电力电子技术现状
电力电子器发展现状
电力电子器发展现状
电力电子器是现代电力工程中不可或缺的一部分,它们在电力转换、调节和控制中起到重要的作用。
以下是电力电子器发展的一些现状:
1. 变频器:变频器是将电源交流电转换为可调频率和可调幅值的交流电的设备。
随着电力电子技术的发展,变频器在电力驱动和调节中得到广泛应用,例如交流电机调速、电力系统电压和频率调节等。
2. 可再生能源逆变器:随着可再生能源的快速发展,在太阳能、风能等可再生能源发电系统中,逆变器被用来将直流电转换为交流电以供电网使用。
目前,逆变器在可再生能源领域的应用越来越普遍,并且不断在高效性能和可靠性方面得到改进。
3. 电源质量控制装置:电源质量控制装置用于解决电源质量问题,例如电压波动、谐波污染和电压断裂等。
现代工业和商业用电负载的复杂性导致了对电源质量的更高要求,电力电子器的发展为电源质量控制提供了有效解决方案。
4. 直流输电技术:传统的交流输电方式在长距离输电和大容量输电方面存在一些问题,例如输电损耗较大和电压稳定性差。
直流输电技术利用电力电子器件进行高效的长距离直流输电,能够有效解决这些问题,近年来得到了快速发展。
5. 无线能量传输技术:无线能量传输技术是一种利用电磁场或电磁波传输电能的技术,通过电力电子器件实现。
这项技术的
发展在无线充电、无线传感器网络和电动交通工具等领域有广泛应用,并且不断在效率和距离上进行改进。
总的来说,电力电子器在能源转换和控制领域扮演着重要角色,随着科技的不断进步和需求的不断增长,电力电子器的研究和应用将继续发展,以满足日益增长的电力需求和提高电力系统的效能。
新型电力电子技术的研究现状和应用
新型电力电子技术的研究现状和应用一、研究现状1.功率电子器件:传统功率电子器件如晶闸管、可控硅等在高频、高压应用场景下存在效率低、体积大、重量重的问题。
研究人员开展了一系列研究工作,提出了新型功率器件如SiC、GaN器件等,这些器件具有功率密度高、开关速度快、损耗低等优点,在新能源领域广泛应用。
2.拓扑结构:传统的逆变器、变频器拓扑结构复杂,自然开关损耗大,电磁干扰等问题,研究人员提出了一系列新型拓扑结构。
例如,多电平逆变器、谐振逆变器等能够有效降低开关损耗、提高效率,并且减少电磁干扰。
3.控制策略:新型电力电子技术需要控制策略的支持,为了提高功率电子设备的性能,研究人员提出了多种新的控制策略,如模型预测控制、直接功率控制等。
这些控制策略能够提高系统的响应速度、降低谐波失真并且减小电流、电压的波动。
二、应用1.电力变换装置:新型电力电子技术在电力变换装置中得到广泛应用,如光伏逆变器、风力发电机组、电动汽车充电桩等。
这些装置中需要将直流电源转换为交流电源,新型电力电子技术能够提高转换效率、降低谐波和电磁干扰,提高系统的可靠性和电能利用率。
2.电力质量控制:电力质量问题如电压波动、谐波、电流不平衡等不仅会对电力系统运行造成损害,还会对电力设备的寿命和性能产生影响。
新型电力电子技术能够通过改善电力质量问题,提高供电稳定性和可靠性。
3.新能源接入系统:随着新能源的大规模接入,新型电力电子技术在光伏发电、风力发电等新能源接入系统中发挥了重要作用。
它能够提高电能的利用效率、降低电网对新能源的影响,并且实现新能源与电网之间的无缝连接。
4.电力电子变压器:电力电子变压器是近年来新型电力电子技术的研究热点之一、它将传统的电力变压器中的铁芯变为功率电子器件,通过调整开关管的开通时间来实现电压变比的调整,降低了噪音和体积,提高了能效。
综上所述,新型电力电子技术在功率电子器件、拓扑结构、控制策略等方面的研究进展迅速,并且在电力变换装置、电力质量控制、新能源接入系统、电力电子变压器等领域得到了广泛应用。
电子行业电力电子与新能源技术
电子行业电力电子与新能源技术引言在当今社会中,电子行业的快速发展对电力电子与新能源技术的需求越来越高。
电力电子是电能的调节、变换和传送的关键技术之一,而新能源技术则以其清洁、可再生的特点成为解决能源与环境问题的重要途径。
本文将介绍电子行业中的电力电子与新能源技术的现状与发展趋势。
电力电子的应用电力电子是将电能从一种形式转换为另一种形式的技术,广泛应用于电力系统、工业控制和交通运输等领域。
通过电力电子技术,电能可以从交流转换为直流,以及从低电压变换为高电压,实现电能的传输与调节。
在电力系统中,电力电子技术可以提高电能的传输效率,实现电力的稳定供应。
在工业控制中,电力电子技术可以提高电机的控制精度,提高生产效率。
在交通运输中,电力电子技术可以实现电动车的高效驱动,减少能源消耗和环境污染。
新能源技术的发展新能源技术是指能够替代传统能源并且对环境影响较小的能源技术。
随着对环境问题的关注和对能源安全的需求,新能源技术在近年来得到了广泛发展。
其中,太阳能、风能和储能技术是主要的新能源技术。
太阳能技术利用太阳光的能量进行发电,具有清洁、可再生的特点。
太阳能光伏发电系统通过太阳能电池板将太阳能转换为直流电能,再经过逆变器将直流电能转换为交流电能。
太阳能技术在电力行业中得到了广泛应用,可以实现分布式发电,减少对传统能源的依赖。
风能技术利用风的动能进行发电,同样具有清洁、可再生的特点。
风能发电系统通过风力发电机将风的动能转换为机械能,然后再经过发电机将机械能转换为电能。
风能技术在很多地区已经成为主要的能源来源,可以有效减少化石燃料的使用。
储能技术是指将能量转化为其他形式并储存起来的技术。
储能技术可以解决新能源的间断性问题,使得能源的利用更加灵活。
目前,电池储能技术是最常用的储能技术之一,通过将电能转化为化学能进行储存。
储能技术的发展将为新能源技术的推广和应用提供重要支持。
电力电子与新能源技术的结合应用电力电子与新能源技术的结合应用具有很大的潜力。
综述现代电力电子技术在电力系统中的发展现状
综述现代电力电子技术在电力系统中的发展现状一、本文概述随着科技的不断进步和全球化的快速发展,电力系统作为现代社会运转的基石,其重要性日益凸显。
而电力电子技术,作为电力系统中的关键技术之一,对于提高电力系统的效率、稳定性和安全性具有重要的作用。
本文旨在综述现代电力电子技术在电力系统中的发展现状,包括其应用领域的拓展、技术创新和未来发展趋势等方面。
通过深入研究和分析,本文希望能够为相关领域的学者和实践者提供有价值的参考,推动电力电子技术的进一步发展,以适应日益增长的能源需求和环境保护压力。
二、现代电力电子技术的发展历程现代电力电子技术的发展可以追溯到20世纪60年代,当时的主要目标是提高电力系统的效率和稳定性。
