AC =BD C .AC <BD D .不能确定6.小红家分了一套新住房,她想在自己房间里的墙上钉上一根细木条,挂上自己喜欢的装饰物,那么小红至少需要钉几根钉子使细木条固定 ( )A .1个B .2个C .3个D .4个 7. 下图中,有 条直线, 条射线, 条线段,这些线段的名称分别是: .8.(广西崇左)在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是 . 9. 如图所示,数一数,图中共有________条线段,________条射线,________条直线,其中以B 为端点的线段是________;经过点D 的直线是________,可以表示出来的射线有________条.参考答案1.B【解析】手电筒本身看作射线的端点,射出的光线看作向前方无限延伸. 2.C【解析】要牢记直线、射线、线段的表示方法.3.A【解析】点P是线段AB的中点,表示方法不唯一.4.B5.B【解析】由AB=CD,得AB+BC=CD+BC,故有AC=BD.6.B【解析】两点确定一条直线.7. 1,8,6,线段AC、线段AD、线段AB、线段CD、线段CB、线段DB【解析】一条直线上有n个点,则射线有:2n条;线段有:(1)2n n条.8. 两点之间线段最短.【解析】线段的性质:两点之间线段最短.9. 6 ,18,4,线段AB、线段BC、线段BD;直线AD、直线BD、直线CD,10【解析】注意利用线段、射线、直线的表示法进行区别.第四章几何图形初步4.2 直线、射线、线段第2课时线段长短的比较与运算一、选择题1.下列说法中正确的是( )A.直线BA与直线AB是同一条直线 B.延长直线ABC.经过三点可作一条直线 D.直线AB的长为2cm2.在同一平面内有四个点,过其中任意两点画直线,仅能画出四条直线,则这四点的位置关系是()A.任意三点都不共线 B.有且仅有三点共线C.有两点在另外两点确定的直线外 D.以上答案都不对3.A、B是平面上两点,AB=10cm,P为平面上一点,若PA+PB=20cm,则P点A.只能在直线AB外B.只能在直线AB上C.不能在直线AB上D.不能在线段AB上.4.根据语句“点M在直线a外,过M有一直线b交直线a于点N、直线b上另一点Q位于M 、N 之间”画图,正确的是( ).5.已知A 、B 、C 为直线l 上的三点,线段AB =9cm ,BC =1cm ,那么A 、C 两点间的距离是( ).A .8 cmB .9 cmC .10 cmD .8cm 或10cm6.如图所示,把一根绳子折成3折,用剪刀从中剪断,得到绳子的条数为( ).A .3B .4C .5D .67.如图所示,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中.从A 地到B 地有2条水路、2条陆路,从B 地到C 地有3条陆路可供选择,走空中从A 地不到B 地而直接到C 地,则从A 地到C 地可供选择的方案有( ).A .20种B .8种C .5种D .13种 8.如图所示,“回”字形的道路宽为1米,整个“回”字形的道路构成了一个长为8米,宽为7米的长方形,一个人从入口点A 沿着道路中央走到终点B ,他共走了( ).A .55米B .55.5米C .56米D .56.6米二、填空题9.班长小明在墙上钉木条挂报夹,钉一颗钉时,木条还任意转动,钉两颗钉时,木条再也不动了,用数学知识解释这种现象为: .10.如图所示,OD 、OE 是两条射线,A 在射线OD 上,B 、C 在射线OE 上,则图有共有线段________条,分别是________;共有________条射线,分别是________.11.如图,AB=6,BC=4,D 、E 分别是AB 、BC 的中点,则BD+BE= , 根据公理: ,可知BD+BE DE. 12.经过平面上三点可以画 条直线第2题第3题 第6题13.同一平面内三条线直线两两相交,最少有 个交点,最多有 个交点.14. (嵊州)如图所示,平面内有公共端点的六条射线OA ,OB ,OC ,OD ,OE ,OF ,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….则“17”在射线________上;“2007”在射线________上.三、解答题15.如图所示一只蚂蚁在A 处,想到C 处的最短路线,请画出简图,并说明理由.16.小明发现这样一个问题:“在一次聚会中,共有6人参加,如果每两人都握一次手,共握几次手?”通过思考,小明得出了答案, 那请问同学们:如果有n 个人参加聚会,每两人都握一次手,一共要握多少次手呢?17.如图,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点. (1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC+ CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由.(3)若C 在线段AB 的延长线上,且满足AC CB bcm -=,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由.参考答案一、选择题 1.A 2.B3.D 【解析】若点P 在线段AB 上,则有PA +PB =10.cm ,故这种情况不可能. 