《平行四边形》单元检测
八年级数学下册《平行四边形》单元测试卷(附答案)
八年级数学下册《平行四边形》单元测试卷(附答案)一.选择题(共10小题,满分40分)1.如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则CD=()A.4B.5C.6D.72.如图,在平行四边形ABCD中,AC、BD相交于点O,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为()A.4cm B.5cm C.6cm D.8cm3.下面关于平行四边形的说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.有一组对边平行,一组对角相等的四边形是平行四边形C.有一组对边相等,一组对角相等的四边形是平行四边形D.有两组对角相等的四边形是平行四边形4.如图,在▱ABCD中,EF∥AD,HN∥AB,则图中的平行四边形(不包括四边形ABCD)的个数共有()A.9个B.8个C.6个D.4个5.如图,▱ABCD中,CE平分∠BCD,交AB于点E,AE=3,BE=5,DE=4,则CE的长为()A.B.C.D.6.如图,在▱ABCD中,对角线AC,BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为30,则△ABE的周长为()A.30B.26C.20D.157.如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4B.6C.8D.108.如图,将▱DEBF的对角线EF向两端延长,分别至点A和点C,且使AE=CF,连接AB,BC,AD,CD.求证:四边形ABCD为平行四边形.以下是证明过程,其顺序已被打乱,①∴四边形ABCD为平行四边形;②∵四边形DEBF为平行四边形,∴OD=OB,OE=OF;③连接BD,交AC于点O;④又∵AE=CF,∴AE+OE=CF+OF,即OA=OC.正确的证明步骤是()A.①②③④B.③④②①C.③②④①D.④③②①9.如图,在▱ABCD中,点M,N分别是AD、BC的中点,点O是CM,DN的交点,直线AB分别与CM,DN的延长线交于点P、Q.若▱ABCD的面积为192,则△POQ的面积为()A.72B.144C.208D.21610.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,,则下列结论:①∠CAD=30°②③S平行四边形ABCD=AB•AC④,正确的个数是()A.1B.2C.3D.4二.填空题(共8小题,满分32分)11.如图,已知▱ABCD中,AD⊥BD,AC=10,AD=4,则BD的长是.12.下列条件能判定四边形ABCD是平行四边形的是.A.AB∥CD,AD∥BC B.AD=BC,AB=CDC.AB∥CD,AD=BC D.∠A=∠C,∠B=∠D13.如图,平行四边形ABCD中,对角线AC、BD相交于点O,若AB=2,BC=3,∠ABC=60°,则图中阴影部分的面积是.14.如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为.15.如图,▱ABCD的对角线相交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线长的和.16.如图,在▱ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E、F,若BE=6,则CF=.17.如图,在平行四边形ABCD中,BD是对角线,E,F分别是边AD,BC上不与端点重合的两点,连接EF,下列条件中使得四边形BFDE是平行四边形的是.(多选)A.AE=CFB.EF经过BD的中点C.BE∥DFD.EF⊥AD18.在如图的网格中,以格点A、B、C、D、E、F中的4个点为顶点,你能画出平行四边形的个数为个.三.解答题(共6小题,满分48分)19.如图,在▱ABCD中,AE平分∠BAD交BD于点E,交BC于点M,CF平分∠BCD交BD于点F.(1)求证:AE=CF;(2)若∠ABC=70°,求∠AMB的度数.20.在▱ABCD中,对角线AC⊥AB,BE平分∠ABC交AD于点E,交AC于点F.(1)求证:AE=AB;(2)若AB=3,BC=5,求AF的长.21.如图,在平行四边形ABCD中,点F是AD中点,连接CF并延长交BA的延长线于点E.(1)求证:AB=AE.(2)若BC=2AE,∠E=31°,求∠DAB的度数.22.如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.23.如图,在等边△ABC中,D是BC的中点,以AD为边向左侧作等边△ADE,边ED与AB交于点G.(1)求∠CAE的度数;(2)取AB的中点F,连接CF,EF,求证:四边形CDEF是平行四边形.24.在▱ABCD中,点O是对角线BD的中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE如图1.(1)求证:四边形BEDF是平行四边形;(2)若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、P如图2.①当CD=6.CE=4时,求BE的长;②求证:CD=CH.参考答案与解析一.选择题(共10小题,满分40分)1.解:在▱ABCD中,AD=8;∴BC=AD=8,AD∥BC;∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED;∵DE平分∠ADC;∴∠ADE=∠CDE;∴∠CDE=∠CED;∴CD=CE=5;故选:B.2.解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm;∴OA=OC=AC=5(cm),OB=OD=BD=3(cm);∵∠ODA=90°;∴AD===4(cm);∴BC=AD=4(cm);故选:A.3.解:A、∵对角线互相平分的四边形是平行四边形;∴选项A不符合题意;B、∵有一组对边平行,一组对角相等的四边形是平行四边形;∴选项B不符合题意;C、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形;∴选项C符合题意;D、∵有两组对角相等的四边形是平行四边形;∴选项D不符合题意;故选:C.4.解:设EF与NH交于点O;∵在▱ABCD中,EF∥AD,HN∥AB;∴AD∥EF∥BC,AB∥NH∥CD;则图中的四边BEON、DFOH、DHNC、BEFC、BAHN、AEOH、AEFD、ONCF都是平行四边形,共8个.故选:B.5.解:∵AE=3,BE=5;∴AB=8;∵四边形ABCD是平行四边形;∴CD=AB=8,AB∥CD,AD=BC;∴∠DCE=∠CEB;∵CE平分∠BCD;∴∠DCE=∠BCE;∴∠BCE=∠BEC;∴BC=BE=5=AD;∵AE2+DE2=9+16=25,AD2=25;∴AE2+DE2=AD2;∴∠AED=90°;∵DC∥CD;∴∠CDE=90°;在△DCE中,由勾股定理可得:CE===4;故选:A.6.解:∵四边形ABCD是平行四边形;∴AB=CD,AD=BC,OB=OD;又∵OE⊥BD;∴OE是线段BD的中垂线;∴BE=DE;∴AE+ED=AE+BE;∵▱ABCD的周长为30;∴AB+AD=15;∴△ABE的周长=AB+AE+BE=AB+AD=15;故选:D.7.解:∵平行四边形ABCD;∴AD=BC,AB=CD,OA=OC;∵EO⊥AC;∴AE=EC;∵AB+BC+CD+AD=16;∴AD+DC=8;∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8;故选:C.8.解:连接BD,交AC于点O,如图所示:∵四边形DEBF为平行四边形;∴OD=OB,OE=OF;又∵AE=CF;∴AE+OE=CF+OF;即OA=OC;∴四边形ABCD为平行四边形;即正确的证明步骤是③②④①;故选:C.9.解:连接MN,如图所示:∵四边形ABCD是平行四边形;∴CD∥AB,AD∥BC,AD=BC;∴∠CDQ=∠Q,∠DCB=∠CBQ;∵点M,N分别是AD、BC的中点;∴DM=CN,CN=BN;∴四边形CDMN是平行四边形;在△CDN和△BQN中;;∴△CDN≌△BQN(AAS);同理可得:△CDM≌△P AM;∴△POQ的面积=四边形ABCD的面积+△COD的面积,O是CM的中点;∵▱ABCD的面积为192;∴四边形CDMN的面积是96;∴△CDM的面积为四边形CDMN的面积的一半,即48;∴△COD的面积为24;∴△POQ的面积=四边形ABCD的面积+△COD的面积=192+24=216.故选:D.10.解:①∵AE平分∠BAD;∴∠BAE=∠DAE;∵四边形ABCD是平行四边形;∴AD∥BC,∠ABC=∠ADC=60°;∴∠DAE=∠BEA;∴∠BAE=∠BEA;∴AB=BE=1;∴△ABE是等边三角形;∴AE=BE=1;∵BC=2;∴EC=1;∴AE=EC;∴∠EAC=∠ACE;∵∠AEB=∠EAC+∠ACE=60°;∴∠ACE=30°;∵AD∥BC;∴∠CAD=∠ACE=30°;故①正确;②∵BE=EC,OA=OC;∴OE=AB=,OE∥AB;∴∠EOC=∠BAC=60°+30°=90°;Rt△EOC中,OC=;∵四边形ABCD是平行四边形;∴∠BCD=∠BAD=120°;∴∠ACB=30°;∴∠ACD=90°;Rt△OCD中,OD=;∴BD=2OD=;故②正确;③由②知:∠BAC=90°;∴S平行四边形ABCD=AB•AC;故③正确;④由②知:OE是△ABC的中位线;∴OE=AB;∵AB=BC;∴OE=BC=AD;故④正确;故选:D.二.填空题(共8小题,满分32分)11.解:∵四边形ABCD是平行四边形;∴AO=CO=AC,DO=BO;∵AC=10;∴AO=5;∵AD⊥DB;∴∠ADB=90°,AD=4;∴DO==3;∴BD=6;故答案为:6.12.解:A.根据AB∥CD,AD∥BC能推出四边形ABCD是平行四边形;B.根据AD=BC,AB=CD能推出四边形ABCD是平行四边形;C.根据AB∥CD,AD=BC能得出四边形是等腰梯形,不能推出四边形ABCD是平行四边形D.根据∠A=∠C,∠B=∠D能推出四边形ABCD是平行四边形;故答案为:ABD.13.解:作AM⊥BC于M,如图所示:则∠AMB=90°;∵∠ABC=60°;∴∠BAM=30°;∴BM=AB=×2=1;在Rt△ABM中,AB2=AM2+BM2;∴AM===;∴S平行四边形ABCD=BC•AM=3;∵四边形ABCD是平行四边形;∴AD∥BC,BO=DO;∴∠OBE=∠ODF;在△BOE和△DOF中;;∴△BOE≌△DOF(ASA);∴S△BOE=S△DOF;∴图中阴影部分的面积=▱ABCD的面积=;故答案为:.14.解:∵平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3);∴点D坐标为(8,6);故答案为:(8,6).15.解:∵四边形ABCD是平行四边形;∴AB=CD=5;∵△OCD的周长为23;∴OD+OC=23﹣5=18;∵BD=2DO,AC=2OC;∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36;故答案为:36.16.解:如图,设BE与FC的交点为H,过点A作AM∥FC,交BE与点O;∵四边形ABCD是平行四边形;∴AD∥BC,AB∥CD;∴∠ABC+∠DCB+180°;∵BE平分∠ABC,CF平分∠BCD;∴∠ABE=∠EBC,∠BCF=∠DCF;∴∠CBE+∠BCF=90°;∴∠BHC=90°;∵AM∥CF;∴∠AOE=∠BHC=90°;∵AD∥BC;∴∠AEB=∠EBC=∠ABE;∴AB=AE=5;又∵∠AOE=90°;∴BO=OE=3;∴AO===4;在△ABO和△MBO中;;∴△ABO≌△MBO(ASA);∴AO=OM=4;∴AM=8;∵AD∥BC,AM∥CF;∴四边形AMCF是平行四边形;∴CF=AM=8;故答案为:8.17.解:∵四边形ABCD是平行四边形;∴AD∥BC;∵AE=CF,AD=BC;∴DE=BF;∴四边形BFDE是平行四边形;故A选项符合题意;若EF经过BD的中点O;∵AD∥BC;∴∠EDO=∠FBO;在△BOF和△DOE中;;∴△BOF≌△DOE(ASA);∴BF=DE;∴四边形BFDE是平行四边形;故B选项符合题意;∵DE∥BF,BE∥DF;∴四边形BFDE是平行四边形;故C选项符合题意;由EF⊥AD不能判定四边形BFDE是平行四边形;故D选项不符合题意;故答案为:A,B,C.18.解:如图所示:图中平行四边形有▱ABEC,▱BDEC,▱BEFC共3个.故答案为:3.三.解答题(共6小题,满分48分)19.(1)证明:∵四边形ABCD是平行四边形;∴AB∥CD,AB=CD,∠BAD=∠BCD∴∠ABE=∠CDF;∵AE平分∠BAD,CF平分∠BCD;∴∠BAE=∠DCF;∴△ABE≌△CDF(ASA);∴AE=CF;(2)∵四边形ABCD是平行四边形;∴AD∥BC,∠BAD+∠ABC=180°;∵∠ABC=70°;∴∠BAD=110°;∵AM平分∠BAD,AD∥BC;∴∠AMB=∠DAM=55°.20.(1)证明:∵四边形ABCD为平行四边形;∴∠AEB=∠EBC;∵BE平分∠ABC;∴∠ABE=∠EBC;∴∠ABE=∠AEB;∴AE=AB;(2)解:AC⊥AB,AB=3,BC=5;∴AC=;过F点作FH⊥BC,垂足为H;∵BE平分∠ABC,AC⊥AB;∴AF=FH;∵S△ABC=S△ABF+S△BFC;∴AB•AC=AB•AF+BC•FH;即;∴AF=.21.(1)证明:∵四边形ABCD是平行四边形;∴AB=CD,AB∥CD,BC=AD;∴∠E=∠DCF;∵点F是AD中点;∴AF=DF;∵∠EF A=∠CFD;∴△AFE≌△DFC(AAS);∴CD=AE;∴AB=AE;(2)解:由(1)可得AF=DF,BC=AD;∵BC=2AE;∵∠E=31°;∴∠AFE=∠E=31°;∴∠DAB=2∠E=62°.22.证明:(1)∵BE=CF;∴BE﹣CE=CF﹣CE;即BC=EF;又∵AC⊥BC于点C,DF⊥EF于点F;∴∠ACB=∠DFE=90°;在△ABC和△DEF中;;∴△ABC≌△DEF(SAS);(2)由(1)知△ABC≌△DEF;∴AB=DE,∠ABC=∠DEF;∴AB∥DE;∴四边形ABED是平行四边形.23.(1)解:∵△ABC是等边三角形,D是BC的中点;∴AD⊥BC,∠BAC=60°;∴∠DAC=∠BAC=30°;∵△AED是等边三角形;∴∠EAD=60°;∴∠CAE=∠EAD+∠DAC=90°;(2)证明:∵F是等边△ABC边AB的中点,D是边BC的中点;∴CF=AD,CF⊥AB;∵△AED是等边三角形;∴AD=ED;∴CF=ED;∵∠BAD=∠BAC=30°,∠EAG=∠EAD=30°;∴ED⊥AB;∴CF∥ED;∵CF=ED;∴四边形CDEF是平行四边形.24.(1)证明:∵在平行四边形ABCD中,点O是对角线BD的中点;∴AD∥BC,BO=DO;∴∠ADB=∠CBD;在△BOE与△DOF中;;∴△BOE≌△DOF(ASA);∴DF=BE且DF∥BE;∴四边形BEDF是平行四边形;(2)①解:如图,过点D作DN⊥EC于点N;∵DE=DC=6,DN⊥EC,CE=4;∴EN=CN=2;∴DN===4;∵∠DBC=45°,DN⊥BC;∴∠DBC=∠BDN=45°;∴DN=BN=4;∴BE=BN﹣EN=4;②证明:∵DN⊥EC,CG⊥DE;∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°;∴∠EDN=∠ECG;∵DE=DC,DN⊥EC;∴∠EDN=∠CDN;∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN;∴∠CDB=∠DHC;∴CD=CH.。
平行四边形单元检测题及答案