随着半导体技术的突破,特别是硅整流器和晶体管的发明,电力电子技术开始进入实用阶段。
这些早期设备主要用于电力控制和调节,初步实现了对电力系统的优化管理。
到了70年代,随着大规模集成电路和计算机技术的快速发展,电力电子技术得到了进一步的提升。
微处理器和可编程逻辑控制器的出现,使得电力电子设备能够实现更复杂的控制策略,如PWM(脉冲宽度调制)技术,大大提高了电力系统的动态响应能力和稳定性。
进入80年代,电力电子技术开始与可再生能源技术相结合,风力发电和太阳能发电逐渐进入实用阶段。
这一时期的电力电子装置更加智能化,能够通过先进的控制算法实现对可再生能源的高效利用。
90年代以后,随着电力电子技术在高压大功率领域的应用,如IGBT(绝缘栅双极晶体管)和HVDC(高压直流输电)技术的发展,现代电力电子技术进入了一个新的高峰。
这些技术不仅提高了电力系统的传输效率,还使得远距离输电和大规模电力系统的互联成为可能。
进入21世纪,随着智能电网和分布式发电技术的发展,现代电力电子技术迎来了更加广阔的发展空间。
智能电网要求电力电子设备具备更高的智能化、网络化和自动化能力,而分布式发电则要求电力电子技术能够实现对各种可再生能源的高效整合和利用。
综述现代电力电子技术在电力系统中的发展现状
综述现代电力电子技术在电力系统中的发展现状1. 引言1.1 电力电子技术在电力系统中的重要性电力电子技术在电力系统中的重要性体现在多个方面。
电力电子技术可以实现电力系统的高效能转换。
传统的电力系统中,能源的传输和转换过程存在能量损耗和效率低下的问题。
而通过应用先进的电力电子技术,可以实现电能的高效转换,提高系统的能源利用率。
电力电子技术还可以提高电力系统的稳定性和可靠性。
在传统电力系统中,电网的运行容易受到外部因素的影响,导致电能供给不稳定,造成供电问题。
通过引入电力电子技术,可以实现电力系统的智能化控制和优化管理,提高系统的稳定性和可靠性。
电力电子技术在电力系统中的应用具有重要意义,不仅可以提高系统的效率和稳定性,还可以推动电力系统向智能化、可持续发展的方向迈进。
1.2 电力电子技术发展的背景电力电子技术是指利用电子器件和电子电路来控制和转换电力的技术。
在电力系统中,电力电子技术的应用越来越广泛,其发展已经成为电力系统发展的重要驱动力。
电力电子技术的背景可以追溯到20世纪60年代,当时电力系统开始面临一系列新的挑战,如电力负载的快速增长、电力系统的不稳定性、传统直流和交流系统的柔性度不足等问题。
为了应对这些挑战,研究者们开始积极探索新的电力转换技术,逐渐形成了现代电力电子技术。
现代电力电子技术主要包括功率半导体器件、PWM调制技术、微电网技术、智能电网技术等。
这些技术的发展为电力系统的稳定运行、高效能利用、智能化管理提供了重要支持。
随着可再生能源的快速发展和成熟,电力电子技术在可再生能源集成和智能电网建设中也扮演着至关重要的角色。
电力电子技术的背景是电力系统发展的需要,是科技进步和市场需求的结果,是实现清洁、可靠、高效能源供应的必然选择。
【字数:234】2. 正文2.1 传统电力系统存在的问题1. 能效低下:传统电力系统在能源传输和转换过程中存在能量损耗严重的问题,导致能效较低。
在电力系统中,直流到交流的转换、电压调节和功率转换都需要耗费大量能量。
2024年电力电子市场发展现状
电力电子市场发展现状1. 引言随着电力系统的快速发展和能源转型的推进,电力电子作为关键技术之一,在电力系统中发挥着越来越重要的作用。
电力电子的应用涉及到电力传输、转换、控制等多个领域,对于提高电力系统的可靠性、安全性和能源利用效率具有重要意义。
本文将对电力电子市场的发展现状进行分析。
2. 电力电子市场的背景随着工业化和城市化的发展,电力需求不断增长。
传统的电力系统难以满足复杂多变的电力需求,因此电力电子技术逐渐受到重视。
电力电子技术通过将电力转换、传输和控制,实现了能源的高效利用和进一步智能化管理,成为了电力系统中不可或缺的一部分。
3. 电力电子市场的发展趋势3.1 可再生能源的快速发展随着全球对能源可持续性的关注度增加,可再生能源的发展得到了推动,尤其是太阳能和风能等清洁能源。
这些可再生能源的高效利用离不开电力电子技术的支持,因此可再生能源的快速发展也带动了电力电子市场的增长。
3.2 能源储存技术的提升能源储存技术是电力电子市场的一个重要方向。
电池技术的进步和成本的下降,使得能源储存系统在电力系统中的应用日益广泛。
能源储存技术能够提供电力系统的稳定性和可靠性,同时也为可再生能源的大规模应用提供了可能。
3.3 电动汽车市场的增长电力电子技术在电动汽车市场上的应用也是市场发展的一个重要方向。
随着电动汽车市场的迅速增长,电力电子技术在车载充电、电动驱动等方面发挥着重要作用。
电动汽车市场的增长将直接推动电力电子市场的发展。
4. 电力电子市场的挑战和机遇4.1 技术创新和成本控制电力电子技术的应用受到技术创新和成本控制的双重挑战。
技术创新能够推动电力电子市场的发展,但也需要大量的研发投入和时间。
同时,成本控制是电力电子企业在市场竞争中必须面对的问题,低成本高性能的产品将具有竞争优势。
4.2 标准化和规范化电力电子技术的应用涉及到电力系统的安全稳定,因此标准化和规范化是电力电子市场发展的重要保障。
加强标准化和规范化工作,能够提高电力电子产品的质量和可靠性,促进市场的健康发展。
综述现代电力电子技术在电力系统中的发展现状
综述现代电力电子技术在电力系统中的发展现状现代电力电子技术是指利用半导体器件和电子电路技术来实现对电能的控制、调节和变换的一种技术。
随着电力系统的不断发展和变化,电力电子技术逐渐成为电力系统的关键技术之一。
它在电力系统中的应用已经成为提高电力系统效率、稳定性和可靠性的重要手段之一。
本文将对现代电力电子技术在电力系统中的发展现状进行综述,以期为相关领域的研究和发展提供参考。
现代电力电子技术在电力系统中有着广泛的应用,主要包括以下几个方面:1. 柔性直流输电技术柔性直流输电技术利用了电力电子器件的优势,实现了电力系统的控制和灵活性,提高了系统的稳定性和可靠性。
通过柔性直流输电技术,可以实现电力系统的电能调度和电能优化,提高了电力系统的运行效率。
2. 智能电网技术智能电网技术是近年来电力系统中的热点研究领域之一。
电力电子技术在智能电网技术中发挥着重要作用,可以实现对电力系统的监测、控制和调节,提高了电网的稳定性和安全性。
