函数的周期性PPT教学课件

合集下载

《函数的周期性》课件

《函数的周期性》课件
公式法
对于一些基本的周期函数,如正弦函数、余弦函数等,可以直接使 用其周期公式来求解。
计算法
通过计算函数在两个不同点上的值,然后比较这两个值是否相等来 确定函数的周期。
函数周期性的进一步研究
特征,如振幅、相位等。
周期函数的性质
02
研究周期函数的性质,如对称性、奇偶性等。
周期性理解
周期性是函数的一种特性,它描述了函数值重复出现的规律。周期函数在一个 周期内的变化规律与整个函数的变化规律相同。
周期性的分类
最小正周期
如果存在一个最小的正数$T$,使得 对于函数$f(x)$的定义域内的每一个 $x$,都有$f(x+T)=f(x)$,则称$T$ 为函数$f(x)$的最小正周期。
函数周期性的扩展知识
最小正周期的概念
最小正周期
对于函数$f(x)$,如果存在一个正数 $T$,使得当$x$取值在$T$的长度 内重复出现时,函数$f(x)$的值也重 复出现,则称$T$为函数$f(x)$的最 小正周期。
周期性
函数在某个固定周期内重复出现的性 质。
函数的最小正周期的求法
观察法
通过观察函数图像或性质,直接判断出函数的周期。
《函数的周期性》 ppt课件
xx年xx月xx日
• 函数的周期性概述 • 三角函数的周期性 • 函数周期性的判定 • 函数周期性的应用 • 函数周期性的扩展知识
目录
01
函数的周期性概述
周期性的定义
周期性定义
如果存在一个非零常数$T$,使得对于函数$f(x)$的定义域内的每一个$x$,都 有$f(x+T)=f(x)$,则称函数$f(x)$为周期函数,非零常数$T$称为这个函数的 周期。
常见周期函数

函数的周期性ppt课件(自制)

函数的周期性ppt课件(自制)
97.有三个人是我的朋友爱我的人.恨 我的人 .以及 对我冷 漠的人 。 爱我的人教我温柔;恨我的人教我谨 慎;对 我冷漠 的人教 我自立 。――[J·E·丁 格] 98.过去的事已经一去不复返。聪明 的人是 考虑现 在和未 来,根 本无暇 去想过 去的事 。――[英国哲 学家培 根] 99.真正的发现之旅不只是为了寻找 全新的 景色, 也为了 拥有全 新的眼 光。― ―[马塞 尔·普 劳斯特] 100.这个世界总是充满美好的事物 ,然而 能看到 这些美 好事物 的人, 事实上 是少之 又少。 ――[罗 丹] 101.称赞不但对人的感情,而且对 人的理 智也发 生巨大 的作用 ,在这 种令人 愉快的 影响之 下,我 觉得更 加聪明 了,各 种想法 ,以异 常的速 度接连 涌入我 的脑际 。――[托尔斯 泰] 102.人生过程的景观一直在变化, 向前跨 进,就 看到与 初始不 同的景 观,再 上前去 ,又是 另一番 新的气 候―― 。[叔本 华] 103.为何我们如此汲汲于名利,如 果一个 人和他 的同伴 保持不 一样的 速度, 或许他 耳中听 到的是 不同的 旋律, 让他随 他所听 到的旋 律走, 无论快 慢或远 近。― ―[梭罗] 104.我们最容易不吝惜的是时间, 而我们 应该最 担心的 也是时 间;因 为没有 时间的 话,我 们在世 界上什 么也不 能做。 ――[威 廉·彭] 105.人类的悲剧,就是想延长自己 的寿命 。我们 往往只 憧憬地 平线那 端的神 奇【违 禁词, 被屏蔽 】,而 忘了去 欣赏今 天窗外 正在盛 开的玫 瑰花。 ――[戴 尔·卡内 基] 106.休息并非无所事事,夏日炎炎 时躺在 树底下 的草地 ,听着 潺潺的 水声, 看着飘 过的白 云,亦 非浪费 时间。 ――[约 翰·罗伯 克] 107.没有人会只因年龄而衰老,我 们是因 放弃我 们的理 想而衰 老。年 龄会使 皮肤老 化,而 放弃热 情却会 使灵魂 老化。 ――[撒 母耳·厄 尔曼] 108.快乐和智能的区别在于:自认 最快乐 的人实 际上就 是最快 乐的, 但自认 为最明 智的人 一般而 言却是 最愚蠢 的。― ―[卡雷 贝·C·科 尔顿] 109.每个人皆有连自己都不清楚的 潜在能 力。无 论是谁 ,在千 钧一发 之际, 往往能 轻易解 决从前 认为极 不可能 解决的 事。― ―[戴尔·卡内基 ] 110.每天安静地坐十五分钟·倾听你 的气息 ,感觉 它,感 觉你自 己,并 且试着 什么都 不想。 ――[艾 瑞克·佛洛姆] 111.你知道何谓沮丧---就是你用一 辈子工 夫,在 公司或 任何领 域里往 上攀爬 ,却在 抵达最 高处的 同时, 发现自 己爬错 了墙头 。--[坎伯] 112.「伟大」这个名词未必非出现 在规模 很大的 事情不 可;生 活中微 小之处 ,照样 可以伟 大。― ―[布鲁 克斯] 113.人生的目的有二:先是获得你 想要的 ;然后 是享受 你所获 得的。 只有最 明智的 人类做 到第二 点。― ―[罗根·皮沙尔 ·史密 斯] 114.要经常听.时常想.时时学习,才 是真正 的生活 方式。 对任何 事既不 抱希望 ,也不 肯学习 的人, 没有生 存的资 格。

