新北师大版九年级上学期视图与投影练习题

合集下载

北师大版九年级上学期视图与投影模拟试题

北师大版九年级上学期视图与投影模拟试题

视图与投影模拟试题一、选择题1. 如图(1)所示,所对应的物体还是图(2)所示中的( )图(2)2. 如图(3)所示的空心几何体的俯视图是图(4)中的( )图(4)3. 物体在太阳光的照射下,不同的时刻会发生的现象是( ) A. 影子的大小不变,方向在变B. 影子的大小在变,方向不变C. 影子的大小、方向都在变D. 影子的大小、方向都不变4. 强强和亮亮在路灯下走,本来很高的强强的影长却比矮的亮亮的影子短,因为( ) A. 强强离路灯近 B. 亮亮离路灯近 C. 强强和亮亮分别在路灯的两旁 D. 路灯比强强高5. 货车司机的驾驶室一般都设计得较高,而且尽量靠前,这是为了( ) A. 接触到更好的阳光 B. 看得更远C. 减小因车头挡住视线产生的盲区 D. 空气更新鲜6. 下列投影中,不属于中心投影的是( )A. 晚上路灯下小孩的影 B. 汽车灯光照射下行人的影子 C. 阳光下沙滩上人的影子 D. 舞台上一束灯光下演员的影子7. 小明拿了一张正方形卡片,使卡片面与墙面平行,这时发现墙面上形成了卡片的影子,则下列关于其影子的叙述正确的是( )A. 墙上形成的影子的形状和大小一定与卡片相同 B. 墙上形成的影子有可能比卡片小 C. 墙上形成的影子比卡片大或小都有可能 D. 墙上形成的影子有可能比卡片大二、填空题1. 明明和亮亮为了踢好足球,练习追逐跑,于是他们两人决定玩踩影子的游戏,即踩到对方影子为获胜,你认为在阳光下练习还是在路灯下练习更有意义?_____________。

2. 现有甲、乙两个长方体盒子,甲的规格为:15cm×40cm×60cm,乙的规格为:20cm×30cm×30cm。

图(1)图三(1)乙盒子____________(填“能”或“不能”)放在甲盒子中;(2)在阳光下乙盒子的影子____________(填“能”或“不能”)藏在甲盒子的影子中。

初中数学北师大版九年级上册第五章投影与视图练习题

初中数学北师大版九年级上册第五章投影与视图练习题

初中数学北师大版九年级上册第四章投影与视图练习题一、选择题1.如图,路灯灯柱OP的长为8米,身高米的小明从距离灯的底部点米的点A处,沿AO所在的直线行走14米到达点B处,人影的长度A. 变长了米B. 变短了米C. 变长了米D. 变短了米2.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是A. B.C. D.3.如图,在直角坐标系中,点是一个光源.木杆AB两端的坐标分别为,则木杆AB在x轴上的投影长为A. 3B. 5C. 6D. 74.在相同时刻的物高与影长成比例,如果高为m的测杆的影长为m,那么影长为30m的旗杆的高是A. 20mB. 16mC. 18mD. 15m5.小明拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上形成的投影不可能是A. B.C. D.6.在相同时刻的物高与影长成比例,如果高为的测杆的影长为3m,那么影长为30m的旗杆的高是A. 15mB. 16mC. 18mD. 20m7.相同时刻太阳光下,若高为的测杆的影长为3m,则影长为30m的旗杆的高是A. 15mB. 16mC. 18mD. 20m8.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿,它的影子,木竿PQ的影子有一部分落在了墙上,它的影子,,木竿PQ的长度为A. 3mB.C.D.9.如图中的几何体是由六个完全相同的小正方体组成的,它的主视图是A. B.C. D.10.如图,该几何体的俯视图是A. B. C. D.11.如图所示,该几何体的俯视图是A. B. C. D.12.如图所示的几何体的主视图为A. B. C. D.13.观察如图所示的三种视图,与之对应的物体是A.B.C.D.14.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为A. 3,B. 2,C. 3,2D. 2,315.下列四个几何体中,主视图与俯视图不同的共有.A. 1个B. 2个C. 3个D. 4个二、填空题16.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为______17.如图,AB和DE是直立在地面上的两根立柱,米,某一时刻AB在阳光下的投影米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为_________.18.一个长方体的主视图和左视图如图所示单位:,则这个长方体的体积是______.19.用小立方块搭一几何体,使得它的主视图和俯视图如图所示,这样的几何体最少要_____个立方块,最多要_________个立方块.20.如图所示是若干个大小相同的小正方体搭成的几何体从三个不同方向看到的图形,则搭成这个几何体的小正方体的个数是______.三、解答题21.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.22.如图,灯杆AB与墙MN的距离为18米,小丽在离灯杆底部米的D处测得其影长DF为3m,设小丽身高为.求灯杆AB的高度;小丽再向墙走7米,她的影子能否完全落在地面上?若能,求此时的影长;若不能,求落在墙上的影长.23.一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC 方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得,已知标杆直立时的高为,求路灯的高CD的长.24.一个几何体从三个方向看到的图形如图所示单位:.写出这个几何体的名称:_____;若其从上面看为正方形,根据图中数据计算这个几何体的表面积.答案和解析1.【答案】D【解析】【分析】此题考查中心投影及相似三角形的应用,应注意题中三角形的变化.小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【解答】解:设小明在A处时影长为x米,B处时影长为y米.则米,米,,,∽,∽,,,则,;,,,故变短了米.故选D.2.【答案】C【解析】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A 选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.根据平行投影得特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.3.【答案】C【解析】【分析】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大即位似变换的关系.利用中心投影,延长PA、PB分别交x轴于、,作轴于E,交AB于D,如图,证明∽,然后利用相似比可求出的长.【解答】解:延长PA、PB分别交x轴于、,作轴于E,交AB于D,如图,,,.,,,,∽,,即,,故选C.4.【答案】C【解析】【分析】本题考查的是中心投影,熟知同一时刻物高与影长成正比是解答此题的关键.设影长为30m的旗杆的高是xm,再由同一时刻物高与影长成正比列式计算即可得出结论.【解答】解:设影长为30m的旗杆的高是xm,在相同时刻物高与影长成比例,高为的测杆的影长为,,解得.故选C.5.【答案】B【解析】【分析】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【解答】解:当等边三角形木框与阳光平行时,投影是A;当等边三角形木框与阳光垂直时,投影是C;当等边三角形木框与阳光有一定角度时,投影是D;投影不可能是B.故选B.6.【答案】A【解析】【分析】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.设影长为30m的旗杆的高是xm,再由同一时刻物高与影长成正比即可得出结论.【解答】解:设影长为30m的旗杆的高是xm,在相同时刻物高与影长成比例,高为的测杆的影长为3m,,.故选A.7.【答案】A【解析】【分析】此题考查了物高与影长的关系,解题的关键是将实际问题转化为数学问题,根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.【解答】解:,,解得:旗杆的高度米.故选A.8.【答案】B【解析】【分析】此题主要考查了平行投影以及相似三角形的应用有关知识,直接利用同一时刻物体影子与实际高度成比例,进而得出答案.【解答】解:连接AC,过点M作,同一时刻物体影子与实际高度成比例,,解得:,,故选B.9.【答案】B【解析】解:从正面看第一层是3个小正方形,第二层右边1个小正方形.故选:B.根据从正面看是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.10.【答案】A【解析】解:从几何体的上面看可得,故选:A.找到从几何体的上面所看到的图形即可.此题主要考查了简单几何体的三视图,关键是掌握所看的位置.11.【答案】D【解析】解:从上边看是三个矩形,故选:D.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.12.【答案】D【解析】解:从几何体的正面看,是一个矩形,矩形的中间有一条纵向的实线.故选:D.利用主视图的定义,即从几何体的正面观察得出视图即可.此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.13.【答案】D【解析】【分析】本题考查了由三视图判断几何体的知识,解题的关键是结合三视图及三个几何体确定正确的答案,难度不大,首先根据主视图中有两条虚线,发现该几何体的应该有两条从正面看不到的棱,然后结合俯视图及提供的三个几何体确定正确的序号.【解答】解:结合主视图和俯视图发现几何体的背面应该有个凸起,故淘汰选项ABC,选D.故选:D.14.【答案】C【解析】【分析】本题考查简单几何体的三视图,由俯视图和主视图知道棱柱顶的正方形对角线长是,根据勾股定理列出方程求解.【解答】解:设底面边长为x,则,解得,即底面边长为2,根据图形,这个长方体的高是3,根据求出的底面边长是2 ,故选C.15.【答案】B【解析】【分析】本题考查了几何体的三种视图,掌握定义及各几何体的特点是关键.主视图是从正面看到的图形,俯视图是从物体的上面看到的图形,可根据各几何体的特点进行判断即可.【解答】解:圆柱的主视图是矩形,俯视图是圆,它的主视图与俯视图不同;圆锥的主视图是等腰三角形,俯视图是圆,它的主视图与俯视图不同;球体的三视图均为圆,故它的主视图和俯视图相同;正方体的三视图均为正方形,故它的主视图和俯视图也相同;所以主视图与俯视图不同的是圆柱和圆锥,故选B.16.【答案】24【解析】解:设这栋建筑物的高度为xm,由题意得,,解得,即这栋建筑物的高度为24m.故答案为:24.根据同时同地的物高与影长成正比列式计算即可得解.本题考查了相似三角形的应用,熟记同时同地的物高与影长成正比是解题的关键.17.【答案】10米【解析】【分析】本题通过投影的知识结合图形相似的性质巧妙地求出灯泡离地面的距离,是平行投影性质在实际生活中的应用.根据平行的性质可知∽,利用相似三角形对应边成比例即可求出DE的长.【解答】解:如图,在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,由题意得,∽,,,,,,米.故答案为10米.18.【答案】24【解析】解:由主视图可知,这个长方体的长和高分别为3和4,由左视图可知,这个长方体的宽和高分别为2和4,因此这个长方体的长、宽、高分别为3、2、4,因此这个长方体的体积为.故答案为:24.由所给的视图判断出长方体的长、宽、高,根据体积公式计算即可.本题是由两种视图考查长方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高.19.【答案】10,14【解析】【分析】本题主要考查了三视图判断几何体,要分成最多,最少两种情况进行讨论,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”算出个数.根据“俯视图打地基,正视图疯狂盖,左视图拆违章”解答即可.【解答】解:根据主视图和俯视图可知,正方体的分布的情况如下图所示:最多的正方体需要14个;正方体的分布最少的情况如下图所示:最少需要10个.故答案为10,14.20.【答案】7【解析】解:在俯视图标出相应位置摆放小立方体的个数,如图所示:因此需要小立方体的个数为7,故答案为:7.在俯视图上摆小立方体,确定每个位置上摆小立方体的个数,得出答案.考查简单几何体的三视图的画法,画三视图时还要注意“长对正、宽相等、高平齐”.21.【答案】解:如图所示:【解析】读图可得,从正面看有3列,每列小正方形数目分别为1,2,1;从左面看有3列,每列小正方形数目分别为2,1,1;从上面看有3行,每行小正方形数目分别为2,2,2,依此画出图形即可.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.22.【答案】解:,,∽,,.灯杆AB的高度为米.将CD往墙移动7米到,作射线交MN于点P,延长AP交地面BN于点Q,如图所示.,,∽,,即,.同理,可得出∽,,即,.小丽的影子不能完全落在地面上,小丽落在墙上的影长为1米.【解析】由、可得出∽,根据相似三角形的性质可求出AB的长度,此题得解;将CD往墙移动7米到,作射线交MN于点P,延长AP交地面BN于点Q,由、可得出∽,根据相似三角形的性质可求出的长度,同理可得出∽,再利用相似三角形的性质可求出PN的长度,此题得解.本题考查了相似三角形的应用以及中心投影,解题的关键是:由∽利用相似三角形的性质求出AB的长度;由∽利用相似三角形的性质求出PN的长度.23.【答案】解:设CD长为x米,,,,,,米,∽,,即,解得:.经检验,是原方程的解,路灯高CD为米.【解析】根据,,,得到,从而得到∽,利用相似三角形对应边的比相等列出比例式求解即可.本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.24.【答案】解:长方体;由三视图知,几何体是一个长方体,长方体的底面是边长为3的正方形,高是4,则这个几何体的表面积是答:这个几何体的表面积是.【解析】【分析】此题考查了由三视图判断几何体和几何体的表面积求法,正确判断出几何体的形状是解题的关键.由2个视图是长方形,那么这个几何体为棱柱,另一个视图是正方形,那么可得该几何体是长方体;由三视图知,长方体的底面是边长为3的正方形,高是4,根据长方体表面积公式列式计算即可.【解答】解:根据三视图可得这个几何体是长方体.故答案为长方体;见答案.。