4. D 【解析】逐依排除.5. D 【解析】分两种情况讨论:(1)点C 在线段AB 上,AC=AB-BC=9-1=8(cm );(2)点C 在线段AB 的延长线上,AC=AB+BC=9+1=10(cm ). 6.B7.D 【解析】从A 地直接到C 地只有1种方案;先从A 到B ,再到C 地有4×3=12种方案,所以共有12+1=13种方案可供选择.8.C 【解析】他走的路程分别为7.5米、6米、7米、5米、6米、4米、5米、3米、4米、2米、3米、1米、2.5米,其和为56米. 二、填空题9. 过一点可以作无数条直线,经过两点只能作一条直线.【解析】本题是直线的性质在生产生活中的应用.10.6,线段OA 、OB 、OC 、BC 、AC 、AB ; 5,射线OD 、O E 、BE 、AD 、CE . 11.5,两点之间线段最短,> 12.1 或3.【解析】三点在一条直线时,只能确定一条直线;当三点不共线线上,可确定三条直线 13.1, 3.【解析】如下图,三条直线两两相交有两种情况:14.OE 、OC . 【解析】当数字为6n+1(n ≥0)时在射线O A 上;当数字为6n+2时在射线OB 上;当数字为6n+3时在射线OC 上;当数字为6n+4时在射线OD 上;当数字为6n+5时在射线OE 上;当数字为6n 时在射线OF 上. 三、解答题15.解:如图所示一只蚂蚁在A 处,想到C 处的最短路线如图所示,理由是:两点之间,线段最短.(圆柱的侧面展开图是长方形,是一个平面)16.解:若6人,共握手:5+4+3+2+1=15(次)若有n 个人,一共要握(n -1)+(n -2)+…+4+3+2+1(1)2n n -=次手. 17.解:(1)如下图,∵AC = 8 cm ,CB = 6 cm∴8614AB AC CB cm =+=+= 又∵点M 、N 分别是AC 、BC 的中点 ∴11,22MC AC CN BC == ∴1111()72222MN AC CB AC CB AB cm =+=+==答:MN 的长为7cm.(2)若C 为线段AB 上任一点,满足AC + CB = a cm ,其它条件不变,则12MN acm =理由是:∵点M 、N 分别是AC 、BC 的中点 ∴11,22MC AC CN BC == ∵AC+ CB=a cm ∴1111()2222MN AC CB AC CB acm =+=+=(3)如图,∵点M 、N 分别是AC 、B C 的中点 ∴11,22MC AC NC BC == ∵AC CB bcm -= ∴1111()2222MN MC NC AC CB AC CB bcm =-=-=-=第四章 几何图形初步4.3 角 4.3.1 角1.下图中表示∠ABC 的图是( ).2.下列关于角的说法正确的是( ).A .两条射线组成的图形叫做角;B .延长一个角的两边;C .角的两边是射线,所以角不可以度量;D .角的大小与这个角的两边长短无关 3.下列语句正确的是( ).A .由两条射线组成的图形叫做角B .如图,∠A 就是∠BACC .在∠BAC 的边AB 延长线上取一点D ; D .对一个角的表示没有要求,可任意书定4.如图所示,能用∠AOB ,∠O ,∠1三种方法表示同一个角的图形是( ).5.如图所示,图中能用一个大写字母表示的角是______;以A•为顶点的角有_______个,它们分别是________________. 6.从一个钝角的顶点,在它的内部引5条互不相同的射线,•则该图中共有角的个数是( ).A .28B .21C .15D .6 7.下列各角中,是钝角的是( ). A .14周角 B .23周角 C .23平角 D .14平角 8.下列关于平角、周角的说法正确的是( ).A .平角是一条直线B .周角是一条射线C .反向延长射线OA ,就形成一个平角D .两个锐角的和不一定小于平角9.一天24小时中,时钟的分针和时针共组合成_____次平角,______次周角.10.(1)用10倍放大镜看30°的角,你观察到的角是_______.(2)用10倍放大镜看50°的角,60°的角,你观察到的角是______,______.由(1),(2),你能得到什么结论?请把你的结论让同学们进行验证,看是否正确.11.(北京)在图中一共有几个角?它们应如何表示?参考答案:1.C (解析:用三个大写字母表示角,表示角顶点的字母在中间)2.D3.B (解析:根据定义知A,C不正确,根据角的表示方法知D不正确)4.D (解析:∠O是一个单独的大写英文字母,它只能表示独立的一个角,•而∠O还可用∠1或∠AOB表示)5.∠B,∠C 6个∠CAD,∠CAE,∠CAB,∠DAE,∠DAB,∠EAB6.B [解析:有公共顶点的n条射线,所构成的角的个数,一共是12n(n-1)个]7.C (解析:平角=180°,钝角大于90°而小于180°,23平角=23×180°=120°,•故选C)8.C (解析:根据定义可知A,B不正确;锐角大于0°而小于90°,•所以两个锐角的和小于180°,D不正确;反向延长射线OA,O成为角的顶点,故选C)9.24 24 (点拨:分针每小时转动一周与时针形成一次平角,一次周角)10.(1)30°(2)50° 60°角度不变.(解析:放大镜只有把图形放大,但不能把角度放大)11.3个角,∠ABC,∠1,∠2.第四章几何图形初步4.3 角4.3.2 角的比较与运算一、选择题1.(福建福州)下面四个图形中,能判断∠1>∠2的是()图3DC B AO2.如图,点A 位于点O 的 方向上( ). A .