函数的概念与基本初等函数函数的奇偶性与周期性课件文ppt

函数的概念与基本初等函数函数的奇偶性与周期性课件文ppt

典型例题
例5.已知对数函数y=log_a x的图 像经过点(2,1)和点(8,3),求该函 数的解析式。
THANKS
感谢观看
例4.已知指数函数y=a^x的图像经过 点(1,2)和点(2,4),求该函数的解析式 。
对数函数的典型例题解析
总结词
对数函数是一种特殊的函数形式 ,通常用于描述变量x的对数关 系。
详细描述
对数函数通常形式为y=log_a x ,其中a为底数,a>0且a≠1;x 为真数。函数的图像为上升曲线 。当a>1时,函数为增函数;当 0<a<1时,函数为减函数。
奇函数与偶函数的定义
奇函数
对于函数$f(x)$的定义域内任意一个$x$,都有$f(-x)=-f(x)$ ,则$f(x)$称为奇函数。
偶函数
对于函数$f(x)$的定义域内任意一个$x$,都有$f(-x)=f(x)$, 则$f(x)$称为偶函数。
奇函数与偶函数的性质
奇函数的图像关于原点对称,即$f(x)$在$x$轴上的图像关于 原点对称。
函数的概念与基本初等函数 函数的奇偶性与周期性课件 文ppt
xx年xx月xx日
目录
• 函数的概念 • 基本初等函数 • 函数的奇偶性 • 函数的周期性 • 典型数的定义
函数是数学中的一种关系,它可以将输入值映 射到输出值。
函数定义通常包括定义域和值域,定义域是输 入值的集合,值域是输出值的集合。
函数可以是一一对应的,也就是每个输入值都 有唯一的输出值与之对应,也可以是多对一的 ,即多个输入值对应一个输出值。
函数的分类
1 2
有界函数和无界函数
有界函数的输出值在一个有限范围内,无界函 数的输出值可以无限增大或无限减小。

高一数学函数的周期性PPT课件

高一数学函数的周期性PPT课件
6
思考4:周期函数的周期是否惟一?正弦 函数的周期有哪些?
思考5:如果在周期函数f(x)的所有周期 中存在一个最小的正数, 则这个最小正 数叫做f(x)的最小正周期.那么, 正弦函 数的最小正周期是多少?为什么?
7
思考6:就周期性而言,对正弦函数有 什么结论?对余弦函数呢?
正、余弦函数是周期函数,2kπ (k∈Z, k≠0)都是它的周期,最小 正周期是2π.
例1 求下列函数的周期: (1)y=3cosx; x∈R (2)y=sin2x,x∈R; ( (34) )yy==|s2isninx(|x2 -x∈p6 )R., x∈R ;
例2 已知定义在R上的函数f(x)满足
f(x+2)+f(x)=0,试判断f(x)是否为周
期函数?
11
例3 已知定义在R上的函数f(x)满足 f(x+1)=f(x-1),且当x∈[0,2]时, f(x)=x-4,求f(10)的值.
8
知识探究(二):周期概念的拓展
思考1:函数f(x)=sinx(x≥0)是否为 周 期 函 数 ? 函 数 f(x)=sinx ( x≤0 ) 是 否为周期函数?
思考2:函数f(x)=sinx(x>0)是否为 周期函数?函数f(x)=sinx(x≠3kπ) 是否为周期函数?
思考3:函数f(x)=sinx,x∈[0,10π]
的周期.
13
4.函数 y = A sin(wx + j) 和 y = A cos(wx + j)
2p
(A ? 0, w 0)的最小正周期都是 w ,这 是正、余弦函数的周期公式,解题时可 以直接应用.
作业:P36练习:1,2,3.
14
12
小结作业
1.函数的周期性是函数的一个基本性质, 判断一个函数是否为周期函数,一般以 定义为依据,即存在非零常数T,使f(x +T)=f(x)恒成立.