北师大版本九年级数学上册第五章投影和视图知识点解析含习题练习

北师大版本九年级数学上册第五章投影和视图知识点解析含习题练习

北师大版本九年级数学上册第五章投影和视图知识点解析第01讲_投影与视图知识图谱投影知识精讲投影的定义1.一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影;照射光线叫做投影线;投影所在的平面叫做投影面.2.由平行光线(如太阳光线)形成的投影称为平行投影.3.由同一点发出的光线所形成的投影称为中心投影.4.在物体的平行投影中,投影线垂直于投影面,则该平行投影称为正投影.三点剖析一.考点:投影的定义二.重难点:投影的定义三.易错点:中心投影的光源为点光源,平行投影的光源为阳光;平行投影例题1、平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的【答案】A 【解析】平行投影中的光线是平行的,如阳光等.例题2、下列说法正确的是()A.物体在阳光下的投影只与物体的高度有关B.小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长C.物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化D.物体在阳光照射下,影子的长度和方向都是固定不变的【答案】C【解析】平行投影的特点:在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻的同一物体在太阳光下的影子的大小也在变化.例题3、例已知:如图,AB 和DE 是直立在地面上的两根立柱,5AB m =,某一时刻,AB 在阳光下的投影4BC m =.(1)图中画出此时DE 在阳光下的投影;(2)AB 的投影长时,同时测出DE 在阳光下的投影长为6m ,请你计算DE 的长.【答案】(1)如图所示;(2)7.5m 【解析】(1)根据已知连接AC ,过点D 作DF AC ,即可得出EF 就是DE 的投影;(2)利用ABC DEF ∆∆ AB BC DE EF ∴=5AB m = ,4BC m =,6EF m =7.5DE m ∴=随练1、下列说法错误的是()A.两人在太阳光下行走,同一时刻他们的身高与影长的比相等B.两人在同一灯光下行走,同一时刻他们的身高与其影长不一定相等C.一人在同乙灯光下不同地点的影长不一定相同D.一人在不同时间的阳光下同一地点的影长相等【答案】D【解析】暂无解析随练2、请指出下列小明的影子,平行投影的是__________,中心投影是__________.①一个晴天的上午,小明身后的影子;②一个晴天的中午,小明脚下的影子;③夜晚,小明在路灯下的影子;④小明在幻灯机前经过时投在屏幕上的影子【答案】①②;③④【解析】根据中心投影和平行投影的性质,中心投影的光源为灯光,平行投影的光源为阳光与月亮.随练3、某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB 的影长AC 为12m ,并测出此时太阳光线与地面成30 夹角.(1)求出树高AB ;(2)因水土流失,此时树AB 沿太阳光线方向倒下,在倾倒过程中,树影长度发上了变化,假设太阳光线与地面夹角保持不变,求树的最大影长.【答案】(1);(2)【解析】(1)3tan 3012)3AB AC m ==⨯=(2)如图2,112sin 45)2B N AN AB m ====11tan 60)NC NB m === ,11AC AN NC =+=+当树与地面成60 角时影长最大2AC ,222AC AB ==随练4、如图是两根标杆在地面上的影子,根据这些投影,在灯光下的影子是()A.①和②B.②和④C.③和④D.②和③【答案】D【解析】根据物体的顶端和影子顶端的连线必经过光源从而可判断出答案.随练5、如图,小明和小燕在院子里玩捉迷藏游戏,院子里有三堵墙,现在小明站在O点,小燕如果不想被小明看到,则不应该站的区域是()A.(1)B.(2)C.(3)D.(4)【答案】C【解析】∵(1)、(2)、(4)区域均为视力盲区∴站在(1)、(2)、(4)区域均不会被看见,而(3)区在视力范围内∴只要不站在(3)区就不会被看见.中心投影例题1、物体在光线的照射下,会在地面或墙壁上留下它的影子,这种现象就是__________现象,投影现象中,由阳光形成的影子是__________投影,由灯光形成的影子是__________投影,海滩上游人的影子是__________投影,晚上路旁栏杆的影子是__________投影.【答案】投影;平行;中心;平行;中心【解析】根据平行投影和中心投影的定义作答即可.例题2、四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图.则在字母L、K、C的投影中,与字母N属同一种投影的有()A.L、KB.CC.KD.L、K、C【答案】A【解析】根据平行投影和中心投影的特点和规律.“L”、“K”与“N”属中心投影.例题3、如图,我们常用“y随x的增大而增大”来表示两个变量之间的变化关系.有这样一个情境:如图,小王从点A经过路灯C的正下方沿直线走到点B,他与路灯C的距离y随他与点A之间的距离x的变化而变化.下列函数中y与x之间的变化关系,最有可能与上述情境类似的是()y x=+A.y x=B.3C.3y x = D.()233y x =-+【答案】D【解析】从A 到路灯的正下方前他与路灯的距离逐渐减少,经过路灯后它与路灯的距离逐渐增加.随练1、如图,夜晚小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距离x 的变化而变化,那么表示y 与x 之间的函数关系的图像大致是()A.B.C.D.【答案】A【解析】设身高GE h =,1CF =,AF a=当x a ≤时,OEG OFC∆∆ OE GE OF CF ∴=,即y h a x l =-h hay x l l∴=-+a 、h l 、均为常数∴这个函数图像是一次函数图像影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大.正投影例题1、Rt ABC ∆斜边在平面α上,则ABC ∆在平面α的正投影()A.一定不是钝角三角形B.一定不是直角三角形C.一定不是锐角三角形D.一定是三角形【答案】C【解析】当三角形所在的平面与平面α垂直时,三角形在平面上的正投影是一条线段;当三角形所在的平面与平面不垂直时,投影形成钝角三角形;当三角形在平面上时,形成投影是直角三角形.例题2、一根笔直的小木棒(记为线段AB ),它的正投影为线段CD ,则下列各式中一定成立的是()A.AB CD =B.AB CD ≤C.AB CD >D.AB CD≥【答案】D【解析】根据正投影的定义,当AB 与投影面平行时,AB CD =;当AB 与投影面不平行时,AB CD >.视图知识精讲一.视图当我们从某一角度观察一个物体时,所看到的图像叫做物体的一个视图.视图也可以看做物体在某一角度的光线下的投影.二.常见立体图的三视图如图,我们用三个互相垂直的平面(例如墙角处的三面墙壁)作为投影面,其中正对着我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体在三个投影面内同时进行投影:在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.三.三视图的做法:1.主视图与俯视图表示同一物体的长,主视图与左视图表示同一物体的高,左视图与俯视图表示同一物体的宽;主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.2.看得见部分的轮廓线画成实线;3.看不见部分的轮廓线画成虚线.一个投射面水平放置,叫做水平投射面,投射到这个面内的图形叫做俯视图;一个投射面放置在正前方,叫直立投射面,投射到此平面内的图形叫做主视图;和水平投射面、直立投射面都垂直的投射面叫做侧立投射面,通常把这个平面放在直立投射面的右面,投射到这个平面内的图形叫做左视图;三点剖析一.考点:立体图形三视图二.重难点:立体图形三视图及由三视图求解立体图形三.易错点:1.画三视图时看不见的线应该用虚线;2.利用三视图确定小立方体的个数立体图形的三视图例题1、下列几何体的主视图、左视图、俯视图的图形完全相同的是()A.三棱锥B.长方体C.三棱柱D.球体【答案】D【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图.例题2、如图是一个底面为正三角形的直三棱柱,则这个几何体的主视图是()A.B.C.D.【答案】C【解析】从正面看是两个矩形,矩形的公共边是虚线,例题3、下面四个立体图形,从正面、左面、上面观察都不可能看到长方形的是()A. B. C. D.【答案】C【解析】A、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;C、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误.例题4、如图是一个由若干个正方形搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是:________________.【答案】①②③【解析】综合左视图跟主视图:从正面看,第一行第一列有3个正方形,第一行第二列有1个或第二行第2列有一个或都有一个.第二行第1列有2个正方体.随练1、如图①,这是一个正方体毛坯,将其沿一组对面的对角线切去一半,得到一个工件如图②,对于这个工件,左视图、俯视图正确的一组是()①②a b c dA.a,bB.b,dC.a,cD.a,d【答案】D【解析】左视图、俯视图是分别从物体的侧面和上面看所得到的图形.由三视图求解立体图形例题1、若一个几何体的主视图、左视图、俯视图都是正方形,则这个几何体是()A.正方体B.圆锥C.圆柱D.球【答案】A【解析】∵主视图和左视图都是正方形,∴此几何体为柱体,∵俯视图是一个正方形,∴此几何体为正方体.例题2、如图是由一些相同的小正方体构成的立体图形的三种视图.那么构成这个立体图形的正方体有多少个小立方块()A.4个B.5个C.6个D.7个【答案】【解析】根据图形可得:最底层有4个小立方块,第二层有1个小立方块,所以构成这个立体图形的小立方块有5个.例题3、如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60πB.70πC.90πD.160π【答案】B 【解析】观察三视图发现该几何体为空心圆柱,其内圆半径为3,外圆半径为4,高为10,所以其体积为22104370πππ⨯-=(),例题4、由一些大小相同的小正方体组成的简单几何体的主视图和俯视图.(如图)(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n ,请你写出n 的所有可能值.【答案】(1)见解析;(2)8n =,9,10,11.【解析】(1)左视图有以下5种情形:(2)8n =,9,10,11.随练1、从一个边长为3cm 的大立方体挖去一个边长为1cm 的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A. B. C. D.【答案】C【解析】如图所示:∵从一个边长为3cm 的大立方体挖去一个边长为1cm 的小立方体,∴该几何体的左视图为:.随练2、如图所示的是某几何体的三视图,则该几何体的形状是()A.长方形B.三棱柱C.圆柱D.正方体【答案】C 【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.随练3、如图是由一些相同的小正方体组成的几何体的三视图,则组成该几何体的小正方体的个数最少为()A.7个B.8个C.9个D.10个【答案】C 【解析】由俯视图可得底面有一排有6个小正方体;从主视图看,第二层最少有2个正方体,第3层最少有一个小正方体,组成该几何体的小正方体的个数为9个.随练4、如图是一个几何体的三视图,则这个几何体的侧面积是()A.πB.9πC.18πD.27π【答案】C 【解析】根据三视图可得:这个几何体为圆锥,∵直径为6,圆锥母线长为6,∴侧面积66218ππ=⨯⨯÷=;随练5、如右图,是一个由若干个小正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是___________.【答案】①②③【解析】根据几何的主视图和左视图即可判断.拓展1、给下列几种关于投影的说法,正确的是()A.矩形的平行投影一定是矩形B.平行直线的平行投影仍是平行直线C.垂直于投影面的直线或线段的正投影是点D.中心投影的投影线是互相平行的【答案】C【解析】矩形的平行投影可能是平行四边形,也可能是线段;平行直线的平行投影可能是平行直线,也可能重合;垂直于投影面的直线或线段的正投影是点;中心投影的投影线是相交于一点的.2、李华的弟弟拿着一个菱形木框在阳光下玩,李华发现菱形木框在阳光照射下,在地面上形成了各种图形的阴影,但以下一种图形始终没有出现,没有出现的图形是()A.B.C. D.【答案】D【解析】根据平行四边形投影的特点,在同一时刻不同物体的物高和影长成比例,所以不可能是梯形.3、如图,一根直立于水平地面上的木杆AB 在灯光下形成影子,当木杆绕点A 按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB 垂直于地面时的影长为AC (假定AC AB >)的最大值为m ,最小值为n ,那么下列结论:①m AC >;②m AC =;③n AB =;④影子的长度先增大后减小.其中,正确结论的序号是.【答案】①③④【解析】当木杆绕点A 按逆时针方向旋转时,如图所示当AB 与光线BC 垂直时,m 最大,则m AC >,①成立;最小值为AB 与底面重合,故n AB =;由上可知,影子的长度先增大后减小.4、如图,小军、小珠之间的距离为2.7m ,他们在同一盏路灯下的影长分别为1.8m ,1.5m ,已知小军、小珠的身高分别为1.8m ,1.5m ,则路灯的高为_________m .【答案】3【解析】如图,∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF ,∴CD DE =AB BE ,FN MN =FB AB ,即1.8 1.8=AB 1.8+BD , 1.5 1.5=AB 1.5+2.7-BD,解得:AB=3m5、如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向上远移时,圆形阴影的大小的变化情况是()A.越来越小B.越来越大C.大小不变D.不能确定【答案】A【解析】灯光下,涉及中心投影,根据中心投影的特点灯光下影子与物体离灯源距离有关,此距离越大,影子才越小.6、如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5mB.变长2.5mC.变短3.5mD.变短2.5m【答案】C【解析】设小明在A处时影长为x,AO长为a,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴AC MAOP MO=,BD BNOP ON=,则1.68xx a=+,∴14x a=;1.6148yy a= +-,∴1 3.54y a=-,∴ 3.5x y-=,故变短了3.5米.7、如图所示零件的左视图是()A.B.C.D.【答案】D【解析】零件的左视图是两个竖叠的矩形.中间有2条横着的虚线8、如图是由一些相同的小正方体构成的立体图形的三种视图,那么构成这个立体图形的小正方体有()A.4个B.5个C.6个D.7个【答案】B【解析】由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成.故选B.9、如图所示的几何体是由五个小正方体组合而成的,它的左视图是()A. B. C. D.【答案】A【解析】从左边看第一层是两个小正方形,第二层左边一个小正方形,10、与如图所示的三视图对应的几何体是()A.B.C.D.【答案】B【解析】根据主视图、左视图、俯视图判断即可得到.11、一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()A.11B.12C.13D.14【答案】B【解析】由俯视图可得:碟子共有3摞,由几何体的主视图和左视图,可得每摞碟子的个数,如下图所示:故这张桌子上碟子的个数为3+4+5=12个。

北师大版九年级上册数学 第五章 投影与视图 习题练习一(附答案)

北师大版九年级上册数学 第五章 投影与视图  习题练习一(附答案)

北师大版九年级上册数学第五章投影与视图习题练习一(附答案)一、选择题1.一幢4层楼房只有一个窗户亮着一盏灯,一棵小树和一根电线杆在窗口灯光下的影子如图所示,则亮着灯的窗口是()A. 1号窗口B. 2号窗口 C. 3号窗口D. 4号窗口2.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.两人的影子长度不确定3.如图所示,该几何体的俯视图是()A.B.C.D.4.如图所示的几何体,从左面看是()A.B.C.D.5.如图几何体的主视图是()A.B.C.D.6.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长 C.先变长后变短D.逐渐变长7.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A. B. C. D.二、填空题8.如图2是一个几何体的三视图,则这几何体的展开图可以是()9.甲乙两人在太阳光下并行,乙的身高1.8m,他的影长是2.1m,甲比乙矮12cm,此刻甲的影长是_____.10.晚上,小亮走在大街上.他发现:当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为3米,左边的影子长为1.5米.又知自己身高1.80米,两盏路灯的高相同,两盏路灯之间的距离为12米,则路灯的高为米.11.如图,是某立体图形的三视图,则这个立体图形的侧面展开图的面积是__.(结果保留π)三、解答题12.在“测量物体的高度” 活动中,某数学兴趣小组的3名同学选择了测量学校里的三棵树的高度.在同一时刻的阳光下,他们分别做了以下工作:小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4米(如图1).小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米.小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.3米,一级台阶高为0.3米,落在地面上的影长为4.5米.(1)在横线上直接填写甲树的高度为米.(2)求出乙树的高度.(3)请选择丙树的高度为()A.6.5米B.5. 5米C.6.3米D.4.9米13.从正面、左面、上面观察如图7所示的几何体,分别在图8中画出你所看到的几何体的形状图.14.如图,由几个相同的小正方体搭成一个几何体,请画出这个几何体的三种视图.(在所提供的方格内涂上相应的阴影即可)15.如图是位于陕西省西安市荐福寺内的小雁塔,是中国早期方形密檐式砖塔的典型作品,并作为丝绸之路的一处重要遗址点,被列入《世界遗产名录》.小铭、小希等几位同学想利用一些测量工具和所学的几何知识测量小雁塔的高度,由于观测点与小雁塔底部间的距离不易测量,因此经过研究需要进行两次测量,于是在阳光下,他们首先利用影长进行测量,方法如下:小铭在小雁塔的影子顶端D处竖直立一根木棒CD,并测得此时木棒的影长DE=2.4米;然后,小希在BD的延长线上找出一点F,使得A、C、F三点在同一直线上,并测得DF=2.5米.已知图中所有点均在同一平面内,木棒高CD=1.72米,AB⊥BF,CD⊥BF,试根据以上测量数据,求小雁塔的高度AB.答案解析1.【答案】B【解析】根据给出的两个物高与影长即可确定点光源的位置.如图所示,故选B.2.【答案】D【解析】在同一路灯下由于位置不确定,根据中心投影的特点判断得出答案即可.在同一路灯下由于位置不同,影长也不同,所以无法判断谁的影子长.故选D.3.【答案】C【解析】从上往下看,总体上是一个矩形,中间隔着一个竖直的同宽的小矩形,而挖空后长方体内的剩余部分用虚线表示为左右对称的两条靠近宽的线,选项C中图象便是俯视图.故选:C.4.【答案】B【解析】从左面看到的是左面位置上下两个正方形,右面的下方一个正方形,由此得出答案即可.从左面看到的是左面位置上下两个正方形,右面的下方一个正方形的图形是。