南偏东35° B . 北偏西65° C .南偏东65° D . 南偏西65°3.钟表上2时25分时,时针与分针所成的角是 ( ) .A . 77.5 °B . 77 °5′C . 75°D .以上答案都不对4.如图,∠AOB 是直角,∠COD 也是直角,若∠AOC =α, 则∠BOD 等于 ( )A .90°+αB .90°-αC .180°+αD .180°-α5. 如图,点A 、O 、E 在同一直线上, ∠AOB=40°,∠EOD=28°46’,OD 平分 ∠COE ,则∠COB 的度数为( ).A . 68°46′ B.82°32′C. 82°28′D.82°46′二、填空题6.已知∠α的余角是35°45′20″,则∠α的度数是_____ °___ ′ ″ . 7.已知∠α与∠β互补,且∠α=35º18′,则∠β=________8. 如图3,∠AOD=80°,∠AOB=30°,OB 是∠AOC 的平分线,则∠AOC 的度数为_________,∠COD 的度数为___________.9.钟表8时30分时,时针与分针所成的角为 度°的射线与西南方向的射线组成的角 O A D B E C12.如图所示,将一平行四边形纸片ABCD 沿AE ,EF 折叠,使点E ,B 1,C 1在同一条直线上,则∠AEF =________.三、解答题13.如图,已知点C 、点D 分别在AOB ∠的边上,请根据下列语句画出图形: (1)作AOB ∠的余角AOE ∠;(2)作射线DC 与OE 相交于点F ; (3)取OD 的中点M ,连接CM .14. 如图所示,直线AB 、CD 相交于点O ,且∠BOC =80°,OE 平分∠BOC .OF 为OE 的反向延长线.求∠2和∠3的度数,并说明OF 是否为∠AOD 的平分线.15.如图所示,五条射线OA 、OB 、OC 、O D 、OE 组成的图形中共有几个角?如果从O 点引出n 条射线,能有多少个角?你能找出规律吗?16. 如图,∠AO B=90º,∠AOC=30º,且OM 平分∠BOC , ON 平分∠AOC , (1)求∠MON 的度数.O DB A(2)若∠AOB=α其他条件不变,求∠MON 的度数.(3)若∠AOC=β(β为锐角)其他条件不变,求∠MON 的度数 (4)从上面结果中看出有什么规律?参考答案一、选择题3.D 【解析】A 中∠1=∠2,B 中∠1<∠2,C 中∠1<∠2. 5. B6. A 【解析】所求夹角为: 6°×25-1()2︒×25-30°×2=77.5°7. D 【解析】如图,∠BOD=90°+90°-α=180°-α8.C 【解析】如图,∠BOC=180°-40°-2×28º46′=82º28′. 二、填空题 9. 54°14′40″ 10.144°42′ 11.60°,20°【解析】∠AOC=2×∠AOB=60°,∠DOC=∠AOD -∠AOC=20° 12.75°【解析】1()2︒×30+30°×2=75°13.125°【解析】45°+80°=125° 14.44°43′【解析】∠DAE=∠BAE -∠BAD=135 °17′-90°= 45°17′, ∠CAD=90°-45°17′=44°43′16.90°【解析】由折线知∠A ′BC =∠ABC ,∠EBD =∠DBE ′. 三、解答题 17.解:如图所示:18.解:因为∠BOC =80°,OE 平分∠BOC所以∠1=12∠BOC =12×80°=40° 又因为CD 是直线,所以∠2+∠BOC =180°, 所以∠2=180°-80°=100°同理∠2+∠AOD =180°,∠1+∠2+∠3=180° 所以∠AOD =80°,∠3=40° 所以∠3=12∠AOD ,所以OF 是∠AOD 的平分线 ++3+2+1=20.解:(1)∵∠AOB=90°,∠AOC=30°, ∴∠BOC=120°∵OM 平分∠BOC ,ON 平分∠AOC ∴∠COM=60°,∠CON=15° ∴∠MON=∠COM-∠CON=45°. (2)∵∠AOB=α,∠AOC=30°, ∴∠BOC=α+30°∵OM 平分∠BOC ,ON 平分∠AOC∴∠COM=2α+15°,∠CON=15° ∴∠MON=∠COM-∠CON=2α.(3)∵∠AOB=90°,∠AOC=β, ∴∠BOC=90°+β∵OM 平分∠BOC ,ON 平分∠AOC ∴∠COM=45°+2β ,∠CON= 2β. ∴∠MON=∠COM -∠CON=45°.(4)从上面的结果中,发现:∠MO N 的大小只和∠AOB 得大小有关,与∠A0C 的大小无关.南西第四章 几何图形初步4.3 角4.3.3 余角和补角1.如图所示,∠1是锐角,则∠1的余角是( ). A .1212∠-∠ B .132122∠-∠ C .1(21)2∠-∠ D .1(21)3∠+∠2、(1)A 看B 的方向是北偏东21°,那么B 看A 的方向( )A:南偏东69° B:南偏西69° C:南偏东21° D:南偏西21°(2)如图,下列说法中错误的是( )A: OC 的方向是北偏东60° B: OC 的方向是南偏东60° C: OB 的方向是西南方向 D: OA 的方向是北偏西22°(3)在点O 北偏西60°的某处有一点A ,在点O 南偏西20°的某处有一点B ,则∠AOB 的度数是( )A:100° B:70° C:180° D:140°3、若一个角的补角等于它的余角4倍,求这个角的度数。
人教版初一数学几何图形练习题