函数的周期性和对称性PPT课件

函数的周期性和对称性PPT课件
13
2、常见的判断周期的恒等式(可用递推法证明)
1 f ( x a) f ( x a)(, a R且a 0) T 2a
(2) f ( x a) f ( x)(3) f ( x a) 1
f (x)
T 2a
T 2a
为保守起见,我加了一个绝对值
X=a X=b
15
性质2.若函数 f (x)以 a,0, b,0 为对称点,那么
此函数是周期函数,周期T= 2 a b
假定 b a f (x) f (2a x)
f (2b (2a x))
f (x 2b 2a)
的图象,并指出两者的关系。 关于x=0对称
y f x 1 y f 1 x
(-1,0)
(1,0)
y f x
若函数 y f x上任意一点关于某直线(或某点) 的对称点在 y g x 上,就称 y f x和 y g x
关于某直线(或某点)对称,这种对称性称为互 对称。
例3:设 f x 1 x2的图象与 g x 的图象关 于直线 x 1 对称,求 g x的解析式。
g x 1 x 22
9
(二)、自对称问题常联系恒等式进行x的变换
例4:设 f x图象关于直线 x 1对称,在,1
上,f x 1 x2, 求当 x 1, 时 , f x的
为周期函数,T是函数的一个周期。若所有周期 中存在一个最小正数,则称它是函数的最小正周 期。
理解(1).是否所有周期函数都有最小正周期?
(2).若T是y f x的一个周期,则kT(k是非
零整数)均是 y f x的周期吗?
12

高一数学142-1函数的周期性课件新人教版必修

高一数学142-1函数的周期性课件新人教版必修
利用定义法判断一个函数是否为周期函数。具体来说,就是看是否存在一个非零 常数T,使得对于定义域内的每一个x,都有f(x+T)=f(x)。
周期函数的判定方法二
利用特殊值法判断一个函数是否为周期函数。具体来说,就是取定义域内的某些 特殊值,例如0、1、2等,看这些特殊值是否满足f(x+T)=f(x)。如果满足,则可 以初步判断该函数是周期函数。
选项A:$pi$ B:$2pi$ C:$frac{pi}{2}$ D: $frac{3pi}{2}$
在此添加您的文本16字
答案:B
在此添加您的文本16字
题目:函数$f(x) = cosfrac{1}{x}$的周期为( )
在此添加您的文本16字
选项A:$pi$ B:$2pi$ C:$frac{pi}{2}$ D: $frac{3pi}{2}$
高一数学142-1函数的 周期性课件新人教版必 修
CONTENTS
目录
• 函数的周期性定义 • 常见周期函数类型 • 周期函数的应用 • 周期函数的习题及解析
CHAPTER
01
函数的周期性定义
周期函数的定义
周期函数的定义
如果存在一个非零常数T,对于定义域内的每一个x,函数f(x)满足f(x+T)=f(x) ,那么就把函数f(x)叫做周期函数,T叫做这个函数的一个周期。
三角函数的周期计算
三角函数的周期可以通过公式 T=2π/ω来计算,其中ω是角频率。 对于正弦函数和余弦函数,ω=1, 因此它们的周期T=2π。
除了正弦函数和余弦函数,还有其他 形式的三角函数,如tan(x)、cot(x)等 。这些函数的周期也可以通过公式 T=π/ω来计算。
其他周期函数类型
01

