激光器

合集下载

各种激光器的介绍

各种激光器的介绍

各种激光器的介绍激光(Laser)是光学与物理学领域中的重要研究方向之一,也是现代科学中应用最广泛的光源之一、激光器是产生、放大和产生激光的装置,它能够使光以高度有序的方式输出,并具有高度相干和高度定向的特性。

激光器可以根据不同的工作原理和激光频率,分为多种类型,下面将为大家介绍几种常见的激光器。

1. 固体激光器(Solid State laser):固体激光器是利用固体材料作为介质的激光器。

固体激光器的工作物质通常为具有特殊能级结构的晶体或玻璃材料。

最早的固体激光器是由人工合成的红宝石晶体制成的。

它具有高度的可靠性、较高的功率输出和较宽的谱段覆盖等特点,广泛应用于医疗、测量、通信、材料加工等领域。

2. 气体激光器(Gas laser):气体激光器是利用气体作为活性介质的激光器。

常见的气体激光器有二氧化碳激光器、氦氖激光器等。

其中,二氧化碳激光器是最早被发现和研究的激光器之一,具有连续激光输出、较高的功率密度和中远红外波段特点,广泛应用于材料加工、切割、医疗等领域。

3. 半导体激光器(Semiconductor laser):半导体激光器是利用半导体材料作为活性介质的激光器。

它是目前应用最广泛的激光器之一,常见的有激光二极管(LD)和垂直腔面发射激光器(VCSEL)。

半导体激光器具有小巧轻便、功耗低、寿命长等特点,广泛应用于激光显示、光通信、生物医学等领域。

4. 光纤激光器(Fiber laser):光纤激光器是利用光纤作为反射镜和放大介质的激光器。

它采用光纤的内部介质作为激光器的活性介质,激光通过光纤进行传输和放大。

光纤激光器具有高度稳定性、方便携带、适用于长距离传输等特点,广泛应用于材料加工、制造业、激光雷达等领域。

5. 半导体泵浦固体激光器(Diode-pumped solid-state laser):半导体泵浦固体激光器是利用半导体激光器(如激光二极管)泵浦固体材料产生激光的激光器。