人教版初一数学几何图形练习题一、选择题(共4小题)1.图中的平面展开图是下面名称几何体的展开图,则立体图形与平面展开图不相符的是A.B.C.D.2.如图所示的几何体,从上面看到的平面图形是A.B.C.D.3.如图,如果把一个圆锥的侧面沿图示中的线剪开,则得到的图形是A.三角形B.圆C.圆弧4.一个正方体的平面展开图如图所示,折叠后可折成的图形是第1页(共4页)D.扇形A.B.C.D.二、填空题(共3小题)5.下列各图是几何体的表面展开图,请写出对应的几何体的名称.6.如图所示是由若干个大小相同的小正方体所搭成的几何体从三个方向看到的图形,则搭成这个几XXX的小正方体的个数是个.7.从棱长为的正方体毛坯的一角,挖去一个棱长为的小正方体,得到一个如图所示的零件,则这个零件的表面积为.第2页(共4页)三、解答题(共3小题)8.图中的平面睁开图折叠成正方体后,相劈面上的两个数之和为,求的值.9.如图,几何体是由若干棱长为的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),观察该图,探究其中的规律.(1)第个多少体中只有个面涂色的小立方体共有个.第个多少体中只有个面涂色的小立方体共有个.(2)求出第(3)求出前个几何体中只有个面涂色的小立方体的块数.个多少体中只有个面涂色的小立方体的块数的和.10.如图是一个几何体的平面展开图.(1)这个多少体是.(2)求这个多少体的体积.(取)第3页(共4页)谜底第一部分1.A2.B3.D4.D【解析】从上面看到的平面图形是两个同心圆.第二部分5.圆锥,三棱锥,圆柱6.【剖析】多少体漫衍情形以下列图所示:则小正方体的个数为7.第三部分8.(个).。
.9.(1);..【解析】这个零件的表面积与原正方体的表面积相同,为【剖析】观察图形可得第个多少体中最底层的个角的小立方体只有个面涂色;第个多少体中只有个面涂色的小立方体共有图②中,只有个面涂色的小立方体共有图③中,只有个面涂色的小立方体共有。
北师大版七年级数学上册第三章《整式及其加减》练习题含答案解析 (25)
一、选择题1.若a为最大的负整数,b的倒数是−0.5,则代数式2b3+(3ab2−a2b)−2(ab2+b3)值为( )A.−6B.−2C.0D.0.52.代数式−x2y,0,−3,2x2+1,−3x,−2a ,x−13,x3中,单项式有( )A.2个B.3个C.4个D.5个3.下列代数式中,单项式有( )① −3m2n2;② x2+y2;③ a+b3;④ 0;⑤ 2x.A.1个B.2个C.3个D.4个4.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20.如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是( )A.B.C.D.5.如图,表中给出的是某月的月历,任意选取“H”型框中的7个数(如阴影部分所示).则这7个数的和不可能是( )A.63B.70C.96D.1056.广场要做一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有n(n>1)盆花,设这个花坛边上的花盆的总数为S,请观察图中的规律,按此规律推断,S与n的关系是( )A.S=4n+2B.S=6n+6C.S=4n−2D.S=6n−67.如图,下列图形都是由大小一样的正方形按一定的规律组成的,其中,第①个图形中黑色正方形有4个,第②个图形中黑色正方形有7个,第③个图形中黑色正方形有10个,⋯⋯,按此规律,则第⑧个图形中黑色正方形的个数为( )A.26B.20C.21D.258. 一列数 a 1,a 2,a 3,⋯,a n ,其中 a 1=−1,a 2=11−a 1,a 3=11−a 2,⋯,a n =11−a n−1,则 a 1+a 2+a 3+⋯+a 50= ( ) A . 23B . 2312C . 24D . 24129. 把三角形按如图所示的规律拼图案,其中第①个图案中有 4 个三角形,第②个图案中有 6 个三角形,第③个图案中有 8 个三角形,⋯,按此规律排列下去,则第⑦个图案中三角形的个数为 ( ) 个.A . 12B . 14C . 16D . 1810. 一个长方形的周长是 30 cm ,长是 x cm ,则宽是 ( ) cm . A . 30−xB . 30−2xC . 15+xD . 15−x11. 如果 2x −y =3,那么代数式 1+4x −2y 的值为 ( ) A . 5B . 7C . −5D . −712. 为庆祝“六 ⋅ 一”儿童节,綦江区某中学初一年级学生举行火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆 n 个“金鱼”需用火柴棒的根数为 ( )A . 2+6nB . 8+6nC . 4+4nD . 8n13. 如图,P 1 是一块半径为 1 的半圆形纸板,在 P 1 的右上端剪去一个直径为 1 的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形 P 3,P 4⋯P n ⋯,记纸板 P n 的面积为 S n ,则 S n −S n+1 的值为 ( )A . (12)nπB . (14)nπC . (12)2n+1πD . (12)2n−1π14. 下列各式符合代数式书写规范的是 ( )A.ba B.a×7C.2m−1元D.312x15.