函数的周期ppt 下载

函数的周期ppt 下载

kgh0Байду номын сангаасneg
夜晚。唐 白居易 《游悟真寺诗一百三十韵》:“黑夜玩家自光明,不待灯烛燃。”《水浒传》第八四回:“黑夜玩家怎地厮杀,待天明
决一死战。” 柳青《铜墙铁壁》第四章:“金树旺 见 石得富 难为情的样子,就替他解释今黑夜玩家的确有事。”
来她不能保证,但是找,那是必须的。不但奴才们全部放下手头的事情,连她也是亲力亲为,投入到寻找板指的事项中。真是壹通好找! 雅思琦连午膳都没有正经吃,也是因为心事重重,没有心思吃饭。寻思着爷也差不多用过午膳,这板指也找了壹个多时辰,眼看着时候不 早,她和李淑清还要为参加晚上的宫宴做准备,于是打算还是先去给爷去回个话吧。其实从壹开始找,她就大概估计是这么壹个结局。也 不是她有多护着她院子里的奴才,而是连她自己都没有印象的东西,根本不可能指着奴才们能找出什么惊喜来。但是,不管找得到还是找 不到,还得硬着头皮去给爷回话。无奈,只好差红莲去给书院递话,她有事禀告爷。不壹会儿,红莲就回来了,同时传了爷的回话,同意 了。“福晋有什么事情?”王爷用壹贯不苟言笑的表情望着雅思琦。爷从来都是这么规规矩矩地称呼自己,从来没有唤过自己的闺名,可 是,府里的其它诸人,爷从来都是直呼其名。自从他们大婚的那壹天开始,爷和自己从来都是这么相敬如宾,爷总说自己是他最敬重的诸 人,可是,自己并不需要爷的敬重,作为壹个诸人,需要的是爷的宠爱。可是,就是因为自己是嫡福晋,就需要端庄、需要大家风范,为 什么,如果是这样的话,自己宁可不要当这个嫡福晋!“回爷,奴才们找了许久,也没有找到爷的板指,只有红莲能出入妾身的房间,妾 身也是仔仔细细地盘问过了……”“噢,那爷可是记错了,落在其它的地方?秦顺儿!”“奴才在。”秦顺壹听屋里爷叫他,赶快进来, 即刻就跪在了屋子中间。“你今天早上怎么弄的?这么重要的物件都忘记了?”“奴才早上惦记着今天晚上的宫宴,心里壹走神儿,就忘 记了这档子事儿!”“你忘记了不要紧,爷这四处找了半天了,急得不行,福晋那里也是弄得人仰马翻,连见客都匆匆忙忙地,让年家人 看了笑话。”“爷教训得是,奴才该死,奴才该死!”“该死有什么用,赶快想,到底是落在哪儿了?想不出来,你就自己领板子 去!”“奴才这就想,这就想。”雅思琦眼看着秦顺儿有要吃板子的危险,就着急忙慌地要避出去。毕竟秦顺儿可是爷眼跟前儿的红人, 这奴才对她还是挺重要的,万壹吃了板子,再牵扯到她这里,犯不上,要吃板子,也是爷赏的,跟她不要有任何牵连,如果再呆下去,可 就真要壹只脚趟进这个混水里去了!于是,她假装想起来什么似的:“唉呀,瞧妾身这个记性,刚刚淑清妹妹还说要跟我商量晚上宫宴的 事情呢,怕是已经到了妾身的院子,要不……”“噢,你先去吧,这里也没什么事情了。”雅思琦壹听,正中下怀,忙起身告辞。听着福 晋的脚步声出了院子,秦顺儿抬起头来,还不待爷说话呢,就径自站了起来,壹脸媚笑:“爷,没

函数的奇偶性对称性周期性课件共19张PPT

函数的奇偶性对称性周期性课件共19张PPT

(2)已知 f (x) 是奇函数,且当 x 0 时,f (x) eax .若 f (ln 2) 8 ,则a ___-_3______.
(3)(2020·海南 8)若定义在 R 的奇函数 f(x)在(, 0) 单调递减,且 f(2)=0,则满足
xf (x 1) 0 的 x 的取值范围是( D )
A.13
B. 2
C.
13 2
D.123
专题三:函数的周期性
变式 5:(1)设定义在 R 上的函数 f x 满足 f x 2 f x ,若 f 1 2 ,则 f 99 _-_2__.
(2)(2022·湖北模拟)定义在 R 上的函数 f x 满足 f x 1 f x 2 ,则下列是周期函数的是 ( D )A. y f x x B. y f x x C. y f x 2x D. y f x 2x
叫做偶函数 一般地,设函数f(x)的定义域为I,如果∀x∈I, 奇函数 都有-x∈I,且_f_(-__x_)_=__-__f_(x_)_,那么函数f(x) 关于_原__点__对称 就叫做奇函数
复习回顾 2.周期性 (1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数 T,使得对每一个x∈D都有x+T∈D,且_f_(_x+__T__)=__f_(x_)_,那么函数y=f(x) 就叫做周期函数,非零常数T叫做这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最_小___的正数, 那么这个_最__小__正__数__就叫做f(x)的最小正周期.
课堂小结
函数的性质
奇偶性
判断 求解析 求参数
对称性
轴对称: 中心对称:
周期性
求值 求解析 比较大小
祝同学们前程似锦!