智能电网技术还可以实现对分布式能源的集成和管理,促进新能源的大规模应用。
3. 高压直流输电技术高压直流输电技术是利用电力电子技术实现电能的长距离传输的一种技术。
由于高压直流输电技术具有输电损耗小、占地少、环保等优势,因此在远距离大容量输电方面具有得天独厚的优势。
4. 变频调速技术变频调速技术是利用电力电子技术实现对电机转速的调节和控制的一种技术。
变频调速技术在工业生产和交通运输等领域有着广泛的应用,可以提高设备的运行效率和节能减排的效果。
1. 电力电子器件的发展随着半导体器件技术的不断提高,各种电力电子器件的性能不断改善,功率密度不断提高,损耗不断降低。
目前,IGBT、GaN、SiC等新型器件已经在电力电子领域中得到广泛应用,为电力电子技术的发展提供了更为丰富和多样的选择。
2. 控制技术的发展电力电子技术的发展离不开控制技术的支撑。
随着数字信号处理技术、智能控制算法等方面的不断改进,电力电子技术的控制性能不断提高,控制精度不断提高,控制速度不断提高,控制可靠性不断提高。
电力电子技术的现状及发展
电力电子技术的现状及发展随着高新技术的发展,电力电子技术的发展也为电力行业带来了新鲜血液,为电力行业朝着更高方向发展提供了基础。
但它不仅仅只是应用于电力行业,由于时代科技的发展,各学科间的边缘越来越模糊,由此也决定了电力电子技术并不是一个完全独立的学科技术,与它关联的有材料科学、微电子技术及控制理论等,也就是说电力电子技术已经慢慢地渗透进各个工业部门。
1、电力电子技术的发展历程如果说晶体管的诞生标志着固态电子时代的来临,那么晶闸管的问世就把电子技术带上了飞速发展的轨道。
随着高技术的发展,电力电子技术发展速度也越来越快,更多的领域开始应用这一技术,其作用可以从我国经济的发展看出。
纵观电力电子技术的发展史,我们可以看出其经历了三个阶段:晶闸管时代、逆变时代、变频时代。
接下来,笔者将从这三个阶段分别进行描述。
1.1 晶闸管时代晶闸管时代也称晶闸管整流时代,晶闸管整流管在20世纪60和70年代得到了长足的发展,当时都是通过50HZ的交流发电机来提供较大功率的工业用电,其中直流形式的电能消费占了百分之二十。
在当时,我国很多电厂都需要把交流电转化为直流电,这就催生了大功率硅整流器和晶闸管,它能高效的完成直流电的转变。
这也造就了晶闸管整流时代。
1.2 逆变时代到七十年代以后,自关断器件登上了历史舞台,随之也带来了电力电子技术逆变时代。
所谓“逆变”即是将直流电转换成交流电。
世界范围内的能源危机,普遍提高了人们的节能意识,大众普遍使用交流电机,因为更加节能。
所以电力器件包括GTO、GTR,还有就是大功率的逆变晶闸管。
1.3 变频器时代上述的逆变时代,虽然完成了逆变和整流的功能,但是其工作频率相对来说比较低,满足不了人们逐渐扩大的需求。
所以,到80年代后期出现了集成电路。
这种大规模的集成电路主要特点是将高压大电流技术和精细加工技术融为一体,标志着现代电力电子变频器时代的到来,标志着传统电力电子技术的升级。
这时期的电力电子器件走复合化的道路,各器件的结构也越来越紧密,因为结合了各类器件的优点,显得功能也越来越强大。
综述现代电力电子技术在电力系统中的发展现状
综述现代电力电子技术在电力系统中的发展现状【摘要】现代电力电子技术在电力系统中扮演着重要的角色,其应用范围和深度不断扩大,对电力系统的稳定性、效率和可靠性产生了深远影响。
本文通过介绍现代电力电子技术的基本概念和电力系统的发展背景,探讨了电力电子技术在电力系统中的应用以及电力电子器件的发展现状。
分析了电力电子技术在电力系统中的优势和面临的挑战,展望了其未来的发展方向。
总结了电力电子技术对电力系统的影响和其发展前景。
随着科技的不断进步,电力电子技术将继续发挥着重要作用,推动电力系统的现代化和智能化发展。
【关键词】关键词:现代电力电子技术、电力系统、应用、器件、优势、挑战、发展方向、影响、发展前景1. 引言1.1 现代电力电子技术的基本概念现代电力电子技术是一种以电子器件和数字控制技术为基础,利用变流器、整流器、逆变器等设备实现电能转换和调节的技术。
在电力系统中,电力电子技术可以实现电能的高效转换、稳定控制和灵活调节,从而提高电力系统的运行效率和稳定性。
电力电子技术的基本概念包括以下几个方面:首先是功率器件,如晶闸管、场效应管、绝缘栅双极型晶体管等,这些器件可以实现电能的无级调节和快速开关;其次是控制技术,如PWM调制技术、谐波抑制技术、闭环控制技术等,这些技术可以实现对电能转换过程的精确控制;此外还包括电力电子拓扑结构设计、热管理技术等方面。
现代电力电子技术的发展使得电力系统具备了更高的智能化、灵活性和稳定性,为电力系统的高效运行和接入可再生能源提供了重要支撑。
随着电力需求的不断增加和新能源的大规模接入,电力电子技术在电力系统中的应用前景十分广阔。
1.2 电力系统的发展背景随着工业化和城市化的进程,电力需求逐渐增长,传统的电力系统已经不能满足日益增长的电力需求。
为了提高电力系统的效率和可靠性,同时减少对环境的影响,人们开始寻求新的技术手段来改善电力系统。
电力系统的发展背景可以追溯到19世纪末的工业革命时期,当时人们开始使用电力来驱动工厂和机器。
综述现代电力电子技术在电力系统中的发展现状
综述现代电力电子技术在电力系统中的发展现状电力电子技术是作为电力系统中的核心技术之一,其发展现状对于整个电力系统的稳定运行和发展起着至关重要的作用。
随着科技的不断发展和进步,电力电子技术在电力系统中的应用也日益广泛。
本文将对现代电力电子技术在电力系统中的发展现状进行综述,探讨其在电力系统中的作用和影响。
一、电力电子技术的发展历程电力电子技术是指利用电子器件进行能源的转换和控制,实现电力系统中的功率调节、电能变换和传输。
电力电子技术的发展历程可以追溯到上世纪60年代,当时主要是以整流、变频和逆变为主要研究方向,然后逐渐拓展到谐波抑制、无功补偿、电能质量改善等领域。
随着半导体器件的不断进步和成熟,电力电子技术在电力系统中的应用也越来越广泛,涉及到电力变换、传输、配电和用电等方方面面。
二、现代电力电子技术在电力系统中的应用领域1. 变频调速技术变频调速技术是电力电子技术在电力系统中的重要应用领域之一,主要是通过改变电机的工作频率,实现对电机速度的调节,从而达到节能、精度控制和提高电机运行效率的目的。
目前,变频器已广泛应用于风力发电、水泵变频调速、电梯驱动等领域。
2. 高压直流输电技术高压直流输电技术是利用电力电子装置将交流电能转换成直流电能进行输电的一种技术,具有输电距离远、输电能力大、线损小等优势。