如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是( )A.C,E B.E,F C.G,C,E D.E,C,F16.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,⋯则第8个图形中花盆的个数为( )A.56B.64C.72D.9017.如图所示的运算程序中,若开始输入的x值为24,则第1次输出的结果为12,第2次输出的结果为6,⋯,第2000次输出的结果为( )A.1B.3C.4D.618.如图,从左至右第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成⋯⋯按此规律,第n个图中正方形和等边三角形的个数之和为( )A.(9n+3)个B.(6n+5)个C.(6n+3)个D.(9n+5)个=1,其中i=0,1,2⋯⋯,( )19.若x i+1−x i2A.当x0=0时,x2018=4037B.当x0=1时,x2018=4037C.当x0=2时,x2018=4037D.当x0=3时,x2018=403720.对于正整数n,我们定义一种“运算”:①当n为奇数时,结果为n+1;②当n为偶数时,结n,并且运算重复进行.例如,取n=9,则果12若n=12,则第2019次运算的结果是( )A.2018B.2017C.2D.1二、填空题21.公元1514年,德国著名大画家兼数学家丢勒雕刻了一幅名为《忧郁》的钢板画,其背面刻着一块幻方,如图,其中有许多数学上的规律,至今仍令世人惊叹.16321351011896712415141请找出幻方中的三条规律,并把它写出来:(1);(2);(3).更为神秘的是,有一个被欧洲人称为“神秘常数”的数,这个数虽在幻方中找不到,但却和该幻方的若干个数之和紧密相连,你猜这个“神秘常数”是.22.“x与3的差的2倍”列式表示为.23.用边长为1cm的小正方形搭如下的塔状图形,则第n次所搭图形的周长是cm(用含n的代数式表示).24.如图1,2,3,⋯是由花盆摆成的图案,图1中有1盆花,图2中有7盆花,图3中有19盆花,⋯⋯根据图中花盆摆放的规律,图4中,应该有盆花;第n个图形中应该有盆花.25.已知多项式ax5+bx3+cx+9,当x=−1时,多项式的值为17,则该多项式当x=1时的值是.26.为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度电价按0.58元收费,如果超过100度,那么超过部分每度电价按0.65元收费.某户居民在一个月内用电x度(x>100),他这个月应缴纳电费是元(用含x的代数式表示).27.如图,第1幅图是由三个点组成第2幅图是由6个点组成第3幅图是由9个点组成,按此规律推知,第n幅图应由个点组成.三、解答题28.解答下列问题:(1) 先完成下列表格:a⋯⋯0.00010.01110010000⋯⋯√a⋯⋯0.010.11⋯⋯(2) 由上表你发现什么规律?(3) 根据你发现的规律填空:①已知√3=1.732则√300=,√0.03=;②已知√0.003136=0.056,则√313600=.29.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾处理厂处理.已知甲厂每小时处理垃圾55吨,每小时需费用550元;乙厂每小时处理垃圾45吨,每小时需费用495元.(1) 若甲厂每天处理垃圾x小时,则乙厂每天应处理垃圾多少时间刚好处理完(用关于x的代数式表示)?(2) 若规定该城市每天用于处理垃圾的费用不超过7370元,则甲厂每天处理垃圾至少需多少时间?30.先化简再求值:(1) 3a2b+2ab2−5−3a2b−5ab2+2,其中a=1,b=−2;(2) 3m2−[5m−2(2m−3)+4m2],其中m=−4.31.去括号合并同类项:(1) (12x+13y)−(13x−12y).(2) (x3+y3)−2(x3−y3).(3) 2(x2−3x+1)−13(3x2+6x−2).(4) 3x2y2−[5xy2−(4xy2−3)+2x2y2].32.计算下图阴影部分面积.(1) 用含有a,b的代数式表示阴影面积;(2) 当a=1,b=2时,其阴影面积为多少?33.定义:对任意一个两位数a,如果a满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“迥异数”.将一个“迥异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为f(a).例如:a=12,对调个位数字与十位数字得到新两位数21,新两位数与原两位数的和为21+ 12=33,和与11的商为33÷11=3,所以f(12)=3.根据以上定义,回答下列问题:(1) 填空:下列两位数:40,51,66中,“迥异数”为.(2) 计算:① f(13).② f(10a+b).(3) 如果一个“迥异数”m的十位数字是x,个位数字是x−4,另一个“迥异数”n的十位数字是x−5,个位数字是2,且满足f(m)−f(n)<8,求x.34.完成下面问题:(1) 【归纳探究】把长为n(n为正整数)个单位的线段,切成长为1个单位的线段,允许边切边调动,最少要切多少次.我们可以先从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.