第5章 投影与视图 北师大版九年级数学上册综合复习及答案

第5章 投影与视图 北师大版九年级数学上册综合复习及答案

第五章投影与视图 2024--2025学年北师大版九年级数学上册专题一投影【知识聚焦】投影通常考查画图与计算两个方面:画图可根据投影的定义,利用平行投影中光线平行为已知条件;中心投影常利用两条直线相交确定光;计算常利用相似知识解决.1. 投影的相关概念物体在光线的照射下,在某个平面内形成的影子叫做投影. 这时,照射光线叫做投影线,影子(投影)所在的平面叫做投影面.2. 平行投影的概念由平行光线形成的投影是平行投影. (注意:平行投影的投影线都是平行的)3. 正投影的概念投影线垂直于投影面产生的投影叫做正投影. 在实际作图中,正投影被广泛应用,主要有线段、平面图形及立体图形.4. 中心投影的概念由同一点(点光) 发出的光线形成的投影叫做中心投影.(注意:中心投影的光是点光,它的光线相交于一点)5. 视点、视线和盲区的概念由同一点(点光)发出的光线形成的投影叫做中心投影.(注意:中心投影的光是点光,它的光线相交于一点)【典例精讲】题型1 平行投影的应用【例1】如图所示,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB 和一段高度未知的电线杆 CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量;某一时刻,在太阳光照射下,旗杆落在围墙的影子 EF的长度为2米,落在地面上的影子BF的长度为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长度为5米. 依据这些数据,该小组的同学计算出了电线杆的高度.(1) 该小组的同学在这里利用的是投影的有关知识进行计算的.(2) 试计算出电线杆的高度,并写出计算过程.举一反三。

1. 如图所示,该小组发现8米高的旗杆DE 的影子 EF 落在了包含一圆弧形小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动. 小刚身高1.6米,测得其影长为2.4米,同时测得 EG的长为3米,HF 的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长度) 为2米,求小桥所在圆的半径.题型 2 中心投影的应用【例2】如图所示,不透明圆锥体 DEC 放在直线 BP 所在的水平面上且 BP 过圆锥底面的圆心,圆锥的高为23m,底面圆半径为2m,一点光位于点 A处,照射到圆锥体后,在水平面上留下的影长BE=4m.(1) 求∠ABC的度数;(2) 若∠ACP=2∠ABC, 求光A距水平面的高度.举一反三2. 小明现有一根2m长的竹竿,他想测出自家门口马路上一盏路灯的高度,但又不能直接测量,他采用了如下办法:①先走到路旁的一个地方,竖直放好竹竿,测量此时的影长为1m;②沿竹竿影子的方向向远处走了两根竹竿的长度4m,然后又竖直放好竹竿,测量此时竹竿的影子长正好为2m.小明说他可以计算出路灯的高度,他如何计算?题型3 盲区的实际应用问题【例3】如图所示,AB 表示一坡角为60°、高为2003米的山坡,一架距地面1000 米的飞机(点C)在山前飞行,此时从飞机看山顶A的俯角为30°.(1) 请在图中画出飞机向山后看的盲区的大小;(2) 求当飞机继续向高处飞多少米时向山后看无盲区?举一反三3. 如图所示,左边的楼高,AB=60m,右边的楼高CD=24m,且BC=30m,地面上的目标P 位于距C点 15m处.(1) 请画出从A 处能看到的地面上距离点 C 最近的点,这个点与点C之间的距离为多少?(2) 从A 处能看见目标P吗? 为什么?题型 4 几何知识型问题【例4】如图所示,已知一纸板ABCD的形状为正方形,其边长为10cm,AD,BC与投影面β平行,AB,CD与投影面β不平行,正方形在投影面β上的正投影为. A₁B₁C₁D₁,若∠ABB₁=45°,求正投影A₁B₁C₁D₁的面积.举一反三4. 如图所示,在Rt△ABC中,∠C=90°,在阳光的垂直照射下,点C 落在斜边AB上的点 D.(1) 试探究线段AC,AB和AD 之间的关系,并说明理由;(2) 线段BC,AB和BD之间也有类似的关系吗?专题二视图【知识聚焦】对同一个物体从不同方向看,可以得到不同的视图,画一个物体的三视图(主视图、俯视图、左视图)是有具体规定的.主视图、俯视图:长对正;主视图、左视图:高平齐;俯视图、左视图:宽相等.可简单记为口诀:主、俯长对正;主、左高平齐;俯、左宽相等.其次是:看得见,画实线;看不见,画虚线.有了三视图,我们既可以由几何体画出其三视图,也可以由物体的三种视图还原几何体的形状,从而求出几何体的表面积和体积.【典例精讲】题型1 物体三视图【例1】如图所示是一个螺母的示意图,它的俯视图是 ( )举一反三1. 如图所示的几何体的俯视图是 ( )题型 2 组合体识别型应用问题【例2】图中的三视图所对应的几何体是( )举一反三2. 如图所示的几何体的三视图是 ( )题型3 截面三视图识别型应用问题【例3】如图所示,一个正方体被截去四个角后得到一个几何体,它的俯视图是 ( )举一反三3. 如图所示是一个正方体截去一角后得到的几何体,它的主视图是( )题型4 三视图与几何体求解型应用问题【例4】如图是某几何体的三视图,则该几何体的体积是( )A.183B.543C.1083D.2163举一反三4. 如图所示是某几何体的三视图,根据图中数据,该几何体的体积为( )A. 60πB. 70πC. 90πD. 160π题型5 组合体计数型应用问题【例5】如图所示是由一些完全相同的小立方块搭成的几何体的三视图,那么搭成这个几何体所用的小立方块的个数是 ( )A. 9个B. 8个C. 7个D. 6个举一反三5. 如图所示是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要个小立方块.题型6 规律探究思想型问题【例6】(1)如图1是用积木摆放的一组图案,观察图案并探索:第五个图案中共有块积木,第n个图案中共有块积木.(2)一样大小的小立方体,如图2所示那样,堆放在房间一角,若按此规律一共垒了十层,这十层中看不见的木块共有多少个?举一反三6. 如图1是棱长为a的小正方体,图2和图3是由这样的小正方体摆放而成的几何体. 按照这样的方法继续摆放,自上而下分别叫第1层、第2层……第n层.(1) 用含n的代数式表示第n层的小正方体的个数;(2) 求第10层小正方体的个数.。

最新北师版九年级初三数学上册第五章投影与视图第一节《投影》》试卷

最新北师版九年级初三数学上册第五章投影与视图第一节《投影》》试卷

北师大版数学九年级上册第五章投影与视图第一节《投影》一、选择题1.下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是()A. B. C. D.2.太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是,则皮球的直径是()A. B. 15 C. 10 D.3.皮皮拿着一块正方形纸板在阳光下做投影实验,正方形纸板在投影面上形成的投影不可能是()A. 正方形B. 长方形C. 线段D. 梯形4.如图,晚上小亮在路灯下经过,在小亮由A处径直走到B处这一过程中,他在地上的影子()A. 逐渐变短B. 先变短后变长C. 逐渐变长D. 先变长后变短5.人往路灯下行走的影子变化情况是()A. 长⇒短⇒长B. 短⇒长⇒短C. 长⇒长⇒短D. 短⇒短⇒长6.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是()A. ①②③④B. ④①③②C. ④②③①D. ④③②①7.在阳光的照射下,一个矩形框的影子的形状不可能是()A. 线段B. 平行四边形C. 等腰梯形D. 矩形8.从早上太阳升起的某一时刻开始到晚上,旭日广场的旗杆在地面上的影子的变化规律是()A. 先变长,后变短B. 先变短,后变长C. 方向改变,长短不变D. 以上都不正确9.两个不同长度的物体在同一时刻同一地点的太阳光下得到的投影是()A. 相等B. 长的较长C. 短的较长D. 不能确定10.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A. 3.2米B. 4.8米C. 5.2米D. 5.6米11.圆形物体在阳光下的投影不可能是()A. 圆形B. 线段C. 矩形D. 椭圆形12.如果阳光斜射在地面上,一张矩形纸片在地面上的影子不可能是()A. 矩形B. 线段C. 平行四边形D. 一个点13.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A. ③①④②B. ③②①④C. ③④①②D. ②④①③14.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A. B. C. D.15.如图所示,平地上一棵树高为6米,两次观察地面上的影子,第一次是当阳光与地面成60°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长()A. B. C. D.二、填空题16.为了测量水塔的高度,我们取一竹竿,放在阳光下,已知2米长的竹竿投影长为1.5米,在同一时刻测得水塔的投影长为30米,则水塔高为________米.17.小亮在上午8时,9时30分,10时,12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为________.18.春天来了天气一天比一天暖和,在同一地点某一物体,今天上午11点的影子比昨天上午11点的影子________.(填“长”或者“短”)19.人无论在太阳光照射下,还是在路灯光照射下都会形成影子,那么影子的长短随时间的变化而变化的是________,影子的长短随人的位置的变化而变化的是________.20.太阳光线下形成的投影是________投影.(平行或中心)三、解答题21.如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6m的小明落在地面上的影长为BC=2.4m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG;(2)若小明测得此刻旗杆落在地面的影长EG=16m,请求出旗杆DE的高度.22.如图,分别是两根木杆及其影子的图形.(1)哪个图形反应了阳光下的情形?哪个图反映了路灯下的情形?(2)请你画出图中表示小树影长的线段.23.某一广告墙PQ旁有两根直立的木杆AB和CD ,某一时刻在太阳光下,木杆CD的影子刚好不落在广告墙PQ上,(1)你在图中画出此时的太阳光线CE及木杆AB的影子BF;(2)若AB=6米,CD=3米,CD到PQ的距离DQ的长为4米,求此时木杆AB的影长.答案解析部分一、选择题1.【答案】A【考点】平行投影【解析】【解答】A、影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;B、影子的方向不相同,故本选项错误;C、影子的方向不相同,故本选项错误;D、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误.故选A.【分析】平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.2.【答案】B【考点】平行投影【解析】解答:由题意得:DC=2R ,DE= ,∠CED=60°,∴可得:DC=DEsin60°=15.故选B.分析:根据题意建立直角三角形DCE ,然后根据∠CED=60°,DE=可求出答案.3.【答案】D【考点】平行投影【解析】【解答】在同一时刻,平行物体的投影仍旧平行.所以正方形纸板在投影面上形成的投影不可能是梯形.故选:D.【分析】利用平行投影的特点:在同一时刻,平行物体的投影仍旧平行判定即可.4.【答案】B【考点】中心投影【解析】【解答】在小亮由A处径直走到路灯下时,他在地上的影子逐渐变短,当他从路灯下走到B处时,他在地上的影子逐渐变长.故选B.【分析】根据中心投影的特征可得小亮在地上的影子先变短后变长.5.【答案】A【考点】中心投影【解析】【解答】因为人往路灯下行走的这一过程中离光源是由远到近再到远的过程,所以他在地上的影子先变短后变长.故选A.【分析】由题意易得,离光源是由远到近再到远的过程,根据中心投影的特点,即可得到身影的变化特点.6.【答案】B【考点】平行投影【解析】【解答】根据题意,太阳是从东方升起,故影子指向的方向为西方.然后依次为西北﹣北﹣东北﹣东,故分析可得:先后顺序为④①③②.故选B.【分析】北半球而言,从早晨到傍晚影子的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.7.【答案】C【考点】平行投影【解析】【解答】矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故C不可能,即不会是等腰梯形.故选:C.【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.8.【答案】B【考点】平行投影【解析】【解答】旭日广场的旗杆在地面上的影子的变化规律是先变短,后变长.故选B.【分析】根据太阳的运动规律和平行投影的特点和规律可知.9.【答案】D【考点】平行投影【解析】【解答】由于不知道两个物体的摆放情况,无法比较两物体.故选D.【分析】因不知道物体与地面的角度关系如何,即不知道与光线的角度大小,故无法比较其投影的长短.10.【答案】B【考点】平行投影【解析】解答:设旗杆的高为x,有,可得x=4.8米.故选:B.分析:由成比例关系,列出关系式,代入数据即可求出结果.11.【答案】C【考点】平行投影【解析】【解答】∵同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变.∴圆形物体在阳光下的投影可能是圆形、线段和椭圆形,但不可能是矩形,故选C.【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.12.【答案】D【考点】平行投影【解析】【解答】阳光斜射在地面上,当矩形纸片与太阳光垂直时,矩形纸片在地面上的影子为矩形;当矩形纸片与太阳光斜交时,矩形纸片在地面上的影子为平行四边形;当矩形纸片与太阳光平行时,矩形纸片在地面上的影子为线段.故选D.【分析】在太阳光下的投影为平行投影,平行投影不可能把矩形投影为一个点.13.【答案】C【考点】平行投影【解析】【解答】西为③,西北为④,东北为①,东为②,∴将它们按时间先后顺序排列为③④①②.故选:C.【分析】根据从早晨到傍晚物体影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.14.【答案】D【考点】平行投影【解析】【解答】依题意,光线是垂直照下的,故只有D符合.故选D.【分析】根据题意:水杯的杯口与投影面平行,即与光线垂直;则它的正投影图是应是D.15.【答案】B【考点】平行投影【解析】解答:第一次观察到的影子长为6×cot60°= (米);第二次观察到的影子长为6×cot30°= (米).两次观察到的影子长的差= = (米).故选B.分析:利用所给角的正切值分别求出两次影子的长,然后作差即可.二、填空题16.【答案】40【考点】平行投影【解析】【解答】∵,∴(m).故答案为:40米.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.17.【答案】上午8时【考点】平行投影【解析】【解答】根据地理知识,北半球不同时刻太阳高度角不同影长也不同,规律是由长变短,再变长.故答案为:上午8时.【分析】根据北半球不同时刻物体在太阳光下的影长是由长变短,再变长.故在上午影子最长的时刻为即最早的时刻:上午8时.18.【答案】短【考点】平行投影【解析】【解答】∵春天来了天气一天比一天暖和,∴太阳开始逐渐会接近直射,∴在同一地点某一物体,今天上午11点的影子比昨天上午11点的影子短.故答案为:短.【分析】根据太阳照射的角度从春天开始会逐渐开始直射,则影子会不断变短.19.【答案】太阳光下形成的影子;灯光下形成的影子【考点】平行投影,中心投影【解析】【解答】根据太阳光照射角度随时间的变化而变化,得出影子的长短随时间的变化而变化,人从路灯下走过的过程中,人与灯间位置变化,光线与地面的夹角发生变化,从而导致影子的长度发生变化.故答案为:太阳光下形成的影子;灯光下形成的影子.【分析】根据平行投影和中兴投影的性质分别分析得出答案即可.20.【答案】平行【考点】平行投影【解析】【解答】太阳光线下形成的投影是平行投影.故答案为:平行.【分析】太阳光可认为是平行光线;故太阳光线下形成的投影是平行投影.三、解答题21.【答案】(1)解答:影子EG如图所示;;(2)解答:∵DG∥AC ,∴∠G=∠C ,∴Rt△ABC∽Rt△DGE ,∴,即,解得,∴旗杆的高度为.【考点】相似三角形的应用,平行投影【解析】【分析】连结AC ,过D点作DG∥AC交BC于G点,则GE为所求;先证明Rt△ABC∽△RtDGE ,然后利用相似比计算DE的长.22.【答案】(1)解答:上图为路灯下的情形,下图为太阳光下的情形;;(2)如图所示:【考点】平行投影,中心投影【解析】【分析】利用物体和影子关系得出光线方向,进而判断得出;利用上图两根木杆及其影子位置得出路灯的位置,进而得出小树的影子,利用下图两根木杆及其影子位置得出太阳光线方向,进而得出小树的影子.23.【答案】(1)解答:如图所示:;(2)设木杆AB的影长BF为x米,由题意,得,解得.答:木杆AB的影长是米.【考点】相似三角形的应用,平行投影【解析】【分析】根据木杆CD的影子刚好不落在广告墙上可以画出此时的太阳光线CE,根据太阳光线是平行的,可以画出木杆AB的影子BF;根据在同一时刻,物高与影子成比例进行求解.。