它继承了固体激光器的高功率、高效率和稳定性等特点,同时又具有半导体激光器小尺寸、低功耗等优势。

激光器等级分类标准

激光器等级分类标准

激光器等级分类标准
激光器的等级分类标准是根据激光器的功率、波长、辐射范围、辐射时间等参数来确定的。

国际标准化组织(ISO)和美国激光安全标准委员会(ANSI)制定了一套广泛应用的激光器等级分类标准,被称为“激光产品安全标准”。

根据这套标准,激光器等级分为以下几个级别:
1. 第一类激光器(Class 1):无眼安全风险的低功率激光器,即使在长时间直接观察下也不会对人眼造成伤害。

2. 第二类激光器(Class 2):低功率可见光激光器,对人眼有一定伤害风险,但由于人眼对瞬时光刺激有自我防御机制,所以在正常使用下不太可能造成损害。

这种激光器的输出功率限制在1毫瓦以下。

3. 第三类激光器(Class 3):中等功率激光器,分为3A和3B 两个子类。

- 3A类激光器:输出功率不超过5毫瓦,对人眼有一定伤害风险,但在正常使用下不会造成严重损伤。

- 3B类激光器:输出功率在5毫瓦到500毫瓦之间,对人眼造成潜在危险,直视或近距离照射可能会引起眼睛损伤。

因此,对于3B类激光器的使用,需要采取一些特殊的安全措施来保护人眼。

4. 第四类激光器(Class 4):高功率激光器,输出功率超过500毫瓦。

这类激光器对眼睛和皮肤都具有严重的伤害风险,甚至可以引起火灾和烧伤。

在使用和操作上,对于第四类激光器需要非常严
格的安全措施和专业技术支持。

需要注意的是,以上等级标准是一种国际通用标准,不同国家和地区可能还会有一些额外的标准和要求。

在使用激光器时,应该遵守相应的安全规范和操作指南,确保激光器的安全使用。

激光器及其应用介绍

激光器及其应用介绍

激光器及其应用介绍激光器(Laser)是一种能产生高度聚束、单色、相干、高能量密度的光束的装置。

它通过激活外部的能量转换装置来产生激光,这种装置可以是光电子元器件、光纤、气体、固体或半导体材料。

激光器的光束特性使其在很多领域都有广泛的应用。

激光器的应用领域非常广泛,下面将对其中的几个主要领域进行介绍。

1.医疗领域激光器在医疗领域有着广泛的应用。

激光手术刀可以通过高度聚焦的激光束进行手术,减少了手术损伤和出血,提高了手术效果。

激光剥蚀术可以用来治疗角膜病变,如近视、远视、散光等。

激光切割术可以用来治疗肿瘤、寻找血管等。

此外,激光器还可以被用来进行皮肤美容,如去除斑点、减少皱纹等。

2.通信领域激光器在通信领域的应用非常广泛。

光纤通信系统中的光源通常使用激光器,它可以产生高强度的单色光束,可以在长距离传输中保持信号强度和质量不变。

激光器还可以通过频率调制技术进行信息传输,实现光纤通信的高速率和高容量。

3.材料加工领域激光器在材料加工领域有着广泛的应用。

激光切割可以用来切割金属、塑料、木材等不同类型的材料。

激光焊接可以用来焊接金属和塑料。

激光打标可以用来在材料表面进行打标和刻字。

激光烧蚀可以用来进行表面清理和剥离。

4.科学研究领域激光器在科学研究领域有着广泛的应用。

由于激光器在时间上的极高分辨率,可以用来进行超快速和超高速的实验研究。

激光器在物理、化学、生物等领域中被广泛应用,用来研究物质的结构和性质。

激光光谱学技术可以用来研究原子和分子的能级结构和光谱特性。

5.军事领域激光器在军事领域有着重要的应用。

激光瞄准器可以用来对准目标,并提供精准的引导和打击。

激光测距仪可以用来测量目标的距离,从而进行精确的射击。

激光通信系统可以用来进行无线通信,提供安全和高效的通信手段。

除了以上几个领域之外,激光器还在很多其他领域中有广泛应用,如环境监测、激光制造、激光显示、激光雷达、激光测绘等。

激光器的研发和应用将为人类的生产生活带来更多的便利和创新。

激光等级分类标准

激光等级分类标准

激光等级分类标准激光器是一种利用受激辐射原理产生的高强度、高一致性光束的装置。

根据国际标准,激光器被分为几个等级,不同等级的激光器具有不同的危险性和使用范围。

本文将介绍激光等级分类标准,帮助大家更好地了解激光器的安全使用和管理。

一、激光等级分类。

1. 类别I,这是最安全的激光器等级,不会对人眼造成任何伤害。

即使在长时间直接观察下也不会造成损伤。

这种激光器通常是低能量、低功率的,比如指示激光笔等。

2. 类别II,这类激光器也是低功率的,但如果直接照射到眼睛上,可能会造成眼睛不适和短暂的视觉干扰。

但是,这种激光器一般不会造成永久性损伤。

3. 类别IIIa,这类激光器的功率较高,可能会对眼睛造成短暂的损伤,但只有在长时间暴露下才会产生永久性的伤害。

这类激光器通常用于教学和商业展示。

4. 类别IIIb,这种激光器具有较高的功率,即使短时间内也可能对眼睛造成永久性损伤。

因此,在使用时需要特别小心,避免直接照射到人眼。

5. 类别IV,这是最危险的激光器等级,具有极高的功率,即使短时间内也可能导致严重的眼睛损伤甚至失明。

此外,类别IV激光器还可能对皮肤造成灼伤,甚至引发火灾。

二、激光器的安全使用。

1. 对于类别I和II的激光器,一般来说不会对人眼造成伤害,但也要避免直接照射到眼睛上,以免引起不适。

2. 对于类别IIIa和IIIb的激光器,使用时要注意避免直接照射到眼睛,并且尽量减少暴露时间,以免造成眼睛损伤。

3. 对于类别IV的激光器,使用时必须佩戴特制的激光护目镜,严禁直接照射到人眼,以免造成严重的眼睛损伤。

4. 在使用激光器时,要注意避免将光束照射到反射表面上,以免产生危险的散射光。

5. 激光器的使用和管理必须遵守国家和地方的相关法律法规,严格控制激光器的购买和使用。

三、激光器的管理和维护。

1. 激光器的管理人员必须接受专业的培训,了解激光器的危险性和安全操作规程。

2. 定期对激光器进行检查和维护,确保其工作状态良好,避免因激光器本身故障导致的安全事故。

激光器的参数

激光器的参数

激光器的参数激光器是一种将电能转化为强聚光光束的装置,具有许多重要的参数。

本文将介绍激光器的一些关键参数以及它们的意义和影响。

1. 波长:激光器的波长是指激光光束的频率或色彩。

不同波长的激光具有不同的特性和应用。

常见的激光波长有红光(630-700纳米)、绿光(510-550纳米)和蓝光(450-490纳米)。

不同波长的激光适用于不同的应用领域,例如红光激光器常用于激光指示器和光束瞄准器,蓝光激光器常用于高清晰度显示和光存储。

2. 输出功率:激光器的输出功率是指激光光束的功率密度,通常以瓦特(W)为单位。

输出功率的大小取决于激光器的设计和应用需求。

高功率激光器常用于材料加工、激光切割和激光焊接等工业应用,而低功率激光器则常用于医疗美容、激光打印和光通信等领域。

3. 光束质量:激光器的光束质量是指光束在传输过程中的聚焦能力和光斑形状的好坏。

光束质量好的激光器具有高光束质量因数(M²),能够实现更好的光束聚焦和精细加工。

光束质量常用参数有TEM₀₀模式的激光束直径和发散角等。

4. 单脉冲能量:激光器的单脉冲能量是指每个脉冲中携带的能量量级,通常以焦耳(J)为单位。

单脉冲能量的大小决定了激光器的功率密度和材料加工的效率。

高单脉冲能量的激光器常用于激光打孔、激光打标和激光烧蚀等工艺。

5. 脉冲宽度:激光器的脉冲宽度是指激光脉冲的时间长度,通常以纳秒(ns)为单位。

脉冲宽度的大小取决于激光器的调制方式和应用需求。

短脉冲宽度的激光器常用于激光雷达、激光测距和激光医疗等领域,可以实现高精度的测量和治疗。

6. 频率稳定性:激光器的频率稳定性是指激光输出频率的稳定程度。

频率稳定性好的激光器可用于精密测量、光谱分析和光学标准等领域。

一般来说,激光器的频率稳定性可以通过消除噪声源和优化激光器的设计来提高。

7. 效率:激光器的效率是指将输入电能转化为激光能量的比例。

高效率的激光器可以减少能源消耗和热量产生,提高激光器的可靠性和寿命。

激光器基本结构

激光器基本结构

激光器基本结构一、激光器的基本原理激光器是一种能够产生高强度、高单色性的光束的装置。

它的核心部分是一个能够产生受激辐射的介质,通常采用激光介质,如Nd:YAG晶体或CO2气体等。

当这个介质被能量激发时,它会放出一束相干的光束。

二、激光器的基本结构1. 激发源:用于提供能量以激发介质产生受激辐射。

通常采用电子束、闪光灯和半导体等。

2. 激光介质:用于产生受激辐射的物质,通常采用固态、液态或气态介质。