BC D A P 平行四边形检测题一、选择题1. 能判定四边形ABCD 为平行四边形的条件是( ). (A )AB ∥CD ,AD=BC; (B )∠A=∠B ,∠C=∠D; (C )AB=CD ,AD=BC; (D )AB=AD ,CB=CD 2.顺次连结四边形各边中点所得的四边形必定是( ) (A )菱形(B )矩形(C )正方形 (D )平行四边形3.在□ABCD 中,∠C 、∠D 的度数之比为3∶1,则 ∠A 等于( )(A )45° (B )135° (C )50° (D )130°4.如图将四个全等的矩形分别等分成四个全等的小矩形,其中阴影部分面积相等的是( )A.只有①和②相等B.只有③和④相等C.只有①和④相等D.①和②,③和④分别相等5、菱形ABCD 中对角线相交于点O ,且OE ⊥AB , 若AC=8,BD=6,则OE 的长是( )(A )2.5 (B )5 (C )2.4 (D )不清楚6.菱形ABCD ,过点A 作BD 的平行线交的延长线于点E ,则下列式子不成立...的是( ) A. DE DA = B. CE BD = C. 90=∠EAC ° D. E ABC ∠=∠27.已知四边形ABCD 是平行四边形,下列结论中不正确的是 ( )A 、当AB=BC 时,它是菱形B 、当AC ⊥BD 时,它是菱形 C 、当∠ABC=90°时它是矩D 、当AC=BD 时,它是正方形8. 如图,已知S ABCD =64,E 、F 分别为AB 、AD 的中点,则S △CEF 是( )A .32B .28C .24D .409..如图,在边长为2的正方形中,为边的 中点,延长至点,使,以为边作正方形,点在边上,则 的长为() B.10.点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP =EF ;②PD = 2EC ;③AP ⊥EF ;④∠PFE =∠BAP ;⑤△APD 一定是等腰三角形..其中正确结论的是( )A 2个B 3个C 4个D 5个二、填空题!11.如图,平行四边形ABCD 中,E ,F 分别为AD ,BC 边上的一点.若再增加一个条件 ,就可得BE =DF .12.如图,矩形ABCD 中,MN ∥AD ,PQ ∥AB ,则S 1与S 2的大小关系是_____ 13.(2015•江苏泰州)如图, 矩形ABCD 中,AB =8,BC =6,P 为AD 上一点, 将△ABP 沿BP 翻折至△EBP , PE 与CD 相交于点O ,且OE =OD ,则AP 的长为______14.菱形的两条对角线分别长10cm ,24cm ,则菱形的边长为__ ___ cm ,面积为__ ____ cm 2.15.如图,已知E 、F 、G 、H 分别为菱形ABCD 四边的中点,AB =6cm ,∠ABC =60°,则四边形EFGH 的面积 为 cm 216.已知P 是正方形ABCD 对角线BD 上一点,且BP = BC ,则∠ACP 度数是 .17.如图,两个全等菱形的边长为1厘米,一只蚂蚁由点A 开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2014厘米后停下,则这只蚂蚁停在 点.18(2013•内江)已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM+PN 的最小值= .ABCD M AD MD E ME MC =DE DEFG G CD DG 31355151① ② ③ ④H GA CB D EF 三、解答题19.工人师傅做铝合金窗框分下面三个步骤进行: (1)先截出两对符合规格的铝合金窗料,如图(1),使AB=CD,EF=CH ;(2)摆成如图(2)的四边形,这时窗框的形状是 形,根据是_________________ ______ _; (3)将直角尺靠紧窗框的一个角,如图(3),调整 窗框的边框,当直角尺的两条直角边与窗框无缝隙时,如图(4),说明窗框合格,这时窗框是____形,根据的数学道理是_________________ ____ 20.如图,平行四边形ABCD 中,E 、F 分别在AD 、BC 上,AE=CF.求证:EF,GH 互相平分.21.如图,已知四边形ABCD 是矩形,对角线AC 、BD 交于点O ,CE ∥BD , DE ∥AC ,CE 与DE 交于点E .请探索DC 与OE 的位置关系,并说明理由.22.在劳技课上,老师请同学们在一张长为17cm ,宽16cm 的长方形纸板上,剪下一个腰长为10cm 的等腰三角形(•要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形的边长上).•请你帮助同学们计算剪下的等腰三角形的面积.23.已知:如图,四边形ABCD 是菱形,过AB 的中点E 作AC 的垂线EF ,交AD 于点M ,交CD 的延长线于点F .(1)求证:AM=DM ;(2)若DF=2,求菱形ABCD 的周长.24.已知正方形ABCD 的边长为a ,两条对角线AC 、BD 相交于点O ,P 是射线AB 上任意一点,过P 点分别做直线AC 、BD 的垂线PE 、PF ,垂足为E 、F .(1)如图1,当P点在线段AB 上时,求PE +PF 的值;(2)如图2,当P点在线段AB的延长线上时,求P E-PF的值.25.如图1,四边形ABCD、DEFG都是正方形,连接AE、CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想;(3)将正方形ABCD,绕点D逆时针旋转一定的角度(小于90度),如图2,请猜想AE与CG之间的关系,并证明你的猜想.26.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.⑴说明四边形ACEF是平行四边形;⑵当∠B满足什么条件时,四边形ACEF是菱形,说明理由(3)四边形ACEF有可能是正方形吗?为什么?常量与变量的训练1.圆周长公式C=2πR中,下列说法正确的是( )(A)π、R是变量,2为常量(B)C、R为变量,2、π为常量(C)R为变量,2、π、C为常量(D)C为变量,2、π、R为常量2、一辆汽车以40千米/小时的速度行驶,写出行驶路程s(千米)与行驶时间t(时)的关系式。
平行四边形单元测试卷
平行四边形单元测试卷一、选择题(每题2分,共10分)1. 平行四边形的对边具有什么性质?A. 相等B. 平行C. 垂直D. 以上都不是2. 下列哪个不是平行四边形的性质?A. 对角线互相平分B. 对边相等C. 对角相等D. 内角和为360°3. 平行四边形的面积如何计算?A. 底乘高B. 对角线乘积的一半C. 周长除以4D. 以上都不是4. 如果一个平行四边形的两组对边分别相等,那么这个平行四边形是:A. 矩形B. 菱形C. 梯形D. 不能确定5. 平行四边形的对角线将平行四边形分成:A. 两个三角形B. 两个梯形C. 两个矩形D. 四个小平行四边形二、填空题(每空1分,共10分)1. 平行四边形的对角线_______。
2. 矩形的四个角都是_______。
3. 菱形的对角线_______。
4. 平行四边形的面积公式为_______。
5. 如果一个平行四边形的底为5厘米,高为3厘米,那么它的面积是_______平方厘米。
三、判断题(每题1分,共5分)1. 所有平行四边形都是矩形。
()2. 菱形的四条边都是相等的。
()3. 平行四边形的对角线一定垂直。
()4. 矩形和菱形都是特殊的平行四边形。
()5. 梯形不是平行四边形。
()四、简答题(每题5分,共10分)1. 请简述平行四边形和矩形的区别。
2. 请解释为什么平行四边形的对角线互相平分。
五、计算题(每题10分,共20分)1. 一个平行四边形的底是8厘米,高是4厘米,请计算它的面积。
2. 如果一个平行四边形的对角线长度分别为10厘米和12厘米,且它们相交于中点,求这个平行四边形的面积。
六、解答题(每题15分,共15分)1. 一个平行四边形的对角线互相垂直,且长度分别为12厘米和16厘米。
如果这个平行四边形的面积是96平方厘米,请求出它的底和高。
答案:一、选择题:1-5 BACAD二、填空题:1. 互相平分 2. 直角 3. 垂直且互相平分 4. 底×高 5.15三、判断题:1-5 ×√×√×四、简答题:1. 平行四边形的对边平行且相等,而矩形的四个角都是直角,且对角线相等。
北师大版八下第六章《平行四边形》单元测试题(含答案)
第六章平行四边形时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC 的周长为()A.13 B.17 C.20 D.262.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6 B.12 C.20 D.243.如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE4.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.10 5.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A.4 B.8 C.2D.46.如图,▱ABCD中,AC⊥AB,O为对角线AC的中点,点E为AD中点,并且OF⊥BC,∠D=53°,则∠FOE的度数是()A.37°B.53°C.127°D.143°第6题图第7题图7.小敏不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,她带了两块碎玻璃,其编号应该是()A.①②B.①④C.③④D.②③8.如图,AD,AE分别是△ABC的角平分线和中线,CG⊥AD于F,交AB于G,连接EF.若EF=1,AC=6,则AB的长为()A.10 B.9 C.8 D.6第8题图第10题图9.马小虎在计算一个多边形的内角和时,由于粗心少算了两个内角,其和等于830°,则该多边形的边数是()A.7 B.8 C.7或8 D.无法确定10.如图,在△ABC中,DE∥AB,FD∥BC,EF∥AC,则下列说法:①图中共有3个平行四边形;②AF=BF,CE=BE,AD=CD;③EF=DE=DF;④图中共有3对全等三角形.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.已知一个正多边形的一个外角为36°,则这个正多边形的边数是________.12.如图,在四边形ABCD中,对角线AC,BD交于点O,AD∥BC,请添加一个条件:____________,使四边形ABCD为平行四边形(不添加任何辅助线).第12题图第13题图13.如图,P为▱ABCD的边CD上一点,若S▱ABCD=20cm2,则S△APB=________cm2.14.如图,在▱ABCD中,对角线AC,BD交于点O,AD=10,△BOC的周长为21,则AC+BD=________.第14题图第15题图15.如图,在平行四边形ABCD中,AB=2AD,∠A=60°,E,F分别是AB,CD的中点,且EF=1cm,那么对角线BD=________cm.16.如图,一块四边形绿化园地的四个角都做有半径为1m的圆形喷水池,则这四个喷水池占去的绿化园地的面积为________.第16题图第17题图17.如图,在▱ABCD中,AE⊥BC于点E,且DE平分∠CD A.若BE∶EC=1∶2,则∠BCD 的度数为________.18.如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为________(n为正整数).三、解答题(共66分)19.(8分)如图,四边形ABCD是平行四边形,延长BA至点E,使AE+CD=AD,连接CE.求证:CE平分∠BC D.20.(8分)如图,已知四边形ABCD中,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形.21.(8分)一个多边形的内角和与某个外角的度数的总和为1350°,试求此多边形的边数及此外角的度数.22.(10分)如图,△ABC中,BD平分∠ABC,AD⊥BD,D为垂足,E为AC的中点.求证:(1)DE∥BC;(2)DE=12(BC-AB).23.(10分)如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=M C.(1)求证:CD=AN;(2)若AC⊥DN,∠CAN=30°,MN=1,求四边形ADCN的面积.24.(10分)如图,平行四边形ABCD 中,对角线AC ,BD 相交于点O ,BD =2AD ,E ,F ,G 分别是OC ,OD ,AB 的中点.求证:(1)BE ⊥AC ;(2)EG =EF (提示:直角三角形中,斜边上的中线等于斜边的一半).25.(12分)如图,在▱ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE =12BC ,连接DE ,CF .(1)求证:四边形CEDF 是平行四边形; (2)若AB =4,AD =6,∠B =60°,求DE 的长.参考答案BDBBD DDCCB11.10 12.AD =BC (答案不唯一) 13.10 14.22 15.3 16.πm 2 17.120° 18.12n19.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,AD =BC ,∴∠E =∠DCE ,AE +CD =AE +AB =BE .(3分)又∵AE +CD =AD ,∴BE =AD =BC ,∴∠E =∠BCE ,(6分)∴∠DCE =∠BCE ,即CE 平分∠BC D.(8分)20.证明:∵∠A +∠B +∠C +∠D =360°,∠A =∠C ,∠B =∠D ,∴∠A +∠B =180°.(3分)又∵∠A =∠C ,∴∠B +∠C =180°,∴AD ∥BC ,AB ∥CD ,(6分)∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形).(8分)21.解:∵1350°=180°×7+90°,(2分)又∵多边形的一个外角大于0°小于180°,∴多边形的这一外角的度数为90°,(5分)多边形的边数为7+2=9.(8分)22.证明:(1)延长AD 交BC 于F .∵BD 平分∠ABC ,AD ⊥BD ,∴AB =BF ,AD =DF .(3分)又∵E 为AC 的中点,∴DE 是△ACF 的中位线,∴DE ∥B C.(5分)(2)∵AB =BF ,∴FC =BC -A B.(7分)∵DE 是△ACF 的中位线,∴DE =12FC =12(BC -AB ).(10分)23.(1)证明:∵CN ∥AB ,∴∠1=∠2.在△AMD 和△CMN 中,⎩⎪⎨⎪⎧∠1=∠2,MA =MC ,∠AMD =∠CMN ,∴△AMD ≌△CMN (ASA ),∴AD =CN .又∵AD ∥CN ,(3分)∴四边形ADCN 是平行四边形,∴CD =AN .(5分)(2)解:∵AC ⊥DN ,∠CAN =30°,MN =1,∴AN =2MN =2,∴AM =AN 2-MN 2= 3.(7分)∴S △AMN =12AM ·MN =12×3×1=32.(8分)∵四边形ADCN 是平行四边形,∴S四边形ADCN=4S △AMN =2 3.(10分)24.证明:(1)∵四边形ABCD 为平行四边形,∴AD =BC ,BD =2BO .(1分)又∵BD =2AD ,∴BO =AD =B C.(3分)∵E 为OC 的中点,∴BE ⊥A C.(5分)(2)由(1)知BE ⊥AC ,∴△ABE 为直角三角形,AB 为斜边.在Rt △ABE 中,G 为AB 的中点,∴EG =12A B.(7分)又∵E ,F 分别为OC ,OD 的中点,∴EF =12C D.(8分)∵四边形ABCD是平行四边形,∴AB =CD ,∴EG =EF .(10分)25.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =B C.(1分)∵F 是AD 的中点,∴DF =12A D.又∵CE =12BC ,∴DF =CE .(4分)又∵DF ∥CE ,∴四边形CEDF 是平行四边形.(5分)(2)解:过点D作DH⊥BE于点H.(6分)在▱ABCD中,∵AB∥CD,∠B=60°,∴∠DCE =60°,∴∠CDH=30°.(7分)∵AB=4,∴CD=AB=4,∴CH=2,DH=DC2-CH2=2 3.(9分)在▱CEDF中,CE=DF=12AD=3,则EH=CE-CH=1.(10分)∴在Rt△DHE中,由勾股定理得DE=DH2+HE2=(23)2+1=13.(12分) 。
八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版)
八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版) 班级:___________姓名:___________考号:_____________A.5B.10C.D.25则ABC的周长是()55A.AB∥CD,AB=CD B.AB∥CD,AD∥BCA.①②B.①③C.②③D.①②③A .B .C .D .①BE⊥AC二、填空题13.已知四边形ABCD ,点O 是对角线AC 与BD 的交点,且OA OC =,请再添加一个条件,使得四边形ABCD 成为平行四边形,那么添加的条件可以是_____________.(用数学符号语言表达)14.如图,线段AB ⊥BC ,以C 为圆心,BA 为半径画弧,然后再以A 为圆心,BC 为半径画弧,两弧交于点D ,则四边形ABCD 是矩形,其依据是 _____.15.如图,在ABC ∆中,点D ,E 分别是AB ,AC 的中点,连结BE ,若6AE =,DE=5,∠BEC=90°,则BE =______.16.如图,在正方形ABCD中,E是BC边上一点,连接AE,AB=4CE,F是AE上一点,射线BF与正方形的边⊥交BC于点17.如图,在矩形ABCD中,AB=4,45BD=对角线AC、BD相交于点O,过点O作OE AC18.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,则线段BE的长为_____.三、解答题19.如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线分别交BC 、AD 于点E 、F ,G 、H 分别是OB 、OD 的中点.求证:(1)OE =OF ;(2)四边形GEHF 是平行四边形.20.如图,E ,F 是▱ABCD 的对角线AC 上的两点,且AF =CE .求证:(1)△ADE ≌△CBF ;(2)DE ∥BF .21.如图,在平行四边形ABCD 中(1)若点E 、F 是AD 、BC 的中点,连接BE 、DF ,求证BE DF =;(2)若DF 平分ADC ∠且交边BC 于点F ,如果5AB =,BC=8,试求线段BF 的长.(1)求证:OE CB =;(1)求证:180ABO ACO ∠+∠=︒;1.C2.D3.D4.D5.A6.C7.C360 BAC ∠=ABO ∴∠+(2)线段之间的数量关系是过点O 作AOC ∴∠+∠+ABO ∠∠ABO ∴∠=BOC ∠=90AOC ∠∴AOB ∠∴∴四边形是正方形OB OC ∴=在ABO 和FCO 中ABO FCO∴≅∴AO FO=,AB=CFAOF∴是等腰直角三角形∴=AF AO2CF AC AO∴+=2∴+=AB AC AO2。