不妨假设最少能切m次,我们来探究m与n之间的关系.如图,当n=1时,最少需要切0次,即m=0.如图,当n=2时,从线段中间最少需要切1,即m=1.如图,当n=3时,第一次切1个单位长的线段,第二次继续切剩余线段1个单位长即可,最少需要切2次,即m=2.如图,当n=4时,第一次切成两根2个单位长的线段,再调动重叠切第二次即可,最少需要切2次,即m=2.如图,当n=5时,第一次切成2个单位长和3个单位长的线段.将两根线段适当调动重叠,再切二次即可,最少需要切3次,即m=3.①仿照上述操作方法,请你用语言叙述,当n=16时,所需最少切割次数的方法,如此操作实验,可获得如下表格中的数据:n123456789101112131415m012233334444444当n=1时,m=0.当1<n≤2时,m=1.当2<n≤4时,m=2.当4<n≤8时,m=3.当8<n≤16时,m=.⋯②根据探究请用含m的代数式表示线段n的取值范围:.③当n=1180时,m=.(2) 【类比探究】由一维的线段我们可以联想到二维的平面,类比上面问题解决的方法解决如下问题.把边长n(n为正整数)个单位的大正方形,切成边长为1个单位小正方形,允许边切边调动,最少要切多少次.不妨假设最少能切m次,我们来探究m与n之间的关系.①通过实验观察:当n=1时,从行的角度分析,最少需要切0次,从列的角度分析,最少需要切0次.最少共切0,即m=0.当n=2时,从行的角度分析,最少需要切1次,从列的角度分析,最少需要切1次,最少共切2,当1<n≤2时,m=2.当n=3时,从行的角度分析,最少需要切2次,从列的角度分析,最少需要切2次,最少共切4,当2<n≤4时,m=4.⋯当n=8时,从行的角度分析,最少需要切3次,从列的角度分析,最少需要切3次,最少共切6,当4<n≤8时,m=6.当8<n≤16时,m=.⋯②根据探究请用含m的代数式表示线段n的取值范围:.(3) 【拓展探究】由二维的平面我们可以联想到三维的立体空间,类比上面问题解决的方法解决如下问题.①把棱长为4个单位长的大正方体,切成棱长为1个单位小正方体,允许边切边调动,最少要切次.②把棱长为8个单位长的大正方体,切成棱长为1个单位小正方体,允许边切边调动,最少要切次.③把棱长为n(n为正整数)个单位长的大正方体,切成边长为1个单位长的小正方体,允许边切边调动,最少要切m次.请用m的代数式表示线段n的取值范围:.35.已知x>0,y>0,且x−2√xy−15y=0,求√xy+3y的值.x+√xy−y答案一、选择题1. 【答案】B【解析】原式=2b 3+3ab2−a2b−2ab2−2b3=ab2−a2b.∵a为最大负整数,∴a=−1,∵b的倒数是−0.5,∴b=−2.∴原式=(−1)×(−2)2−(−1)2×(−2)=−4+2=−2.故选B.【知识点】整式的加减运算2. 【答案】D【知识点】单项式3. 【答案】B【知识点】单项式4. 【答案】B【知识点】用代数式表示规律、有理数混合运算的应用5. 【答案】C【知识点】日历中的应用(D)、简单列代数式6. 【答案】D【解析】观察可得,n=2时,S=6;n=3时,S=6+(3−2)×6=12;n=4时,S=6+(4−2)×6=18.⋯⋯所以,S与n的关系是:S=6+(n−2)×6=6n−6.故选D.【知识点】用代数式表示规律7. 【答案】D【解析】设第n个图形中有a n个黑色正方形(n为正整数),∵a1=4=3+1,a2=7=2×3+1,a3=10=3×3+1,⋯,∴a n=3n+1(n为正整数),∴a8=3×8+1=25.【知识点】用代数式表示规律8. 【答案】B【解析】由题意可得,a1=−1,a2=12,a3=2, a4=−1,⋯.则a1+a2+a3=−1+12+2=32,因为50÷3=16⋯2,所以a1+a2+a3+⋯+a50=(a1+a2+a3)+(a4+a5+a6)+⋯+(a46+a47+a48)+(a49+a50)=32×16+(−1+12)=24+(−12)=2312.【知识点】用代数式表示规律9. 【答案】C【解析】∵第①个图案中三角形个数(单位:个)4=2+2×1,第②个图案中三角形个数(单位:个)6=2+2×2,第③个图案中三角形个数(单位:个)8=2+2×3,⋯⋯∴第⑦个图案中三角形的个数为2+2×7=16(个).【知识点】用代数式表示规律10. 【答案】D【解析】由题意得长方形的宽=30÷2−x=15−x(cm),故选:D.【知识点】简单列代数式11. 【答案】B【知识点】简单的代数式求值12. 【答案】A【知识点】用代数式表示规律13. 【答案】C【解析】根据题意得,n≥2.S1=12π×12=12π,S2=12π−12π×(12)2,⋯,S n=12π−12π×(12)2−12π×[(12)2]2−⋯−12π×[(12)n−1]2,S n+1=12π−12π×(12)2−12π×[(12)2]2−⋯−12π×[(12)n−1]2−12π×[(12)n]2,∴S n−S n+1=12π×(12)2n=(12)2n+1π.故选:C.【知识点】用代数式表示规律14. 【答案】A【解析】A、代数式书写规范,符合题意.B、数字与字母相乘时,数字要写在字母前面,不符合题意.C、代数式作为一个整体,应该加括号,不符合题意.D、带分数要写成假分数的形式,不符合题意.【知识点】简单列代数式15. 【答案】D【解析】经实验或按下方法可求得顶点C,E和F棋子不可能停到.