3. 光学谐振腔:由两个反射镜组成,其中一个为半透明镜。

它们将产生的光束反复反射在内部形成一条相干且强度增强的光线。

4. 准直系统:用于控制输出光束方向和形状,通常由透镜和棱镜组成。

5. 输出窗口:将准直后的光线引出谐振腔,输出到外界。

三、激光器的工作原理1. 激发介质:激光器的激发源提供能量,使介质中的原子或分子进入高能态。

2. 受激辐射:当介质中的原子或分子处于高能态时,它们会受到外界光线的刺激,并发生受激辐射,产生相干光束。

3. 谐振腔:产生的相干光束在谐振腔内反复反射,形成一条强度增强、相干性好的光线。

4. 输出:准直系统控制输出光线方向和形状,通过输出窗口将光线引出谐振腔。

四、常见的激光器类型1. 固态激光器:采用固体介质,如Nd:YAG晶体等。

2. 气体激光器:采用气体介质,如CO2气体等。

3. 半导体激光器:采用半导体材料作为介质。

4. 其他类型:还包括自由电子激光器、化学气相激光器等。

五、应用领域1. 制造业:激光器在制造业中广泛应用,如激光切割、激光打标等。

2. 医疗领域:激光器在医疗领域中常用于手术、皮肤美容等。

3. 通信领域:激光器在通信领域中被用于传输信息。

4. 科学研究:激光器在科学研究中也有广泛的应用,如原子物理实验等。

六、发展趋势1. 激光器技术将继续发展,产生更高功率和更高质量的激光束。

2. 激光器应用领域将不断扩大,特别是在智能制造和高精度加工等方面。

3. 激光器将成为未来通信、医疗和科学实验的重要工具。

激光器的工作原理及应用

激光器的工作原理及应用

激光器的工作原理及应用激光器是一种能够产生高度聚焦、高亮度、单色、相干性极强的光束的装置。

它的工作原理基于激光的放大过程,通过激发原子或者份子的能级跃迁来实现。

1. 工作原理激光器的工作原理主要包括以下几个步骤:激发、放大、反射和输出。

首先,通过能量输入的方式(如电子激发、光或者化学反应等),将激光介质中的原子或者份子激发到高能级。

这个过程可以通过光泵浦、电子束激发、化学反应等方式实现。

接下来,激发态的原子或者份子在经过一系列的非辐射跃迁后,会回到基态,并释放出光子。

这些光子会与其他激发态的原子或者份子发生受激辐射,产生更多的光子。

这个过程称为光放大。

然后,放大后的光经过光学谐振腔的反射,使光在谐振腔内来回多次反射,增强光的能量和相干性。

最后,经过一系列的光学元件(如输出镜、偏振器等)的处理,将激光束输出为一束高度聚焦、单色、相干性极强的光。

2. 应用领域激光器由于其独特的光学性质和精确的控制能力,在许多领域中得到广泛应用。

2.1 创造业激光器在创造业中有着广泛的应用。

例如,激光切割可以用于金属板材、塑料、纺织品等材料的切割,具有高效、精确、无接触等优点。

激光焊接可以用于汽车、航空航天、电子等行业的焊接,具有焊缝小、热影响区小、焊接速度快等优势。

激光打标可以用于产品标识、二维码、防伪标识等方面。

2.2 医疗领域激光器在医疗领域中有着广泛的应用。

例如,激光手术可以用于眼科手术、皮肤整形、癌症治疗等。

激光治疗可以用于减轻疼痛、促进伤口愈合、去除皮肤病变等。

激光诊断可以用于医学成像、激光扫描等方面。

2.3 通信领域激光器在通信领域中有着重要的应用。

激光器可以作为光纤通信系统中的光源,通过光的调制和解调来实现信息的传输。

激光器的单色性和相干性使得光信号能够在光纤中传输更远距离,并且具有更高的传输速率。

2.4 科学研究激光器在科学研究中有着广泛的应用。

例如,激光干涉仪可以用于测量长度、表面形貌等。

激光光谱仪可以用于分析物质的组成和结构。

激光器的工作原理讲解

激光器的工作原理讲解

激光器的工作原理讲解激光器(Laser),全称是“光放大器器”,是一种利用受激辐射产生的、具有高度单色性、凝聚性、取向性和单一相干性的强光源。

它的工作原理源于量子力学中的受激辐射现象,下面将对激光器的工作原理进行详细的讲解。

激光的产生主要通过两种方法实现,分别是受激辐射和自发辐射。

其中,受激辐射是指当一束光经过透明的活性介质时,有一部分光子能够与介质内部的激发态粒子相互作用,使其跃迁到更低能级,并放出能量。

而自发辐射是指介质中的激发态粒子自发地跃迁到基态,并放出能量。

在激光器中,通常使用半导体材料或气体作为激光介质。

半导体激光器是利用固体-液体-气体中的半导体材料,通过电子跃迁实现激光的产生。

而气体激光器是通过放电激发气体分子产生的。

对于半导体激光器来说,其工作原理可以大致分为以下几个步骤:首先,通过向半导体的两侧施加电压,形成一个pn结,当没有电流通过时,半导体处于静止状态。

接着,在pn结中加入电流,电子和空穴开始向前扩散。

当电子和空穴相遇时,发生非辐射性复合,产生光子。

这些光子会在活性层中发生受激辐射作用,并引起光子的放大。

最后,当光经过反射器时,部分光子会被反射回来,进一步激发更多的受激辐射,最终形成激光束。

对于气体激光器来说,其工作原理主要涉及激发气体分子的能级跃迁。

通常,激光管中充满了一种或多种气体混合物,如二氧化碳、氦气和氢气等。

当外部电源施加电压时,在气体管内产生电流,电子与气体分子碰撞时,会发生电子的激发和解离,从而使气体分子达到激发态。

激发态的分子会通过受激辐射的形式向低能级跃迁,并释放出光子。

这些光子会与其他受激分子发生碰撞,使得光子的数目逐渐增加,最终形成激光束。

接下来,让我们来看一下激光的放大过程。

放大是将激光信号增强到足够高能量的过程。

在激光器中,放大通常使用光学谐振腔来实现。

光学谐振腔由两面反射镜(一个是部分反射镜,另一个是全反射镜)组成。

当激光从激光介质产生后,它会通过部分反射镜进入光学谐振腔,并来回地在反射镜之间来回反射。

几种激光器的结构示意

几种激光器的结构示意

几种激光器的结构示意
1.连续激光器:连续激光器包括长激光棒激光器,它包括了发射腔(蓝色),它设有折射器(紫色)和反射镜(绿色),发射腔内填入了激光活性源,它可以产生多模微弱的,有着同一波长的光束。

通过折射器和反射器产生的多模弱光束聚焦到了微粒活性源上。

微粒活性源内产生的激光辐射通过折射器和反射镜回到了发射腔中,从而得到不断增强的激光辐射。

2.瞬态激光器:瞬态激光器主要将诸如质子、氘离子等离子通过电场的影响,在真空腔中的聚焦调制,使离子中的电子迅速由原有的能级跃迁到下一能级,并同时释放出许多的光子,从而达到激发激光的效果,瞬态激光器的激光输出持续极短的时间,极高的能量,瞬态激光器的结构一般由一个真空腔和一组高压发生器组成,真空腔内装有可发射激光的离子源和能控制激光路径的反射镜,发射器外设置与腔体的电连接,高压发生器用于给该真空腔体提供必要的电压。

3.钝/硬激光器:钝/硬激光器为可调节激光源,原理是以热熔合或焊接的方式将激光材料(基体材料)和激光剂装入金属管中,经高温、高压作用,释放出紫外光,再经过一系列有折射镜和反射镜的发射腔。

《激光器介绍》课件

《激光器介绍》课件

激光器与人工智能、3D打印等技术结合,创造更多智能化和多样化的应用。
结论和总结
激光器是一项伟大的科技创新,它在多个领域的应用不断拓展。我们必须充 分了解其原理和注意事项,推动激光技术的发展和应用。
《激光器介绍》PPT课件
欢迎来到《激光器介绍》的PPT课件! 本课程将带您深入了解激光器的定义和 原理,以及其在不同领域的应用。让我们一起探索激光技术的无限潜力!
激光器的定义和原理
激光器是通过受激辐射产生的一种具有高度相干性、高照射强度和直行性的 光源。它的工作原理基于光子的双能态能级跃迁。
不同类型的激光器
戴眼镜
在使用激光器时,务必佩戴适当的激光安全眼镜以保护视力。
避免直射
避免将激光束直接照射到人体和易燃物上,以免引发安全事故。
操作规范
按照使用说明进行操作,确保激光器使用安全可靠。
激光器的发展趋势
1
更小更强
激光器体积将进一步缩小,但功率将持续增强,提供更多应用领域。
2
更高效更环保
激光器的效率将提高,能源消耗将减少,以促进可持续发展。
1 气体激光器
使用气体作为激发介质, 例如二氧化碳激光器和氩 离子激光器。
2 固体激光器
使用固态材料作为激发介 质,例如Nd:YAG激光器和 钛宝石激光器。
3 半导体激光器
使用半导体材料作为激发 介质,例如激光二极管和 垂直腔面发射激光器。
激光器的应用领域
医疗行业
激光器在手术、皮肤治疗和眼 科手术等领域有广泛应用。
通信领域
激光信号传输在光纤通信和激 光雷达等领域发挥重要作用。
制造业
激光切割、激光焊接和激光打 印等技术在制造业中得到广泛 应用。
激光器的优点与限制