随着我国电力体制改革和跨区域电力输送需求的增加,高压直流输电技术得到了越来越广泛的应用,大型的高压直流输电工程也陆续建成投运。
3. 可再生能源接入技术随着可再生能源如风电、光伏等的快速发展,电力电子技术在可再生能源接入方面也发挥着重要作用。
通过电力电子装置,可以将可再生能源发电系统与电网连接,并实现电能的转换和控制,从而解决可再生能源发电的间歇性和不稳定性问题。
4. 智能电网技术智能电网是在传统电力系统的基础上,通过引入先进的电力电子技术、通信技术和信息技术,实现对电力系统进行监控、调度和管理的一种先进电力系统。
综述现代电力电子技术在电力系统中的发展现状
综述现代电力电子技术在电力系统中的发展现状现代电力电子技术是当今电力系统领域中的重要组成部分,它在电力系统中起着至关重要的作用。
随着科技的不断进步和电力需求的不断增长,电力电子技术在电力系统中的应用也得到了日益广泛的推广。
本文将综述现代电力电子技术在电力系统中的发展现状,旨在全面了解电力电子技术的应用和发展趋势。
一、电力电子技术在电力系统中的应用概况随着电网建设的不断完善和电力需求的不断增长,电力系统对电力电子技术的需求也越来越大。
电力电子技术在电力系统中主要应用于功率变换、电能质量控制和电力传输等方面。
在功率变换领域,电力电子技术主要用于实现交、直流电能之间的相互转换,适应不同负载的功率要求。
在电能质量控制方面,电力电子技术可实现电能的稳定输出,提高电网的稳定性和可靠性。
在电力传输方面,电力电子技术可实现高效电能传输,减少能量损耗,提高电网的传输效率。
电力电子技术在电力系统中的应用范围非常广泛,对电力系统的运行和发展具有重要意义。
1. 变流器技术的发展变流器是电力电子技术的核心设备之一,其性能和效率直接影响到电力系统的运行质量。
近年来,随着功率半导体器件的不断进步和新型拓扑结构的不断涌现,变流器技术取得了显著的发展。
高压、高频、高效的变流器设备逐渐成为电力系统的主流,大大提高了电能转换的效率和质量。
2. 控制技术的创新随着数字电子技术的发展,控制技术在电力系统中的应用也得到了快速发展。
智能化控制系统、数字信号处理技术等先进控制技术的应用,使得电力电子设备的控制性能得到了显著提升,提高了电力系统的运行稳定性和可靠性。
3. 新能源技术的融合随着新能源技术的快速发展,新能源与电力电子技术的融合应用成为电力系统发展的重要趋势。
风能、光能等新能源技术的应用使得电力系统的结构发生了变革,电力电子技术成为了实现新能源并网的重要手段,为电力系统的清洁化和可持续发展提供了有力支持。
4. 智能电网技术的兴起智能电网技术是当今电力系统领域的热点之一,它以电力电子技术为核心,通过信息技术实现了电力系统的智能化管理和控制。
综述现代电力电子技术在电力系统中的发展现状
综述现代电力电子技术在电力系统中的发展现状现代电力电子技术是电力系统领域的重要组成部分,它的发展与应用对电力系统的稳定运行、高效输送和新能源的接入具有重要意义。
本文将综述现代电力电子技术在电力系统中的发展现状,包括其在输电、配电、电力质量改善、新能源接入等方面的应用与发展情况,并对其未来发展趋势进行展望。
一、现代电力电子技术在输电系统中的应用在输电系统中,电力电子技术主要应用于柔性交流输电(FACTS)和高压直流输电(HVDC)两大领域。
通过柔性交流输电技术,可以实现对电力系统的动态控制和稳定运行,包括静态无功补偿器(SVC)、静止无功发生器(STATCOM)等,以提高系统的稳定性和可靠性。
而高压直流输电技术,可以实现远距离大容量电能的长距离传输,减少输电线损和提高输电效率,尤其在新能源远距离接入方面具有重要意义。
在配电系统中,电力电子技术主要应用于配电变压器、配电保护与控制等方面。
通过电力电子技术,可以实现对配电系统的智能化控制和监测,提高供电可靠性和电能质量,同时实现对配电网的柔性运行和功率调节,为电网接纳大规模分布式新能源提供技术支持。
电力电子技术在电力质量改善方面的应用包括电能质量改善装置(APF)、有源滤波器(AF)等,通过实时监测和控制电网内的谐波、电压波动和频率偏差等问题,提高电能供应的质量和可靠性,适应现代工业和商业对电能质量的要求。
随着新能源的快速发展和大规模接入,电力电子技术在新能源接入方面发挥越来越重要的作用。
特别是在风力发电、光伏发电和分布式储能等方面,电力电子技术可以实现对新能源的有效管理和优化利用,提高电网的安全性和稳定性。
未来展望随着能源转型和电力供应体系的变革,现代电力电子技术将继续在电力系统中发挥重要的作用。
在未来,随着电力电子器件的不断创新和提高,以及数字化技术的应用,电力电子技术将更加智能化、集成化和高效化,为电力系统的高效运行和新能源的大规模接入提供更加强有力的支撑。
新型电力电子技术的研究现状和应用
新型电力电子技术的研究现状和应用随着当代科技的迅猛发展,新型电力电子技术也越来越成为人们议论的焦点。
在工业、交通、家庭等各个领域,新型电力电子技术都应用得越来越广泛,其作用越来越突出。
下面我们将就新型电力电子技术的研究现状和应用进行一番探讨。
一、新型电力电子技术研究现状从技术的角度来看,新型电力电子技术的研究主要涉及到三大方向:控制技术、转换技术和电子元器件技术。
1、控制技术电力电子技术的控制技术一直是研究的重要方向。
例如,功率因数校正技术、PWM调制技术、矢量控制技术等都是控制技术方面的热门研究领域。
随着控制技术的不断发展和创新,新型控制技术也不断涌现,使电力电子技术的控制更加灵活、高效。
2、转换技术电力电子技术的转换技术是针对电能进行转换的技术。
例如,电力变换器、逆变器、整流器等,在电能的传输、转换过程中发挥着至关重要的作用。
随着转换技术的不断创新和发展,电力电子技术的转换效率也得到了进一步提高,能够更好地满足人们的实际需求。
3、电子元器件技术电子元器件技术是电力电子技术发展的基础和前提。
众所周知,电子元器件的品质和性能对电力电子器件的工作效率和稳定性有着非常重要的影响。
因此,电子元器件技术的创新和发展对于提升电力电子技术水平具有十分重要的作用。
二、新型电力电子技术的应用1、家庭领域在现代家庭中,人们使用电力电子技术的方式多种多样。
例如,许多家庭开始使用LED灯来取代传统的白炽灯,使用智能家居系统进行家居控制,安装新型的家用空调、电视、冰箱等等。
这些家电的应用促进了家庭生活的舒适度和便利性的提高。
2、工业领域在工业领域,新型电力电子技术的应用也越来越广泛。