《第18章 平行四边形》单元测试(2)
《第18章平行四边形》单元测试(2)一.选择题(共10小题)1.如图,△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点D在AB上,点E在AC上,分别过B、E作AC、BC的平行线,两平行线交于点H,已知CD=4,则BE长度是()A.4B.4C.4D.52.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1,按这样的规律进行下去,第2011个正方形(正方形ABCD看作第1个)的面积为()A.5()2010B.5()2010C.5()2011D.5()2011 3.我们给出如下定义,顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图,点P是四边形ABCD内一点,且满足P A=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,则中点四边形EFGH的形状是()A.平行四边形B.矩形C.菱形D.正方形4.如图,菱形ABCD的边长为2,∠B=45°,AE⊥BC,则这个菱形的面积是()A.4B.8C.D.5.如图,把一张长方形纸片ABCD沿对角线BD折叠,点C的对应点为E,BE与AD相交于点F,则下列结论不一定成立的是()A.△BFD是等腰三角形B.△ABF≌△EDFC.BE平分∠ABDD.折叠后的图形是轴对称图形6.如图,平行四边形ABCD中,AC、BD交于点O,分别以点A和点C为圆心,大于AC 的长为半径作弧,两弧相交于M、N两点,作直线MN,交AB于点E,交CD于点F,连接CE,若AD=3,CD=4,则△BCE的周长为()A.7B.6C.5D.37.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD 于点E,若AB=4,EF=1,则BC长为()A.7B.8C.9D.108.下列四边形中,对角线互相垂直的是()A.B.C.D.9.Rt△ABC中,∠C=90°,锐角为30°,最短边长为5cm,则最长边上的中线是()A.5cm B.15cm C.10cm D.2.5cm10.如图,矩形ABCD的周长是16,DE=2,△FEC是等腰三角形,∠FEC=90°,则AE 的长是()A.3B.4C.5D.6二.填空题(共8小题)11.如图,在边长为6的菱形ABCD中,∠ABC=30°,P为BC上方一点,且S△PBC=S,则PB+PC的最小值为.菱形ABCD12.若菱形的周长为16,高为2,则该菱形两邻角的度数分别是.13.如图,直线m过正方形ABCD的顶点B,点A,C到直线m的距离分别是1和3,则正方形的边长是.14.如图,正方形ABCD的边长为1,顺次连接正方形ABCD四边的中点得到第一个正方形A1B1C1D1,由顺次连接正方形A1B1C1D1四边的中点得到第二个正方形A2B2C2D2…,以此类推,则第六个正方形A6B6C6D6周长是.15.如图,在△ABC中,∠C=90°,AB=13,AD是△ABC的一条角平分线,E为AB的中点,连接DE,若CD=,则△AED的面积为.16.如图,将一张矩形纸片沿EF折叠后,点D、C分别落在点D′,C′的位置,若∠1=40°,则∠D′EF=.17.如图,在▱ABCD中,AC=BC,∠CAD=30°,则∠D的度数为.18.已知直角坐标系中,菱形ABCD的顶点A、B、C的坐标分别是A(﹣2,0),B(0,﹣4),C(2,0),则点D的坐标是三.解答题(共9小题)19.如图所示,把四个相同的直角三角形拼成正方形,直角三角形两直角边长分别为24和7,通过面积计算该直角三角形的斜边长.20.如图,E,F是四边形ABCD的对角线BD的三等分点,CE,CF的延长线分别平分AB,AD,交点分别为点G,H.(1)求证:CE=2EG;(2)求证:四边形ABCD是平行四边形.21.2022年新版的《义务教育数学课程标准》、重新将梯形的概念作为需要理解的内容,如图所示:四边形ABCD为梯形,AB∥CD,E为AD的中点、解答下列问题:(1)作图:过点E作EF∥AB、交BC于点F;(2)EF和CD的位置关系如何?请写出简单的推理过程(推理的依据要写出来);(3)用刻变尺量一下BF和CF的长度,请你大胆猜想,直接写出BF和CF的数量关系;(4)用刻度尺量一下CD、EF、AB的长度,请你大胆猜想,直接写出CD、EF、AB这三条线段的数量关系.22.如图,将边长为6的正三角形ABC沿着MN折叠,使点A落在BC边上的D点处.(1)当折痕MN为△ABC的中位线时,求BD的长;(2)试说明△BDM与△CND是否相似;(3)若AM:AN=2:3时,求S△ABD:S△ADC.23.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是AO,CO的中点,连结BE,DF.(1)求证:BE=DF.(2)若BD=2AB=8,BC=6,求AC的长.24.矩形ABCD中,AB=3,AD=4,△ABC沿着AC翻折得到△AB'C,B'C交AD于点E,连接B'D.(1)求证:B'D∥AC;(2)求线段AE的长,直接写出线段B'D的长.25.图1、图2分别是7×6的网格,网格中的每个小正方形的边长均为1.请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.(1)在图1中画一个周长为8的菱形ABCD(非正方形);(2)在图2中画出一个面积为9,且∠MNP=45°的▱MNPQ,并直接写出▱MNPQ较长的对角线的长度.26.下面是小明设计的“作矩形ABCD”的尺规作图过程:已知:在Rt△ABC中,ABC=90°.求作:矩形ABCD.作法:如图,①分别以点A,C为圆心、大于AC的长为半径作弧,两弧相交于E,F两点;②作直线EF,交AC于点P;③连接BP并延长至点D,使得PD=BP;④连接AD,CD.则四边形ABCD是矩形.根据小明设计的尺规作图过程,解决以下问题:(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接AE,CE,AF,CF.∵AE=CE,AF=CF,∴EF是线段AC的垂直平分线.∴AP=.又∵BP=DP,∴四边形ABCD是平行四边形()(填推理的依据).∵∠ABC=90°,∴四边形ABCD是矩形()(填推理的依据).27.[定义]:如果四边形的某条对角线平分一组对角,那么把这条对角线叫做“美妙线”,该四边形叫做“美妙四边形”.如图,在四边形ABDC中,对角线BC平分∠ACD和∠ABD,那么对角线BC叫“美妙线”,四边形ABDC就称为“美妙四边形”.[问题]:(1)下列四边形:平行四边形,矩形,菱形,正方形,其中是“美妙四边形”的是;(填写名称)(2)四边形ABCD是“美妙四边形”,AB=2,∠BAD=60°,∠ABC=90°,求美妙四边形ABCD的面积.(请画出图形,并写出解答过程)。
平行四边形单元测试题含答案
平行四边形单元测试题含答案Chapter 18 Test on "Parallelogram"I。
Multiple Choice (4 points x 8)1.Which of the following is not a characteristic of a parallelogram。
A。
Diagonals are equalB。
Two sets of opposite angles are equalC。
Two sets of opposite sides are parallelD。
The sum of r angles is 360 degrees2.What is the maximum number of parallelograms that XXX-isosceles triangles that XXX。
A。
1B。
2C。
3D。
43.XXX:A。
AcuteB。
RightC。
ObtuseD。
Cannot be determined4.In parallelogram ABCD。
XXX can be:A。
2:3:4:5B。
2:2:3:3C。
2:3:2:3D。
2:3:3:25.If one side of parallelogram ABCD is 10 cm。
what can be the lengths of the two diagonals。
A。
24 and 12B。
26 and 4C。
24 and 4D。
12 and 86.In parallelogram ABCD (as shown in the figure)。
P is an arbitrary point inside it。
and the areas of triangles ABP。
BCP。
CDP。
and DAP are S1.S2.S3.and S4.respectively。
Which of the following must be true。
2022年人教版八年级下《第十八章 平行四边形》单元检测题2(18.1)
第十八章平行四边形周周测2一选择题1.两张对边平行的纸条,随意交叠放在一起,转动其中一张,重合的局部构成一个四边形,这个四边形是〔〕.A.矩形B.平行四边形C.菱形D.正方形2.如图,在平行四边形ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有〔〕.A.4个B.5个C.8个D.9个3.将一张平行四边形纸片折一次,使得折痕平分这个平行四边形的面积,•那么这样的折纸方法有〔〕.A.1种B.2种C.3种D.无数种4.如图,将平行四边形ABCD的一边BC延长至点E,假设∠A=1100,那么∠1=〔〕.A.110°B.35°C.70°D.55°5.如图,在平行四边形ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F,那么以下结论不一定成立的是〔〕A.∠E=∠CDFB.BE=CDC.∠ADE=∠BFED.BE=2CF6.如下图,在平行四边形ABCD中,对角线AC,BD交于点O,图中全等三角形有〔〕.A.5对B.4对C.3对D.2对7.如下图,在平行四边形ABCD中,对角线AC,BC相交于点O,△BOC与△AOB的周长之差为3,平行四边形ABCD的周长为26,那么BC的长度为〔〕.A.5B.6C.7D.88.如下图,平行四边形ABCD中,AB=4,BC=5,对角线相交于点O,过点O的直线分别交AD,BC于点E,F,且OE=,那么四边形EFCD的周长为〔〕.A.10B.12C.14D.169.以A.B.C三点为平行四边形的三个顶点,作形状不同的平行四边形,一共可以作〔〕.A.0个或3个B.2个C.3个D.4个10.如图,在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,∠E+∠F等于〔〕.A.1100B.300C.500D.70011.如图,在平行四边形ABCD中,AD=8 cm,AB=6 cm,DE平分∠ADC交BC边于点E,那么BE等于〔〕.A.2cmB.4cmC.6cmD.8cm12.如图,在平行四边形ABCD中,AB=4cm,AD=7cm,∠ABC的平分线交AD于点E ,交CD的延长线于点F,那么DF=〔〕.A.3cmB.2cmC.4cmD.13.如图,平行四边形ABCD中,对角线AC和BD相交于点O,假设AC=8,AB=6,BD =m,那么m的取范围是〔〕.A.2<m<10B.2<m<14C.6<m<8D.4<m<2014.如图,平行四边形ABCD的对角线AC与BD相交于点O ,AB⊥AC.假设AB=4,AC =6,那么BD的长是〔〕.A.8B.9C.10D.1115.如下图,在平行四边形ABCD中,对角线AC与BD相交于点O,M,N在对角线AC上,且AM=CN,那么BM与DN的关系是〔〕.A.BM∥DNB.BM∥DN,BM=DNC.BM=DND.没有关系二填空题16.在平行四边形ABCD中,AB=6 cm,BC=8 cm,那么平行四边形ABCD的周长为___________ cm.17.平行四边形ABCD一内角的平分线与边相交并把这条边分成5cm,7cm的两条线段,那么平行四边形ABCD的周长是________cm.18.点O为平行四边形ABCD两对角线的交点,且S△AOB=1,那么S□ABCD =________.19.如图, ABCD中,E. F分别为BC. AD边上的点,要使BF=DE,需添加一个条件________.(任意添一条件满足BF=DE即可〕20.如图,在 ABCD中,BE⊥CD,BF⊥AD,垂足分别为E,F,CE=2,DF=1,∠EBF=60°,那么 ABCD的周长为________.三解答题21.如图,□ABCD的对角线AC ,BD交于点O ,E ,F分别是OA ,OC的中点.(1)求证:OE=OF;(2)求证:DE∥BF .22.如图,AD∥BC ,AE∥CD ,BD平分∠ABC ,求证:AB=CE .23.如下图,分别过△ABC的顶点A ,B ,C作对边BC ,A C ,A B的平行线,交点分别为E , F ,D .(1)请找出图中所有的平行四边形;(2)求证:2BC=DE .24.在一次数学探究活动中,小强用两条直线把□ABCD分割成四个局部,使含有一组对顶角的两个图形全等.(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线共有________ 组;(2)请在以下图的三个平行四边形中画出满足小强分割的直线;(3)由上述实验操作过程,你发现所画的两条直线有什么规律?25.:如图〔a〕,□ABCD的对角线AC.BD相交于点O ,EF过点O与AB.CD分别相交于点E.F .求证:OE=OF ,AE=CF ,BE=DF .假设上图中的条件都不变,将EF 转动到图b的位置,那么上述结论是否成立?假设将EF向两方延长与平行四边形的两对边的延长线分别相交〔图c和图d〕,结论是否成立,说明你的理由.第十八章平行四边形周周测2试题答案1.B2.D3.D4.C5.D6.B7.D8.B9.A 10.D 11.A 12.A 13.D 14.C 15.B16.28 17.34或38 18.419.AF=CE,BE=DF,BF∥CE,∠ABF=∠CDE,∠AFB=∠CED等〔答案不唯一〕20.2021.〔1〕证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E,F分别是OA,OC的中点,∴OE= OA,OF= OC,∴OE=OF;〔2〕证明:∵在△DEO与△BFO中,OE=OF,∠BOE=∠DOF,BO=DO ,∴△BEO≌△DFO〔SAS〕,∴∠DEO=∠BFO,∴DE∥BF.22.证明:∵AD∥BC ,∴∠DBC=∠ADB.又∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD.∵AD∥BC,AE∥CD ,∴四边形ADCE为平行四边形,∴AD=CE,∴AB=CE.23.〔1〕解答:因为BC∥AD,AB∥CD,所以四边形ABCD是平行四边形;AC∥BE,BC∥AE,所以四边形EBCA是平行四边形;AB∥CF,AC∥BF,所以四边形ABFC是平行四边形;所有的平行四边形是 ABCD, EBCA, ABFC。
八年级数学下册《第18章平行四边形》单元评价检测试卷含解析.doc