激光器的分级标准及激光安全管理

激光器的分级标准及激光安全管理

激光器的分级标准及激光安全管理激光器的分级标准:根据国际电工委员会(IEC)的标准,激光器的分级标准主要有四个级别,分别为1级、2级、3级和4级。

1级激光器:无眼和皮肤危害的激光器,即使长时间暴露也不会造成损害。

这些激光器通常为低功率、红光或红外光,例如CD/DVD读写器、激光指示器等。

2级激光器:特定条件下对眼睛造成危害的激光器,但是正常使用时不会造成损害。

这些激光器的功率较低,例如激光打印机、激光测距仪等。

如果直视2级激光器超过0.25秒,在短距离内可能会引起视觉暂时性问题,但很快会恢复正常。

3级激光器:对眼睛造成严重危害的激光器,直接暴露时可能会造成永久损害。

这些激光器通常是高功率激光器,例如工业激光切割机、激光测速仪等。

在正常使用时应避免暴露于直接光线下,必要时应佩戴适当的激光防护眼镜。

4级激光器:对眼睛和皮肤都造成严重危害的激光器,可能造成火灾危险和爆炸危险。

这些激光器的功率非常高,例如军用激光器、科研用激光器等。

使用4级激光器时必须采取严格的安全措施,包括专门的训练、严格的操作规范和有效的防护设备。

激光安全管理:激光安全管理是指通过一系列措施和规范,保护人员和环境免受激光器辐射的损害。

以下是激光安全管理的主要内容:1.风险评估和分类:对使用激光器的场所和设备进行风险评估,并根据评估结果对激光器进行分类,制定相应的使用规范和措施。

2.激光器操作员培训:对激光器操作员进行培训,使其了解激光器的基本知识、操作规范和安全防护措施,并能正确应对潜在的风险和危险情况。

3.安全设备和防护措施:根据激光器的级别和风险评估结果,选择合适的安全设备和防护措施,包括激光防护眼镜、激光屏障、激光警告标识等,确保操作员和其他人员处于安全状态。

4.设备维护和定期检查:定期对激光器设备进行维护和检查,确保其正常运行和安全性能,及时发现和处理潜在的故障和安全隐患。

5.操作规范和安全程序:制定明确的操作规范和安全程序,包括激光器的启动和关闭流程、操作限制和禁止事项等,确保操作员按照规范进行操作,减少人为失误和事故发生的可能性。

激光器简介介绍

激光器简介介绍
光测距等。
05 激光器的未来发展趋势和 挑战
高功率激光器的研发和应用
高功率激光器在国防、工业和 医疗等领域具有广泛的应用前 景。
研发高功率激光器的关键在于 提高输出功率、光束质量和稳 定性,以及降低制造成本。
高功率激光器在材料加工、激 光雷达、照明和通信等领域已 取得重要进展。
超快激光器的研发和应用
应用
二氧化碳激光器在医疗美容中应用广 泛,如激光手术刀、皮肤美白等。
固体激光器
特点
体积小、重量轻、效率高、操作简单。
应用
用于材料加工、打标、雕刻等领域。
液体激光器
特点
输出波长可调、效率较高。
应用
用于生物医学、光谱学等领域。
半导体激光器
要点一
特点
体积小、寿命长、价格便宜。
要点二
应用
用于光纤通信、数据存储等领域。
激光打标
利用激光的高能量密度在 物体表面刻印图案、文字 或编码等标识,实现高效 、环保的打标方式。
激光焊接
通过激光束将两个或多个 材料连接在一起,具有高 精度、高强度和高密封性 等优点。
医学领域
激光治疗
利用激光的能量照射人体组织, 通过热能、光化学效应等作用达 到治疗目的,如激光手术、激光
美白等。
感谢您的观看
光纤激光器
特点
输出波长稳定、效率高、光束质量好。
VS
应用
用于高速光纤通信、激光雷达等领域。
03 激光器的组成和工作02
03
04
增益介质
用于提供能量放大作用,通常 由气体、液体、固体或半导体
等材料组成。
泵浦源
用于向增益介质提供能量,通 常采用光、电、化学等方法。

激光器的种类讲解

激光器的种类讲解

激光器的种类讲解激光器是一种能够产生高纯度、高亮度和一致的光束的装置。

他们在科研、医学、工业和通信等领域中具有广泛的应用。

根据激光器的工作原理和参数,可以将激光器分为多种类型,如气体激光器、固体激光器、半导体激光器和光纤激光器等。

本文将对各种类型的激光器进行深入的讲解。

1.气体激光器:气体激光器是最早被发明出来的激光器类型之一、它们通过用电流激励气体分子来产生所需波长的激光。

常见的气体激光器有氦氖激光器(He-Ne)、二氧化碳激光器(CO2)、氩离子激光器(Ar)等。

气体激光器具有较大的输出功率和较高的波长稳定性,适用于医学、切割和焊接等领域。

2.固体激光器:固体激光器是使用固体材料作为激光介质的激光器。

常见的固体材料有Nd:YAG、Nd:YVO4和Ti:sapphire等。

固体激光器可以通过激光二极管或弧光灯等能量源进行激发。

它们具有高效、高稳定性和长寿命的特点,适用于雷达系统、激光加工和科学研究等领域。

3.半导体激光器:半导体激光器是通过电流注入拥有p-n结构的半导体材料,使其产生激光。

半导体材料可以是单一的半导体材料,如GaAs、InP,也可以是多层薄膜结构,如VCSEL(垂直腔面发射激光器)。

半导体激光器具有小型化、低功率和高效率的特点,广泛应用于通信、光存储和光电显示等领域。

4.光纤激光器:光纤激光器是利用光纤作为激光介质的激光器。

光纤激光器通常包括光纤光源和光纤放大器两个部分。

光纤光源是利用受激辐射从光纤核心产生激光,通常使用稀土离子注入的光纤作为激发材料。

光纤放大器则通过将输入的激光信号放大,从而得到高亮度的激光输出。

光纤激光器具有小型化、高品质和集成化的特点,广泛应用于通信、激光打标和光纤光源等领域。

除了以上所述的主要激光器类型,还有许多其他的激光器类型,例如自由电子激光器、化学激光器和超短脉冲激光器等。

不同类型的激光器在应用领域和性能参数上有着差异。

因此,在选择激光器时,需要根据具体需求来确定最合适的类型和参数。

激光器的分类介绍

激光器的分类介绍

激光器的分类介绍激光器是一种能够产生具有高度一致性和同步性的激光光束的器件。

根据激光器的工作原理、激光器的波长、激光器的应用领域等不同方面的分类,下面将对激光器进行详细的介绍。

一、根据激光器的工作原理进行分类1.固体激光器:固体激光器是利用外部能量源(例如闪光灯、激光二极管)激励激光介质(例如Nd:YAG、Nd:YVO4)产生激光的一种激光器。