完整新北师大版九年级上学期视图与投影练习题

完整新北师大版九年级上学期视图与投影练习题

新北师大版九年级上册投影与视图单元测试(二)一、填空题(30分) 1、甲、乙两人在太阳光下行走,同一时刻他们的身高与其影长的关系是、身高相同的甲、乙两人分别距同一路灯32米,路灯亮时,甲的影子比乙的影子米、2 (填“长”或“短”),,小刚比小明矮5cm3、小刚和小明在太阳光下行走,小刚身高1.75米,他的影长为2.0m 此刻小明的影长是________m。

,小明站在A处测得他的影长与身4、墙壁D处有一盏灯(如图)到B处发现影子刚好落在,小明向墙壁走长相等都为1.6m1m =_______。

A点,则灯泡与地面的距离CD的正方体堆放而成,则这个5、下图的几何体由若干个棱长为数1 __________。

几何体的体积为.南平)如图是某个几何体的展开图,这个几何体是 6、(06左视图主视图俯视图则搭成这个几何体的小正方如图,是由几个相同的小正方体搭成的几何体的三种视图,7、体的个数是BA 如图,身高为1.6m的某学生想测量一棵大树的高度,她沿着树影8、(05南京) 点时,她的影子顶端正好与树的影子顶端重合,测得A走去,当走到C由B到BC=3.2m ,CA=0.8m, 则树的高度为:00出去,测量了自己的影长,出去一段时间后回来时,9、春分时日,小明上午9 发现这时的影长和上午出去时的影长一样长,则小明出去的时间大约为小时。

10,0)-轴上的点A(米的小强面向y轴站在x10、直角坐标系内,身高为1.53,则站立的小强观察y(y>0)已知墙高2米轴时,,处,他的前方5米处有一堵墙421盲区(视力达不到的地方)范围是21二、选择题:(30分)11、(06金华)下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是( )A. B. C. D.12、在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A 小明的影子比小强的影子长B 小明的影长比小强的影子短C 小明的影子和小强的影子一样长D 无法判断谁的影子长13下图中几何体的主视图是().(A) (B) (C) (D))( 14、对左下方的几何体变换位置或视角,则可以得到的几何体是)非选择题,共98分第Ⅱ卷(、若干桶方便面摆放在桌子上,实物图片左边所给的是它15的三视图,则这一堆方便面共有() 12桶(桶D)(桶(A)5 (B) 6桶C)9上面嵌有一根黑色的金属丝,16、一个全透明的玻璃正方体,)如图,金属丝在俯视图中的形状是(A DC B 题第1617.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为()412A CBD18、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数()A 5个B 6个 C 7个 D 8个左视图主(正)视图俯视图19、(06广东)水平放置的正方体的六面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是 ( )A.O B. 6 C.快 D.乐20、(06常州)图1表示正六棱柱形状的高大建筑物,图2中的阴影部分表示该建筑物的俯视图,P、Q、M、N表示小明在N地面上的活动区域,小明想同时看到该建筑物的三个侧面,他PM区域 C M区域 B Q区域区域 D NA P应在()分)三、解答题(60Q21米,一座高米长的木杆影长分21、(6)中午,一根1.51.02图1图米远的商业楼上?傍晚,18米的住宅楼的影子是否会落在相距题13第米,这时住宅楼的影子是否会落在商业楼上?为什么?2.0该木杆的影子长为22、(12分)画出下列几何体的三视图:6分)将下列所示的几何体进行两种不同的分类,并说明理由。

九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)

九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)

九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)(满分120 分)一、选择题(每题3分,共30 分)1. 如图放置的圆柱体的左视图为()2.小明从路灯底部走开时,他的影子()A.逐渐变长B. 逐渐变短C.不变D.无法确定3.下面所给几何体的俯视图是()4.小红拿着一块正方形纸板站在阳光下,则正方形纸板的影子不可能是()A.正方形B. 平行四边形C. 圆形D.线段5.如图所示的物体由两个紧靠在一起的圆柱体组成,它的主视图是()6.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大小的变化情况是()A. 越来越小B. 越来越大C. 大小不变D.不能确定7.下列投影一定不会改变△ABC 的形状和大小的是()A.中心投影B.平行投影C.当△ABC 平行于投影面时的正投影D.当△ABC 平行于投影面时的平行投影8.如图是一个几何体的三视图,则该几何体的展开图可以是()9.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()10.如图是某工件的三视图,则此工件的体积为()A.144π c m3B. 12π c m3C. 36π c m3D.24π c m3二、填空题(每题4 分,共28分)11.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是____________.12.小军晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说:"广场上的大灯泡一定位于两人__________________________.13.如图,三角尺与其在灯光照射下的投影组成位似图形,它们的相似比为2 :5,且三角尺的一边长为8 c m,则这条边在投影中的对应边长为____________________.14. 太阳光线形成的投影称为____________________像手电筒、路灯、台灯的光线形成的投影称为_______________________.15.长方体的主视图、俯视图如图所示,则其左视图面积为____________________.16.一个几何体的三视图如图所示,其中主视图、左视图都是腰长为4,底边为2的等腰三角形,则这个几何体的体积为_________________.17.如图,在A 时测得旗杆CD的影长DE是4 m,B时测得的影长DF是8 m,两次的日照光线恰好垂直,则旗杆的高度为______________.三、解答题(一)(每题 6 分,共18 分)18. 画出如图所示几何体的三视图.19.如图,水平放置长方体底面是长为4和宽为2的矩形,它的主视图的面积为12.(1)求长方体的体积;(2)画出长方体的左视图.(用1c m代表1个单位长度)20.如图,小明利用所学的数学知识测量旗杆AB 的高度.(1)请你根据小明在阳光下的投影,画出旗杆AB 在阳光下的投影;(2)已知小明的身高为1.6 m,在同一时刻测得小明和旗杆AB 的投影长分别为0.8 m和6 m,求旗杆AB 的高.四、解答题(二)(每题8分,共24 分)21.一个几何体的三视图如图所示,(1)这个几何体名称是___________;(2)求该几何体的全面积.22.小明把镜子放在离树(AB)8 米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,CD=1.6 米,请你计算树(AB)的高度.23.如图所示为一几何体的三视图.(1)写出这个几何体的名称;(2)若三视图中的长方形的长为10 c m,正三角形的边长为4 c m,求这个几何体的侧面积.五、解答题(三)(每题10 分,共20 分)24. 5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是________(立方单位),表面积是______________(平方单位);(2)画出该几何体的主视图和左视图.25.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图;(2)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.参考答案一、1.A 2.A 3.B 4.C 5.A 6.A 7.C 8.A 9.C 10.B 二、11.3 12.之间 13.20c m 14.平行投影 中心投影 15. 3 16.15317.42m 三、18.解:三视图如下图所示:19.解:(1 )12 x 2 =2420.解:(1)如图所示:(2)如图,∵ DE 、AB 都垂直于地面,且光线DF //AC , ∴∠DEF=∠ABC , ∠DFE=∠ACB , ∴ Rt △DEF~Rt △ABC=,=1.60.86DE EF AB BC AB 即 ∴AB=12(m )答:旗杆AB 的高为12 m .四、21.解:(1)圆柱 (2)S 底圆=π·12=π S 侧=2π· 1·3=6π ∴S 全=2π+6π=8π(c m 2)22.解:由题意得∠B=∠D =90° 又由光的反射原理可知∠AEB =∠CED ∴△ABE~△CDE)81.6=2.41,(6=3A B AB B E AB CD DE 即∴米23.解:(1)三棱柱(2)侧面积为:3 x 4 x 10= 120(c m 2) 五、24.解:(1)5 22(2)如图所示:25.解:(1)这个几何体的主视图和左视图如图所示:(2)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:。

北师大版九年级数学上册 第5章 投影与视图单元练习(含答案)

北师大版九年级数学上册 第5章 投影与视图单元练习(含答案)

第5章投影与视图一.选择题1.下列所述几何体中,主视图、左视图和俯视图都是正方形的几何体是()A.圆柱B.圆锥C.正方体D.长方体2.如图是某几何体放置在水平面上,则其主视图正确的是()A.B.C.D.3.如图所示的几何体是由一个正方体切去一个小正方形成的,从左面看到的平面图形为()A.B.C.D.4.图2是图1中长方体的三视图,用S表示面积,S主=x2+3x,S左=x2+x,则S俯=()A.x2+3x+2B.x2+2x+1C.x2+4x+3D.2x2+4x5.如图是一个三视图,则此三视图所对应的直观图是()A.B.C.D.6.如图,下列关于物体的主视图画法正确的是()A.B.C.D.7.当某一几何体在投影面P前的摆放位置确定以后,改变它与投影面P的距离,其正投影的形状()A.不发生变化B.变大C.变小D.无法确定8.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.9.如图是滨河公园中的两个物体,一天中四个不同时刻在太阳光的照射下落在地面上的影子,按照时间的先后顺序排列正确的是()A.(3)(4)(1)(2)B.(4)(3)(1)(2)C.(4)(3)(2)(1)D.(2)(4)(3)(1)10.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③二.填空题11.一个几何体由若干大小相同的小立方块搭成的,如图分别是从它的左面,上面看到的平面图形,则组成这个几何体的小立方块最多有个.12.如图,是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请画出其主视图:.13.在测量旗杆高度的活动课中,某小组学生于同一时刻在阳光下对一根直立于平地的竹竿及其影长和旗杆的影长进行了测量,得到的数据如图所示,根据这些数据计算出旗杆的高度为m.三.解答题14.小红想利用阳光下的影长测量学校旗杆AB的高度.如图,他在某一时刻在地面上竖直立一个2米长的标杆CD,测得其影长DE=0.4米.(1)请在图中画出此时旗杆AB在阳光下的投影BF.(2)如果BF=1.6,求旗杆AB的高.15.小明和小红并排站立在阳光下,小明身高1.75米,他的影长2.0米,小红比小明矮7厘米,此时小红的影长是多少米?16.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC 所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.17.如图,王琳同学在晚上由路灯A走向路灯B,当他行到P处时发现,他在路灯B下的影长为2米,且恰好位于路灯A的正下方,接着他又走了6.5米到Q处,此时他在路灯A下的影子恰好位于路灯B的正下方(已知王琳身高1.8米,路灯B高9米)(1)标出王琳站在P处在路灯B下的影子;(2)计算王琳站在Q处在路灯A下的影长;(3)计算路灯A的高度.18.如图,在地面上竖直安装着AB、CD、EF三根立柱,在同一时刻同一光源下立柱AB、CD形成的影子为BG与DH.(1)填空:判断此光源下形成的投影是:投影.(2)作出立柱EF在此光源下所形成的影子.19.在同车道行驶的机动车,后车应当与前车保持足以采取紧急制动措施的安全距离,如图,在一个路口,一辆长为10m的大巴车遇红灯后停在距交通信号灯20m的停止线处,小张驾驶一辆小轿车跟随大巴车行驶.设小张距大巴车尾xm,若大巴车车顶高于小张的水平视线0.8m,红灯下沿高于小张的水平视线3.2m,若小张能看到整个红灯,求出x的最小值.20.小明开着汽车在平坦的公路上行驶,前放出现两座建筑物A、B(如图),在(1)处小颖能看到B建筑物的一部分,(如图),此时,小明的视角为30°,已知A建筑物高25米.(1)请问汽车行驶到什么位置时,小明刚好看不到建筑物B?请在图中标出这点.(2)若小明刚好看不到B建筑物时,他的视线与公路的夹角为45°,请问他向前行驶了多少米?(精确到0.1)参考答案一.选择题1.C.2.A.3.D.4.C.5.B.6.C.7.A.8.C.9.C.10.C.二.填空题11.5.12.13.12.三.解答题14.解:(1)连结CE,过A点作AF∥CE交BD于F,则BF为所求,如图;(2)∵AF∥CE,∴∠AFB=∠CED,而∠ABF=∠CDE=90°,∴△ABF∽△CDE,∴=,即=,∴AB=8(m).答:旗杆AB的高为8m.15.解:设小红的影长是x米,根据题意得=,解得x=1.92.答:小红的影长是1.92米.16.(1)解:如图,点O为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.(2)解:由已知可得,=,∴=,∴OD=4m.∴灯泡的高为4m.17.解:(1)线段CP为王琳在路灯B下的影长;(2)由题意得Rt△CEP∽Rt△CBD,∴,∴,解得:QD=1.5米;(3)∵Rt△DFQ∽Rt△DAC,∴,∴,解得:AC=12米.答:路灯A的高度为12米.18.解:(1)如图所示:此光源下形成的投影是:中心投影,故答案为:中心;(2)如图所示,线段FI为立柱EF在此光源下所形成的影子.19.解:如图,由题可得CD∥AB,∴△OCD∽△OAB,∴=,即=,解得x=10,∴x的最小值为10.20.解:(1)如图所示:汽车行驶到E点位置时,小明刚好看不到建筑物B;(2)∵小明的视角为30°,A建筑物高25米,∴AC=25,tan30°==,∴AM=25,∵∠AEC=45°,∴AE=AC=25m,∴ME=AM﹣AE=43.3﹣25=18.3m.则他向前行驶了18.3米.。