单元评价检测(三)(第十八章)(45分钟100分)一、选择题(每小题4分,共28分)1.下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的対角线相等D.平行四边形是轴对称图形【解题指南】由菱形的判定方法得岀选项A错误;由全等三角形的判定方法得出选项B错误;由矩形的性质得出选项0正确;由平行四边形的性质得出选项D错误;即可得出结论.【解析】选C.对角线互相垂直且平分的四边形是菱形,故A错;两边及其夹角对应相等的两个三角形全等, 故B错;矩形的对角线相等,故C正确;平行四边形是屮心对称图形,故D错.【变式训练】下列命题:①平行四边形的对边相等;②对角线相等的四边形是矩形;③正方形既是轴对称图形,乂是中心对称图形;④一条对角线平分一组对角的平行四边形是菱形.其屮真命题的个数是()A.1B. 2C. 3D.4【解析】选C.平行四边形的对边相等,①正确;对角线相等的平行四边形是矩形,②错误;正方形既是轴对称图形,又是中心对称图形,③正确;一条对角线平分一组对角的平行四边形是菱形,④正确,所以有3个真命题.2.(2017 •黔东南州模拟)如图,在口ABCD中,AD=8,点E, F分别是BD, CD的中点,则EF等于()【解析】选C.・・•四边形ABCD 是平行四边形,・・・BC 二AD 二8.・・•点E, F 分别是BD, CD 的中点,1 1AEF =2BC =2X 8=4.3. (2017・衢州中考)如图,矩形纸片ABCD 中,AB=4, BC=6,将△ ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F,则DF 的反等于() 3 5A. 5B. 3【解题指南】根据折亞的性质得到AE 二AB, ZE 二ZB 二90° ,易证Rt AAEF^Rt ACDF,即可得到结论EF 二DF;易 得 FC 二FA,设 FA 二x,则 FC 二x, FD 二6-x,在RtACDF 中利用勾股定理得到关于x 的方程X 2=42+(6-X )2,解方程求出x.【解析】选B.・・•矩形ABCD 沿对角线AC 对折,使AABC 落在AAEC 的位置,AAE=AB, ZE=ZB=90° ,又・・•四边形ABCD 为矩形,・・・AB 二CD,・・・AE 二DC,而 ZAFE 二 ZCFD, •・•在AAEF 与Z\CDF 中,(Z-AFE = Z-CFD, 厶E = e IAE = CD, AAAEF^ACDF(AAS),・•・ EF 二 DF.E.A. 2B. 3C.4D. 5・・•四边形ABCD为矩形,・・・AD二BC二6, CD二AB二4,VRtAAEF^RtACDF, ・・・FC二FA,设 FA=x,则 FC=x, FD二6-x,在 RtACDE 中,C『二CD'+DF;13即X2=42+(6-X)2,解得 x二3 ,5则 FD二6-x=>4.(2017・北流市一模)如图,四边形ABCD是菱形,A(3, 0) ,B(0, 4),则点C的坐标为( )A. (-5, 4)B. (-5, 5)C. (-4, 4)D. (-4, 3)【解析】选 A. J A (3, 0), B(0, 4),・・・ 0A=3, OB=4,・・・AB二J%' + °B2二5,・・•四边形ABCD是菱形,・・・BC=AD=AB=5, A点C的坐标为(-5, 4).5.顺次连接矩形ABCD各边中点,所得四边形必定是()A.邻边不等的平行四边形B.矩形C.正方形D. 菱形【解析】选D.如图,E, F, G, H 为矩形各边的屮点,连接AC, BD.根据三角形屮位线定理, 1得 EF 〃AC, EF=2AC ,HG 〃AC,1 1HG 二2A C, EH 二2BD .・・・EF 〃HG, EF 二HG, ・・・四边形EFGH 为平行四边形.又TAOBD, ・・・EF 二EH.・・・四边形EFGH 为菱形.6. (2017・威海模拟)在矩形ABCD 中,AB 二2, AD 二4, E 为CD 的中点,连接AE 交BC 的延长线于F 点,P 为BC 上 一点,当ZPAE=ZDAE 时,AP 的长为 (179 A.4 B. 4 C. 2【解析】选 B. VAD/7BC, A ZDAE=ZF,又 V ZPAE=ZDAE, A ZPAE^ZF,・・・PA 二PF. TE 为DC 中点,・・・DE 二CE.又T ZAED=ZFEC,AAADE^AFCE, .\CF=AD=4,设 CP=x, PA 二PF 二x+4, BP 二4-x,在直角 AABP 中,22+(4-X )2=(X +4)2,1解得:x=4,17・・・AP 的长为4.【变式训练】如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B'处,若AE=2, DE 二6, ZEFB 二60° ,则矩形ABCD 的面积是( )DGC【解析】选D.由两直线平行内错角相等,知ZDEF=ZEFB=60° , A ZAEF=8二16\/37. 如图所示,R, F 分别是正方形ABCD 的边CD, AD 上的点,且CE=DF, AE, BF 相交于点0,下列结论①AE 二BF;② AE 丄 BF;③AO 二0E ; ®S A AOB =S 四边形DEOF 中,错误的有( )【解析】选A. T 四边形ABCD 是正方形「.CD 二AD. VCE=DF, ADE=AF,又TAD 二AB, ZBAF=ZD, AAADE^ABAF, •••①AE 二BF, S AADE =S ABAF ,ZDEA-ZAFB, ZEAD-ZFBA,@S AAOB -S 四边形 DEOI :・•••ZABF+ZAFB 二ZDAE+ZDEA 二90° ,A ZAFB+ZEAF=90° ,・••②AE 丄BF —定成立.错误的结论是:③A0二0E.二、填空题(每小题5分,共25分)8. (2017 •徐州中#) AABC 中,点D,E 分别是AB, AC 的中点,DE 二7,则BC= ____【解析1 VD, E 分别是AABC 的边AB 和AC 的中点,DE 是AABC 的中位线,VDE=7, ABC=2DE=14.A. 1个 ,ZK 9 EF=120° …••ZA'EIT =60° , A , E-AE-2,求得 A'B',・・・AB 二矩形//CD 的面积为S=2\^ X B .2个C ・3个D.4个2 11 c JDA\答案:149. 已知矩形的对角线AC 与BD 相交于点0,若A0二1,那么BD 二【解析】在矩形ABCD 中, ・・•对角线AC 与BD 相交于点0, A0=l, ・•・ A0二CO 二B0二DO 二 1, A BD=2. 答案:210. (2017・连云港中考)如图,在口ABCD 中,AE 丄BC 于点E,AF 丄CD 于点F.若ZEAF 二56°,则ZB 二 _【解析】TAE 丄BC,AF 丄CD,A ZAEC=ZAFC=90° ,在四边形 AECF 中,ZC=360° -ZEAF-ZAEC-ZAFC=360° -56° -90° -90° =124° , 在Q ABCD 中,ZB=180° -ZC=180° -124° 二56° .答案:56°11. (2017・乌鲁木齐中考)如图,在菱形ABCD 中,ZDAB=60° ,AB=2,则菱形ABCD 的面积为—【解析】•・•菱形 ABCD, AAD=AB, OD=OB, 0A=0C, V ZDAB=60° , A AABD 为等边三角形,ABD=AB=2, A0D=l,在_________ 1RtAAOD 中,根据勾股定理得:A0二「.AC 二则S 菱形磁尸?AC ・BD=2A^.D答案:2&12.(2017 •安顺中考)如图所示,正方形ABCD的边长为6, AABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为___________・【解析】设BE与AC交于点P,连接BD,・・•点B与D关于AC对称,・・・PD二PB,・・・PD+PE二PB+PE二BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度;•・•正方形ABCD的边长为6,・・・AB二6.乂•••△ABE是等边三角形,ABE=AB=6.故所求最小值为6.答案:6 D三、解答题(共47分)13.(10分)如图,在口ABCD中,DE丄AB, BF丄CD,垂足分别为E, F.⑴求证:△ADE9ACBF.⑵求证:四边形BFDE为矩形.【证明】(1) VDE丄AB,BF丄CD,A ZAED=ZCFB=90° ,・・•四边形ABCD为平行四边形,・・・AD=BC, ZA=ZC,(/-AED =乙CFB,厶1 = zC,在Z\ADE 和Z\CBF 屮,I A。
人教版八年级下数学《第18章平行四边形》单元测试(含答案)
人教版八年级下数学《第18章平行四边形》单元测试(含答案)第18章平行四边形一、选择题1.下面几组条件中,能判断一个四边形是平行四边形的是()A. 一组对边相等B. 两条对角线互相平分C. 一组对边平行D. 两条对角线互相垂直2.如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()A. ﹣12+8B. 16﹣8C. 8﹣4D. 4﹣23.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为100°的菱形,剪口与折痕所成的角的度数应为()A. 25°或80°或50° D. 40°或50° C. 40°或50° B. 20°4.如图,过平行四边形ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的过平行四边形AEMG的面积S1与?HCFM的面积S2的大小关系是()A. S1>S2B. S1=S2C. S1<S2D. 不能确定5.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=﹣的图象上,若点A的坐标为(﹣2,﹣2),则k的值为()A. 4B. ﹣4C. 8D. ﹣86.下列对正方形的描述错误的是()A. 正方形的四个角都是直角B. 正方形的对角线互相垂直C. 邻边相等的矩形是正方形D. 对角线相等的平行四边形是正方形7.如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A. 4B. 3C.D. 28.矩形各个内角的平分线围成一个四边形,则这个四边形一定是()A. 正方形B. 菱形C. 矩形D. 平行四边形9.如图,等腰梯形ABCD中,AD∥BC,AE∥DC,∠AEB =60°,AB =AD= 2cm,则梯形ABCD的周长为( )A. 6cmB. 8cmC. 10cmD. 12cm10.已知AC为矩形ABCD的对角线,则图中∠1与∠2一定不相等的是()A. B. C. D.11.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC等于()A. B. C. D.12.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A. 1B.C.D.二、填空题13.如图,△ABC,△ACE,△ECD都是等边三角形,则图中的平行四边形有哪些________.14.已知菱形的两条对角线长为8和6,那么这个菱形面积是________,菱形的高________.15.如图,A、B是直线m上两个定点,C是直线n上一个动点,且m∥n.以下说法:①△ABC的周长不变;②△ABC的面积不变;③△ABC中,AB边上的中线长不变.④∠C的度数不变;⑤点C到直线m的距离不变.其中正确的有________ (填序号).16.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F 上,则AF的长为________.17.在?ABCD中,AB=15,AD=9,AB和CD之间的距离为6,则AD和BC之间的距离为________18.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是________.19.如图,如果要使ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是________。
第二单元《平行四边形的初步认识》二年级上册单元检测卷(学生版)检测卷
2024-2025学年苏教版数学二年级上册单元检测卷第二单元《平行四边形的初步认识》时间:90分钟满分:100分难度系数:0.51(较难)班级:姓名:学号:一、慎重选择(共8题;共16分)1.(2分)(2023二上·期末)把一个正方形折成四个一样的三角形,应怎样折()。
A.先横着折,后竖折B.先竖折,再横着折C.沿着对角线折2.(2分)(2023二上·汝州月考)下面的图形中有()个平行四边形。
A.4 B.6 C.83.(2分)(2023二上·汝州期末)下面图形与其它图形不同的是()。
A.B.C.4.(2分)(2022二上·东台期末)从一张平行四边形的纸上剪去一个三角形后(只剪一刀),剩下的部分不可能是()。
A.三角形B.五边形C.平行四边形5.(2分)(2023二上·徐州经济技术开发月考)下图中有()个四边形。
A.4 B.5 C.96.(2分)(2022二上·徐州期中)把分成三角形,最少能分()个。
A.3 B.4 C.57.(2分)(2022二上·灌云期中)用七巧板拼成的是几边形?()A.四边形B.五边形C.六边形8.(2分)(2021二上·滨海期中)要拼成一个大正方形,至少需要()个这样的小。
A.6 B.5 C.4二、判断正误(共5题;共10分)9.(2分)(2023四下·谯城期中)两个完全相同的三角形一定能拼成一个平行四边形。
()10.(2分)(2022二上·阳新期中)一张正方形纸,剪去一个角后,还剩3个角。
()11.(2分)两个完全一样的三角尺可以拼出平行四边形。
()12.(2分)平行四边形的四条边一定都不相等。
()13.(2分)(2020二上·洛宁期末)正方形剪去一个角,剩下的一定是三角形。
()三、仔细想,认真填(共10题;共26分)14.(3分)摆一个四边形最少要根同样长的小棒;摆一个五边形最少要根同样长的小棒;摆两个独立的六边形最少要根同样长的小棒。
八年级数学下册《平行四边形的判定》单元测试卷(附带答案)
八年级数学下册《平行四边形的判定》单元测试卷(附带答案)一.选择题1.四边形ABCD中,AD∥BC.要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠A=180°C.∠A=∠D D.∠B=∠D2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD∥BC3.如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABC=∠ADC,AD∥BC B.∠ABD=∠BDC,∠BAD=∠DCBC.∠ABD=∠BDC,OA=OC D.∠ABC=∠ADC,AB=CD4.下列说法不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行,另一组对边相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形5.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2B.3C.4D.66.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°7.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB =CD;④∠BAD=∠DCB;⑤AD∥BC,从以上5个条件中任选2个条件为一组,能判定四边形ABCD 是平行四边形的有()组.A.4B.5C.6D.78.如图,在平行四边形ABCD中,E,F是对角线BD上不同的两点,连接AE,CE,AF,CF.下列条件中,不能得出四边形AECF一定是平行四边形的为()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF9.如图,在▱ABCD中,点E,F分别在边BC,AD上,有下列条件:①BE=DF;②AE∥CF;③AE=CF;④∠BAE=∠DCF.其中,能使四边形AECF是平行四边形的条件有()A.1个B.2个C.3个D.4个10.如图,在▱ABCD中,∠ABC=45°,BC=4,点F是CD上一个动点,以F A、FB为邻边作另一个▱AEBF,当F点由D点向C点运动时,下列说法正确的选项是()①▱AEBF的面积先由小变大,再由大变小②▱AEBF的面积始终不变③线段EF最小值为4A.①B.②C.①③D.②③二.填空题11.如图,BD是▱ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是.12.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长cm.13.如图,在四边形ABCD中,若AB=CD,则添加一个条件,能得到平行四边形ABCD.(不添加辅助线,任意添加一个符合题意的条件即可)14.在平面直角坐标系中,A(﹣1,1),B(2,3),C(3m,4m+1),D在x轴上,若以A,B,C,D四点为顶点的四边形是平行四边形,求点D的坐标.15.如图,四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截原四边形为两个新四边形.则当P,Q同时出发秒后其中一个新四边形为平行四边形.16.如图,在平面直角坐标系中,有一Rt△ABC,∠C=90°且A(﹣1,3)、B(﹣3,﹣1)、C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.若点Q在x轴上,点P在直线AB上,要使以Q、P、A1、C1为顶点的四边形是平行四边形,满足条件的点Q的坐标为.17.在平面直角坐标系里,A(1,0),B(0,2),C(﹣4,2),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标为.18.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为.三.解答题19.如图,点B,E,C,F在一条直线上,AB=DE,AB∥DE,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ACFD是平行四边形.20.E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.(1)根据题意,画出图形;(2)求证:①△AFD≌△CEB;②四边形ABCD是平行四边形.21.已知,如图所示,AB∥CD,AB=CD,点E、F在BD上.∠BAE=∠DCF,连接AF、EC,求证:(1)AE=FC;(2)四边形AECF是平行四边形.22.如图,四边形ABCD中AC、BD相交于点O,延长AD至点E,连接EO并延长交CB的延长线于点F,∠E=∠F,AD=BC.