固体激光器具有高效率、高能量、高品质光束等特点,在军事、医学、科研等领域有广泛的应用。

2.气体激光器:气体激光器是利用放电激励稀薄气体分子产生粒子数密度高、能级分布宽的激光介质,然后通过光学共振腔将产生的激光进行放大和聚束。

常见的气体激光器有氦氖激光器、CO2激光器等,广泛应用于科研、测量、医学和工业等领域。

3.半导体激光器:半导体激光器是利用半导体材料在电流或者注入光子的作用下产生受激辐射所形成的激光。

其特点是体积小、效率高、功率低、寿命短等,被广泛应用于光通信、激光打印、激光显示等领域。

4.液体激光器:液体激光器采用液体介质作为激光介质进行激光产生。

液体激光器相比固体激光器和气体激光器具有较高的能量、频率较宽、调谐范围较大等特点,在科研和工业领域有着广泛的应用。

二、根据激光器的波长进行分类1.可见光激光器:可见光激光器产生的激光波长在400~700纳米之间,能够被人眼所感知。

可见光激光器广泛应用于激光显示、激光打印、激光医学等领域。

2.红外激光器:红外激光器产生的激光波长在700纳米到1毫米之间,是不可见光。

红外激光器在通信、材料加工、医学、军事等领域有广泛的应用。

3.紫外激光器:紫外激光器产生的激光波长在10纳米到400纳米之间,也是不可见光。

紫外激光器在微加工、光致发光、光解离等领域有重要的应用。

三、根据激光器的应用领域进行分类1.医学激光器:医学激光器广泛应用于激光治疗、激光手术等医学领域,例如激光照射可以刺激细胞增殖、促进伤口愈合,还可以用于激光石化术、激光治疗静脉曲张等。