设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+⋯+k=12k(k+1),应停在第12k(k+1)−7p格,这时p是整数,且使0≤12k(k+1)−7p≤6,分别取k=1,2,3,4,5,6,7时,12k(k+1)−7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤2020,设k=7+t(t=1,2,3)代入可得,12k(k+1)−7p=7m+12t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和棋子F不可能停到.故选:D.【知识点】用代数式表示规律16. 【答案】D【解析】∵第一个图形:三角形每条边上有3盆花,共计32−3盆花,第二个图形:正四边形每条边上有4盆花,共计42−4盆花,第三个图形:正五边形每条边上有5盆花,共计52−5盆花,⋯第n个图形:正n+2边形每条边上有n盆花,共计(n+2)2−(n+2)盆花,则第8个图形中花盆的个数为(8+2)2−(8+2)=90盆.【知识点】用代数式表示规律17. 【答案】D=12,【解析】把x=24代入运算程序得:24×12=6,把x=12代入运算程序得:12×12=3,把x=6代入运算程序得:6×12把x=3代入运算程序得:3+5=8,=4,把x=8代入运算程序得:8×12=2,把x=4代入运算程序得:4×12=1,把x=2代入运算程序得:2×12把x=1代入运算程序得:1+5=6,=3,把x=6代入运算程序中得:6×12把x=3代入运算程序中得:3+5=8,依此类推,∵(2000−4)÷6=332⋯4,∴第2000次输出的结果为6.【知识点】简单的代数式求值18. 【答案】A【知识点】用代数式表示规律19. 【答案】B=1,其中i=0,1,2⋯⋯,【解析】因为x i+1−x i2所以x i+1−x i=2,所以x i+1=x i+2,所以x i=x0+2i,当x0=0时,x2018=0+2×2018=4036,故选项A错误,当x0=1时,x2018=1+2×2018=4037,故选项B正确,当x0=2时,x2018=2+2×2018=4038,故选项C错误,当x0=3时,x2018=3+2×2018=4039,故选项D错误,故选:B.【知识点】简单的代数式求值20. 【答案】D【解析】当n=12时,第一次运算结果为:6,第二次运算结果为:3,第三次运算结果为:4,第四次运算结果为:2,第五次运算结果为:1,第六次运算结果为:2,发现:当运算次数大于三次时,第奇数次运算结果为1,第偶数次结果为2.所以第2019次运算结果为:1.【知识点】简单的代数式求值二、填空题21. 【答案】每相邻两个格中的数据都是一奇一偶;横向相邻的两个数的和都是奇数;每个格中的两个数据的和是21或13;34【解析】(1)16,5;9,4;3,10;⋯⋯;12,1,通过观察可以发现,每个格中的数据都是一奇一偶.(2)因为16+3=19,3+2=5,2+13=15,5+10=15,⋯⋯,所以横向相邻的两个数的和都是奇数.(3)因为16+5=21,10+3=13,2+11=13,13+8=21,9+4=13,6+15=21,7+14=21,12+1=13,所以每个格中的两个数据的和是21或13.因为16+3+2+13=34,5+10+11+8=34,9+6+7+12=34,4+15+14+1=34,16+5+9+4=34,3+10+6+15=34,2+11+7+14=34,13+8+12+1=34,所以横向每一排的和都是34,纵向每一列的和都是34,则这个“神秘常数”为34.【知识点】用代数式表示规律、有理数的加法法则及计算22. 【答案】2(x−3)【解析】“x与3的差的2倍”列式表示为:2(x−3),故答案为:2(x−3).【知识点】简单列代数式23. 【答案】4n【解析】第一次:1个小正方形的时候,周长等于1个正方形的周长,是1×4=4(cm);第二次:3个小正方形的时候,一共有4条边被遮挡,相当于少了1个小正方形的周长,所搭图形的周长为2个小正方形的周长,是2×4=8(cm);第三次:6个小正方形的时候,一共有12条边被遮挡,相当于少了3个小正方形的周长,所搭图形的周长为3个小正方形的周长,是3×4=12(cm);⋯⋯找到规律,第n次:第几次搭建的图形的周长就相当于几个小正方形的周长是n×4=4n(cm).所以第n个图形的周长为4n cm.【知识点】用代数式表示规律24. 【答案】37;3n(n−1)+1【解析】(1)∵图1中有1盆花,图2中有1+6=7盆花,图3中有1+6+6×2=19盆花,⋯∴第n个图中有1+6×(1+2+3+⋯+n−1)=3n(n−1)+1盆花;∴图4中,应该有12×(4−1)+1=37盆花;(2)第n个图形中花盆的盆数为3n(n−1)+1.【知识点】用代数式表示规律25. 【答案】1【解析】∵当x=−1时,多项式的值为17,∴ax5+bx3+cx+9=17,即a⋅(−1)5+b⋅(−1)3+c⋅(−1)+9=17,整理得a+b+c=−8,当x=1时,ax5+bx3+cx+9=a⋅15+b⋅13+c⋅1+9=(a+b+c)+9=−8+9=1.【知识点】简单的代数式求值26. 【答案】(0.65x−7)【解析】依题意得:0.58×100+(x−100)×0.65=0.65x−7.【知识点】简单列代数式27. 【答案】3n【知识点】用代数式表示规律三、解答题28. 