第三章 第三节 函数的奇偶性及周期性 课件(共55张PPT)

第三章 第三节 函数的奇偶性及周期性  课件(共55张PPT)

是奇函数.]
3.设 f(x)为定义在 R 上的奇函数,当 x≥0 时,f(x)=3x-7x+2b(b 为常
数),则 f(-2)=( )
A.6
B.-6
C.4
D.-4
A [∵f(x)为定义在 R 上的奇函数,且当 x≥0 时,
f(x)=3x-7x+2b,
∴f(0)=1+2b=0,
∴b=-12 .
∴f(x)=3x-7x-1,
(2)因为函数 f(x)=3x+4sin x-1,f(-a)=5,所以-3a+4sin (-a)-1= 5,则 3a+4sin a=-6,所以 f(a)=3a+4sin a-1=-6-1=-7.
答案: (1)D (2)-7
已知函数奇偶性可以解决的 3 个问题 (1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解. (2)求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性 求出解析式. (3)求解析式中的参数:利用待定系数法求解,根据 f(x)±f(-x)=0 得到 关于参数的恒等式,由系数的对等性得参数的方程或方程(组),进而得出参 数的值.
1.函数奇偶性常用结论 (1)如果函数 f(x)是偶函数,那么 f(x)=f(|x|). (2)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的 区间上具有相反的单调性. (3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶= 偶,奇×偶=奇.
2.函数周期性常用结论 对 f(x)定义域内任一自变量的值 x: (1)若 f(x+a)=-f(x),则 T=2a(a>0). (2)若 f(x+a)=f(1x) ,则 T=2a(a>0). (3)若 f(x+a)=-f(1x) ,则 T=2a(a>0).

函数的周期性ppt课件

函数的周期性ppt课件

当x∈[2,3]时,f(x)=x,则x∈[-2,0]时,f(x)的解析式
为( )
(A)f(x)=2+|x+1|
(3)f(0)=0,f(2)=0,f(1)=1,f(3)=-1. 又f(x)是周期为4的周期函数, ∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7) =…=f(2 008)+f(2 009)+f(2 010)+f(2 011)=0, ∴f(0)+f(1)+f(2)+…+f(2 013)=f(0)+f(1)=0+1=1.
【创新体验】分段函数的性质判断
【典例】(2012·福建高考)设函数 Dx 10,,xx为为有无理理数数,,则下列
结论错误的是( )
(A)D(x)的值域为{0,1}
(B)D(x)是偶函数
(C)D(x)不是周期函数
(D)D(x)不是单调函数
3.(2013·福州模拟)设f(x)是定义在R上以2为周期的偶函数,
∴f(1)+f(2)+…+f(6)=f(7)+f(8)+…+f(12)=…=f(2 005)+ f(2 006)+…+f(2 010)=1, ∴f(1)+f(2)+…+f(2 010)=1 2 010 335.
6
而f(2 011)+f(2 012)=f(1)+f(2)=3, ∴f(1)+f(2)+…+f(2 012)=335+3=338.
个周期.
3.已知定义在R上的奇函数f(x),满足f(x+4)=f(x),则f(8)的值 为( ) (A)-1 (B)0 (C)1 (D)2 【解析】选B.∵f(x+4)=f(x), ∴f(x)是以4为周期的周期函数, ∴f(8)=f(0). 又函数f(x)是定义在R上的奇函数, ∴f(8)=f(0)=0,故选B.