激光器的种类及应用

激光器的种类及应用

激光器的种类及应用激光器是一种能够产生高强度、单色、相干光的装置,被广泛应用于科研、医学、工业、军事等领域。

根据激光器的工作原理和应用领域的不同,可以分为以下几种类型:1.气体激光器气体激光器利用气体电离放电激发基态原子或分子,从而产生激光。

常见的气体激光器包括CO2激光器、氦氖激光器、氩离子激光器等。

气体激光器具有较大的功率输出和较高的效率,被广泛应用于材料加工、医学、通信等领域。

2.固体激光器固体激光器利用固体材料中的色心离子或稀土离子来实现激光的产生。

常见的固体激光器有Nd:YAG激光器、Nd:YVO4激光器等。

固体激光器具有较高的光学效率和较长的寿命,在材料加工、医学、研究等领域有广泛应用。

3.半导体激光器半导体激光器利用半导体材料中的电子与空穴的复合辐射产生激光。

常见的半导体激光器有激光二极管和垂直腔面发射激光器(VCSEL)。

半导体激光器具有小体积、高效率、低功率消耗等优点,被广泛应用于光通信、激光打印、激光雷达等领域。

4.光纤激光器光纤激光器是利用光纤介质中的掺杂离子来产生激光。

常见的光纤激光器有光纤光栅激光器、光纤拉曼激光器等。

光纤激光器具有输出光束质量好、稳定性高、易于集成等优点,被广泛应用于通信、激光加工等领域。

5.势能激发激光器势能激发激光器利用电能、化学能等形式的势能转化为激光的能量。

其中,化学激光器通过化学反应释放能量来产生激光,常见的有二氧化碳化学激光器;核聚变激光器通过核聚变反应释放能量来产生激光。

6.自由电子激光器自由电子激光器利用电子在磁场中的轨道运动来产生激光。

自由电子激光器具有宽波谱、高亮度和超短脉冲等优点,被广泛应用于材料表面处理、生物医学和物理研究等领域。

激光器在各个领域具有广泛的应用:1.医疗领域激光器在医学诊断和治疗中发挥着重要作用。

例如,激光刀在手术中用于切割和凝固组织;激光眼科手术用于矫正视力;激光美容仪器用于皮肤治疗和脱毛等。

2.材料加工激光器在材料切割、焊接、打孔、刻蚀等方面发挥着重要作用。

激光器的工作原理及应用

激光器的工作原理及应用

激光器的工作原理及应用激光器(Laser)是一种能够产生高度聚焦、高能量、单色、相干性极高的光束的装置。

它的工作原理基于光的受激辐射过程,通过激发处于激发态的原子或者份子,使其发射出一束与入射光同频率、相干性高的光。

激光器的应用非常广泛,包括科学研究、医疗、通信、材料加工等领域。

一、激光器的工作原理激光器的工作原理可以分为三个步骤:激发、放大和获得激光输出。

1. 激发:激光器中的激发介质(如气体、固体或者液体)通过能量输入(电流、光、化学反应等)被激发到激发态。

这个过程中,激发介质的原子或者份子吸收能量,电子跃迁到高能级。

2. 放大:激发态的原子或者份子通过受激辐射过程,发射出与入射光同频率、同相位、同方向的光子。

这些发射出的光子与入射光子相互作用,使得光子数目逐渐增多,光强增强,形成放大的光束。

3. 获得激光输出:当光强达到一定程度时,就能够产生激光输出。

通过在激光器中设置光学谐振腔,使得激光在光学谐振腔中来回反射,增强光的相干性和单色性。

最终,一束高度聚焦、高能量、相干性极高的激光束从激光器中输出。

二、激光器的应用1. 科学研究:激光器在科学研究中发挥着重要作用。

例如,激光器被用于物质结构分析、原子与份子光谱学、量子光学等领域。

激光器的单色性和相干性使得它成为研究微观世界的重要工具。

2. 医疗:激光器在医疗领域有广泛的应用。

例如,激光手术被用于眼科手术、皮肤整形、牙科手术等。

激光切割和激光消融技术能够精确控制病变组织的切割和破坏,减少对周围正常组织的伤害。

3. 通信:激光器在光通信中起到了关键作用。

激光器产生的单色、相干性高的光束能够传输更远的距离,并且能够通过光纤进行高速数据传输。

激光器的应用使得光通信具有更高的带宽和更低的信号衰减。

4. 材料加工:激光器被广泛应用于材料加工领域。

激光切割、激光焊接、激光打标等技术能够实现高精度、高效率的材料加工。

激光器的高能量密度和可控性使得它成为材料加工的重要工具。

各种激光器的介绍

各种激光器的介绍

各种激光器的介绍激光器是一种将能量源转化为高强度、高单色性、高定向性的激光光束的装置。

激光器被广泛应用于医疗、通信、材料加工、测量检测等各个领域。

下面将介绍几种常见的激光器。

1.氦氖激光器(He-Ne激光器)氦氖激光器是一种气体激光器,它利用氦和氖的混合气体在波长为632.8纳米的红光范围内产生激光。

氦氖激光器具有单一稳定频率、高空间定向性和较小的光腔长度,适用于光学实验、干涉测量等领域。

2.二极管激光器(LD激光器)二极管激光器是一种半导体激光器,它是由多层不同材料的半导体材料组成的结构。

二极管激光器广泛应用于通信领域,如光纤通信、光存储等。

它具有体积小、效率高的特点。

3.CO2激光器CO2激光器是一种分子激光器,其工作介质是CO2分子。

CO2激光器具有中红外波段的辐射,波长在9.6-10.6微米之间。

CO2激光器在材料加工、医疗等领域有广泛应用,如切割、焊接、组织切割等。

4.Nd:YAG激光器Nd:YAG激光器是一种固体激光器,其工作介质是掺有镓和铽离子的YAG晶体。

它具有较长的荧光寿命和较高的能量转换效率,常用于材料加工、医疗、科学研究等领域。

5.氮化镓激光器(GaN激光器)氮化镓激光器是一种宽禁带半导体激光器,它利用氮化镓材料发射紫外激光。

GaN激光器具有较高的工作温度、较长的寿命和较高的光电子转换效率,可用于蓝光显示、白光LED照明等领域。

6.染料激光器染料激光器是一种利用染料溶液作为工作介质的激光器。

它具有波长调谐范围广、转换效率高的特点。

染料激光器在科学研究、生物医学等领域有广泛应用。

7.纳秒脉冲激光器纳秒脉冲激光器是一种能够在纳秒时间尺度内产生激光脉冲的激光器。

它广泛应用于材料加工、精密测量、医疗等领域,如激光打标、激光切割、激光测距等。

总之,激光器具有波长可调、能量可控、光束质量高等优点,能满足不同应用领域的需求。

随着材料科学、光学技术的不断发展,激光器的种类也在不断增多,并得到了广泛的研究和应用。

激光器的种类及应用

激光器的种类及应用

激光器的种类及应用激光器是一种产生高强度、高聚束、单色、相干光的装置。

它们被广泛应用于各个领域,包括医学、通信、材料加工、军事、测量和科学研究等。

下面将介绍几种常见激光器的种类及其应用。

1.气体激光器:气体激光器是最早被发展出来的激光器之一、最常见的气体激光器包括二氧化碳激光器和氩离子激光器。

二氧化碳激光器主要用于材料切割、焊接和打孔等工业应用,还被广泛应用于医学手术和皮肤美容治疗。

氩离子激光器在医学和科学研究中也有广泛应用,例如眼科手术、实验物理和化学研究。

2.固体激光器:固体激光器是一种使用固体材料作为激活介质的激光器。

最常见的固体激光器包括Nd:YAG激光器和铷钾硼酸盐(Nd:YVO4)激光器。

固体激光器有较高的光束质量和较长的寿命,被广泛应用于材料加工、医学、科学研究和军事领域。

它们可以用于切割、钻孔、焊接、标记和激光测距等应用。

3.半导体激光器:半导体激光器是使用半导体材料作为激发源的激光器。

它们具有体积小、功耗低和价格低廉的特点,因此在通信、激光打印、光存储和生物医学等领域得到了广泛应用。

激光二极管是最常见的半导体激光器之一,它们被广泛用于激光打印机、激光扫描仪和激光指示器等设备中。

4.光纤激光器:光纤激光器是利用光纤作为光传输介质的激光器。

它们具有高效率、高功率输出和相对较小的尺寸。

光纤激光器被广泛应用于通信、材料加工和医学等领域。

例如,光纤激光器可以用于光纤通信系统中的信号放大和发送,也可以用于材料切割、焊接和打标等高精度加工过程。

5.半导体激光二极管:半导体激光二极管是一种小型、低功耗的激光器。

它们主要用于光通信、激光打印、激光显示和传感器等领域。

激光二极管被广泛用于光纤通信系统中的光放大器和激光器,也被应用于激光打印机、光盘读写器和激光雷达等设备。

总而言之,激光器的种类繁多,每种类型都有其特定的应用领域。

激光技术的不断进步和创新将会带来更多新的应用和发展机会。

激光器的工作原理

激光器的工作原理

激光器的工作原理激光器(Laser)是一种产生及放大了相干辐射的光源。

与传统的光源(如日光灯)不同,激光器的光是由一束高度集中的能量发射而出的,具有单一的波长,高度的纯度和高强度。

激光器的工作原理可以简单地描述为光辐射的受激放大过程。

该过程包括三个主要部分:激光介质、光子受激放大(或刺激)和光反馈。

首先,激光介质是激光器的重要组成部分,它是光辐射的来源。

激光介质可以是气体、固体或液体等物质。

最常用的激光介质是具有能级跃迁的气体或固体材料。

激光介质中的原子或分子在一个低能级的基态,通过能量输入(如电子激发或光激发)被引导到一个较高能级。

这个能级通常是一个相对于基态低发生辐射的能级。

其次,光子受激放大是激光器的核心原理。

当激光介质中的原子或分子被激发到较高能级后,它们会通过辐射的方式回到较低能级。

在这个过程中,一束入射的光子可能与被激发的原子或分子发生相互作用。

如果入射光子和被激发的原子或分子的能级之间的能量差恰好等于光子的能量,那么光子就会被吸收,被激发的原子或分子则从一个较高能级跃迁到一个更高的能级,从而导致了一个受激辐射(受激辐射是与入射光子相同波长和相位的光子)。