例如,在电力系统中,高压直流输电、智能电网等应用越来越普遍;在工业生产中,电动汽车、电动机、电动工具和光伏发电等新型设备的使用也为工业生产带来了很大的便利和经济效益。
3、交通运输领域在交通运输领域,新型电力电子技术的应用也十分广泛。
例如,电动汽车和混合动力汽车的普及,提高了交通运输的能效和环保性,未来的高速铁路、磁悬浮列车等技术也使用了新型的电力电子技术。
综述现代电力电子技术在电力系统中的发展现状
综述现代电力电子技术在电力系统中的发展现状随着现代电力电子技术的不断发展,电力系统的运行和管理方式已经发生了巨大的变化。
越来越多的电子设备被应用于电网中,其中包括变频器、电力电子变压器、电力电子断路器、智能电网控制器等。
这些设备不仅提高了电网的可靠性和稳定性,还能够提高电网的效率、降低损耗、提高电力品质以及实现对电力质量的实时监测和调节。
在发电系统中,电力电子技术的应用主要集中在发电机调速、电动机驱动、变频电源、柔性直流输电以及海上风电等方面。
电力电子技术能够为发电机提供更加精准的电压和电流控制,从而提高发电机的效率和稳定性。
在电动机驱动方面,电力电子技术可以实现变频调速和矢量控制,从而实现更加精准的电机控制和节能效果。
在变频电源方面,电力电子技术可以实现高效、可靠、低损耗的电能转换,从而将风电和太阳能等新能源更好地融入电力系统中。
在柔性直流输电方面,电力电子技术可以根据需求调节直流电压和功率,从而实现远距离大容量电力输送。
在海上风电方面,电力电子技术可以实现海上电力输送和储能,从而提高海上风电的利用效率和经济效益。
在输配电系统中,电力电子技术的应用主要包括电力电子变压器、电力电子断路器、高压直流输电以及智能配电网等方面。
电力电子变压器可以有效降低负载损耗,提高电压质量和电能利用率。
电力电子断路器可以实现瞬时电流控制和快速断电,从而保护电网设备和提高电网的稳定性。
高压直流输电可以实现远距离大容量电力输送,并且具有较低的输电损耗和灵活性。
智能配电网可以实现电力监测、控制和优化管理,从而提高电网的效率和稳定性。
总之,现代电力电子技术在电力系统中的应用已经成为推动电力系统发展的重要驱动力之一。
未来,随着新能源的使用不断增加和数字化技术的不断升级,电力电子技术还将在电力系统中发挥更加重要的作用。
综述现代电力电子技术在电力系统中的发展现状
综述现代电力电子技术在电力系统中的发展现状电力电子技术是指利用半导体器件将电能转换为其它形式的能量的技术,它在电力系统中扮演着至关重要的角色。
随着电力电子技术的不断发展,电力系统的安全性、稳定性和效率都得到了极大的提升。
现代电力电子技术在电力系统中的应用主要包括功率电子器件、电力电子转换技术、电力电子控制技术、电力电子应用技术等方面,这些技术已经在电力系统中得到了广泛的应用。
功率电子器件是现代电力电子技术的核心。
功率电子器件包括晶闸管、可控硅、晶体管、场效应晶体管等,在电力系统中主要用于电能的调节和控制。
这些器件具有开关速度快、能耗低、寿命长等优点,已经成为电力系统中不可或缺的一部分。
电力电子转换技术是现代电力电子技术的重要组成部分。
电力电子转换技术通过将交流电转换为直流电或者将直流电转换为交流电,实现了电能的有效利用和输送。
直流输电技术就是利用电力电子转换技术实现了长距离、大容量的电能传输,解决了传统交流输电线路存在的诸多问题。
电力电子控制技术也是现代电力电子技术的重要组成部分。
电力电子控制技术通过控制电力电子器件的导通和断路,实现了对电能的精准调节和控制。
通过控制电力电子开关,可以实现变频调速、无级调压等功率控制功能,提高了电力系统的运行效率和稳定性。
电力电子应用技术将电力电子技术应用到了各个领域。
变频调速技术在风力发电、太阳能发电等可再生能源领域得到了广泛应用,提高了可再生能源发电系统的稳定性和可靠性。
电动汽车充电技术也是电力电子技术的一个重要应用领域,通过电力电子技术可以实现对电动汽车的快速充电,提高了电动汽车的使用便利性和节能环保性能。
现代电力电子技术在电力系统中的发展现状已经取得了显著的成绩,但同时也还面临着一些挑战。
功率电子器件的可靠性和成本问题、电力电子转换技术的效率和稳定性问题、电力电子控制技术的智能化和互联网化问题等。
未来,随着新材料、新工艺、新技术的不断涌现,相信现代电力电子技术在电力系统中的应用将会得到更大的发展,为电力系统的安全、稳定和高效运行做出更大的贡献。
综述现代电力电子技术在电力系统中的发展现状
综述现代电力电子技术在电力系统中的发展现状随着电力需求的不断增长和电网的不断发展,现代电力电子技术在电力系统中扮演着重要的角色。
电力电子技术是指应用半导体器件和电子控制技术进行电力的变换、调节和控制的一种技术。
电力电子技术可以提高电力系统的质量、效率、稳定性和可靠性,并为可再生能源的接入和用电设备的智能化提供支持。
在电力系统中,现代电力电子技术的应用主要包括电力变压器、直流输电、无功补偿、电能质量调节以及可再生能源的接入等方面。
电力变压器是电力系统中最常见的电力电子设备之一。
传统的变压器采用线圈来实现电压的变换,但是电力电子变压器通过电力电子器件对电压进行可变的调控,实现电网的电压和电流的调整,并具有较高的调节范围和响应速度。
直流输电技术是通过大容量的直流电缆或输电线路将电能输送到长距离的方式。
现代电力电子技术在直流输电中发挥重要作用,主要包括换流器、逆变器和柔性直流传输设备等。
直流输电具有输电损耗小、电能品质好、抗电磁干扰能力强等优点,可以提高电网的传输能力和稳定性。
无功补偿技术是电力电子技术在电力系统中的另一重要应用领域。
无功功率是传统电力系统中的重要问题之一,它会导致电压波动、电力系统的稳定性下降。
通过引入电力电子器件,可以实现对无功功率的精确调节和补偿,提高电力系统的功率因素和稳定性。
电力电子技术还可以用于电能质量的调节。
电能质量问题主要包括电压骤升骤降、谐波扰动、电压闪变等。
电力电子器件可以通过对电能进行精确调控,实现电压的稳定、变频的控制、电压幅值和频率的调节,提高电力系统的电能质量,减少对负载设备的影响。
随着可再生能源的发展,电力电子技术在可再生能源的接入中发挥着重要的作用。
可再生能源如风能、太阳能等具有不稳定性和间歇性,而电力电子器件可以对这些能源进行有效的调控和转换,使其能够稳定地接入电力系统,并提供可靠的电能供应。
电气工程中电力电子技术的应用现状与前景
电气工程中电力电子技术的应用现状与前景在当今的电气工程领域,电力电子技术犹如一颗璀璨的明星,发挥着至关重要的作用。