高三数学总复习PPT课件-函数的周期性

高三数学总复习PPT课件-函数的周期性

A. 常函数
B.
C. 周期为2的周期函数 D. 周期为1
【答案】 C
【解析】 ∵f (-x+2)=-f (x)=f (-x), ∴f (x+2)=f (x),∴选C.
考点 1 函数周期性的判断及其应用
【名师示范1】函数 f(x)的定义域为 R ,
且 f (x)与f (x+1)都是奇函数,则 f(x +T)= f (x)的T值.
(∴f由即∴(∴f设即∴定((--f② ff换 ftff=义((xx((((--x--++得 元法xxx-xxt11)1))+))))法f=)====)1[=f--的的--∵-,)f(则ffff(2(周周((fx((-xxxx∵xxt-(+)=))1++x期期11f))11])及-(为为))=tx由-f)22f及(..②(xxf+-得(11x))+f=(1-t))f=(-xf+(12)-,t),
已知定义在R上的函数满足f(x)f(x3), 2
且f(2)f(1)1, f(0)2, 则f(1)f(2) f(2011)f(2012)______
-2
3.已知定义在R上的函数 f (x)是以2为周期的奇函数,则
方程 f (x)=0在[-2,2]上至少有
个实数根
【答案】 5
第四课时 函数的周期性
对于函数 f (x),如果存在一个非零常数T,使得当x 取定义域内的每一个值时,都有 f (x+T)=f (x) ,那 么 f (x)就叫做周期函数. T 叫做这个函数的周期.
kT(k∈ Z ,k≠0) 也是 f (x)的周期,即 有 f (x+k T)=f (x) .

数学:1.1《函数的周期性》课件(北师大版必修4)

数学:1.1《函数的周期性》课件(北师大版必修4)
2
例题1:求下列函数的周期: (1) f(x)=︱sinx︱ (2) F(x)=cos︱x︱
例3 已知函数f(x)满足f(x+2)=-f(x),且 当x∈[-2,2]时,f(x)=x2 (1)求f(5),f(-6)的值 (2)求f(x) x∈[-2+4k,2+4k](k∈z) 的解析式
三角函数具有周期性的本质原因:
例题1:求下列函数的周期:
(1)y=3cosx
解:因为3cos(x+2π )=3cosx (x只要且至少增加到x+2π) 所以原函数的周期是2π。
x (2)y=sin(x+π/4) cos[ 2 ] 解:因为 2 4 x sin[(x+2π)+π/4]= sin(x+π/4)
正弦函数和余弦函数均为周期函数, 且周期 T=2kπ (k∈Z且k≠0)
思考:周期函数的图象有何特征?
周期函数图象的形状随x的变化有规律的重复变化。
思考:
函数f(x)=x2是否为周期函数?如果是,周 期是多少?
令f(x+T)=f(x), 即(x+T)2=x2 即x2+2xT+T2=x2, 所以2xT+T2=0 即T(2x+T)=0 所以T=0或T=-2x 因为T=0或T=-2x 均不符合函数周期的要 求,所以函数f(x)=x2不是周期函数。
课后作业:
教材:P46 3,10,B3 思考题:常数函数f(x)=1是否为周期函数?如
果是,此函数的(一般)周期为多少?此函数 是否存在最小正周期?最小正周期是多少?
;木门品牌排行 /brand/ 木门品牌排行;
汉の手,兴奋の话都说不出来了丶总知感激之情,溢于言表了,他想告诉自己茹尔老婆,根汉和天仙尔の事情