北师大版九年级数学上册第四章 视图与投影单元测试题【精 3套】

北师大版九年级数学上册第四章 视图与投影单元测试题【精 3套】

九年级上册第四章 视图与投影 测试题一、填空题:1.在平行投影中,两人的高度和他们的影子 ;2.小华晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定的说:“广场上的大灯泡一定位于两人 ”;3.圆柱的左视图是 ,俯视图是 ; 4.一个四棱锥的俯视图是 ;5.如图,一几何体的三视图如右:那么这个几何体是 。

二、选择题:1、两个物体的主视图都是圆,则这两个物体可能是( )A 、圆柱体、圆锥体B 、圆柱体、正方体C 、圆柱体、球D 、圆锥体、球 2、平行投影中的光线是( )A 、平行的B 、聚成一点的C 、不平行的D 、向四面八方发散的 3、在同一时刻,两根长度不等的竿子置于阳光之下,但它们的影长相等,那么这根竿子的相对位置是( )A 、两根都垂直于地面B 、两根平行斜插在地上C 、两根竿子不平行D 、一根倒在地上4、两个不同长度的的物体在同一时刻同一地点的太阳光下得到的投影是( ) A 、相等 B 、长的较长 C 、短的较长 D 、不能确定5、下列命题正确的是 ( ) A 、三视图是中心投影 B 、小华观察牡丹花,牡丹花就是视点 C 、球的三视图均是半径相等的圆D 、阳光从矩形窗子里照射到地面上得到的光区仍是矩形 6、同一灯光下两个物体的影子可以是( )A 、同一方向B 、不同方向C 、相反方向D 、以上都是可能 7、棱长是1㎝的小立方体组成如图所示的几何体,那么这个几何体的表面积是( )A 、362cm B 、332cm C 、302cm D 、272cm8、一个人离开灯光的过程中人的影长()A、不变B、变短C、变长D、不确定9、人离窗子越远,向外眺望时此人的盲区是( )A、变小B、变大C、不变D、以上都有可能10、圆形的物体在太阳光的投影下是()A、圆形B、椭圆形C、以上都有可能D、以上都不可能11、小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子()A、相交 B. 平行 C. 垂直 D. 无法确定12、一个几何体的三种视图如下图所示,则这个几何体是()A、圆柱B、圆锥C、长方体D、正方体13、下列图中是太阳光下形成的影子是()A、B、C、D、14、有一实物如图,那么它的主视图()A B C D15、当你乘车沿一条平坦的大道向前行驶时,你会发现,前方那些高一些的建筑物好像“沉”到了位于它们前面那些矮一些的建筑物后面去了。

新北师大版九年级数学上册:第五章 投影与视图同步练习(超详细,经典,含答案)

新北师大版九年级数学上册:第五章 投影与视图同步练习(超详细,经典,含答案)

第五章投影与视图1投影第1课时投影、中心投影01基础题知识点1投影、中心投影的概念1.下列现象不属于投影的是(D)A.皮影B.树影C.手影D.素描画2.下列各种现象属于中心投影现象的是(B)A.上午人走在路上的影子B.晚上人走在路灯下的影子C.中午用来乘凉的树影D.早上升旗时地面上旗杆的影子知识点2影子或光源的确定3.下列四幅图中,灯光与影子的位置合理的是(B)4.(教材P144复习题T1变式)如图是小明与爸爸(线段AB)、爷爷(线段CD)在同一路灯下的情景,其中,粗线分别表示三人的影子.(1)画出图中灯泡所在的位置;(2)在图中画出小明的身高.解:(1)如图所示:O即为灯泡的位置.(2)如图所示:EF即为小明的身高.知识点3中心投影条件下物体与其投影之间的转化5.(教材P145复习题T3变式)如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把球向下移时,圆形阴影的大小变化情况是(A)A.越来越小B.越来越大C.大小不变D.不能确定02中档题6.小红和小花在路灯下的影子一样长,则她们的身高关系是(D)A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定7.如图,位似图形由三角尺与其灯光照射下的中心投影组成,位似比为2∶5,且三角尺的一边长为8 cm,则投影三角形的对应边长为(B)A .8 cmB .20 cmC .3.2 cmD .10 cm8.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B 处,将她在灯光照射下的影长l 与行走的路程s 之间的变化关系用图象刻画出来,大致图象是(C)9.如图,路灯(P 点)距地面8米,身高1.6米的小明从距路灯的底部(O 点)20米的A 点沿AO 所在的直线行走14米到B 点时,身影的长度是变长了还是变短了?变长或变短了多少米?解:∵∠MAC =∠MOP =90°,∠AMC =∠OMP , ∴△MAC ∽△MOP. ∴MA MO =AC OP , 即MA 20+MA =1.68. ∴MA =5米.同理△NBD ∽△NOP ,可求得NB =1.5 米. 则MA -NB =5-1.5=3.5(米). ∴小明的身影变短了,短了3.5米.第2课时 平行投影01 基础题 知识点1 平行投影1.下列各组投影是平行投影的是(A)2.李刚同学拿一个矩形木框在阳光下摆弄,矩形木框在地面上形成的投影不可能是(D)3.学校里旗杆的影子整个白天的变化情况是(B)A .不变B .先变短后变长C .一直在变短D .一直在变长 4.【动手操作】如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6 m 的小明(AB)落在地面上的影长为BC =2.4 m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG ;(2)若小明测得此刻旗杆落在地面的影长EG =16 m ,请求出旗杆DE 的高度.解:(1)影子EG 如图所示. (2)∵DG ∥AC , ∴∠ACB =∠DGE.又∵∠ABC =∠DEG =90°, ∴Rt △ABC ∽△Rt △DEG. ∴AB DE =BC EG ,即1.6DE =2.416. 解得DE =323.∴旗杆DE 的高度为323m.知识点2 正投影5.如图所示,水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影是(D)6.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小相同(填“相同”“不一定相同”或“不相同”). 02 中档题7.下列说法错误的是(B)A .太阳的光线所形成的投影是平行投影B .在一天的不同时刻,同一棵树所形成的影子的长度不可能一样C .在一天中,不论太阳怎样变化,两棵相邻的树的影子都是平行的或在一条直线上D .影子的长短不仅和太阳的位置有关,还和事物本身的长度有关8.【易错】太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是(A)A .与窗户全等的矩形B .平行四边形C .比窗户略小的矩形D .比窗户略大的矩形9.(教材P132习题T1变式)一天下午小红先参加了校运动会女子100 m 比赛,过一段时间又参加了女子400 m 比赛,如图是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是(A)A .乙照片是参加100 m 的B .甲照片是参加100 m 的C .乙照片是参加400 m 的D .无法判断甲、乙两张照片10.(百色中考)如图,长方体的一个底面ABCD 在投影面P 上,M ,N 分别是侧棱BF ,CG 的中点,矩形EFGH 与矩形EMNH 的投影都是矩形ABCD ,设它们的面积分别是S 1,S 2,S ,则S 1,S 2,S 的关系是S 1=S <S 2.(用“=”“>”或“<”连起来)11.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1 m 的竹竿的影长为0.4 m ,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2 m ,一级台阶高为0.3 m ,如图所示.若此时落在地面上的影长为4.4 m ,求树的高度.解:设树高为h m ,由题意,得 4.4+0.2h -0.3=0.41, 则0.4(h -0.3)=4.6, 解得h =11.8.答:树的高度为11.8 m.2 视图第1课时 简单几何体的三视图01 基础题知识点1 圆柱、圆锥、球的三视图1.(桂林中考)如图所示的几何体的主视图是(C)2.下列几何体中,其左视图为三角形的是(D)3.下列立体图形中,俯视图不是圆的是(B)4.如图是一个圆台,它的主视图是(B)5.(泰州中考)下列几何体中,主视图与俯视图不相同的是(B)6.(安徽中考)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是(D)7.(营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成的,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是(A)8.将图中的实物与它的主视图用线连接起来.9.一个圆锥和一个圆柱如图放置,说出下面①②两组视图分别是什么视图.解:①是俯视图;②是主视图.知识点2画简单几何体的三视图10.(教材P137习题T1变式)画出图中所示物体的主视图、左视图和俯视图.解:如图所示:易错点判断圆锥的俯视图时忽视中心点11.如图所示的几何体的俯视图是(D)02中档题12.(安徽中考)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为(B)13.将如图所示的Rt△ABC绕直角边AC所在直线旋转一周,所得几何体的主视图是(A)14.沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是(D)15.如图,茶杯的左视图是(C)16.(菏泽中考)如图是两个等直径圆柱构成的“T”形管道,其左视图是(B)17.(益阳中考)如图,空心卷筒纸的高度为12 cm ,外径(直径)为10 cm ,内径为4 cm ,在比例尺为1∶4的三视图中,其主视图的面积是(D)A.21π4 cm 2 B.21π16cm 2 C .30 cm 2 D .7.5 cm 218.(泰州中考)如图所示的几何体,它的左视图与俯视图都正确的是(D)03 综合题19.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你画出这个几何体的三视图.解:如图所示:第2课时直棱柱的三视图01基础题知识点1直棱柱的三视图1.(娄底中考)如图,正三棱柱的主视图为(B)2.(丽水中考)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是(B)A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同3.(泰安中考)下面四个几何体:其中,俯视图是四边形的几何体有(B)A.1个B.2个C.3个D.4个4.(德州中考)图甲是某零件的直观图,则它的主视图为(箭头方向为主视方向)(A)5.一个几何体如图所示,则该几何体的三视图正确的是(D)6.请将六棱柱的三视图名称填在相应的横线上.(1)俯视图;(2)主视图;(3)左视图.知识点2直棱柱的三视图的画法7.画出如图所示几何体的三视图.解:如图:易错点判断视图时忽视被遮挡部分的轮廓线8.(潍坊中考)如图所示的几何体的左视图是(C)02中档题9.(陕西中考)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是(B)10.(沈阳和平区期末)从一个边长为3 cm的大立方体中挖去一个边长为1 cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是(C)11.(太原期末)一个圆柱体钢块,从正中间挖去一个长方体得到的零件毛坯的俯视图如图,其主视图是(A)12.(济宁中考)三棱柱的三视图如图所示,△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为6cm.13.下面几何体的三种视图有无错误?如果有,请改正.解:主视图有错误,左视图无错误,俯视图有错误,正确画法如图所示.14.两个四棱柱的底面均为等腰梯形,它们的俯视图分别如图所示,画出它们的主视图和左视图.(1) (2)解:如图所示:03 综合题 15.如图1是由两个长方体所组成的立体图形,图2中的长方体是图1中的两个长方体的另一种摆放形式,图①②③是从不同的方向看图1所得的平面图形.(1)填空:图①是主视图得到的平面图形,图②是俯视图得到的平面图形,图③是左视图得到的平面图形; (2)请根据各图中所给的信息(单位:cm),计算出图1中上面的小长方体的体积.解:由图可得⎩⎪⎨⎪⎧x =y +2,x +y =12.解得⎩⎪⎨⎪⎧x =7,y =5. 小长方体的体积为5×3×2=30(cm 3).所以图1中上面的小长方体的体积为30 cm 3.第3课时由视图描述几何体01基础题知识点1由三视图还原几何体1.(云南中考)如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是(D)A.三棱柱B.三棱锥C.圆柱D.圆锥2.(泰安中考)如图是下列哪个几何体的主视图与俯视图(C)3.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是(C)A.圆柱B.圆锥C.球D.正方体4.(襄阳中考)一个几何体的三视图如图所示,则这个几何体是(C)知识点2由几何体的三视图求其面积或体积5.(临沂中考)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是(C)A.12 cm2B.(12+π)cm2C.6π cm2D.8π cm26.(通辽中考)如图,一个几何体的主视图和左视图都是边长为6的等边三角形,俯视图是直径为6的圆,则此几何体的全面积是(C)A.18π B.24πC.27π D.42π7.如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是24cm3.8.如图是一个几何体的主视图、左视图和俯视图.(1)写出这个几何体的名称;(2)若已知主视图的高为10 cm,俯视图的三边长都为4 cm,求这个几何体的侧面积.解:(1)三棱柱.(2)这个几何体的侧面积为10×4×3=120(cm2).02中档题9.(河北中考)图中三视图对应的几何体是(C)10.(广元中考)如图是由几个相同小正方体组成的立体的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是(B)11.(巴彦淖尔中考)如图是一个几何体的三视图,则这个几何体的表面积是(A)A.60π+48 B.68π+48C.48π+48 D.36π+4812.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为(B)A.60π B.70π C.90π D.160π13.由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中画出一种该几何体的主视图,且使该主视图是轴对称图形.解:如图所示.(答案不唯一)14.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.解:该几何体的形状是直四棱柱.由三视图知,棱柱底面菱形的对角线长分别为4 cm ,3 cm.∴菱形的边长为(42)2+(32)2=52(cm).∴棱柱的侧面积为52×8×4=80(cm 2).由三视图判断小立方体的个数【方法指导】 在三视图中,通过主视图、俯视图可以确定组合图形的列数,通过俯视图、左视图可以确定组合图形的行数,通过主视图、左视图可以确定行与列中的最高层数,从而确定小正方体的个数. 类型1 个数确定1.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块的个数是(B)A .7B .8C .9D .102.一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是4.类型2 个数不确定3.如图是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则这个几何体最多由9个小正方体组成,最少由7个小正方体组成.回顾与思考(五)投影与视图01分点突破知识点1中心投影与平行投影1.下列结论正确的有(B)①同一时刻,同一公园内的物体在阳光照射下,影子的方向是相同的;②物体在任何光线照射下影子的方向都是相同的;③物体在路灯照射下,影子的方向与路灯的位置有关;④物体在点光源照射下,影子的长短仅与物体的长短有关.A.1个B.2个C.3个D.4个2.把一个正五棱柱如图摆放,当投射线由正前方射到后方时,它的正投影是(B)3.(贺州中考)小明拿一个等边三角形木框在阳光下玩耍,发现等边三角形木框在地面上形成的投影不可能是(B) 4.如图,两幅图片中竹竿的影子是在太阳光下形成的,还是在灯光下形成的?请你画出两图中小树的影子.解:如图所示.知识点2由几何体判断三视图5.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是(C)6.(赤峰中考)如图是一个空心圆柱体,其俯视图是(D)7.(柳州中考)如图,这是一个机械模具,则它的主视图是(C)知识点3由三视图还原几何体8.(贵阳中考)如图是一个几何体的主视图和俯视图,则这个几何体是(A)A.三棱柱B.正方体C.三棱锥D.长方体9.一个长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是6__cm2.02易错题集训10.一元硬币放在太阳光下,它在平整的地面上的投影不可能是(D)A.线段B.圆C.椭圆D.正方形11.如图所示几何体的左视图是(C)03中考题型演练12.(大连中考)一个几何体的三视图如图所示,则这个几何体是(C)A.圆柱B.圆锥C.三棱柱D.长方体13.(娄底中考)如图的几何体中,主视图是中心对称图形的是(C)14.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是(B)15.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是(C)16.图中三视图对应的几何体是(C)17.一个几何体的三视图如图所示,则该几何体的表面积为(D)A.4π B.3πC.2π+4 D.3π+48.。