这个过程还会释放出额外的能量,增加了原子或分子跳到更高能级的概率。

最后,光反馈是激光器实现放大的重要过程。

激光器通常包含一个光学激射器组件,该组件通过光反射将受激辐射的能量留在激光介质中。

这种光反射可以通过使用一个全反射镜(反射率为100%的镜子)或个多透镜组成的光学共振腔来实现。

光学共振腔具有特定的光程和特定的模式,使得受激辐射只有在特定时间和空间被放大。

当受激辐射在光学共振腔中来回反射时,它会与被激发的原子或分子再次产生相互作用,从而进一步加强了放大的效果,这就是激光的放大效应。

综上所述,激光器通过激光介质中的受激辐射的急剧放大实现了高强度、单一波长和高度纯度的光辐射。

激光器的工作过程基于光子的受激放大、能级跃迁和光的反馈等物理原理,它在医疗、通信、测距、制造等领域具有广泛的应用。

激光器的工作原理

激光器的工作原理

激光器的工作原理激光器是一种能够产生高强度、相干、单色和定向的光束的设备。

它在科学、工业、医疗和通信等领域有广泛的应用。

激光器的工作原理是通过受激辐射过程将输入能量转化为光能,并通过光的反馈和放大来实现激光放大。

激光器的工作过程可以分为三个基本步骤:激励、增益和输出。

首先是激励阶段。

激光器需要能源来激发其工作质子。

激光器可以通过电能、光能或化学能等不同形式的能源来激励,具体的激励方式根据激光器的种类而不同。

无论使用何种方式,激光器都需要通过能源输入来提供激发粒子所需的能量。

例如,气体激光器通过电宇放电产生光子,固体激光器通过用闪光灯激励固体材料来产生光子。

然后是增益阶段。

在激励阶段之后,激光器中的激励粒子会被激发到一个高能态,并在这个态中处于激发田之中。

这时,当一个光子经过这个激发田时,它会激励一个已激发的粒子回到其低能态,从而产生两个相干的光子并释放出更多的能量。

这个过程被称为受激辐射,它是激光器产生相干光的关键。

受激辐射过程如何发生呢?在激光器中,激光介质被包围在一个光学腔内,该腔包含两个镜子:一个是部分透明的输出镜,另一个是高反射率的反射镜。

当光子进入激光介质中时,它会与激励粒子发生相互作用,并可能通过受激辐射方式产生其他激光光子。

这些产生的激光光子会沿着腔中的光学轴向前传播。

当它们经过反射镜时,一部分光子会被反射回激光介质,而另一部分光子则通过输出镜逸射出来。

这样,反射和透射的光子都成为了激励粒子周围的更多激励源,进一步刺激产生更多的激光光子。

这种通过反射和透射不断放大的光子被称为激光。

最后是输出阶段。

通过透射出光是激光工作的目的,这需要控制激光的发射方向。

在激光器的输出镜上,可以通过改变其反射率来调整激光的输出能量和方向。

通常使用工艺精细的部分透明膜来实现这种效果。

激光光子在部分反射的同时也会透射出来,形成激光束。

这束激光经过进一步整形和聚焦,可以用于科学研究、医疗治疗、材料加工以及通信等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光基础知识2——激光器中文名称:激光器英文名称:laser定义:产生激光的装置。

应用学科:机械工程(一级学科);光学仪器(二级学科);激光器件和激光设备-激光器名称(三级学科)一、原理除自由电子激光器外,各种激光器的基本工作原理均相同,产生激光的必不可少的条件是粒子数反转和增益大过损耗,所以装置中必不可少的组成部分有激励(或抽运)源、具有亚稳态能级的工作介质两个部分。

激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。

激励方式有光学激励、电激励、化学激励和核能激励等。

工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。

激光器中常见的组成部分还有谐振腔,但谐振腔(见光学谐振腔)并非必不可少的组成部分,谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的方向性和相干性。

而且,它可以很好地缩短工作物质的长度,还能通过改变谐振腔长度来调节所产生激光的模式(即选模),所以一般激光器都具有谐振腔。

二、激光工作物质是指用来实现粒子数反转并产生光的受激辐射放大作用的物质体系,有时也称为激光增益媒质,它们可以是固体(晶体、玻璃)、气体(原子气体、离子气体、分子气体)、半导体和液体等媒质。

对激光工作物质的主要要求,是尽可能在其工作粒子的特定能级间实现较大程度的粒子数反转,并使这种反转在整个激光发射作用过程中尽可能有效地保持下去;为此,要求工作物质具有合适的能级结构和跃迁特性。

三、激励抽运系统是指为使激光工作物质实现并维持粒子数反转而提供能量来源的机构或装置。

根据工作物质和激光器运转条件的不同,可以采取不同的激励方式和激励装置,常见的有以下四种。

①光学激励(光泵)。

是利用外界光源发出的光来辐照工作物质以实现粒子数反转的,整个激励装置,通常是由气体放电光源(如氙灯、氪灯)和聚光器组成,这种激励方式也称作灯泵浦。

②气体放电激励。

是利用在气体工作物质内发生的气体放电过程来实现粒子数反转的,整个激励装置通常由放电电极和放电电源组成。

③化学激励。

是利用在工作物质内部发生的化学反应过程来实现粒子数反转的,通常要求有适当的化学反应物和相应的引发措施。

④核能激励。

是利用小型核裂变反应所产生的裂变碎片、高能粒子或放射线来激励工作物质并实现粒子数反转的。

四、光学共振腔通常是由具有一定几何形状和光学反射特性的两块反射镜按特定的方式组合而成。

作用为:①提供光学反馈能力,使受激辐射光子在腔内多次往返以形成相干的持续振荡。

②对腔内往返振荡光束的方向和频率进行限制,以保证输出激光具有一定的定向性和单色性。

共振腔作用①,是由通常组成腔的两个反射镜的几何形状(反射面曲率半径)和相对组合方式所决定;而作用②,则是由给定共振腔型对腔内不同行进方向和不同频率的光,具有不同的选择性损耗特性所决定的。

五、激光器分类分别从激光工作物质、激励方式、运转方式、输出波长范围等几个方面进行分类。

5.1按工作物质分类根据工作物质物态的不同可把所有的激光器分为以下几大类:①固体激光器(晶体和玻璃),这类激光器所采用的工作物质,是通过把能够产生受激辐射作用的金属离子掺入晶体或玻璃基质中构成发光中心而制成的;②气体激光器,它们所采用的工作物质是气体,并且根据气体中真正产生受激发射作用之工作粒子性质的不同,而进一步区分为原子气体激光器、离子气体激光器、分子气体激光器、准分子气体激光器等;③液体激光器,这类激光器所采用的工作物质主要包括两类,一类是有机荧光染料溶液,另一类是含有稀土金属离子的无机化合物溶液,其中金属离子(如Nd)起工作粒子作用,而无机化合物液体(如SeOCl)则起基质的作用;④半导体激光器,这类激光器是以一定的半导体材料作工作物质而产生受激发射作用,其原理是通过一定的激励方式(电注入、光泵或高能电子束注入),在半导体物质的能带之间或能带与杂质能级之间,通过激发非平衡载流子而实现粒子数反转,从而产生光的受激发射作用;⑤自由电子激光器,这是一种特殊类型的新型激光器,工作物质为在空间周期变化磁场中高速运动的定向自由电子束,只要改变自由电子束的速度就可产生可调谐的相干电磁辐射,原则上其相干辐射谱可从X射线波段过渡到微波区域,因此具有很诱人的前景。