周期函数PPT课件

周期函数PPT课件

由sin(x+2kπ)=sinx ; cos(x+2kπ)=cosx (k∈Z)
可知: 函数y=sinx和y=cosx都是周期 函数,2kπ(k∈Z且 k≠0)都是它的 周期,最小正周期是 2π。
2021/3/25
4
注意:(1)周期T为非零常数。
(2)等式f(x+T)=f(x)对于定义域M内任意 一个x都成立。
f (x) Asin(x)
Asin[(x)2]
Asin[(x 2)] f (x 2)
yAsin(wx及 yAcos(wxxR
的 最 小 正 周 期 为 T2
3.例题讲解
例1 求下列函数的周期:
(1)y=3cosx; x∈R 2
(2)y=sin2x,x∈R;
(3)y2sin(1 2x6),xR4
2021/3/25
13
y 1
y=sinx
-6π -4π -2π -π
π
3π 5π x
-5π -3π
O
2π 4π 6π
-1
所 有 的 对 称 中 心 坐 标 为 ( k,0 )
所 有 的 对 称 轴 方 程 为 x k(k Z ) 2
2021/3/25
14
y y=cosx
2
2
1 22
x[k3,k]k ,Zy2为增函数 x[k4,k4]k ,Zy为减函数
44
则f(x)是周期为2a的周期函数.
2021/3/25
12
例2、已知定义在R上的函数f(x)满足 f(x+1)=f(x-1),且当x∈[0,2]时, f(x)=x-4,求f(10)的值.
结论:定义在R上的函数f(x)满足 f(x+a)-f(x-b)=0或f(x+a) =f(x-b)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)首尾相接的若干向量若构成一个封闭图 形,则它们的和为零向量。 A1 A2 A2 A3 A3 A4 An A1 0
问题 1: C
向 B上 正 O 正A 北
如图:已知 OA=6 米, AB=6 米,BC=3 米,
? 那么 OC=
东 F2
问题 2:
已知F1=10N, F2=15N,F3=15N
(a) ()a 其中、是实数。
类似于平面向量,为了研究的方便起见,我们规定: 零向量、单位向量、相等向量、相反向量、平行
向量、共面向量等概念。(你认为应该怎样规定?)
定义:表示空间向量的有向线段所在直线互相平行或 重合,则称这些向量叫共线向量.(或平行向量)
思考⑴:对空间任意两个向量 a 与 b ,如果 a b ,那 么 a 与 b 有什么关系?反过来呢? 类似于平面,对于空间任意两个
知识探究(二):周期概念的拓展
思考1:函数f(x)=sinx(x≥0)是否为 周 期 函 数 ? 函 数 f(x)=sinx ( x≤0 ) 是 否为周期函数?
思考2:函数f(x)=sinx(x>0)是否为 周期函数?函数f(x)=sinx(x≠3kπ) 是否为周期函数?
思考3:函数f(x)=sinx,x∈[0,10π] 是否为周期函数?周期函数的定义域有 什么特点?
作业:P36练习:1,2,3.
复习回顾: 平面向量
这是什么? 向量
1、定义:既有大小又有方向的量。
几何表示法:用有向线段表示
字母表示法: 用小写字母表示,或者用表示向量的 有向线段的起点和终点字母表示。 相等向量:长度相等且方向相同的向量
B A
D
2、平面向量的加法、减法与数乘运算
b a
向量加法的三角形法则
CC1
D1 A1
D A
C1 B1
C B
a
D
D1 A1
C1 B1
CD
C
A
BA
B
平行六面体:平行四边形ABCD平移向量 a
到A1B1C1D1的轨迹所形成的几何体. 记做ABCD-A1B1C1D1
例1:已知平行六面体ABCD-A1B1C1D1,化简下列向量 表达式,并标出化简结果的向量。(如图)
(1) AB BC
(2) 2AD1 BD1 xAC1 (3) AC AB1 AD1 xAC1
(2) 2AD1 BD1 AD1 AD1 BD1 AD1 (BC1 BD1) AD1 D1C1 AC1
x 1.
D1 A1
D
C1 B1
C
A
B
例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。
例2 已知定义在R上的函数f(x)满足
f(x+2)+f(x)=0,试判断f(x)是否为周 期函数?
例3 已知定义在R上的函数f(x)满足 f(x+1)=f(x-1),且当x∈[0,2]时, f(x)=x-4,求f(10)的值.
小结作业
1.函数的周期性是函数的一个基本性质, 判断一个函数是否为周期函数,一般以 定义为依据,即存在非零常数T,使f(x +T)=f(x)恒成立.
(3) AC AB1 AD1 xAC1
(3) AC AB1 AD1
(AD AB) (AA1 AB) (AA1 AD)
D1
2(AD AB AA1)
A1
2AC1
x 2. D
(1) AB1 A1D1 C1C xAC
解(1) AB1 A1D1 C1C
D1
AB1 B1C1 C1C A1
C1 B1
AC x 1.
D A
(2) 2 AD1 BD1 x AC1
C B
(3) AC AB1 AD1 x AC1
例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。
思考4:周期函数的周期是否惟一?正弦 函数的周期有哪些?
思考5:如果在周期函数f(x)的所有周期 中存在一个最小的正数, 则这个最小正 数叫做f(x)的最小正周期.那么, 正弦函 数的最小正周期是多少?为什么?
思考6:就周期性而言,对正弦函数有 什么结论?对余弦函数呢?
正、余弦函数是周期函数,2kπ (k∈Z, k≠0)都是它的周期,最小 正周期是2π.
2.周期函数的周期与函数的定义域有关, 周期函数不一定存在最小正周期.
3.周期函数的周期有许多个,若T为周期 函数f(x)的周期,则T的整数倍也是f(x) 的周期.
4.函数 y = A sin(wx + j) 和 y = A cos(wx + j)
2p
(A ? 0, w 0)的最小正周期都是 w ,这 是正、余弦函数的周期公式,解题时可 以直接应用.