(1)求证:O是线段AC的中点:(2)连接AF、EC,证明四边形AFCE是平行四边形.23.如图,AB=CD,E,F分别为AB、CD上的点,连接BC,分别与AF、ED相交于点G,H.∠B=∠C,BH=CG.(1)求证:AG=DH;(2)求证:四边形AFDE是平行四边形.24.已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.参考答案一.选择题1.解:∵AD∥BC∴∠A+∠B=180°,∠D+∠C=180°∴A.∠A+∠C=180°,可得∠B=∠C,这样的四边形是等腰梯形,不是平行四边形,故此选项错误;B.∠A+∠B从题目已知条件即可得出,无法证明四边形为平行四边形,此选项错误;C.同理A,这样的四边形是等腰梯形,故此选项错误;D.∠B=∠D,可得∠A+∠D=180°,则BA∥CD,故四边形ABCD是平行四边形,此选项正确;故选:D.2.解:∵AB∥DC,AD∥BC∴四边形ABCD是平行四边形,故选项A不合题意;∵AB=CD,AD=BC∴四边形ABCD是平行四边形,故选项B不合题意;∵AO=CO,BO=DO∴四边形ABCD是平行四边形,故选项C不合题意;∵AB=CD,AD∥BC∴四边形ABCD不一定是平行四边形,故选项D符合题意;故选:D.3.解:A、∵AD∥BC∴∠ABC+∠BAD=180°∵∠ABC=∠ADC∴∠ADC+∠BAD=180°∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;B、∵∠ABD=∠BDC,∠BAD=∠DCB∴∠ADB=∠CBD∴AD∥CB∵∠ABD=∠BDC∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;C、∵∠ABD=∠BDC,OA=OC又∠AOB=∠COD∴△AOB≌△COD(AAS)∴四边形ABCD是平行四边形,故此选项不合题意;D、∠ABC=∠ADC,AB=CD不能判断四边形ABCD是平行四边形,故此选项符合题意;故选:D.4.解:A、∵两组对边分别平行的四边形是平行四边形∴选项A不符合题意;B、∵一组对边平行,另一组对边相等的四边形不一定是平行四边形∴选项B符合题意;C、∵一组对边平行且相等的四边形是平行四边形∴选项C不符合题意;D、∵一组对边平行,一组对角相等的四边形是平行四边形∴选项D不符合题意;故选:B.5.解:∵四边形ABCD是平行四边形∴AB∥CD,AD=BC=8,CD=AB=6∴∠F=∠DCF∵CF平分∠BCD∴∠FCB=∠DCF∴∠F=∠FCB∴BF=BC=8同理:DE=CD=6∴AF=BF﹣AB=2,AE=AD﹣DE=2∴AE+AF=4;故选:C.6.解:∵四边形ABCD是平行四边形∴AB∥CD∴∠ACD=∠BAC由折叠的性质得:∠BAC=∠B′AC∴∠BAC=∠ACD=∠B′AC=∠1=22°∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;7.解:①与⑤根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与③根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与④,⑤与④根据两组对角分别相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与②,②与⑤根据对角线互相平分的四边形是平行四边形,能推出四边形ABCD为平行四边形.所以能推出四边形ABCD为平行四边形的有6组.故选:C.8.解:如图,连接AC与BD相交于O在▱ABCD中,OA=OC,OB=OD要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OE,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、由∠BAE=∠DCF,从而推出△DFC≌△BEA,然后得出∠DFC=∠BEA,∴∠CFE=∠AEF,∴FC∥AE,由全等可知FC=AE,所以四边形AECF是平行四边形;故本选项不符合题意;故选:B.9.解:①正确,理由如下:∵四边形ABCD平行四边形∴AD=BC,AD∥BC又∵BE=DF∴AF=EC.又∵AF∥EC∴四边形AECF是平行四边形.②正确,理由如下:∵AF∥EC,AE∥CF∴四边形AECF是平行四边形;④正确;理由如下:∵四边形ABCD是平行四边形∴∠B=∠D∵∠BAE=∠DCF∴∠AEB=∠CFD.∵AD∥BC∴∠AEB=∠EAD.∴∠CFD=∠EAD.∴AE∥CF.∵AF∥CE∴四边形AECF是平行四边形.∵AE=CF不能得出四边形AECF是平行四边形∴③不正确;能使四边形AECF是平行四边形的条件有3个.故选:C.10.解:过点C作CG⊥AB于点G则∵AB与CG的值始终不变化∴△ABF的面积始终不变化∵▱AEBF的面积=2×△ABF的面积∴▱AEBF的面积始终不变∴①错误,②正确;连接EF,与AB交于点H∵四边形AEBF是平行四边形∴AH=BH,EH=FH当FH⊥AB时,FH的值最小,EF=2FH的值也最小此时,FH=CG∵∠ABC=45°,CG⊥AB∴BG=CG∵BG2+CG2=BC2=16∴∴FH=∴线段EF最小值为EF=2FH=4.∴③正确故选:D.二.填空题(共8小题)11.解:如图,连接AC交BD于点O∵四边形ABCD为平行四边形∴AO=CO,BO=DO∴当BE=DF时,可得OE=OF,则四边形AECF为平行四边形∴可增加BE=DF故答案为:BE=DF(答案不唯一).12.解:在▱ABCD中,∵AB=CD=2cm,AD=BC=4cm,AO=CO,BO=DO ∵AC⊥BC∴AC==6cm∴OC=3cm∴BO==5cm∴BD=10cm∴△DBC的周长﹣△ABC的周长=BC+CD+BD﹣(AB+BC+AC)=BD﹣AC=10﹣6=4cm 故答案为:4.13.解:根据平行四边形的判定,可再添加一个条件:AD=BC.故答案为:AD=BC(答案不唯一).14.解:由点C的坐标可以判断出点C在直线y=上已知A、B两点,所以以AB为边和对角线分类讨论当AB为边时,AB∥CD,AB=CD,如图可证得△ABE≌△CDF∴FC=BE=2,AE=DF=3若点D在x轴正半轴时∴点C坐标为(,﹣2)∴点D坐标为(,0)若点D在x轴负半轴时点C坐标为(,2)点D坐标为(﹣,0)当AB为对角线时AB与CD相交于AB的中点(,2)设点D(m,0)可得点C坐标为(1﹣m,4)将点C坐标代入解析式可得m=点D坐标为(,0)故点D的坐标为(,0)或(,0)或(﹣,0).15.解:根据题意有AP=tcm,CQ=2tcm,PD=(12﹣t)cm,BQ=(15﹣2t)cm.①∵AD∥BC∴当AP=BQ时,四边形APQB是平行四边形.∴t=15﹣2t解得t=5.∴t=5s时四边形APQB是平行四边形;②AP=tcm,CQ=2tcm∵AD=12cm,BC=15cm∴PD=AD﹣AP=(12﹣t)cm∵AD∥BC∴当PD=QC时,四边形PDCQ是平行四边形.即:12﹣t=2t解得t=4s∴当t=4s时,四边形PDCQ是平行四边形.综上所述,当P,Q同时出发4或5秒后其中一个新四边形为平行四边形.故答案是:4或5.16.解:∵点Q在x轴上,点P在直线AB上,以Q、P、A1、C1为顶点的四边形是平行四边形当A1C1为平行四边形的边时∴PQ=A1C1=2∵P点在直线y=2x+5上∴令y=2时,2x+5=2,解得x=﹣1.5令y=﹣2时,2x+5=﹣2,解得x=﹣3.5∴点Q的坐标为(﹣1.5,0),(﹣3.5,0)当A1C1为平行四边形的对角线时∵A1C1的中点坐标为(3,2)∴P的纵坐标为4代入y=2x+5得,4=2x+5解得x=﹣0.5∴P(﹣0.5,4)∵A1C1的中点坐标为:(3,2)∴直线PQ的解析式为:y=﹣x+当y=0时,即0=﹣x+解得:x=6.5故Q为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).故答案为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).17.解:如图有三种情况:①平行四边形AD1CB∵A(1,0),B(0,2),C(﹣4,2)∴AD1=BC=4,OD1=3则D的坐标是(﹣3,0);②平行四边形AD2BC∵A(1,0),B(0,2),C(﹣4,2)∴AD2=BC=4,OD2=1+4=5则D的坐标是(5,0);③平行四边形ACD3B∵A(1,0),B(0,2),C(﹣4,2)∴D3的纵坐标是2+2=4,横坐标是﹣(4+1)=﹣5则D的坐标是(﹣5,4)故答案为:(﹣3,0)或(5,0)或(﹣5,4).18.解:如图,①当BC为对角线时,易求M1(3,2);②当AC为对角线时,CM∥AB,且CM=AB.所以M2(﹣3,2);③当AB为对角线时,AC∥BM,且AC=BM.则|M y|=OC=2,|M x|=OB+OA=5,所以M3(5,﹣2).综上所述,符合条件的点D的坐标是M1(3,2),M2(﹣3,2),M3(5,﹣2).故答案为:(3,2)(﹣3,2)(5,﹣2).三.解答题19.证明:(1)∵AB∥DE∴∠B=∠DEF∵BE=CF∴BE+CE=CF+CE即BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SAS);(2)由(1)得:△ABC≌△DEF∴AC=DF,∠ACB=∠F∴AC∥DF∴四边形ACFD是平行四边形.20.(1)解:如图,即为所画的图形;(2)证明:①如图,∵AD∥BC,DF∥BE∴∠DAF=∠BCE,∠DF A=∠BEC又AE=CF∴AE+EF=CF+EF即AF=CE在△AFD与△CEB中∴△AFD≌△CEB(ASA);②由①知,△AFD≌△CEB则AD=CB又∵AD∥BC∴四边形ABCD是平行四边形.21.证明:(1)∵AB∥CD∴∠B=∠D.在△ABE和△CDF中∴△ABE≌△CDF(ASA).∴AE=CF.(2)由(1)△ABE≌△CDF得AE=CF,∠AEB=∠CFD ∴180°﹣∠AEB=180°﹣∠CFD即∠AEF=∠CFE.∴AE∥CF.∵AE=CF∴四边形AECF是平行四边形.22.证明:(1)∵∠E=∠F∴AD∥BC∵AD=BC∴四边形ABCD是平行四边形∴AC,BD互相平分;即O是线段AC的中点.(2)∵AD∥BC∴∠EAC=∠FCA在△OAE和△OCF中∴△OAE≌△OCF(ASA).∴OE=OF又∵OA=OC∴四边形AFCE是平行四边形.23.证明:(1)∵BH=CG∴BH+HG=CG+HG∴BG=CH在△ABG与△CDH中∴△ABG≌△CDH(SAS)∴AG=DH;(2)∵△ABG≌△CDH∴∠AGB=∠CHD∴AF∥DE∵∠B=∠C∴AB∥CD∴四边形AFDE是平行四边形.24.证明:(1)四边形ABCD是平行四边形∴∠DAB=∠BCD∴∠EAM=∠FCN又∵AD∥BC∴∠E=∠F.∵在△AEM与△CFN中∴△AEM≌△CFN(ASA);(2)∵四边形ABCD是平行四边形∴AB=CD,AB∥CD又由(1)得AM=CN∴BM=DN,BM∥DN∴四边形BMDN是平行四边形.。
(必考题)初中数学八年级数学下册第六单元《平行四边形》检测卷(包含答案解析)
一、选择题1.如果一个多边形的内角和为1260︒,那么从这个多边形的一个顶点可以作( )条对角线.A .4B .5C .6D .72.如图,作ABC 关于直线对称的图形A B C ''',接着A B C '''沿着平行于直线l 的方向向下平移,在这个变换过程中两个对应三角形的对应点应具有的性质是( )A .对应点连线相等B .对应点连线互相平行C .对应点连线垂直于直线lD .对应点连线被直线平分3.下列关于多边形的说法不正确的是( )A .内角和外角和相等的多边形是四边形B .十边形的内角和为1440°C .多边形的内角中最多有四个直角D .十边形共有40条对角线 4.下面关于平行四边形的说法中,不正确的是( )A .对角线互相平分的四边形是平行四边形B .有一组对边平行,一组对角相等的四边形是平行四边形C .有一组对边相等,一组对角相等的四边形是平行四边形D .有两组对角相等的四边形是平行四边形5.若一个正多边形的每个内角度数都为135°,则这个正多边形的边数是( ) A .6B .8C .10D .12 6.如图,将四边形ABCD 去掉一个60°的角得到一个五边形BCDEF ,则∠1与∠2的和为( )A .60°B .108°C .120°D .240°7.如图,下面不能判定四边形ABCD 是平行四边形的是( )A .AB //CD,AB CD =B .,AB CD AD BC ==C .B DAB 180,AB CD ︒∠+∠==D .B D,BCA DAC ∠=∠∠=∠8.如图,12l l //,平行四边形ABCD 的顶点A 在1l 上,BC 交2l 于点E ,若∠C=110°,则∠1+∠2= ( )A .110°B .90°C .80°D .70°9.如图,在平行四边形ABCD 中,下列结论错误的是( )A .∠BDC =∠ABDB .∠DAB =∠DCBC .AD =BCD .AC ⊥BD 10.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AB AC ⊥,若6AB =,8AC =,则BD 的长是( )A .10B .13C .413D .1211.在Rt ABC 中,45A ∠=︒,90C ∠=︒,点D 在BC 边上(不与点C ,B 重合),点P 、点Q 分别是AC ,AB 边上的动点,当DPQ 的周长最小时,PDQ ∠的度数是( )A .70°B .90°C .100°D .120°12.如图,ABCD 的对角线AC 与BD 相交于点O ,AB AC ⊥,若4AB =,6AC =,则BO 的长为( )A .5B .8C .10D .11二、填空题13.在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图BD 是平行四边形ABCD 的对角线,点E 在BD 上,DC =DE =AE ,∠1=25°,则∠C 的大小是_____.14.如图,在ABC 中,13AB AC ==,10BC =.M ,N 分别是AB ,AC 的中点,D ,E 为BC 上的动点,且5DE =.连接DN ,EM ,则图中阴影部分的面积和为______.15.如图,在ABC 中,BD 平分ABC ∠,AF BD ⊥于点E ,交BC 于点F ,点G 是AC 的中点,若10BC =,7AB =,则EG 的长为______.16.如图,已知正五边形ABCDE ,过点A 作CD 的平行线,交CB 的延长线于点F ,点P 在正五边形的边上运动,运动路径为A B C D →→→.当AFP 为等腰三角形时,则AFP 的顶角为______度.17.如图是一块正多边形的碎瓷片,经测得30ACB ∠=︒,则这个正多边形的边数是_________.18.已知平行四边形两邻边的长分别为4和7,夹角为150°,则它的面积为________. 19.若正多边形的内角和等于720︒,那么它的每一个外角是 __________︒20.如图,将平行四边形OABC 放置在平面直角坐标系xoy 中,O 为坐标原点,若点C 的坐标是()1,3,点A 的坐标是()5,0,则点B 的坐标是________.三、解答题21.如图,在△ABC 中,AC =BC ,E 是AB 上一点,且CE =BE ,将△CBE 绕点C 旋转得到△CAD .(1)求证:AB ∥DC ;(2)连接DE ,判断四边形BEDC 的形状,并说明理由.22.已知,如图,CD 是Rt △FBE 的中位线,A 是EB 延长线上一点,且AB=12BE . (1)证明:四边形ABCD 是平行四边形;(2)若∠E=60°,AD=3cm ,求BE 的长.23.已知在四边形ABCD 中,90A C ∠=∠=︒.(1)如图1,若BE 平分ABC ∠,DF 平分ADC ∠的邻补角,请写出BE 与DF 的位置关系并证明;(2)如图2,若BF 、DE 分别平分ABC ∠、ADC ∠的邻补角,判断DE 与BF 位置关系并证明;(3)如图3,若BE 、DE 分别五等分ABC ∠、ADC ∠的邻补角(即11,55CDE CDN CBE CBM ∠=∠∠=∠),求E ∠度数.24.如图,已知BD 是△ABC 的角平分线,点E 、F 分别在边AB 、BC 上,ED ∥BC ,EF ∥AC .求证:BE=CF .25.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点.(1)求证:四边形EFGH 是平行四边形;(2)若AC+BD=36,AB=10,求△OEF 的周长.26.已知在四边形ABCD 中,A x ∠=,0180()0180C y x y ∠=︒<<︒︒<<︒,.(1) ABC ADC ∠+∠= (用含x y 、的代数式直接填空);(2) 如图1,若90x y ==︒,DE 平分ADC ∠,BF 平分CBM ∠,请写出DE 与BF 的位置关系,并说明理由;(3) 如图2,DFB ∠为四边形ABCD 的ABC ADC ∠∠、相邻的外角平分线所在直线构成的锐角.①若140x y +=︒,20DFB ∠=︒,试求x 、y ;②小明在作图时,发现DFB ∠不一定存在,请直接指出x 、y 满足什么条件时,DFB ∠不存在.