北师大版九年级数学上册第五章《投影与视图》投影同步练习及答案

北师大版九年级数学上册第五章《投影与视图》投影同步练习及答案

5.1投影同步练习(典型题)第1课时投影的概念与中心投影1.了解投影和中心投影的含义,体会灯光下物体的影子在生活中的应用;(重点)2.通过观察、想象,能根据灯光来辨别物体的影子,初步进行中心投影条件下物体与其投影之间的相互转化.(难点)一、情景导入皮影戏是用兽皮或纸板做成的人物剪影来表演故事的戏曲,表演时,用灯光把剪影照射在银幕上,艺人在幕后一边操纵剪影,一边演唱,并配以音乐.学生在灯光下做不同的手势,观察映射到屏幕上的表象.二、合作探究探究点一:中心投影的概念下列投影中,不属于中心投影的是()A.晚上路灯下小孩的影子B.汽车灯光照射下行人的影子C.阳光下沙滩上人的影子D.舞台上一束灯光下演员的影子解析:A中晚上路灯的光线是从一个点发出的,故晚上路灯下小孩的影子是中心投影;B中汽车灯的光线也是从一点发出的,故在汽车照射下行人的影子是中心投影;C中阳光的光线是互相平行的,不是从一个点发出的,故不是中心投影;D中舞台上的一束灯光也是从一个点发出的,灯光下演员的影子是中心投影.故选C.方法总结:形成中心投影的光线是从一点发出的,各光线相交于一点(即光源处).探究点二:中心投影的性质【类型一】中心投影的作图一天晚上,小丽在路灯下玩,如图所示.你能画出小丽在路灯下的影子吗?(用线段表示)解:光是沿直线传播的,以光源S为端点过点C作射线,交地面于点A,则线段AB即可看作是小丽的影子.如图所示.方法总结:作一物体在路灯下的影子时,连接点光源和物体的顶端的点并延长,与地面相交,则与地面的交点和物体的底端之间的线段即为该物体的影子.如图所示,由两根直立的木杆在一路灯下的影子判断路灯灯泡的位置.解:如图所示,两条光线的交点O即为灯泡所在的位置.方法总结:相交光线的交点即为点光源所在的位置.点光源下两个物体的影子可能在同一个方向,也可能不在同一个方向.【类型二】中心投影的变化规律如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长解析:在路灯下,路灯照人所形成的投影是中心投影.人的影子可以通过路灯和人的头顶作直线,该直线和地面的交点到人的距离即为他的影子的长度.因此人离路灯越远,他的影子就越长.由A到B这一过程中,人在地上的影子先逐渐变短,当他走到路灯正下方时,影子为一点,然后又逐渐变长.故选B.方法总结:在灯光下,垂直于地面的物体离点光源距离近时影子短,离点光源远时影子长.【类型三】中心投影的有关计算如图所示,晚上,小明由路灯AD走向路灯BC,当他行至点P处时,发现他在路灯BC下的影长为2m,且影子的顶端恰好在A点,接着他又走了6.5m至点Q处,此时他在路灯AD下的影子的顶端恰好在B点(已知小明的身高为1.8m,路灯BC的高度为9m).(1)计算小明站在点Q处时在路灯AD下影子的长度;(2)计算路灯AD的高度.解析:由路灯、小明都垂直于地面,知AD∥PE∥QH∥BC,用相似三角形中的比例线段可求解.解:(1)如图所示,∵EP⊥AB,CB⊥AB,∴EP∥BC,∴∠AEP=∠ACB,∠APE=∠ABC,∴△AEP∽△ACB.∴PECB=APAB,即1.89=2AB,解得AB=10(m).∴QB=AB-AP-PQ=10-2-6.5=1.5(m),即小明站在点Q时在路灯AD下影子的长度为1.5m;(2)同理可证△HQB∽△DAB,∴HQDA=QBAB,即1.8AD=1.510,解得AD=12(m).即路灯AD的高度为12m.方法总结:解决本题的关键是构造相似三角形,然后利用相似三角形的性质求出对应线段的长度.三、板书设计投影的概念与中心投影⎩⎪⎨⎪⎧投影的概念:物体在光线的照射下,会在地面或其他平面上留下它的影子,这就是投影现象中心投影⎩⎪⎨⎪⎧概念:点光源的光线形成的投影变化规律影子是生活中常见的现象,在探索物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念.通过在灯光下摆弄小棒、纸片,体会、观察影子大小和形状的变化情况,总结规律,培养学生观察问题、分析问题的能力.第2课时平行投影与正投影1.知道平行投影和正投影的含义,能够确定物体在太阳光下的影子;(重点)2.了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的,理解在同一时刻,物体的影子与它们的高度成比例;(重点)3.会利用平行投影的性质进行相关计算.(难点)一、情景导入太阳光下的影子是我们司空见惯的,物体在太阳光下形成的影子与在灯光下形成的影子有什么不同呢?二、合作探究探究点一:平行投影【类型一】平行投影的认识下列物体的影子中,不正确的是()解析:太阳光线是平行的,故影长与物体高度成比例,所以A项正确;太阳光线画得不平行,故B项错误;因为物体在光源两侧,故影子方向不同,因而C项正确;因灯光是发散的,故影子与物体高度不成比例且物体在光源同侧,影子方向相同,D项正确.故选B.方法总结:(1)平行投影的光源是太阳,平行投影的光线是平行的;而中心投影的光源是点光源,中心投影的光线是相交的.(2)同一时刻,太阳光下的影子长度都与物体高度成比例;灯光下的影子长度与物体高度不一定成比例.(3)同一时刻,太阳光下影子的方向总是在同一方向,而灯光下的影子可能在同一方向,也可能在不同方向.【类型二】平行投影的作图如图,在某一时刻垂直于地面的物体AB在阳光下的投影是BC,请你画出此时同样垂直于地面的物体DE在阳光下的投影,并指出这一时刻是在上午、中午还是下午?解:如图,连接AC,过点D作DF∥AC,过点E作EF∥BC交DF于点F,则EF就是DE的投影.由BC是北偏西方向,判断这一时刻是上午.方法总结:(1)画物体的平行投影的方法:先根据物体的投影确定光线,然后利用两个物体的顶端和各自影子的末端的连线是一组平行线,过物体顶端作平行线与地面相交,从而确定其影子.(2)物体在阳光下的不同时刻,不仅影子的大小在变,而且影子的方向也在改变,就我们生活的北半球而言,上午的影子的方向是由西向北变化,影子越来越短,下午的影子方向由北向东变化,影子越来越长.【类型三】 平行投影的有关计算如图,小王身高1.7m ,他想测量一栋大楼的高度,他沿着阳光下的楼影BA 由B 向A 走去,当他走到点C 时,他的影子顶端正好与大楼的影子顶端重合,测得AC =19.2m ,BC =0.8m ,则大楼的高度为 m.解析:设大楼的高为x m ,楼和人均与地面垂直,由平行投影的特点可得到两三角形相似.由相似三角形的性质,得BC BA =人高楼高,即0.819.2+0.8=1.7x.解得x =42.5. 方法总结:本题也可用同一时刻,太阳光下不同物体的高度与影长成正比,即甲物体的高甲物体的影长=乙物体的高乙物体的影长来解答. 一位同学想利用树影测树高,已知在某一时刻直立于地面的长1.5m 的竹竿的影长为3m ,但当他马上测量树影时,发现树的影子有一部分落在墙上(如图①).经测量,留在墙上的影高CD =1.2m ,地面部分影长BD =5.4m ,求树高AB .解:方法一:过点D 作DE ∥AC 交AB 于点E ,如图①.∵四边形AEDC 为平行四边形,∴AE =CD =1.2m.∵EB BD =1.53,∴EB =2.7m , ∴AB =AE +EB =3.9m.方法二:延长AC 交BD 的延长线于点E ,如图②.∵CD =1.2m ,CD DE =1.53,∴DE =2.4m. ∴BE =BD +DE =7.8m.∵AB BE =1.53,∴AB =3.9m. ∴树高AB 为3.9m.方法总结:解决这类问题较为常见的方法有两种,一是画出树影在墙脚对应的树高;二是透过墙,补全树在平地上的影长.探究点二:正投影观察如图所示的物体,若投影的方向如箭头所示,图中物体的正投影是下列选项中的( )解析:我们观察图中的两个立体图形,分别按照所示投影线考虑它的正投影,得到圆柱的正投影是长方形,其中短边等于圆柱底面的直径,长边等于圆柱的高;正方体的正投影是与它一个面全等的正方形.因此本题画出的图形应是它们的组合,且长方形在正方形的左边.故答案为C.方法总结:本题是正投影性质的简单应用,通过观察和画图可以加深对正投影的理解,同时也可以发展我们的空间想象能力.本题还可以用实物进行实验,通过实验验证结果的正确性.三、板书设计平行投影与正投影⎩⎪⎨⎪⎧平行投影⎩⎪⎨⎪⎧概念:平行光线所形成的投影变化规律正投影:平行光线与投影面垂直时形成的投影本节课研究平行投影,让学生体会影子与生活的息息相关,激发学生学习的动机与兴趣,树立正确的数学观.本课时密切联系实际,涉及地理、物理等知识,体现了数学与各学科内容间的联系.让学生积极参加数学活动,认识数学与人类的密切联系及对人类历史发展的作用,激发学生探究与创造,加强学生的合作与交流.。