它不仅极大地改变了电能的变换、控制和应用方式,还为电气工程的发展带来了前所未有的机遇和挑战。
电力电子技术是一门利用电力电子器件对电能进行变换和控制的技术。
其核心在于通过对半导体器件的精确控制,实现电能形式的转换,如交流到直流、直流到交流、直流到直流以及交流到交流等。
这些转换过程在电气工程的各个领域都有着广泛而深入的应用。
在电力系统中,电力电子技术的应用可谓是无处不在。
高压直流输电(HVDC)是其中的一个典型例子。
传统的交流输电方式在长距离、大容量输电时存在诸多限制,如线路损耗大、稳定性差等。
而 HVDC系统通过电力电子换流器将交流电能转换为直流电能进行传输,有效地降低了线路损耗,提高了输电效率和稳定性。
此外,灵活交流输电系统(FACTS)也是电力电子技术在电力系统中的重要应用。
FACTS装置可以快速、灵活地控制电力系统中的潮流、电压和无功功率,增强电力系统的稳定性和可靠性。
在新能源领域,电力电子技术更是扮演着不可或缺的角色。
随着太阳能、风能等可再生能源的快速发展,其发电的间歇性和波动性给电网的接入和稳定运行带来了巨大挑战。
电力电子变换器作为新能源发电系统与电网之间的接口,能够实现电能的高效变换和稳定控制。
例如,在太阳能光伏发电系统中,光伏逆变器将直流电转换为交流电并接入电网;在风力发电系统中,变流器则负责将风机输出的不稳定电能进行变换和控制,以满足电网的要求。
在工业领域,电力电子技术广泛应用于电机调速、电源供应等方面。
交流调速系统取代了传统的直流调速系统,大大提高了电机的运行效率和控制精度。
同时,各种高性能的电源,如不间断电源(UPS)、开关电源等,也都是基于电力电子技术实现的。
这些电源具有效率高、体积小、重量轻等优点,为工业生产和设备运行提供了可靠的保障。
在交通运输领域,电力电子技术的应用推动了电动汽车和轨道交通的发展。
电力电子转换技术的现状与发展趋势
电力电子转换技术的现状与发展趋势一、概述电力电子转换技术是电力系统中的一项重要技术,其主要任务是实现不同电压、频率、功率和形态的电能之间的互换,其中包括从交流到直流、从直流到交流、从低压到高压、从高压到低压、从自然波形到非正弦波形等转换。
本文将从技术现状、应用领域和发展趋势等方面进行探讨。
二、技术现状1.电力电子转换设备的种类电力电子转换设备的种类较多,其中包括变频器、逆变器、整流器、斩波器、谐波滤波器等。
不同种类的设备在应用领域、工作方式、性能指标等方面有所差异。
2.电力电子转换技术的主要发展方向(1)功率和效率的提升:目前电力电子装置的功率已达到数百千瓦,并且效率已经超过了90%。
未来的发展方向是进一步提高功率密度和效率,实现更为高效的电力转换。
(2)小型化:随着电子技术的发展,电力电子装置的体积和重量正在不断减小。
未来的发展方向是实现更加小型化和轻量化。
(3)可靠性的提高:电力电子装置的可靠性是一个重要的问题。
未来的发展方向是通过改进电路设计、制造工艺和故障诊断技术等手段,提高电力电子装置的可靠性。
3.电力电子转换技术在能源领域的应用(1)风力发电:风力发电是目前比较流行的清洁能源。
电力电子转换技术在风力发电中主要用于控制风力机的输出电压和频率,以及将风力机输出的交流电能转换为直流电能。
(2)太阳能发电:太阳能发电是未来的重要发展方向。
电力电子转换技术在太阳能发电中主要用于控制太阳能电池板的输出电压和电流,并将其输出的直流电能转换为交流电能。
(3)电动汽车:电动汽车是未来汽车发展的一个重要方向。
电力电子转换技术在电动汽车中主要用于将电池输出的直流电能转换为交流电能,控制电机的转速和转矩,以及实现制动能量回馈。
三、发展趋势1.新型器件的应用新型器件如碳化硅(SiC)和氮化镓(GaN)器件等具有更高的工作温度、更高的开关频率和更高的效率,能够替代传统的硅器件。
这些新型器件的应用将会进一步提高电力电子装置的性能指标。
综述现代电力电子技术在电力系统中的发展现状
综述现代电力电子技术在电力系统中的发展现状随着电力系统的不断发展,电力电子技术作为其重要组成部分之一,也在不断创新、发展,为电力系统的稳定运行和优化提供了更加有效的手段。
在过去几十年中,电力电子技术已经发生了很大的变化。
从最早的晶闸管、thyristor等器件,到如今的IGBT、MOSFET等高性能晶体管,电力电子器件的性能和可靠性都得到了提升。
与此同时,电力电子技术在功率变换、电力调节和控制等方面的应用也越来越广泛。
目前,在电力系统中,电力电子技术主要应用于以下几个方面:1. 电力变换和传输:电力电子器件和系统可以将交流电变换成直流电或者将直流电变为交流电,从而实现电力的传输和电网的稳定运行。
2. 电力调节和控制:电力电子技术可以通过控制电力系统中的各种器件,实现对电力信号的调节和控制。
例如,可通过电力发电系统的控制器来管理电力压力、频率等参数。
3. 电力质量控制:通过电力电子技术,可以对电力质量进行调整。
补偿电装置(SVC)可以对电力系统中的电压波动和电力失调等现象进行补偿,从而实现电力的质量控制。
4. 新能源开发:电力电子技术的应用还可促进新能源的开发,如风力和太阳能。
5. 智能电网和微电网:电力电子技术也可以促进智能电网和微电网的发展,提高电网运行的智能性和可靠性。
因此,电力电子技术在电力系统中有着广泛的应用前景。
未来,随着电力自动化程度的不断提高,电力电子技术将继续发挥着重要作用,成为电力系统高效运行和优化的重要手段。
总之,现代电力电子技术在电力系统中的发展已经取得了很大进展,其应用可以改善电力质量、提高电网运行效率、促进新能源开发和智能电网建设等目标的实现。
在未来的发展中,电力电子技术将继续推动电力系统的发展,实现电力工业和社会经济的可持续发展。
电力电子器件的发展现状和技术对策
电力电子器件的发展现状和技术对策电力电子器件是现代电力系统中重要的组成部分,其发展趋势和技术对策对电力系统的安全稳定运行有着重要的影响。
本文将从电力电子器件的发展现状、存在的问题和技术对策三个方面探讨电力电子器件发展的趋势和未来的方向。
一、电力电子器件的发展现状电力电子器件的发展历程可追溯至上世纪50年代,当时电力电子技术刚刚起步,主要应用于电焊、电机调速和弯管等方面。
随着电力电子技术的发展,电力电子器件的种类也逐渐增多,如晶闸管、可控硅、IGBT、MOSFET、SiC等,且技术水平也有了大幅提升。
现在电力电子器件已广泛应用于电网、轨道交通、工业自动化等领域,极大地提升了电力系统的运行效率和质量。