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先利用n 边形的内角和公式算出n ,再利用n 边形的每一个顶点有(n-3)条对角线计算即可.【详解】根据题意,得(n-2)×180=1260,解得n=9,∴从这个多边形的一个顶点可以作对角线的条数为:n-3=9-3=6.故选C.【点睛】本题考查了n边形的内角和和经过每一个顶点可作的对角线条数,熟记多边形内角和公式,计算经过每一个顶点的对角线条数计算公式是解题的关键.2.D解析:D【分析】作点A关于直线l的对称点D,交直线l于F,将点D向下平移得到点A',连接A A'交直线l于E,则AD被对称轴垂直平分,利用EF是△A A'D的中位线,得到AE=E A',同理可知:图形中对应点连线被直线平分.【详解】根据题意,作点A关于直线l的对称点D,交直线l于F,将点D向下平移得到点A',连接A A'交直线l于E,∵A、D关于直线l对称,∴AD被对称轴垂直平分,又∵EF∥A'D,∴EF是△A A'D的中位线,∴AE=E A',即A A'被对称轴平分,同理可知:图形中对应点连线被直线平分,故选:D..【点睛】此题考查平移的性质,轴对称的性质,三角形中位线的性质,熟练掌握各性质是解题的关键.3.D解析:D【分析】根据多边形的内角和、外角和,多边形的内角线,即可解答.【详解】A 、内角和与外角和相等的多边形是四边形,正确;B 、十边形的内角和为()102180-⨯︒=1440°,正确;C 、多边形的内角中最多有四个直角,正确;D 、十边形共有()101032⨯-=35条对角线,故错误;故选:D .【点睛】本题考查了多边形,解决本题的关键是熟记多边形的有关性质. 4.C解析:C【分析】根据平行四边形的判定分别对各个选项进行判断即可.【详解】A 、∵对角线互相平分的四边形是平行四边形,∴选项A 不符合题意;B 、∵有一组对边平行,一组对角相等的四边形是平行四边形,∴选项B 不符合题意;C 、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形,∴选项C 符合题意;D 、∵有两组对角相等的四边形是平行四边形,∴选项D 不符合题意;故选:C .【点睛】本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键. 5.B解析:B【分析】根据题意可先求出这个正多边形的每个外角度数,再根据多边形的外角和是360°即可求出答案.【详解】解:因为一个正多边形的每个内角度数都为135°,所以这个正多边形的每个外角度数都为45°,所以这个正多边形的边数是360°÷45°=8.故选:B .【点睛】本题考查了正多边形的有关概念和多边形的外角和,属于基本题目,熟练掌握多边形的基本知识是解题的关键.6.D解析:D【分析】利用四边形的内角和得到∠B+∠C+∠D的度数,进而让五边形的内角和减去∠B+∠C+∠D的度数即为所求的度数.【详解】∵四边形的内角和为(4−2)×180°=360°,∴∠B+∠C+∠D=360°−60°=300°,∵五边形的内角和为(5−2)×180°=540°,∴∠1+∠2=540°−300°=240°,故选D.【点睛】本题考查多边形的内角和知识,求得∠B+∠C+∠D的度数是解决本题的突破点.7.C解析:C【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形判断即可.【详解】根据平行四边形的判定,A、B、D均符合是平行四边形的条件,C则不能判定是平行四边形.故选C.【点睛】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.8.D解析:D【分析】由平行四边形的性质得出∠BAD=∠C=110°,AD∥BC,由平行线的性质得出∠2=∠ADE,∠ADE+∠BAD+∠1=180°,得出∠1+∠2=180°-∠BAD=70°即可.【详解】∵四边形ABCD是平行四边形,∴∠BAD=∠C=110°,AD∥BC,∴∠2=∠ADE,∵l1∥l2,∴∠ADE+∠BAD+∠1=180°,∴∠1+∠2=180°-∠BAD=70°;故选:D.【点睛】本题考查了平行四边形的性质、平行线的性质;熟练掌握平行四边形的性质和平行线的性质是解题的关键.9.D解析:D【分析】根据平行四边形的性质进行判断即可.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BDC=∠ABD,故选项A正确;∵四边形ABCD是平行四边形,∴∠DAB=∠DCB,故选项B正确;∵四边形ABCD是平行四边形,∴AD=BC,故选项C正确;由四边形ABCD是平行四边形,不一定得出AC⊥BD,故选D.【点睛】本题主要考查平行四边形的性质,掌握平行四边形的相关知识点是解答本题的关键.10.C解析:C【分析】由平行四边形的性质得出OB=OD,OA=OC=12AC=4,由AC⊥AB,根据勾股定理求出OB,即可得出BD的长.【详解】解:∵四边形ABCD是平行四边形,∴OB=OD,OA=OC=12AC=4,∵AB⊥AC,∴由勾股定理得:==∴故选:C.【点睛】本题考查了平行四边形的性质、勾股定理;熟练掌握平行四边形的性质,由勾股定理求出OB是解题的关键.11.B【分析】作D关于AC的对称点E,作D关于AB的对称点F,连接EF交AC于P,交AB于Q,则此时△DPQ的周长最小,根据四边形的内角和得到∠EDF=135°,求得∠E+∠F=45°,根据等腰三角形的性质即可得到结论.【详解】作D关于AC的对称点E,作D关于AB的对称点F,连接EF交AC于P,交AB于Q,则此时△DPQ的周长最小,∵∠AGD=∠ACD=90°,∠A=45°,∴∠EDF=135°,∴∠E+∠F=45°,∵PE=PD,DQ=FQ,∴∠EDP=∠E,∠QDF=∠F,∴∠CDP+∠QDG=∠E+∠F=45°,∴∠PDQ=135°-45°=90°,故选:B.【点睛】本题考查了轴对称-最短路线问题,等腰三角形的性质,三角形内角和定理,四边形内角和定理,正确的作出图形是解题的关键.12.A解析:A【分析】由题意根据平行四边形的性质可得AO=CO=12AC=3,再利用勾股定理可得BO的长.【详解】解:∵四边形ABCD是平行四边形,∴AO=CO=12AC=3,∵AB⊥AC,AB=4,∴229165 BO AB AO++=.【点睛】本题主要考查平行四边形的性质,解题的关键是掌握平行四边形的对角线互相平分.二、填空题13.105°【分析】由已知根据等腰三角形的性质可以求出∠BAE的大小从而得到∠BAD的大小再根据平行四边形对角相等的性质可以得到答案【详解】解:∵DE=AE∠1=25°∴∠ADE=∠1=25°∴∠AEB解析:105°.【分析】由已知,根据等腰三角形的性质,可以求出∠BAE的大小,从而得到∠BAD的大小,再根据平行四边形对角相等的性质可以得到答案.【详解】解:∵DE=AE,∠1=25°,∴∠ADE=∠1=25°,∴∠AEB=∠1+∠ADE=50°,又∵平行四边形ABCD中,AB=CD,∴AB=AE,∴∠ABE=∠AEB=50°,∴∠BAE=80°,∠BAD=80°+25°=105°,又∵∠BAD=∠C,∴∠C=105°,故答案为:105°.【点睛】本题考查平行四边形的应用,熟练掌握平行四边形的性质、等腰三角形的性质、三角形的内外角性质是解题关键.14.30【分析】连接MN根据题意可以得到MN是三角形ABC的中位线过点A 作AF垂直于BC与点F进而求解面积即可;【详解】连接MN∵MN分别是ABAC的中点∴MN为三角形ABC的中位线∵BC=10∴过点A解析:30【分析】连接MN,根据题意可以得到MN是三角形ABC的中位线,过点A作AF垂直于BC与点F,进而求解面积即可;【详解】连接MN,∵ M、N分别是AB、AC的中点,∴ MN为三角形ABC的中位线,∵BC=10,∴ 152MN BC == , 过点A 作AF 垂直于BC 与点F ,∵AB=AC=13,∴点F 为BC 的中点,∴152BF BC ==, ∴22=135=12AF - ,∴阴影部分的高为12,∵MN=DE=5,∴1=512=302S ⨯⨯阴影 , 故答案为:30.【点睛】本题考查了三角形的面积和中位线的性质,掌握数形结合的方法是解题的关键; 15.5【分析】根据角平分线的定义和全等三角形的判定和性质定理以及三角形的中位线定理即可得到结论;【详解】∵BD 平分∠ABCAF ⊥BD ∴∠ABE=∠FBE ∠AEB=∠FEB=90°∵BE=BE ∴△ABE ≌解析:5【分析】根据角平分线的定义和全等三角形的判定和性质定理以及三角形的中位线定理即可得到结论;【详解】∵BD 平分∠ABC ,AF ⊥BD ,∴∠ABE=∠FBE ,∠AEB=∠FEB=90°,∵BE=BE ,∴△ABE ≌△FBE(ASA),∴BF=AB=7,AE=EF ,∵BC=10,∴CF=3,∵点G 是AC 的中点,∴AG=CG ,∴EG=12CF=32, 故答案为:1.5.【点睛】本题考查了三角形的中位线定理,全等三角形的判定和性质,角平分线的定义,正确的识别图形是解题的关键;16.36或72或108【分析】根据题意可以分情况谈论:①当AP=AF ;②当PF=FA ;③当FA=PF ;分别求其顶角的度数;【详解】解:易知正五边形的内角为:;∴∠CBA=108°=∠BAE ∴∠ABF=1解析:36或72或108【分析】根据题意可以分情况谈论:①当AP=AF ;②当PF=FA ;③当FA=PF ;分别求其顶角的度数;【详解】 解:易知正五边形的内角为:540=1085︒︒ ; ∴∠CBA=108°=∠BAE ,∴∠ABF=180°-108°=72°, ∠BAF=180108362︒-︒=︒ , ∴∠BFA=180°-72°-36°=72°;∴AB=AF , 若P 在AB 边上,不可能有PF=FA ,①若PA=PF ,则∠PAF=∠PFA=36°,∴顶角为∠APF=180°-36°×2=108°;②若PA=AF ,则P 与B 重合,此时顶角为∠PAF=36°;若P 在BC 边上,连接AC ,易知AC=CF ,不存在PA=AF ;①若PF=FA ,此时顶角为∠ PFA=72°,②若PA=PF ,则P 与C 重合,顶角为36°;若P 在CD 上,不存在等腰三角形;综上:顶角为108°或36°或72°;故答案为:36或72或108;【点睛】本题考查了正多边形的内角和公式和三角形的内角和问题,要注意分类讨论的问题,不要遗漏.17.12【分析】根据瓷片为正多边形及可知正多边形的外角为进而可求得正多边形的边数【详解】如图延长BC 可知∠1为正多边形的外角∵瓷片为正多边形∴AD=DB=BC ∠ADB=∠DBC ∴四边形ACBD 为等腰梯形解析:12【分析】根据瓷片为正多边形及=30ACB ∠︒,可知正多边形的外角为30︒,进而可求得正多边形的边数.【详解】如图,延长BC ,可知∠1为正多边形的外角,∵瓷片为正多边形,∴AD=DB=BC ,∠ADB=∠DBC ,∴四边形ACBD 为等腰梯形,∴BD ∥AC ,∴∠1==30ACB ∠︒,∴正多边形的边数为:360=1230︒︒, 故答案为:12.【点睛】本题考查正多边形的外角和,掌握相关知识点是解题的关键. 18.14【分析】首先根据题意画出图形然后过点A 作AE ⊥BC 交CB 的延长线于点E 可求得其高继而求得答案【详解】解:如图▱ABCD 中AB=4BC=7∠ABC=150°过点A 作AE ⊥BC 交CB 的延长线于点E 则解析:14【分析】首先根据题意画出图形,然后过点A 作AE ⊥BC 交CB 的延长线于点E ,可求得其高,继而求得答案.【详解】解:如图,▱ABCD 中,AB=4,BC=7,∠ABC=150°,过点A 作AE ⊥BC 交CB 的延长线于点E ,则∠ABE=180°-150°=30°,∴AE=12AB=2,∴S▱ABCD=BC•AE=2×7=14.故答案为:14.【点睛】此题考查了平行四边形的性质以及含30°角的直角三角形的性质.注意结合题意画出图形,利用图形求解是关键.19.60【分析】首先设此多边形为n边形根据题意得:180(n-2)=720即可求得n=6再由多边形的外角和等于360°即可求得答案【详解】解:设此多边形为n边形根据题意得:180(n-2)=720解得:解析:60【分析】首先设此多边形为n边形,根据题意得:180(n-2)=720,即可求得n=6,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=720,解得:n=6,∴这个正多边形的每一个外角等于:360°÷6=60°.故答案为:60°.【点睛】本题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.20.【分析】利用平行四边形的性质即可解决问题;【详解】解:∵四边形ABCD是平行四边形∴OA=BCOA∥BC∵A(50)∴OA=BC=5∵C(13)∴B(63)故答案为:(63)【点睛】本题考查平行四边6,3解析:()【分析】利用平行四边形的性质即可解决问题;【详解】解:∵四边形ABCD是平行四边形,∴OA=BC,OA∥BC,∵A(5,0),∴OA=BC=5,∵C(1,3),∴B(6,3),故答案为:(6,3).【点睛】本题考查平行四边形的性质、坐标与图形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.三、解答题21.(1)见解析;(2)平行四边形,理由见解析【分析】(1)由旋转的性质得出∠BCE=∠ACD,由等腰三角形的性质得出∠B=∠BAC,∠B=∠BCE,由平行线的判定可得出结论;(2)由平行四边形的判定可得出结论.【详解】(1)证明:由旋转的性质得∠BCE=∠ACD,∵AC=BC,∴∠B=∠BAC,∵CE=BE,∴∠B=∠BCE,∴∠ACD=∠BAC,∴AB∥CD;(2)解:四边形BEDC是平行四边形,由旋转的性质得CD=CE,∵CE=BE,∴CD=BE,∵AB∥DC,∴四边形BEDC是平行四边形.【点睛】本题考查了旋转的性质、等腰三角形的性质、平行四边形的性质与判定、熟练掌握旋转的性质是解本题的关键;22.(1)见解析;(2)3cm【分析】(1)由CD是Rt△FBE的中位线与AB=12BE,可得CD∥BE,CD=AB,即可证得四边形ABCD是平行四边形;(2)由BC是Rt△FBE斜边上的中线,可求得BC=CE,又由∠E=60°,可得△BCE是等边三角形,继而求得答案.【详解】解:(1)证明:∵CD是Rt△FBE的中位线,∴CD∥BE,CD=12BE,∴AB=12BE,∴AB=CD,∴四边形ABCD是平行四边形;(2)∵四边形ABCD 是平行四边形,∴BC=AD=3cm ,∵CD 是Rt △FBE 的中位线,∴BC=CE=12EF , ∵∠E=60°,∴△BCE 是等边三角形,∴BE=BC=3cm .【点睛】此题考查了平行四边形的判定与性质、直角三角形的性质、等边三角形的判定与性质以及三角形中位线的性质.注意利用三角形中位线的性质,证得CD ∥AB ,CD=AB 是解此题的关键.23.(1)BE DF ⊥,证明见解析;(2)//DE BF ,证明见解析;(3)54°【分析】(1)结论:BE ⊥DF ,如图1中,延长BE 交FD 的延长线于H ,证明∠DEG+∠EDG=90°即可;(2)结论:DE//BF ,如图2中,连接BD ,只要证明∠EDB+∠FBD=180°即可;(3)延长DC 交BE 于H .由(1)得:180CDN CBM ∠+∠=︒,利用五等分线的定义可求36CDE CBE ∠+∠=︒,由三角形的外角性质得BCD CBE CDE E ∠=∠+∠+∠,代入数值计算即可.【详解】(1)BE DF ⊥.证明:延长BE 、FD 交于G .在四边形ABCD 中,360A ABC C ADC ,90A C ∠=∠=︒,180ABC ADC ∴∠+∠=︒.180ADC CDN ∠+∠=︒,ABC CDN ∴∠=∠.BE 平分ABC ∠,DF 平分CDN ∠,12ABE ABC ∴∠=∠,12FDN CDN ∠=∠, ABE FDN ∴∠=∠,∵∠ABE+∠AEB=90°,∠AEB=∠DEG ,∠FDN=∠EDG ,∴∠DEG+∠EDG=90°,∴∠EGD=90°,即BE ⊥DF .(2)//DE BF .证明:连接DB .180ABC MBC ∠+∠=︒,180ADC CDN ∠+∠=︒.又180ABC ADC ∠+∠=︒,180MBC CDN ∴∠+∠=︒. BF 、DF 平分ABC ∠、ADC ∠的邻补角, 12CBF MBC ∴∠=∠,12CDE CDN ∠=∠, 90CBF CDE ∴∠+∠=︒.在Rt BDC 中,90CDB DBC ∠+∠=︒,180CDB DBC CBF CDE ∴∠+∠+∠+∠=︒,180EDB DBF ∴∠+∠=︒,//DE BF ∴.(3)延长DC 交BE 于H .由(1)得:180CDN CBM ∠+∠=︒.BE 、DE 分别五等分ABC ∠、ADC ∠的邻补角,1180365CDE CBE ∴∠+∠=⨯︒=︒, 由三角形的外角性质得,BHD CDE E ∠=∠+∠,BCD BHD CBE ∠=∠+∠,BCD CBE CDE E ∴∠=∠+∠+∠,903654E ∴∠=︒-︒=︒.【点睛】本题考查多边形内角和,三角形外角的性质,三角形内角和定理,平行线的判定等知识,解题的关键是学会添加常用辅助线.24.证明见解析.【解析】试题分析:先利用平行四边形性质证明DE=CF ,再证明EB=ED ,即可解决问题. 试题∵ED ∥BC ,EF ∥AC ,∴四边形EFCD 是平行四边形,∴DE=CF ,∵BD 平分∠ABC ,∴∠EBD=∠DBC ,∵DE ∥BC ,∴∠EDB=∠DBC ,∴∠EBD=∠EDB ,∴EB=ED ,∴EB=CF . 