A.气体激光器介质是气体的激光器,此种激光器通过放电得到激发。

氦氖激光器:最重要的红光放射源(632.8 nm)。

二氧化碳激光器:波长约10.6 μm(红外线),重要的工业激光。

一氧化碳激光器:波长约6-8 μm(红外线),只在冷却的条件下工作。

氮气激光器:337.1 nm (紫外线)。

氩离子激光器:具有多个波长,457.9 nm (8%)丶476.5 nm (12%)丶488.0 nm (20%)丶496.5 nm (12%)丶501.7 nm (5%)丶514.5 nm (43%)(由蓝光到绿光)。

氦镉激光器:最重要的蓝光(442nm)和近紫外激光源(325nm)。

氪离子激光器:具有多个波长,350.7nm丶356.4nm丶476.2nm丶482.5nm 丶520.6nm丶530.9nm丶586.2nm丶647.1nm (最强)丶676.4nm丶752.5nm丶799.3nm (从蓝光到深红光)。

氧离子激光器氙离子激光器混合气体激光器:不含纯气体,而是几种气体的混合物(一般为氩丶氪等)。

准分子激光器:比如KrF (248 nm)丶XeF (351-353 nm)丶ArF (193 nm)丶XeCl (308 nm)丶F2 (157 nm) (均为紫外线)。

金属蒸汽激光器:比如铜蒸汽激光器,波长介於510.6-578.2 nm之间。

由於很好的加强性,可以不用谐振镜。

金属卤化物激光器:比如溴化铜激光器,波长介於510.6-578.2 nm之间。

由於很好的加强性,可以不用谐振镜。

化学激发激光器是一种特殊的形式。

激发通过媒介中的化学反应来进行。

媒介是一次性的,使用後就被消耗掉了。

对於高功率的条件及军事领域是非常理想的。

盐酸激光器碘激光器B.固体激光器介质是固体的激光器,此种工作物质通过灯丶半导体激光器阵列丶其他激光器光照泵浦得到激发。

热透镜效应是大多数固体激光器的一项缺陷。

红宝石激光器:世界上第一台激光器就是红宝石激光器。

Nd:YAG(掺钕钇铝石榴石):最常用的固体激光器,工作波长一般为1064nm,这一波长为四能级系统,还有其他能级可以输出其他波长的激光。

Nd:YVO4(掺钕钒酸钇):低功率应用最广泛的固体激光器,工作波长一般为1064nm,可以通过KTP,LBO非线性晶体倍频後产生532nm绿光的激光器。

Yb:YAG(掺镱钇铝石榴石):适用於高功率输出,这种材料的碟片激光器在激光工业加工领域有很强优势。

钛蓝宝石激光器:具有较宽的波长调节范围(670nm~1200nm)。

5.2按激励方式分类①光泵式激光器。

指以光泵方式激励的激光器,包括几乎是全部的固体激光器和液体激光器,以及少数气体激光器和半导体激光器。

②电激励式激光器。

大部分气体激光器均是采用气体放电(直流放电、交流放电、脉冲放电、电子束注入)方式进行激励,而一般常见的半导体激光器多是采用结电流注入方式进行激励,某些半导体激光器亦可采用高能电子束注入方式激励。

③化学激光器。

这是专门指利用化学反应释放的能量对工作物质进行激励的激光器,反希望产生的化学反应可分别采用光照引发、放电引发、化学引发。

④核泵浦激光器。

指专门利用小型核裂变反应所释放出的能量来激励工作物质的一类特种激光器,如核泵浦氦氩激光器等。

5.3按运转方式分类由于激光器所采用的工作物质、激励方式以及应用目的的不同,其运转方式和工作状态亦相应有所不同,从而可区分为以下几种主要的类型:①连续激光器,其工作特点是工作物质的激励和相应的激光输出,可以在一段较长的时间范围内以连续方式持续进行,以连续光源激励的固体激光器和以连续电激励方式工作的气体激光器及半导体激光器,均属此类。

由于连续运转过程中往往不可避免地产生器件的过热效应,因此多数需采取适当的冷却措施。

②单次脉冲激光器,对这类激光器而言,工作物质的激励和相应的激光发射,从时间上来说均是一个单次脉冲过程,一般的固体激光器、液体激光器以及某些特殊的气体激光器,均采用此方式运转,此时器件的热效应可以忽略,故可以不采取特殊的冷却措施。

③重复脉冲激光器,这类器件的特点是其输出为一系列的重复激光脉冲,为此,器件可相应以重复脉冲的方式激励,或以连续方式进行激励但以一定方式调制激光振荡过程,以获得重复脉冲激光输出,通常亦要求对器件采取有效的冷却措施。

④调激光器,这是专门指采用一定的开关技术以获得较高输出功率的脉冲激光器,其工作原理是在工作物质的粒子数反转状态形成后并不使其产生激光振荡(开关处于关闭状态),待粒子数积累到足够高的程度后,突然瞬时打开开关,从而可在较短的时间内(例如10~10秒)形成十分强的激光振荡和高功率脉冲激光输出(见技术'" class=link>激光调技术)。

⑤锁模激光器,这是一类采用锁模技术的特殊类型激光器,其工作特点是由共振腔内不同纵向模式之间有确定的相位关系,因此可获得一系列在时间上来看是等间隔的激光超短脉冲(脉宽10~10秒)序列,若进一步采用特殊的快速光开关技术,还可以从上述脉冲序列中选择出单一的超短激光脉冲(见激光锁模技术)。

⑥单模和稳频激光器,单模激光器是指在采用一定的限模技术后处于单横模或单纵模状态运转的激光器,稳频激光器是指采用一定的自动控制措施使激光器输出波长或频率稳定在一定精度范围内的特殊激光器件,在某些情况下,还可以制成既是单模运转又具有频率自动稳定控制能力的特种激光器件(见激光稳频技术)。

⑦可调谐激光器,在一般情况下,激光器的输出波长是固定不变的,但采用特殊的调谐技术后,使得某些激光器的输出激光波长,可在一定的范围内连续可控地发生变化,这一类激光器称为可调谐激光器(见激光调谐技术)。

5.4按输出波段范围分类根据输出激光波长范围之不同,可将各类激光器区分为以下几种。

①远红外激光器,输出波长范围处于25~1000微米之间, 某些分子气体激光器以及自由电子激光器的激光输出即落入这一区域。

②中红外激光器,指输出激光波长处于中红外区(2.5~25微米)的激光器件,代表者为CO分子气体激光器(10.6微米)、 CO分子气体激光器(5~6微米)。

③近红外激光器,指输出激光波长处于近红外区(0.75~2.5微米)的激光器件,代表者为掺钕固体激光器(1.06微米)、CaAs半导体二极管激光器(约0.8微米)和某些气体激光器等。

④可见激光器,指输出激光波长处于可见光谱区(4000~7000埃或0.4~0.7微米)的一类激光器件,代表者为红宝石激光器(6943埃)、氦氖激光器(6328埃)、氩离子激光器(4880埃、5145埃)、氪离子激光器(4762埃、5208埃、5682埃、6471埃)以及一些可调谐染料激光器等。

相关文档
最新文档