多事 p
1 2
5730










的变化规律,如年有四季更替,月有阴
晴圆缺.这种现象在数学上称为周期性,
在函数领域里,周期性是函数的一个重
要性质.
知识探究(一):周期函数的概念 思考1:由正弦函数的图象可知, 正弦曲 线每相隔2π个单位重复出现, 这一规 律的理论依据是什么?
. sin(x 2k ) sin x (k Z )
b
a
向量减法的三角形法则
b a
向量加法的平行四边形法则
a
k a (k>0)
k a (k<0)
向量的数乘
3、平面向量的加法、减法与数乘运算律
加法交换律: a b b a 加法结合律: (a b) c a (b c) 数乘分配律: k(a b) ka+kb
推广:
(1)首尾相接的若干向量之和,等于由起始 向量的起点指向末尾向量的终点的向量; A1 A2 A2 A3 A3 A4 An1 An A1 An
思考2:设f(x)=sinx,则sin(x 2k ) sin x 可以怎样表示?其数学意义如何?
思考3:为了突出函数的这个特性,我们 把函数f(x)=sinx称为周期函数,2kπ为 这个函数的周期.一般地,如何定义周期 函数?
对 于 函 数 f(x) , 如 果 存 在 一 个 非 零常数T,使得当x取定义域内的每一 个值时,都有f(x+T)=f(x), 那么函数 f(x)就叫做周期函数,非零常数T就叫 做这个函数的周期.
数乘分配律
k(a b) ka+kb
加法交换律 a b b a 加法结合律
(a b) c a (b c) 数乘分配律 k(a b) ka+kb
我们知道平面向量还有数乘运算. 类似地,同样可以定义空间向量的数乘运算, 其运算律是否也与平面向量完全相同呢?
定义: 数乘空间向量的运算法则
数乘分配律
k(a b) ka+kb
加法交换律 a b b a
成立吗? 加法结合律
数乘分配律 k(a b) ka+kb
向量加法结合律在空间中仍成立吗?
( a + b )+ c = a +( b + c )
O
O
a
a
b +c
A
CA
C
bBc
b Bc
(平面向量)
空间中
向量加法结合律:
( a + b )+ c = a +( b + c )
小结
类比思想 数形结合思想
平面向量
空间向量
概念 定义 表示法 相等向量
加法 减法
加法:三角形法则或 平行四边形法则
数乘 减法:三角形法则
运算 数乘:ka,k为正数,负数,零
具有大小和方向的量 数乘:ka,k为正数,负数,零
运 加法交换律 a b b a 算 加法结合律 律 (a b) c a (b c)
这三个力两两之间
的夹角都为90度,
F3
它们的合力的大小
为多少N?
F1
这需要进一步来认识空间中的向量
空间向量的有关概念: 空间向量:在空间中,具有大小和方向的量.
常用 a 、b 、c ……等小写字母来表示.
1.向量 a 的大小叫做向量的长度或模,记为 a .
2.可用一条有向线段 AB 来表示向量,向量 AB
空间向量及其加减与数乘运算
平面向量
概念 定义 表示法 相等向量
加法 减法
加法:三角形法则或 平行四边ቤተ መጻሕፍቲ ባይዱ法则
数乘 减法:三角形法则
运算 数乘:ka,k为正数,负数,零
空间向量
具有大小和方向的量
加法:三角形法则或 平行四边形法则 减法:三角形法则
数乘:ka,k为正数,负数,零
运 加法交换律 a b b a 算 加法结合律 律 (a b) c a (b c)
向量 a , b ( b 0 ),
a // b 存在 R , a b . b c
a
例1:已知平行六面体ABCD-A1B1C1D1,化简下列向量 表达式,并标出化简结果的向量。(如图)
(1) AB BC
(2) AB AD AA1
(3)
1 3
(AB
AD
AA1 )
(4) AB
AD
1 2
数乘分配律
k(a b) ka+kb
C
a+b
B
b
O
A
OB OA AB
a CA OA OC
空间向量的加减法
k a (k>0)
空间向量的数乘
k a (k<0)
思考:空间任意两个向量是否可能异面?
B
b
O
A
思考:它们确定的平面是否唯一?
a
结论:空间任意两个向量都是共面向量,所以它们可用 同一平面内的两条有向线段表示。 因此凡是涉及空间任意两个向量的问题,平面向量中有 关结论仍适用于它们。
相关文档
最新文档