北师大版九年级数学(上)第5章 投影与视图常考题及答案解析

北师大版九年级数学(上)第5章 投影与视图常考题及答案解析

《第5章投影与视图》常考题1.如图是某兴趣社制作的模型,则它的俯视图是( )A.B.C.D.2.在小明住的小区有一条笔直的路,路中间有一盏路灯,一天晚上,他行走在这条路上,如图,当他从A点走到B点的过程,他在灯光照射下的影长l与所走路程s的变化关系图象大致是( )A. B. C. D.3.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为( )A. B. C. D.4.如图所示的几何体,其俯视图是( )A.B.C.D.5.下列光线所形成是平行投影的是( )A. 太阳光线B. 台灯的光线C. 手电筒的光线D. 路灯的光线6.下列几何体中,从正面观察所看到的形状为三角形的是( )A. B. C. D.7.下列结论中正确的是( )①在阳光照射下,同一时刻的物体,影子的方向是相同的.②物体在任何光线照射下影子的方向都是相同的.③固定的物体在路灯照射下,影子的方向与路灯的位置有关.④固定的物体在光线照射下,影子的长短仅与物体的长短有关.A. ①③B. ①③④C. ①④D. ②④8.已知某物体的三视图如图所示,那么与它对应的物体是( )A. B. C. D.9.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是( )A. B.C. D.10.下列立体图形中,它的三视图都相同的是( )A. B. C. D.11.从正面和上面看一个几何体的平面图形,如图所示.若这个几何体最多由n个小正方体组成,最少由m个小正方体组成,则m+n=______.12.一个由若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则小正方体的最少个数为______.13.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是.14.将7个棱长为1的小立方体摆成如图所示几何体,该几何体的俯视图的面积为______ .15.如图所示,水平放置的长方体的底面是长为4cm、宽为2cm的长方形,它的主视图的面积为16cm2,则长方体的体积等于______cm3.16.请写出一个三视图都相同的几何体:______.17.如图,一棵树(AB)的高度为7.5米,下午某一个时刻它在水平地面上形成的树影长(BE)为10米,现在小明想要站这棵树下乘凉,他的身高为1.5米,那么他最多离开树干______米才可以不被阳光晒到?18.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为______ .19.在测量旗杆高度的活动课中,某小组学生于同一时刻在阳光下对一根直立于平地的竹竿及其影长和旗杆的影长进行了测量,得到的数据如图所示,根据这些数据计算出旗杆的高度为______m.20.如图1所示的是由8个相同的小方块组成的几何体,它的三个视图都是2×2的正方形.若拿掉若干个小方块后,从正面和左面看到的图形如图2所示,则最多可以拿掉小方块的个数为______ .21.如图是由五块积木搭成,这几块积木都是相同的正方体,请画出这个图形的主视图、左视图和俯视图.22.用小立方体搭一个几何体,使它从正面、从上面看到的形状图如图所示.(1)它最多需要多少个小立方体?它最少需要多少个小立方体?(2)请你画出这两种情况下的从左面看到的形状图.23.(1)如图是一个组合几何体的两种视图,请写出这个组合几何体是由哪两种几何体组成的;(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的体积.(结果保留π)24.如图,是由两个长方体组合而成的一个立体图形的主视图和左视图,根据图中所标尺寸(单位:mm).(1)直接写出上下两个长方体的长、宽、高分别是多少;(2)求这个立体图形的体积.25.如图,已知一个几何体的主视图与俯视图,求该几何体的体积.(π取3.14,单位:cm)26.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:碟子的个数碟子的高度(单位:cm)1222+1.532+342+4.5……(1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示);(2)分别从三个方向上看,其三视图如上图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.27.如图,AB是公园的一圆形桌面的主视图,MN表示该桌面在路灯下的影子;CD则表示一个圆形的凳子的主视图.(1)请你在图中标出路灯O的位置,并画出CD的影子PQ(要求保留画图痕迹,光线用虚线表示);(2)若桌面直径和桌面与地面的距离均为1.2m,测得影子的最大跨度MN为2m,求路灯O与地面的距离.28.如图,从上往下看A、B、C、D、E、F六个物体,能得到a、b、c、d、e、f六个图形,请把上下两行中对应的图形与物体连接起来.29.如图是由7个完全相同的小立方块搭成的几何体,已知每个小立方块的棱长为2cm.(1)画出该几何体的三视图;(2)求出该几何体的表面积.30.如图,路灯(P点)距地面9米,身高1.5米的小云从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?答案和解析1.【答案】B【解析】解:该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选:B.根据俯视图即从物体的上面观察得得到的视图,进而得出答案.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.2.【答案】C【解析】解:当他从A点走到路灯下时,影长l逐渐变小,当从路灯下走到B点时,他在灯光照射下的影长l逐渐变长.故选:C.根据中心投影的特点,当他从A点走到路灯下时,影长l逐渐变小,当从路灯下走到B点时,他在灯光照射下的影长l逐渐变长,即随S的逐渐增大,l先由大变小,再由小变大,从而可对四个选项进行判断.本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.也考查了函数图象.3.【答案】A【解析】解:从左面看可得到从左到右分别是3,2个正方形.故选:A.由已知条件可知,左视图有2列,每列小正方形数目分别为3,2.据此可作出判断.本题考查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.4.【答案】A【解析】解:从上面看是一个矩形,矩形的中间处有两条纵向的实线,实线的两旁有两条纵向的虚线.故选:A.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.【答案】A【解析】解:四个选项中只有太阳光可认为是平行光线;故太阳光线下形成的投影是平行投影.故选:A.判断投影是平行投影的方法是看光线是否是平行的,如果光线是平行的,所得到的投影就是平行投影.本题考查平行投影的概念,属于基础题,注意基本概念的掌握是关键.6.【答案】A【解析】解:A.从正面看是一个等腰三角形,故本选项符合题意;B.从正面看是一个矩形,矩形的中间有一条纵向的实线,故本选项不符合题意;C.从正面看是一个圆,故本选项不符合题意;D.从正面看是一个矩形,故本选项不符合题意;故选:A.利用从正面看到的图叫做主视图判断即可.此题主要考查了简单组合体的三视图,正确把握观察角度得出正确视图是解题关键.7.【答案】A【解析】解:①由于太阳光线是平行光线,所以物体在阳光照射下,影子的方向是相同的,故正确;②物体在太阳光线照射下影子的方向都是相同的,在灯光的照射下影子的方向与物体的位置有关,故错误;③物体在路灯照射下,影子的方向与路灯的位置有关,故正确;④物体在点光源的照射下,影子的长短与物体的长短和光源的位置有关,故错误.所以正确的有①③.故选:A.利用平行投影和中心投影的特点和规律分别分析可判断正误.本题考查了平行投影和中心投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.8.【答案】C【解析】解:由三视图知,该几何体是下面是长方体,上面是一个圆柱体,且长方体的宽与圆柱底面直径相等,符合这一条件的是C选项几何体,故选:C.该几何体是下面是长方体,上面是一个圆柱体,且长方体的宽与圆柱底面直径相等,从而得出答案.本题主要考查由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.9.【答案】C【解析】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.根据平行投影的特点,利用两小树的影子的方向相反可对选项A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对选项C、D进行判断.本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.10.【答案】A【解析】解:球的三视图都是大小相同的圆,因此选项A符合题意;圆锥的主视图、左视图都是等腰三角形,俯视图是圆,因此选项B不符合题意;三棱柱主视图、左视图是长方形,俯视图为三角形,因此选项C不符合题意;圆柱的主视图、左视图是长方形,俯视图为圆,因此选项D不符合题意;故选:A.根据球体、圆锥体、圆柱体、三棱柱的三视图进行判断即可.本题考查简单几何体的三视图,理解视图的意义是正确判断的前提.11.【答案】16【解析】解:易得第一层有4个正方体,第二层最多有3个正方体,最少有2个正方体,第三层最多有2个正方体,最少有1个正方体,n=4+3+2=9,m=4+2+1=7,所以m+n=9+7=16.故答案为:16.主视图、俯视图是分别从物体正面、上面看所得到的图形.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.12.【答案】7【解析】解:由俯视图易得最底层有4个正方体,由主视图第二层最少有2个正方体,由主视图第三层最少有1个正方体,那么最少有4+2+1=7个立方体.故答案为:7.易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层正方体的可能的最少个数,相加即可.本题考查了由三视图判断几何体.俯视图小正方形的个数即为最底层的小正方体的个数,主视图第二层和第三层小正方形的个数即为其余层数小正方体的最少个数.13.【答案】从不同的方向观察同一物体时,看到的图形不一样【解析】解:根据从不同的方向观察物体,得到图形可能不同,所以“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.根据从不同的方向看物体得到图形可能不同,可得答案.本题考查了从不同的方向看物体.14.【答案】4【解析】解:从上面看,底层是两个小正方形,上层是两个小正方形,所以该几何体的俯视图的面积为4.故答案为:4.据从上面看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上面看得到的图形是俯视图是解题关键.15.【答案】32【解析】解:依题意,得长方体的体积=16×2=32cm3.故答案为:32.由主视图的面积=长×高,长方体的体积=主视图的面积×宽,得出结论.本题考查了简单几何体的三视图.关键是明确主视图是由长和高组成的.16.【答案】球(或正方体)【解析】解:球的三视图是3个全等的圆;正方体的三视图是3个全等的正方形,故答案为:球(或正方体).三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形,找到从3个方向得到的图形全等的几何体即可.考查三视图的有关知识,注意三视图都相同的常见的几何体有球或正方体.17.【答案】8【解析】解:设小明这个时刻在水平地面上形成的影长为x米,根据题意得x1.5=107.5,解得x=2,小明这个时刻在水平地面上形成的影长为2米,因为10−2=8(米),所以他最多离开树干8米才可以不被阳光晒到.故答案为8.=设小明这个时刻在水平地面上形成的影长为x米,利用同一时刻物体的高度与影长成正比得到x1.510,解得x=2,然后计算两影长的差即可.7.5本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.同一时刻物体的高度与影长成正比.18.【答案】66【解析】解:如图所示:AB=3√2,∵AC2+BC2=AB2,∴AC=BC=3,∴正方形ACBD面积为:3×3=9,侧面积为:4AC×CE=3×4×4=48,故这个长方体的表面积为:48+9+9=66.故答案为:66.根据三视图图形得出AC=BC=3,EC=4,即可求出这个长方体的表面积.此题主要考查了利用三视图求长方体的表面积,得出长方体各部分的边长是解决问题的关键.19.【答案】12【解析】【分析】本题只要是把平行投影的问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了转化的思想.此题的文字叙述比较多,解题时要认真分析题意.利用平行投影的性质,相似三角形的对应边成比例解答.【解答】解:设旗杆的高度为xm,根据题意,得:x9=0.80.6,解得:x=12,即旗杆的高度为12m,故答案为:12.20.【答案】5【解析】解:根据题意,拿掉若干个小立方块后保证从正面和左面看到的图形如图2所示,所以最底下一层必须有2个小立方块,上面一层必须保留1个立方块,所以最多能拿掉小立方块的个数为8−(2+1)=5(个).故答案为:5.拿掉若干个小立方块后保证从正面和左面看到的图形如图2所示,所以最底下一层必须有2个小立方块,上面一层必须保留1个立方块,即可知最多可以拿掉小立方块的个数.本题考查了由三视图判断几何体,几何体的三种视图,掌握定义是关键.解决此类图的关键是由立体图形得到三视图,学生由于空间想象能力不够,易造成错误.21.【答案】解:从正面看从左往右2列正方形的个数依次为3,1;从左面看从左往右2列正方形的个数依次为3,1;从上面看从左往右2列正方形的个数依次为2,1;【解析】画出从正面,左面,上面看,得到的图形即可.考查画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.22.【答案】解:这样的几何体不只有一种,它最多需要2×5=10个小立方体,它最少需要2×3+ 2=8个小立方体.小立方体最多时的左视图有2列,从左往右依次为2,2个正方形;小立方体最少时的左视图有2种情况:①有2列,从左往右依次为1,2个正方形;②有2列,从左往右依次为2,2个正方形;如图所示:【解析】利用左视图以及主视图可以得出这个几何体最多的块数、以及最少的块数.再画出这两种情况下的从左面看到的形状图.本题主要考查了简单组合体的三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,解题的关键是理解题意,灵活运用所学知识解决问题.23.【答案】解:(1)这个组合几何体是由圆柱和长方体组成的;)2×6=80+24π(cm3).(2)体积=8×5×2+π(42【解析】(1)找到从正面和上面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.(2)根据题目所给尺寸,计算出几何体的体积即可.此题主要考查了简单几何体的三视图,以及几何体的表面积,关键是掌握三视图所看的位置.24.【答案】解:(1)根据三视图可得:上面的长方体长4mm,高4mm,宽2mm,下面的长方体长6mm,宽8mm,高2mm;(2)立体图形的体积是:4×4×2+6×8×2=128(mm3).【解析】(1)根据三视图得到两个长方体的长,宽,高即可;(2)根据(1)中各部分的尺寸计算体积即可.此题主要考查了由三视图判断几何体以及求几何体的体积,根据图形看出长方体的长,宽,高是解题的关键.25.【答案】解:3.14×(20÷2)2×32+30×25×40=3.14×100×32+30000=10048+30000=40048(cm3).故该几何体的体积是40048cm3.【解析】该几何体一个圆柱叠放在一个长方体上面,因此体积是一个圆柱体和一个长方体体积的和.本题考查了由三视图判断几何体的知识,解题的关键是判断该几何体的形状.26.【答案】解:由题意得:(1)2+1.5(x−1)=1.5x+0.5(2)由三视图可知共有12个碟子∴叠成一摞的高度=1.5×12+0.5=18.5(cm)【解析】由表中给出的碟子个数与碟子高度的规律,可以看出碟子数为x时,碟子的高度为2+ 1.5(x−1).考查获取信息(读表)、分析问题解决问题的能力.找出碟子个数与碟子高度的之间的关系式是此题的关键.27.【答案】解:(1)如图,连接MA、NB并延长,它们的交点即为路灯O的位置,再连接OC、OD,并延长交地面于点P、Q,连接PQ,则PQ为CD的影子,所以点O和PQ为所作;(2)如图,过点O作OF⊥MN交AB于点E,交MN于点F,由题可得AB=1.2m,EF=1.2m,MN=2m,∵AB//MN,∴△OAB∽△OMN,∴AB:MN=OE:OF,即1.2:2=(OF−1.2):OF,解得OF=3(m).答:路灯O与地面的距离为3m.【解析】(1)连接MA、NB并延长,它们的交点即为路灯O的位置,然后再连接OC、OD,并延长交地面于点P、Q点,连接PQ,则PQ为CD的影子;(2)如图,过点O作OF⊥MN交AB于点E,交MN于点F,由题可得AB=1.2m,EF=1.2m,MN=2m,证明△OAB∽△OMN,利用相似比等于对应高的比,计算出OF即可得到路灯O与地面的距离.本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影,中心投影的光线特点是从一点出发的投射线.也考查了相似三角形的判定与性质.28.【答案】解:连线如下:【解析】俯视图是从物体上面所看到的图形,可根据各立体图形的特点进行判断.本题考查了三视图的知识,俯视图是从物体的上面看所得到的视图.29.【答案】解:(1)如图所示:;(2)该几何体的表面积为(5+3+5)×2×2×2=112(cm2).答:该几何体的表面积是112cm2.【解析】(1)主视图有3列,每列小正方形数目分别为2,1,2;左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为2,2,1;(2)几何体的表面积就是利用主视图、左视图、俯视图所看到的面的个数乘以2再乘以每个小正方形的面积即可.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.30.【答案】解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP,∴MAMO =ACOP,即MA20+MA =1.59,解得,MA=4米;同理,由△NBD∽△NOP,可求得NB=1.2米,则马晓明的身影变短了4−1.2=2.8米.∴变短了,短了2.8米.【解析】根据AC//BD//OP,得出△MAC∽△MOP,△NBD∽△NOP,再利用相似三角形的性质进行求解,即可得出答案.此题考查了中心投影,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解答问题.。