考点:平行四边形的判定与性质.25.(1)详见解析;(2)14【分析】(1)由平行四边形的性质可得AO=CO ,BO=DO ,由中点的性质可得EO=12AO ,GO=12CO ,FO=12BO ,HO=12DO ,由对角线互相平分的四边形是平行四边形可得结论; (2)由平行四边形的性质可得EO+FO=9,由三角形中位线定理可得EF=5,即可求解.【详解】证明:(1)∵四边形ABCD 是平行四边形∴AO=CO ,BO=DO∵E 、F 、 G 、H 分别是AO 、BO 、CO 、DO 的中点∴EO=12AO ,GO=12CO ,FO=12BO ,HO=12DO ∴EO=GO ,FO=HO∴四边形EFGH 是平行四边形(2)∵E 、F 分别是AO 、BO 的中点∴EF=12AB ,且AB=10 ∴EF=5∵AC+BD=36 ∴AO+BO=18∴EO+FO=9∴△OEF 的周长=OE+OF+EF=9+5=14.【点睛】本题考查了平行四边形的判定和性质,熟练运用平行四边形的性质是本题的关键. 26.(1)360x y ︒--;(2)DE BF ⊥;(3)①5090x y ⎧=︒⎨=︒⎩;②x y = 【分析】(1)利用四边形内角和定理进行计算,得出答案即可;(2)利用角平分线的性质集合三角形内角和定理的性质得出DE 与BF 的位置关系即可; (3)①利用角平分线的性质以及三角形外角的性质定理,得出1122DFB y x ∠=-,解方程组即可得出x ,y ;②当x=y 时,可得ABC ∠、ADC ∠相邻的外角平分线所在的直线互相平行,此时DFB ∠不存在;【详解】(1)∵360A ABC C ADC ∠+∠+∠+∠=︒,A x ∠=,0180()0180C y x y ∠=︒<<︒︒<<︒,∴360ABC ADC x y ∠+∠=︒--; 故答案是:360x y ︒--.(2)DE BF ⊥.理由:如图,∵DE 平分ADC ∠,BF 平分MBC ∠,∴12CDE ADC ∠=∠,12CBF CBM ∠=∠, 又∵()180180180CBM ABC ADCADC ∠=︒-∠=︒-︒-∠=∠,∴CDE CBF ∠=∠,又∵DGC BGE ∠=∠,∴90BEG C ∠=∠=︒,∴DE BF ⊥.(3)①由(1)得: ()360360CDN CBM x y x y ∠+∠=︒-︒--=+,∵BF 、DF 分别平分CBM ∠、CDN ∠,∴()12CDF CBF x y ∠+∠=+, 如图,连接BD ,则,180CBD CDB y ∠+∠=︒-,∴()111180+180222FBD FDB y x y y x ∠+∠=︒-+=︒-+,∴112022DFB y x ∠=-=︒, 解方程组:140112022x y y x ⎧+=︒⎪⎨-=︒⎪⎩, 解得:5090x y ⎧=︒⎨=︒⎩;②当x y =时,1118018022FBD FDB y x ∠+∠=︒-+=︒, ∴ABC ∠、ADC ∠相邻的外角平分线所在直线互相平行, 此时DFB ∠不存在.【点睛】本题主要考查了多边形内角和与外角定理,结合三角形外角性质计算是关键.。
平行四边形单元测试卷(5套题)
第18章平行四边形一、选择题1.如图4-161所示,沿虚线EF将ABCD剪开(BF≠AE),得到的四边形ABFE是( )A.梯形 B.平行四边形C.矩形 D.菱形2.下列说法中正确的有 ( )①平行四边形的对角线互相平分;②菱形的对角线互相平分且相等;③矩形的对角线相等;④正方形的对角线互相平分且相等;⑤等腰梯形的对角线相等.A.2个 B.3个 C.4个 D.5个3.五边形的内角和与外角和之比是 ( )A.5∶2 B.2∶3 C.3∶2 D.2∶54.下列图形中,既是中心对称图形,又是轴对称图形的是 ( )A.等腰三角形 B.正三角形C.等腰梯形 D.菱形5.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为 ( )A.190 B.96 C.47 D.406.一个多边形截去一个角(不过顶点)后,所成的一个多边形的内角和是2520°,那么原多边形的边数是( )A.13 B.15 C.17 D.197.平面图形的密铺是指在一定范围的平面内,这些图形间 ( )A.没有空隙,可以重叠 B.既有空隙,又可重叠C.可有空隙,但无重叠 D.既无空隙,也不重叠8.若四边形的两条对角线互相垂直,则这个四边形 ( )A.一定是矩形 B.一定是菱形C.一定是正方形 D.形状不确定9.如图4-162所示,设F为正方形ABCD中AD边上一点,CE⊥CF交AB的延长线于E,若正方形ABCD的面积为64,△CEF的面积为50,则△CBE的面积为 ( )A.20 B.24 C.25 D.2610.如图4-163所示,正方形ABCD中,点E,F分别在CD,BC上,且CF=DE,连接BE,AF相交于点G,则下列结论不正确的是 ( )A.∠DAF=∠BE C B.∠AF B+∠BE C=90°C.BE=AF D.AF⊥BE二、填空题11.在四边形ABCD中,∠A∶∠B∶∠D=1∶2∶4,∠C=108°,则∠A= .12.边长为10 cm的正方形的对角线长是 cm,这条对角线和正方形一边的夹角是,这个正方形的面积是 cm2.13.在梯形ABCD中,AB∥CD,AB>CD,CE∥DA交AB于E,且△BCE的周长为10 cm,CD=5 cm,则梯形ABCD 的周长是.14.若矩形的一条短边的长为5 cm,两条对角线的夹角为60°,则它的一条较长的边为 cm.15.如图4-164所示,在矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为 .16.菱形的周长为40 cm,如果把它的高增加4 cm,周长不变,那么面积变为原来倍,则菱形的原面积是.的11217.在四边形ABCD中,AB=CD,要使其变为平行四边形,需要增加的条件是.(只需填一个你认为正确的条件即可)18.如图4-165所示;折叠矩形纸片ABCD,先折出折痕BD,再折叠,使AD落在对角线BD上,A对应A′,得折痕DG,若AB=2,BC=1,则AG= .三、解答题19.如图4-166所示,在ABCD中,E,F在平行四边形的外部,且AE=CF,BE=DF,试指出AC和EF的关系,并说明理由.20.如图4-167所示,在△ABC中,O是AC边上的一个动点,过O作直线MN∥BC,交∠BCA的平分线于点正,交∠BCA的外角平分线于点F.(1)试说明OE=OF;(2)当点O运动到何处时,四边形A ECF是矩形?说明理由.21.(1)如图4-168(1)所示,你能设法将左图的平行四边形变成与它面积相等的右边的矩形吗?画一画;(2)任意剪一张梯形纸片(如图4-168(2)所示),与同学们交流、讨论、研究,怎样通过平移、旋转、轴对称以及折纸等方法将梯形剪拼成一个面积与它相等的矩形?并在图(2)中画出设计方案,简述设计的过程.22.矩形的长和宽如图4-169所示,当矩形周长为12时,求a的值.23.如图4-170所示,O为ABCD的对角线AC的中点,过点O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)试说明∠MAE=∠NCF.参考答案1. A 2.C 3.C 4.D 5.B 6.B 7.D 8.D9.B[提示:由全等可知△CEF是等腰直角三角形,又其面积为50,则CF=CE=10,因为正方形ABCD的面积为64,所以边长BC=8,由勾股定理,得BE=6,所以S△CBE=12BE·BC=12×6×8=24.]10.B 11.36°12.102 45° 100 13.20 cm14.3515.1016.80 cm 217.AB ∥CD ,或AD =BC (答案不唯一)18.12-5[提示:A 对应点A ′,则△A ′DG 和△A ′BG 均为直角三角形,设AG =x ,则A ′G =x ,A ′B =BD-A ′D =5-l ,BG =AB -AG =2-x ,由勾股定理,得A ′G 2+A ′B 2=GB 2,所以x 2+(5-1)2=(2-x )2,解得x =12-5.] 19.提示:连接AF ,EC ,可由AE =CF ,且AE ∥CF ,得四边形A ECF 是平行四边形,故AC 与EF 互相平分.20.提示:(1)先说明OE =OC ,再说明OF =OC . (2)当点O 运动到AC 的中点时,四边形A ECF 是矩形(理由略).21.解:(1)如图4-171所示。
鲁教版五四学制八年级上《第5章平行四边形》单元测试含解析
《第5章平行四边形》一、选择题1.以下平行四边形的性质错误的是()A.对边平行 B.对角相等C.对边相等 D.对角线互相垂直2.在平行四边形ABCD中,∠A=65°,则∠D的度数是()A.105°B.115°C.125°D.65°3.下列给出的条件中,能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.AB=AD,CB=CD C.AB=CD,AD=BC D.∠B=∠C,∠A=∠D4.如图,四边形ABCD是平行四边形,∠D=120°,∠CAD=32°,则∠ABC、∠CAB的度数分别为()A.28°,120°B.120°,28°C.32°,120°D.120°,32°5.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°6.如图,在▱ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则该图中的平行四边形的个数共有()A.7个B.8个C.9个D.11个7.若▱ABCD的周长为28cm,△ABC的周长为17cm,则AC的长为()A.11cm B.5.5cm C.4cm D.3cm8.在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=()A.110°B.30° C.50° D.70°9.关于四边形ABCD:①两组对边分别相等;②一组对边平行且相等;③一组对边平行且另一组对边相等;④两条对角线相等.以上四种条件中,可以判定四边形ABCD是平行四边形的有()A.①②③④ B.①③④C.①② D.③④10.在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.3:4:4:3 C.3:3:4:4 D.3:4:3:411.平行四边形ABCD的周长32,5AB=3BC,则对角线AC的取值范围为()A.6<AC<10 B.6<AC<16 C.10<AC<16 D.4<AC<1612.如图所示,四边形ABCD是平行四边形,按下列条件得到的四边形BFDE是平行四边形的个数是()①图甲,DE⊥AC,BF⊥AC②图乙,DE平分∠ADC,BF平分∠ABC③图丙,E是AB的中点,F是CD的中点④图丁,E是AB上一点,EF⊥AB.A.3个B.4个C.1个D.2个二、填空题13.一组对边平行且相等的四边形一定是形.14.已知平行四边形的周长是100cm,AB:BC=4:1,则AB的长是cm.15.在平行四边形中,若一个角为其邻角的2倍,则这个平行四边形中两邻角的度数分别是.16.▱ABCD的周长为36cm,AB=8cm,则BC= cm;当∠B=60°时,AD、BC间的距离AE= cm,= cm2.▱ABCD的面积S▱ABCD17.如图,在平行四边形ABCD中,BC=2AB,CA⊥AB,则∠B= 度,∠CAD= 度.18.如图,D,E,F分别是△ABC的AB,BC,CA边的中点.若△ABC的周长为20,则△DEF的周长为.19.已知a、b、c、d为四边形的四边长,a、c为对边,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形一定是四边形.20.如图所示,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为.三、解答题21.如图,在▱ABCD中,E、F分别是BC、AD上的点,且AE∥CF,AE与CF相等吗?说明理由.22.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.23.如图,平行四边形ABCD的对角线AC,BD相交于点O,AE=EB.求证:OE∥BC.24.如图,平行四边形ABCD中,AC、BD相交于O点,M、N分别是OA、OC的中点,求证:BM∥DN 且BM=DN.25.如图,AD是△ABC的中线,E是AD的中点,F是BE延长线与AC的交点,求证:AF=CF.26.如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.27.如图所示:在四边形ABCD中,AD∥BC、BC=18cm,CD=15cm,AD=10cm,AB=12cm,动点P、Q分别从A、C同时出发,点P以2cm/秒的速度由A向D运动,点Q以3cm/秒的速度由C向B运动.(1)几秒钟后,四边形ABQP为平行四边形?并求出此时四边形ABQP的周长(2)几秒钟后,四边形PDCQ为平行四边形?并求出此时四边形PDCQ的周长.《第5章平行四边形》参考答案与试题解析一、选择题1.以下平行四边形的性质错误的是()A.对边平行 B.对角相等C.对边相等 D.对角线互相垂直【考点】平行四边形的性质.【分析】根据平行四边形的概念(有两组对边分别平行的四边形叫做平行四边形)和平行四边形的性质进行判断.【解答】解:A、平行四边形的对边相互平行,故本选项不符合题意;B、平行四边形的对角相等,故本选项不符合题意;C、平行四边形的对边相等,故本选项不符合题意;D、平行四边形的对角线相互平分,但不一定互相垂直,故本选项符合题意;故选:D.【点评】本题考查了平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.2.在平行四边形ABCD中,∠A=65°,则∠D的度数是()A.105°B.115°C.125°D.65°【考点】平行四边形的性质.【专题】证明题.【分析】根据平行四边形的性质得出AB∥CD,根据平行线性质推出∠A+∠D=180°,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠D+∠A=180°,∵∠A=65°,∴∠D=115°.故选B.【点评】本题考查了平行四边形的性质和平行线的性质,关键是推出∠A+∠D=180°,题目比较典型,难度不大.3.下列给出的条件中,能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.AB=AD,CB=CD C.AB=CD,AD=BC D.∠B=∠C,∠A=∠D【考点】平行四边形的判定.【专题】推理填空题.【分析】平行四边形的判定定理①两组对边分别相等的四边形是平行四边形,②一组对边平行且相等的四边形是平行四边形,③两组对角分别相等的四边形是平行四边形,④对角线互相平分的四边形是平行四边形,判断即可.【解答】解:A、根据AD∥CD,AD=BC不能判断四边形ABCD是平行四边形,故本选项错误;B、根据AB=AD,BC=CD,不能判断四边形ABCD是平行四边形,故本选项错误;C、根据AB=CD,AD=BC,得出四边形ABCD是平行四边形,故本选项正确;D、根据∠B=∠C,∠A=∠D不能判断四边形ABCD是平行四边形,故本选项错误;故选C.【点评】本题考查了对平行四边形的判定定理的应用,关键是能熟练地运用平行四边形的判定定理进行推理,此题是一道比较容易出错的题目.4.如图,四边形ABCD是平行四边形,∠D=120°,∠CAD=32°,则∠ABC、∠CAB的度数分别为()A.28°,120°B.120°,28°C.32°,120°D.120°,32°【考点】平行四边形的性质.【分析】由四边形ABCD是平行四边形,易得∠B=∠D,∠BAD+∠D=180°.即可求得∠ABC、∠CAB 的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠B=∠D,AB∥CD,∴∠BAD+∠D=180°,∵∠D=120°,∠CAD=32°,∴∠ABC=∠D=120°,∠BAD=60°,∴∠CAB=∠BAD﹣∠CAD=60°﹣32°=28°.故选B.【点评】此题考查了平行四边形的性质:平行四边形的对边平行,对角相等,熟记性质是解题的关键.5.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°【考点】平行四边形的性质.【分析】根据平行四边形的性质可知,A、B、C正确,因为平行四边形的两组对角分别相等,所以∠2+∠4=180°不一定正确,只有当四边形是矩形时才正确.【解答】解:由▱ABCD的性质及图形可知:A、∠1和∠2是邻补角,故∠1+∠2=180°,正确;B、因为AD∥BC,所以∠2+∠3=180°,正确;C、因为AB∥CD,所以∠3+∠4=180°,正确;D、根据平行四边形的对角相等,∠2=∠4,∠2+∠4=180°不一定正确;故选D.【点评】主要考查了平行四边形的基本性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.6.如图,在▱ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则该图中的平行四边形的个数共有()A.7个B.8个C.9个D.11个【考点】平行四边形的判定与性质.【专题】压轴题.【分析】根据平行四边形的定义即可求解.