二、电力电子器件存在的问题尽管电力电子器件得到了广泛的应用,但仍然存在一些问题影响着其进一步发展。
除了器件自身的局限性,电力电子器件在实际应用过程中还面临以下问题:1.高温环境下故障率高。
电力电子器件在高温环境下经常会出现损坏、故障等问题,这是由于器件在工作过程中产生了大量的热量,如果散热不良,就会对器件的寿命和性能产生影响。
2.电磁兼容问题。
电力电子器件在工作时会产生较大的电磁干扰,这些干扰会对其他电子设备造成障碍,从而影响电力系统的稳定性和安全性。
3.尺寸限制。
电力电子器件的制造尺寸相对较大,不易满足小型化要求,也难以满足复杂电路对体积的要求。
三、电力电子器件的技术对策为了克服上述问题,提高电力电子器件的性能和稳定性,科研人员提出了多种技术对策:1.材料技术的提高。
制造电力电子器件的材料对器件性能有着至关重要的影响,如SiC(Silicon Carbide) 材料由于其较高的导电性和热稳定性,被广泛应用于电力电子器件的制造中。
2.结构优化。
通过对电路的改进以及器件的结构优化,不仅可以提升器件的性能,还可以降低器件的体积、重量、损耗等。
3.封装技术的提高。
优化封装结构和材料,改善器件的散热和电磁兼容性,提高器件的效率和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学号:*********** 本科学年论文学院物理电子工程学院专业物理学年级2010级姓名王书易论文题目浅谈电力电子技术现状、应用及前景指导教师刘力伟职称成绩2012年5月20日目录错误!未指定书签。
关键词.............................................. 错误!未指定书签。
错误!未指定书签。
1.1电力电子技术的简介........................... 错误!未指定书签。
错误!未指定书签。
2电力电子技术的发展................................ 错误!未指定书签。
错误!未指定书签。
2.2逆变器时代................................... 错误!未指定书签。
错误!未指定书签。
3电力电子技术的应用................................ 错误!未指定书签。
错误!未指定书签。
3.2交流输配电系统(FACTS)........................ 错误!未指定书签。
错误!未指定书签。
3.4分布电力能源................................. 错误!未指定书签。
错误!未指定书签。
4.1标准化....................................... 错误!未指定书签。
错误!未指定书签。
4.3高性能化..................................... 错误!未指定书签。
错误!未指定书签。
4.5无污染化..................................... 错误!未指定书签。
错误!未指定书签。
参考文献............................................ 错误!未指定书签。
电力电子技术现状、应用及前景学生姓名:王书易学号:20105042057学院:物理电子工程学院专业:电子信息指导老师:刘力伟职称:副教授摘要:电力电子技术是目前发展较为迅速的一门学科,是高新技术产业发展的主要基础技术之一,是传统产业改革的重要手段。
本文主要阐述了电力电子技术研究的内容及其应用,并对其发展前景进行了展望。
关键词:电力电子技术;应用;发展前景Power electronic technology,application and Prospect Abstract:Power electronics technology is now developing rapidly in a discipline,the high-tech industry is based mainly on the development of traditional industry,is the important means to reform.This article mainly elaborated the power electronic technology research and application,and its development prospect.Key word:Power:electronic technology Application Development prospect1概述1.1电力电子技术的简介电力电子技术是应用于电力领域的电子技术,它是利用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的新兴学科。
电力电子技术可以理解为功率强大,可供诸如电力系统那样大的电流、高电压场合应用的电子技术,它与传统的电子技术相比,其特殊之处不仅仅是因为它能够通过大电流和承受高电压,而且要考虑在大功率情况下,器件发热、运行效率的问题。
电力电子技术分为电力电子器件制造技术和交流技术(整流、逆变、斩波、变频、变相等)两个分支。
1.2电力电子技术的地位和作用电力电子技术诞生至今已经近50年,特别是近年来更是获得了突飞猛进的发展,已经形成较为完整的科学体系和理论。
各国家学者认为,信息技术的发展造就了信息时代,而实现了“弱电控制强电”电力电子技术的发展是人类社会的第二次电子革命。
在将来工业高度自动化的情况下,计算技术、电力电子技术以及自动控制技术奖成为三种最重要的技术。
2电力电子技术的发展现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。
电力电子技术起始于五十年代末六十年代初的硅整电子产品流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。
八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。
2.1整流器时代大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。
大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。