北师大版九年级数学上册《第五章投影与视图》单元测试卷及答案

北师大版九年级数学上册《第五章投影与视图》单元测试卷及答案

北师大版九年级数学上册《第五章投影与视图》单元测试卷及答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列是平行投影的是()A.B.C.D.2.如图,晚上小明在路灯下沿路从A处径直走到B处,这一过程中他在地上的影子()A.一直都在变短B.先变短后变长C.一直都在变长D.先变长后变短3.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m4.如图,将一个长方体内部挖去一个圆柱,这个几何体的主视图是()A .B .C .D .5.如图,是一个由铁铸灌成的几何体的三视图,根据图中所标数据,铸灌这个几何体需要的铁的体积为( )A .12πB .18πC .24πD .78π6.从某个方向观察一个正六棱柱,可看到如图所示的图形,其中四边形ABCD 为矩形,E F 、分别是AB DC 、的中点.若86AD AB ==,,则这个正六棱柱的侧面积为( )A .483B .96C .144D .963二、填空题7.如图是三角尺在灯泡O 的照射下在墙上形成的影子,现测得30cm 20cm OA AA '==,,这个三角尺的面积与它在墙上形成的影子的面积的比是 .8.古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF 长32米,它的影长FD 是3米,同一时测得OA 是274米,则金字塔的高度BO 是米.9.地面上有一支蜡烛,蜡烛前面有一面墙,王涛同学在蜡烛与墙之间运动,则他在墙上的投影长度随着他离墙的距离变小而 (增大、变小)10.墙壁CD 上D 处有一盏灯(如图),小明站在A 处测得他的影长与身长相等,都为1.6m ,他向墙壁走1m 到B 处时发现影子刚好落在A 点,则灯泡与地面的距离CD = .11.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据计算该几何体的底面周长为cm .12.用八个同样大小的小立方体粘成一个大立方体如图1,得到的几何体的三视图如图2所示,若小明从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图仍是图2,则他取走的小立方体最多可以是个.三、解答题13.在学习完投影的知识后,小张同学立刻进行了实践,他利用所学知识测量操场旗杆的高度.(1)如图,请你根据小张(AB)在阳光下的投影(BE),画出此时旗杆(CD)在阳光下的投影.(2)已知小张的身高为1.76m,在同一时刻测得小张和旗杆的投影长分别为0.44m和5.5m,求旗杆的高度.14.如图,是小亮晚上在广场散步的示意图,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置(1)在小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为.(2)请你在图中画出小亮站立AB处的影子.15.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)画出这个几何体的表面展开图;(3)根据图中的数据,求这个几何体的侧面积.16.如图,是用几个相同的正方体搭出的几何体,请解答下列问题:(1)分别在方格纸中画出从正面、左面、上面看这个几何体时看到的图形;(2)若每个小正方体的棱长为2,要给这个几何体地面以上的部分涂上颜色,求涂色部分的面积;(3)小亮说可以在这个几何体上再摆放上几个相同的小正方体,使新几何体和原几何体分别从上面和从左面看到的形状相同,你觉得他说的对吗?如果你认为小亮说法正确请在下面的方格纸中画出两种添加小正方体后,从正面看到的新几何体的形状图;你认为可以有___________种添加小正方体的方式;满足小亮说法的添加小正方体个数最少可以摆___________个,最多可以摆___________个.如果你认为小亮说法不正确,请说明理由.参考答案题号 1 2 3 4 5 6答案 B B A A B D1.【答案】B【分析】本题考查了平行投影的知识,定义:在一束平行光线照射下形成的投影叫做平行投影.特征:平行投影的投影线是平行的.牢记平行投影的定义是解题的关键.【详解】如图所示,连接影子的顶端和物体的顶端得到投影线,若投影线平行则为平行投影.通过作图可知A、C、D中影子的顶端和物体的顶端连线不平行,只有选项B中影子的顶端和物体的顶端连线平行.故选B.2.【答案】B【分析】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.根据中心投影的特征可得小亮在地上的影子先变短后变长.【详解】解:在小亮从A处径直走到路灯下时,他在地上的影子逐渐变短;当他走到路灯下,再走到B处时,他在地上的影子逐渐变长∴小亮在地上的影子先变短后边长故选:B.3.【答案】A 【详解】∵BE∵AD ∵∵BCE∵∵ACD ∵CB CEAC CD=,即CB CE AB BC DE EC =++ ∵BC=1,DE=1.8,EC=1.2 ∵1 1.21 1.8 1.2AB =++ ∵1.2AB=1.8 ∵AB=1.5m . 故选A . 4.【答案】A【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【详解】解:从正面看易得主视图为长方形,中间有两条垂直地面的虚线. 故选:A .【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图. 5.【答案】B【分析】直接利用三视图得出几何体的形状,再利用圆柱体积求法得出答案. 【详解】解:由三视图可得,几何体是空心圆柱,其小圆半径是1,大圆半径是2 则大圆面积为:224ππ⨯=,小圆面积为:21ππ⨯= 故这个几何体的体积为:64624618πππππ⨯-⨯=-=. 故选:B .【点睛】此题主要考查了由三视图判断几何体,正确判断出几何体的形状是解题关键. 6.【答案】D【分析】根据题意,正六边形的边长为AG BG 、,过点G 作GE AB ⊥,则GE 垂直平分AB ,根据正六边形的性质求得AG ,进而求得正六棱柱的侧面积.【详解】解:如图,正六边形的边长为AG BG 、,过点G 作GE AB ⊥∵GE 垂直平分AB由正六边形的性质可知11203032AGB A B AE AB ∠=︒∠=∠=︒==,, ∵ 323,cos30AE AG ===︒正六棱柱的侧面积66238963AG AD =⨯=⨯=故选:D .【点睛】本题考查了三视图,正多边形与圆,解直角三角形,掌握以上知识是解题的关键. 7.【答案】9:25【分析】本题考查了相似三角形的应用.先根据相似三角形对应边成比例求出三角尺与影子的相似比,再根据相似三角形面积的比等于相似比的平方解答即可. 【详解】解:∵30cm 20cm OA AA '==, ∵50cm OA '= ∵:30:503:5OA OA '== ∵三角尺与影子是相似三角形∵三角尺的周长与它在墙上形成的影子的面积的比是9:25 故答案为:9:25. 8.【答案】137【分析】本题考查平行投影,根据同一时刻,物高与影长对应成比例,列出比例式进行求解即可. 【详解】解:由题意,得:EF OBFD OA= 即:323274OB =∵137OB =; 故答案为:137. 9.【答案】变小.【分析】可连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长.【详解】连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长,则王涛同学在墙上投影长度随着他离墙的距离变小而变小. 故答案为:变小.【点睛】本题综合考查了中心投影的特点和规律,中心投影的特点是:(1)等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;()2等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.10.【答案】64 15m【分析】利用相似三角形的相似比,列出方程组,通过解方程组求出灯泡与地面的距离即可.【详解】如图:根据题意得:BG=AF=AE=1.6m,AB=1m∵BG//AF//CD∵∵EAF∵∵ECD,∵ABG∵∵ACD∵AE:EC=AF:CD,AB:AC=BG:CD设BC=x m,CD=y m,则CE=(x+2.6)m,AC=(x+1)m∵1.6 1.62.6x y=+1 1.61x y=+解得:x=53,y=6415∵CD=64 15m.∵灯泡与地面的距离为64 15m故答案为:64 15m.11.【答案】4πcm.【分析】根据主视图是等腰三角形,利用等腰三角形的性质,勾股定理求得底边的长,这就是圆锥底面圆的直径,计算周长即可.【详解】如图,根据主视图的意义,得三角形是等腰三角形∵三角形ABC是直角三角形()2222642AB AC--∵底面圆的周长为:2πr=4πcm.故答案为:4πcm.【点睛】本题考查了几何体的三视图,熟练掌握圆锥的三视图及其各视图的意义是解题的关键.12.【答案】4【详解】解:由于是粘上的,故每一层交错拿走对角线位置的两个正方体,可得每一层的每一行每一列都要保留一个立方体,故取走的小立方体最多可以是4个.故答案为:413.【答案】(1)见解析(2)旗杆的高度为22m.【分析】本题考查作图-应用与设计作图,设计平行投影,解题的关键是读懂题意,掌握平行投影的特征.(1)连接AE,过C作CF AE∥交BD于F,线段DF即为所求;(2)根据平行投影特征得:1.760.44 5.5CD=,即可解得答案.【详解】(1)解:连接AE,过C作CF AE∥交BD于F,如图:线段DF即为所求;(2)解:根据题意得:1.760.44 5.5CD=解得22CD=∴旗杆的高度为22m.14.【答案】(1)变短;(2)见详解.【分析】(1)先选取B,O之间一点D,分别作出小亮的影子,比较代表影长的线段长度即可得出变化情况即可;(2)连结线段P A,并延长交底面于点E,得到线段BE即可.【详解】解(1)在小亮由B处沿BO所在的方向行走到达O处的过程取点D通过灯光在B处小亮的影长为BE,当小亮走到D处时,小亮的影长为FDBE>FD∵小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为变短故答案为:变短;(2)如图所示,连结P A,并延长交底面于E,则线段BD为求作小亮的影长.【点睛】本题考查投影知识,从远处向灯光处走去影长的变化,掌握影长变化规律,向灯光走近,影长变短,远离灯光,影长变长,先走近再走远先变短再变长是解题关键.15.【答案】(1)三棱柱(2)见详解(3)272cm【分析】本题考查三视图、几何体的侧面展开图等知识,解题的关键是理解三视图、看懂三视图.(1)根据三视图,即可解决问题;(2)画出正三棱柱的表面展开图即可;(3)侧面展开图是矩形,求出矩形的面积即可.【详解】(1)解:根据三视图可知这个几何体的名称是三棱柱.(2)这个几何体的表面展开图如下:(答案不唯一)(3)这个几何体的侧面积是2⨯⨯=.83372cm16.【答案】(1)见解析(2)108(3)小亮说法正确,图见解析,5,1,3【分析】(1)观察图形可得:从正面看到从左往右依次有小正方形的数量为2、1、3;从左面看到有小正方形的数量为3、1;从上面看到从左往右依次有小正方形的数量为2,2,1,即可求解;(2)先找出每个小正方体所需要涂色的面的个数,再求和即需要涂颜色的面的总数,然后计算出总面积即可;(3)根据从上面和从左面看到的形状相同,添加一个小正方体,可在俯视图中添加,再验证从上面和从左面看到的形状,即可求解.【详解】(1)解∵如图(2)解∵ 2222⨯⨯+⨯⨯+⨯+⨯=6224225222108(3)解∵ 小亮说法正确有5种添加小正方体的方式,如下图其中添加小正方体个数最少可以摆1个,最多可以摆3个.故答案为∵ 5,1,3【点睛】此题主要考查了画三视图,关键是掌握在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B C D
第16题新北师大版九年级上册
投影与视图单元测试(二)
一、填空题(30分)
1、甲、乙两人在太阳光下行走,同一时刻他们的身高与其影长的关系是
2、身高相同的甲、乙两人分别距同一路灯2米、3米,路灯亮时,甲的影子比乙的影子
(填“长”或“短”)
3、小刚和小明在太阳光下行走,小刚身高1.75米,他的影长为2.0m ,小刚比小明矮5cm ,
此刻小明的影长是________m 。

4、墙壁D处有一盏灯(如图),小明站在A处测得他的影长与身
长相等都为1.6m ,小明向墙壁走1m 到B处发现影子刚好落在
A点,则灯泡与地面的距离CD =_______。

5、下图的几何体由若干个棱长为数1的正方体堆放而成,则这个
几何体的体积为__________。

6、(06南平)如图是某个几何体的展开图,这个几何体是 .
7、如图,是由几个相同的小正方体搭成的几何体的三种视图, 则搭成这个几何体的小正方体的个数是
8、(05南京)如图,身高为1.6m 的某学生想测量一棵大树的高度,她沿着树影BA
由B 到A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得
BC=3.2m ,CA=0.8m, 则树的高度为
9、春分时日,小明上午9:00出去,测量了自己的影长,出去一段时间后回来时,
发现这时的影长和上午出去时的影长一样长,则小明出去的时间大约为 小时。

10、直角坐标系内,身高为1.5米的小强面向y 轴站在x 轴上的点A(-10,0)处,他的前方5米处有一堵墙,已知墙高2米,则站立的小强观察y(y>0)轴时,盲区(视力达不到的地方)范围是 二、选择题:(30分)
11、(06金华)下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是( )
A. B. C. D.
12、在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( ) A 小明的影子比小强的影子长 B 小明的影长比小强的影子短 C 小明的影子和小强的影子一样长 D 无法判断谁的影子长
13下图中几何体的主视图是 ( ).
(A) (B) (C) (D)
14、对左下方的几何体变换位置或视角,则可以得到的几何体是 ( )
第Ⅱ卷(非选择题,共98分)
15、若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有( )
(A )5桶 (B ) 6桶 (C )9桶 (D )12桶
16、一个全透明的玻璃正方体,上面嵌有一根黑色的金属丝,如图,金属丝在俯视图中的形状是( )
17.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 ( ) 18、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用
的小立方块的个数( )A 5个B 6个 C 7个 D 8个
19、(06广东)水平放置的正方体的六面分别用“前面、后面、上面、下面、
22
4113
左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是 ( )
A .O
B . 6
C .快
D .乐
20、(06常州)图1表示正六棱柱形状的高大建筑物,图2
中的阴影部分表示该建筑物的俯视图,P 、Q 、M 、N 表示小明在
地面上的活动区域,小明想同时看到该建筑物的三个侧面,他
应在( )A P 区域 B Q 区域 C M 区域 D N 区域 三、解答题(60分)
21、(6分)中午,一根1.5米长的木杆影长1.0米,一座高21
米的住宅楼的影子是否会落在相距18米远的商业楼上?傍晚,该木杆的影子长为2.0米,这时住宅楼的影子是否会落在商业
楼上?为什么?
22、(12分)画出下列几何体的三视图:
23、(6分)将下列所示的几何体进行两种不同的分类,并说明理由。

24、(9分)如图,在一间黑屋里用一白炽灯照射一个球,
(1)球在地面上的阴影是什么形状?
(2)当把白炽灯向上移时,阴影的大小会怎样变化?
(3)若白炽灯到球心距离为1米,到地面的距离是 3米,球的半径是0.2
米,求球在地面上阴影的面积是多少?
25、(7分)(06厦门)如图, 水平面上放置一圆锥,在圆锥顶端斜靠着一根木棒(木棒的厚度可忽略不计) 小明为了探究这个问题,将此情景画在了草稿纸上(如右图,正视图): 运动过程:木棒顶端从A 点开始沿圆锥的母线下滑,速度为v 1(木棒下滑为匀速)已知木棒与水
平地面的夹角为θ,θ随木棒的下滑而不断减小.θ的最大值为30°,若木棒长为23a 问:当
木棒顶端重A 滑到B 这个过程中,木棒末端的速度'v 是多少? 26、(10分)(06安徽)如图是某工件的三视图,求此工件的全面积和体积.
27、(10分)某居民小区有一朝向为正南方向的居民楼(如图12),该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角为32°时. (1)问超市以上的居民住房采光是否有影响,为什么?
(2)若要使超市采光不受影响,两楼应相距多少米? (结果保留整数,参考数据:32sin °≈10053,32cos °≈125106,32tan ° 参考答案
1、成比例
2、短
3、3572
4、15
64 5、6
6、三棱柱
7、4
8、8 m
9、6 10、0~2.5
11、D 12、D 13、C 14、B 15、B
16、C 17、C 18、D 19、B 20、B
21、先不会,傍晚会
22、(1)
(2) 32° A D 太阳光 新楼
居民楼 C B N P Q M 第13题图2图1
友情提醒:圆锥的正视图是一个正三角形 A B C
D E
23、参考分类(1)按三视图相同与否分类:①⑥ / ②③④⑤(2)按形状类型划分:锥体、球体、柱体
(3)按组成图形的面的曲或平划分:
=0.36π
24、(1)圆形(2)阴影会逐渐变小(3)S
阴影
25、v‘=(3-1)v
=100(1+10) V=1000π
26、S

27、(1)11>6,采光受到影响
(2)32。

相关文档
最新文档