【答案】(1)a⋯⋯0.00010.01110010000⋯⋯√a⋯⋯0.010.1110100⋯⋯(2) 规律是:被开方数的小数点向左或向右每移动两位开方后所得的结果相应的也向左或向右移动1位.(3) 17.32;0.1732;560【解析】(3) ① ∵√3=1.732,∴√300=17.32;√0.03=0.1732;② ∵√0.003136=0.056,∴√313600=560.【知识点】算术平方根的运算、用代数式表示规律29. 【答案】(1) 140−11x9.(2) 设甲厂每天处理垃圾x小时,则550x+495×140−11x9≤7370,解得x≥6.即甲厂每天至少处理垃圾6小时.【知识点】实际应用-经济问题、简单列代数式30. 【答案】(1) 原式=3a2b−3a2b+2ab2−5ab2−5+2=−3ab2−3,当a=1,b=−2时,原式=−3×1×(−2)2−3=−15;(2) 原式=3m2−(5m−4m+6+4m2) =3m2−5m+4m−6−4m2=−m2−m−6,当m=−4时,原式=−(−4)2−(−4)−6=−18.【知识点】整式的加减运算、合并同类项31. 【答案】(1) 16x+56y.(2) −x3+3y3.(3) x2−8x+83.(4) x2y2−xy2−3.【知识点】整式的加减运算32. 【答案】(1) 根据题意得:4a2+2ab+3b2.(2) 当a=1,b=2时,原式=4+4+12=20.【知识点】简单列代数式、简单的代数式求值33. 【答案】(1) 51(2) ① ∵13+31=4444÷11=4,∴f(13)=4.②∵10a+b+10b+a=11a+11b(11a+11b)÷11=a+b,∴f(10a+b)=a+b.(3) 由题意,得f(m)=x+x−4=2x−4,f(n)=x−5+2=x−3,∵f(m)−f(n)<8,∴(2x−4)−(x−3)<8x,−1<8,∴x<9,又∵x−5>0,即x>5,∴5<x<9,∴x=8,7,6,当x=8时,m=84,n=32;当x=7时,m=73,n=22,不符合题意,舍去;当x=6时,m=62,n=12.∴x=6或x=8.【知识点】有理数的加法法则及计算、有理数的除法、解连不等式、简单列代数式34. 【答案】(1) ① 4② 2m−1<n≤2m③ 11(2) ① 8② 2m2−1<n≤2m2(3) ① 6② 9③ 2m3−1<n≤2m3【解析】(1) ①由截取一维线段所得到的图标可知当8<n≤16时,m=4,故答案是4.②然后观察左列n的值与右列m的值的关系可以得到2m−1<n≤2m.故答案是:2m−1<n≤2m.③当n=1180时,通过计算可知符合条件的m的值等于11.故答案是11.(2) ①熟悉了截取的过程很容易得到当n的值相等时,截取二维图形的次数是一维图形的次数的2倍,截取三维图形的次数是截取一维线段的次数的三倍.当8<n≤16时,根据截取线段时次数是4,所以截取二维图片时次数是8.故答案是8.② 截取一维线段时用m的代数式表示线段n的取值范围:2m−1<n≤2m,所以,截取二维图形时,m的代数式表示线段n的取值范围是:2m2−1<n≤2m2.故答案是2m2−1<n≤2m2.(3) ①同理,截取三维立体图形时,n为4时,要切6次,故答案是6.② n为8时,要切9次,故答案是9.③ 用m的代数式表示线段n的取值范围:2m3−1<n≤2m3.故答案是2m3−1<n≤2m3.【知识点】用代数式表示规律35. 【答案】2.【知识点】简单的代数式求值、十字相乘法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形测评(上)资料
1.我们知道,将一个长方形绕它的一边旋转一周得到的几何体是圆柱,现有一个长是5cm,宽是3cm的长方形,分别绕它的长和宽所在的直线旋转一周,得到不同的圆柱几何体,分别求出它们的体积.
2.如图,有一个立方体,它的表面涂满了红色,在它每个面上切两刀,得到27个小立方体,而且凡是切面都是白色.问:
(1)小立方体中三面红的有几块?两面红的呢?一面红的呢?没有红色的面呢?
(2)如果每面切三刀,情况又怎样呢?
(3)每面切n刀呢?
3.某长方体包装盒的表面积为146cm2,其展开图如图所示.求这个包装盒的体积.
4.如图,正方体的下半部分漆上了黑色,在如图的正方体表面展开图上把漆油漆的部分涂黑(图中涂黑部分是正方体的下底面).
5.在桌面上,有若干个完全相同的小正方体堆成的一个几何体A,如图所示.(1)请画出这个几何体A的三视图.
(2)若将此几何体A的表面喷上红漆(放在桌面上的一面不喷),则三个面上是红色的小正方体有个.
(3)若现在你的手头还有一些相同的小正方体可添放在几何体A上,要保持主视图和左视图不变,则最多可以添加个小正方体.
(4)若另一个几何体B与几何体A的主视图和左视图相同,而小正方体个数则比几何体A多1个,请画出几何体B的俯视图的可能情况(画出其中的5种不同情形即可).
6.直四棱柱、长方体和正方体之间的包含关系是()
A.B.C.D.
7.下列说法中,不正确的是()
A.棱柱的侧面可以是三角形
B.棱柱的侧面展开图是一个长方形
C.若一个棱柱的底面为5边形、则可知该棱柱侧面是由5个长方形组成的D.棱柱的上底面与下底面的形状与大小是完全一样的
8.如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(6)个图形由()个正方体叠成.
A.36 B.37 C.56 D.84。