当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。
2.2逆变器时代七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。
变频调速的关键技术是将直流电逆变为0~100Hz的交流电。
在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器1件的主角。
类似的应用还包括高压直流输出,静止式无功功率动态补偿等。
这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。
2.3变频器时代进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。
将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。
MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。
据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。
新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。
3电力电子技术的应用3.1电力拖动旋转电机是电力市场主要用户,其占有量大概是整个电力系统容量的70%左右,因此,它的发展动态从一定的意义上来说对电力系统电力负荷的性质起着决定性的作用.电厂锅炉系统风机,水泵,蓄水站扬水系统等大型电机的恒速运行,不仅给风量,水量等的调节带来诸多不便,而且在绝大部分工况下还浪费了很大的电能;其它方面比如压缩机,各种控制用伺服电机等等也有很高的调速要求。
随着电力电子技术的不断发展,交流调速的水平取得了巨大的进步,在很多应用场合已经逐步的取代直流调速,尤其是在大功率应用场合更是显出其优势。
与此同时,根据不同的调速特性要求,无换向器直流调速,开关磁阻调速,内馈调速等,也有一些应用的场合。
这些技术的存在和发展都为交流电机的调速运行奠定了技术基础。
目前,低压中,小功率的调速变换器的发展水平相对成熟,国内外有很多电气生产厂家分别有不同型号的产品正在服务于调速领域,除了交流变频调速以外,还有直流调速,磁阻电机调速,直线电机调速,伺服电机调速等等都取得了较好的成果和调速性能3.2交流输配电系统(FACTS)目前,FACTS已经发展成为有十多类产品的大家族,主要分为两大类,一类是针对电网的污染而设计的功率因数校正和谐波治理装置(简称滤波装置),另一类是针对高压直流输电(HVDC)而设计的直流输电装置.滤波装置的发展从最早用机械开关投切电感和电容来吸收或者发出无功,发展到基于现代电力电子技术为基础的滤波装置,例如SVG,STATCOM,SMES,BESS,TCSC,SSSC,UPFC,CSC等等。
值得一提的是,超导技术在近期不断的发展,使得电力有源滤波装置的发展又进入了一个新的阶段,众所周知,在电力电子电路里,如果没有阻性元件存在,那么此电路就没有损耗,所发生的只是储能元件之间的能量交换,而超导,就是利用一定工艺制成的材料,加上一定的外部条件,使得它的电阻值很低。
因此,利用超导储能可以大大减少电路的损耗,同时,超导储能还具备响应快,随意控制有功和无功,并联方便等优点。
HVDC 技术对于大容量远距离输电来说具有很强的经济性,并具备交流输电所没有的优越性.据统计,中国80%的石油,煤炭,天然气,水力能源集中在中西部地区,而80%的经济产值集中在东部及沿海地区,资源产出和资源消耗关系极端不平衡.因此,电力输送成了中国电力系统的一个关键问题之一.到2002年为止,220kV的输电线路达到18.8万公里.虽然,经过多年的改革及发展,我国的电网建设已经比较成熟,但是类似三峡这样中国海南中国科协2004年学术年会电力分会场暨中国电机工程学会2004年学术年会论文集545一些大的发电站的建成并逐渐投产,我国的电网输电能力及输电安全性又面临着新的挑战,直流输电以它优越的特性在三峡向华东电网输电的任务中发挥了重大的角色.目前,FACTS的发展水平还相对较低,虽然有许一些在高压,大容量方面的应用,但是大规模成熟的应用还是以低压,小容量的居多,而且有些产品的性能相对较低,有时候甚至本身就是一个谐波污染源.主要表现在以下几个方面:(1)在现有器件耐压,耐流的水平下,大容量化难以实现(2)控制技术,包括谐波含量的实时分析理论等需要进一步发展(3)设备自身由于控制策略,器件的开关过程等等因素的影响,使得自身就对电网发出谐波污染.3.3应用电源系统应用电源系统主要指的是直流电源,电焊机,脉冲电源,UPS电源,稳压电源等等,这些应用也是电力市场的主要用户之一.以电力系统操作电源为例,从最早的磁饱和式硅整流电源,到后来的可控硅整流,直至现在应用很广的开关式电源,应该说直流电源的发展也经历了几个时代.早期的电源,存在着体积和质量相对大,效率低,噪声大,可靠性能低等缺点.随着电力电子技术的发展,开关电源技术也得到了发展.其高频化工作的特点带来了很多优点:隔离变压器小型化,开关噪声高频化(超越听觉范围),使得开关电源的体积,重量,噪声等大大减少.同时,软开关技术的发展,带有源滤波整流器的发展,N+1冗余的设计思想,都使得应用电源的发展水平不断提升.3.4分布电力能源近年来,小水力,风力,太阳能等再生能源的开发应用越来越广泛.然而,要能够使这些功率小,分布散,电压等级多样的电站并网运行,那么基于电力电子技术的并网研究就显得十分重要.目前国内外已经有很多学者在从事这方面的工作,但是发展的水平还相对较低.4电力电子技术发展前景4.1标准化根据情况,不断完善行业标准,并且在产品研制过程中贯彻执行相关的标准.4.2大容量化高压,大电流的产品的市场需求量比较大,而由于电力电子器件发展水平的限制,这方面的发展不尽如人意.4.3高性能化虽然电力电子技术的发展迅速,并且在许多领域都开始大规模的应用,但是在控制性能的改善上还需要作大量的研究. 4.4高可靠性电力系统安全问题历来就是一个很值得重视的问题,如果电力电子设备本身就不可靠,那么在实际应用中可能会给电力系统的安全运行带来隐患.4.5无污染化电力电子设备对电网的污染已经成了公认的问题.目前,由于电力电子设备发展的落后性,很多设备产生的污染,需要别的设备去进行治理,属于被动型的,主动型(自身治理自身)的发展也成为了一个趋势.5结束语电子电力技术已经渗入到我们日常生活的方方面面,而且给我们带来了极大地方便。