【解答】解:根据平行四边形的定义:两组对边分别平行的四边形是平行四边形,则图中的四边DEOH、DEFC、DHGA、BGOF、BGHC、BAEF、AGOE、CHOF和ABCD都是平行四边形,共9个.故选C.【点评】本题可根据平行四边形的定义,直接从图中数出平行四边形的个数,但数时应有一定的规律,以避免重复.7.若▱ABCD的周长为28cm,△ABC的周长为17cm,则AC的长为()A.11cm B.5.5cm C.4cm D.3cm【考点】平行四边形的性质.【专题】计算题.【分析】平行四边形的周长为相邻两边之和的2倍,即2(AB+BC)=28,则AB+BC=14cm,而△ABC的周长=AB+BC+AC=17,继而求出AC的长.【解答】解:如图:∵▱ABCD的周长是28cm,∴AB+BC=14cm.∵△ABC的周长是17cm,∴AC=17﹣(AB+AC)=3cm.故选D.【点评】本题考查了平行四边形的性质,在应用平行四边形的性质解题时,要根据具体问题,有选择的使用,避免混淆性质,以致错用性质.8.在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=()A.110°B.30° C.50° D.70°【考点】平行四边形的性质.【分析】要求∠E+∠F,只需求∠ADE,而∠ADE=∠A与∠B互补,所以可以求出∠A,进而求解问题.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠ADE=180°﹣∠B=70°∵∠E+∠F=∠ADE∴∠E+∠F=70°故选D.【点评】主要考查了平行四边形的基本性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.9.关于四边形ABCD:①两组对边分别相等;②一组对边平行且相等;③一组对边平行且另一组对边相等;④两条对角线相等.以上四种条件中,可以判定四边形ABCD是平行四边形的有()A.①②③④ B.①③④C.①② D.③④【考点】平行四边形的判定.【分析】由平行四边形的判定定理得出①和②能判定四边形ABCD是平行四边形;③和④不一定能判定四边形ABCD是平行四边形;即可得出结论.【解答】解:∵两组对边分别相等的四边形是平行四边形,∴①能判定;∵一组对边平行且相等的四边形是平行四边形,∴②能判定;∵一组对边平行且另一组对边相等的四边形是梯形,不一定是平行四边形,∴③不一定能;∵两条对角线相等的四边形不一定是平行四边形,∴④不一定能;以上四种条件中,可以判定四边形ABCD是平行四边形的有①②;故选:C.【点评】本题考查了平行四边形的判定方法;熟练掌握平行四边形的判定方法,不能进行推理论证是解决问题的关键.10.在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.3:4:4:3 C.3:3:4:4 D.3:4:3:4【考点】平行四边形的性质.【分析】根据平行四边形的基本性质:平行四边形的两组对角分别相等即可判断.【解答】解:根据平行四边形的两组对角分别相等.可知选D.故选D.【点评】主要考查了平行四边形的基本性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.11.平行四边形ABCD的周长32,5AB=3BC,则对角线AC的取值范围为()A.6<AC<10 B.6<AC<16 C.10<AC<16 D.4<AC<16【考点】平行四边形的性质;三角形三边关系.【分析】根据平行四边形周长公式求得AB、BC的长度,然后由三角形的三边关系来求对角线AC的取值范围.【解答】解:∵平行四边形ABCD的周长32,5AB=3BC,∴2(AB+BC)=2(BC+BC)=32,∴BC=10,∴AB=6,∴BC﹣AB<AC<BC+AB,即4<AC<16.故选D.【点评】本题考查了平行四边形的性质、三角形三边关系.三角形三边关系:三角形两边之和大于第三边,三角形的两边差小于第三边.12.如图所示,四边形ABCD是平行四边形,按下列条件得到的四边形BFDE是平行四边形的个数是()①图甲,DE⊥AC,BF⊥AC②图乙,DE平分∠ADC,BF平分∠ABC③图丙,E 是AB 的中点,F 是CD 的中点④图丁,E 是AB 上一点,EF ⊥AB .A .3个B .4个C .1个D .2个【考点】平行四边形的判定与性质.【分析】①由DE ⊥AC ,BF ⊥AC ,可得DE ∥BF ,又由四边形ABCD 是平行四边形,利用△ACD 与△ACB 的面积相等,即可判定DE=BF ,然后由一组对边平行且相等的四边形是平行四边形,证得四边形BFDE 是平行四边形;②由四边形ABCD 是平行四边形,DE 平分∠ADC ,BF 平分∠ABC ,易证得△ADE ≌△CBF ,则可判定DE ∥BF ,DE=BF ,继而证得四边形BFDE 是平行四边形;③由四边形ABCD 是平行四边形,E 是AB 的中点,F 是CD 的中点,易证得DF ∥BE ,DF=BE ,继而证得四边形BFDE 是平行四边形;④无法确定DF=BE ,只能证得DF ∥BE ,故不能判定四边形BFDE 是平行四边形.【解答】解:①∵四边形ABCD 是平行四边形,∴S △ACD =S △ABC ,∵DE ⊥AC ,BF ⊥AC ,∴DE ∥BF ,S △ACD =AC •DE ,S △ABC =AC •BF ,∴DE=BF ,∴四边形BFDE 是平行四边形;②∵四边形ABCD 是平行四边形,∴∠ADC=∠ABC ,AD=CB ,AD ∥BC ,∴∠DAE=∠BCF ,∵DE 平分∠ADC ,BF 平分∠ABC ,∴∠ADE=∠CBF ,在△ADE 和△CBF 中,,∴△ADE ≌△CBF (ASA ),∴DE=BF ,∠AED=∠BFC ,∴∠DEF=∠BFE,∴DE∥BF,∴四边形BFDE是平行四边形;③证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵E是AB的中点,F是CD的中点,∴DF=CD,BE=AB,∴DF=BE,∴四边形BFDE是平行四边形;④∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵E是AB上一点,EF⊥AB,无法判定DF=BE,∴四边形BFDE不一定是平行四边形.故选A.【点评】本题考查了平行四边形的判定以及全等三角形的判定与性质.注意掌握一组对边平行且相等的四边形是平行四边形定理的应用是解此题的关键.二、填空题13.一组对边平行且相等的四边形一定是平行四边形.【考点】平行四边形的判定.【分析】直接利用平行四边形的判定方法:一组对边平行且相等的四边形是平行四边形得出答案即可.【解答】解:一组对边平行且相等的四边形一定是平行四边形.故答案为:平行四边.【点评】此题主要考查了平行四边形的判定,正确掌握平行四边形的判定方法是解题关键.14.已知平行四边形的周长是100cm,AB:BC=4:1,则AB的长是40 cm.【考点】平行四边形的性质.【专题】方程思想.【分析】如图:因为四边形ABCD是平行四边形,根据平行四边形的对边相等,可得AB=CD,AD=BC,又因为平行四边形的周长等于100 cm,AB:BC=4:1,所以可求得这个平行四边形较长的边长的长.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形的周长等于100 cm,∴AB+CD+AD+BC=100cm,∴AB+BC=50cm,∵AB:BC=4:1,∴BC=10cm,AB=40cm,∴AB的长是40cm.故答案为40.【点评】此题考查了平行四边形的性质:平行四边形的对边相等.注意解此题需要利用方程思想.15.在平行四边形中,若一个角为其邻角的2倍,则这个平行四边形中两邻角的度数分别是120°,60°.【考点】平行四边形的性质.【分析】根据平行四边形的性质,在平行四边形中,若一个角为其邻角的2倍,设一个角x,由四边形的内角和定理得到方程2x+4x=360°,解得x=60°,则它的邻角是2x=120°【解答】解:设一个角x,则另一个角为2x.∵平行四边形∴2(x+2x)=360°,即x=60°,则2x=120°∴这个平行四边形中两邻角的度数分别是120°,60°.故答案为120°,60°.【点评】本题考查平行四边形的性质以及四边形的内角和定理.运用平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.16.▱ABCD的周长为36cm,AB=8cm,则BC= 10 cm;当∠B=60°时,AD、BC间的距离AE= 4cm,▱A BCD的面积S= 40cm2.▱ABCD【考点】平行四边形的性质.【分析】首先根据平行四边形对边相等的性质可求得BC的长度,又由∠B=60°,即可求得AD与BC 的距离AE的长,继而求得S的值.□ABCD【解答】解:∵▱ABCD的周长为36cm,AB=8cm,∴CD=AB=8cm,AD=BC=10cm,∵∠B=60°,AE⊥BC,∴∠BAE=30°,∴BE=AB=4(cm),∴AE==4(cm),∴S=BC•AE=10×4=40(cm2).□ABCD故答案为:10;4;40.【点评】此题考查了平行四边形的性质与勾股定理.此题难度不大,注意掌握平行四边形的性质是关键.17.如图,在平行四边形ABCD中,BC=2AB,CA⊥AB,则∠B= 60 度,∠CAD= 30 度.【考点】平行四边形的性质.【分析】利用锐角三角关系得出∠B=60°,再利用平行四边形的性质得出∠DAC的度数.【解答】解:∵在平行四边形ABCD中,BC=2AB,CA⊥AB,∴cosB==,∴∠B=60°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BAD=120°,∵∠BAC=90°,∴∠DAC=30°.故答案为:60,30.【点评】此题主要考查了平行四边形的性质以及锐角三角关系,熟练应用平行四边形的性质是解题关键.18.如图,D,E,F分别是△ABC的AB,BC,CA边的中点.若△ABC的周长为20,则△DEF的周长为10 .【考点】三角形中位线定理.【专题】计算题.【分析】根据三角形的中位线定理,可得△ABC的各边长为△DEF的各边长的2倍,从而得出△DEF 的周长即可.【解答】解:∵点D、E、F分别是△A BC三边的中点,∴AB=2EF,AC=2DE,BC=2DF,∵AB+AC+BC=20,∴DE+EF+DF=10,故答案为10.【点评】本题考查了三角形的中位线定理,是基础知识要识记.19.已知a、b、c、d为四边形的四边长,a、c为对边,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形一定是平行四边形.【考点】因式分解的应用.【分析】首先配方可得(a﹣b)2+(c﹣d)2=0,再根据偶次幂的非负性可得a﹣b=0,c﹣d=0,进而得到a=b,c=d,然后再根据两组对边分别相等的四边形是平行四边形可得答案.【解答】解:∵a2+b2+c2+d2=2ac+2bd∴a2+b2+c2+d2﹣2ac﹣2bd=0∴(a﹣b)2+(c﹣d)2=0解得:a=b,c=d,∴这个四边形的形状是平行四边形.故答案为:平行.【点评】此题主要考查了因式分解的运用,平行四边形的判定,关键是掌握完全平方公式和平行四边形的判定方法.20.如图所示,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为7 .【考点】翻折变换(折叠问题).【专题】压轴题.【分析】由平行四边形可得对边相等,由折叠,可得AE=EF,AB=BF,结合两个三角形的周长,通过列方程可求得FC的长,本题可解.【解答】解:设DF=x,FC=y,∵▱ABCD,∴AD=BC,CD=AB,∵BE为折痕,∴AE=EF,AB=BF,∵△FDE的周长为8,△FCB的周长为22,∴BC=AD=8﹣x,AB=CD=x+y,∴y+x+y+8﹣x=22,解得y=7.故答案为7.【点评】本题考查了平行四边形的性质及图形的翻折问题;解决翻折问题的关键是找着相等的边,利用等量关系列出方程求得答案.三、解答题21.如图,在▱ABCD中,E、F分别是BC、AD上的点,且AE∥CF,AE与CF相等吗?说明理由.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据两组对边平行的四边形是平行四边形,可以证明四边形AECF是平行四边形,从而得到AE=CF.【解答】解:AE=CF.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,即AF∥EC.又∵AE∥CF,∴四边形AECF是平行四边形.∴AE=CF.【点评】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.22.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.【考点】平行四边形的性质.【分析】由四边形ABCD是平行四边形,可求得BC=AD=8,又由AC⊥BC,利用勾股定理即可求得AC 的长,然后由平行四边形的对角线互相平分,求得OA的长,继而求得平行四边形ABCD的面积.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵AB=10,AC⊥BC,∴AC==6,∴OA=AC=3,=BC•AC=8×6=48.∴S平行四边形ABCD【点评】此题考查了平行四边形的性质以及勾股定理.注意平行四边形的对边相等,对角线互相平分.23.如图,平行四边形ABCD的对角线AC,BD相交于点O,AE=EB.求证:OE∥BC.【考点】三角形中位线定理;平行四边形的性质.【专题】证明题.【分析】根据平行四边形的对角线互相平分可得AO=CO,然后判断出OE是△ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半证明.【解答】证明:∵四边形ABCD是平行四边形,∴AO=CO,∵AE=EB,∴OE是△ABC的中位线,∴OE∥BC.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的性质,熟记性质与定理是解题的关键.24.如图,平行四边形ABCD中,AC、BD相交于O点,M、N分别是OA、OC的中点,求证:BM∥DN 且BM=DN.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的对角线互相平分,即可得到OA=OC,OB=OD,然后利用对角线互相平分的四边形是平行四边形即可证得四边形BMDN是平行四边形,根据平行四边形的性质即可得证.【解答】证明:连接DM,BN.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵M、N分别是OA、OC的中点,∴OM=ON又∵OB=OD∴四边形BMDN是平行四边形,∴BM∥DN且BM=DN.【点评】本题考查了平行四边形的判定与性质,正确证得四边形BMDN是平行四边形是解题的关键.25.如图,AD是△ABC的中线,E是AD的中点,F是BE延长线与AC的交点,求证:AF=CF.【考点】三角形中位线定理.【专题】证明题.【分析】过D作DG∥AC,可证明△AEF≌△CEG,可得AF=DG,由三角形中位线定理可得DG=CF,可证得结论.【解答】证明:如图,过D作DG∥AC,则∠EAF=∠EDG,∵AD是△ABC的中线,∴D为BC中点,∴G为BF中点,∴DG=CF,∵E为AD中点,∴AE=DE,在△AEF和△DEG中,,∴△AEF≌△DEG(ASA),∴DG=AF,∴AF=CF.【点评】本题主要考查三角形中位线定理,作辅助线构造三角形中位线找到GD和AF、CF的关系是解题的关键.26.如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定.【专题】证明题.【分析】(1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明△AFD≌△CEB.(2)由△AFD≌△CEB,容易证明AD=BC且AD∥BC,可根据一组对边平行且相等的四边形是平行四边形.【解答】证明:(1)∵DF∥BE,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).【点评】此题主要考查了全等三角形的判定和平行四边形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.平行四边形的判定,一组对边平行且相等的四边形是平行四边形.27.如图所示:在四边形ABCD中,AD∥BC、BC=18cm,CD=15cm,AD=10cm,AB=12cm,动点P、Q分别从A、C同时出发,点P以2cm/秒的速度由A向D运动,点Q以3cm/秒的速度由C向B运动.(1)几秒钟后,四边形ABQP为平行四边形?并求出此时四边形ABQP的周长(2)几秒钟后,四边形PDCQ为平行四边形?并求出此时四边形PDCQ的周长.【考点】平行四边形的判定.【专题】动点型.【分析】(1)已知条件为:AP∥BQ,只需让AP=BQ即可证得四边形ABQP为平行四边形(2)已知条件为:AP∥BQ,只需让PD=QC即可证得四边形PDCQ为平行四边形【解答】解:(1)x秒后,四边形ABQP为平行四边形.则2x=18﹣3x,解得x=3.6.3.6秒钟后,四边形ABQP为平行四边形,此时四边形ABQP的周长是3.6×2×2+12×2=38.4cm.(2)y秒后,四边形PDCQ为平行四边形.10﹣2y=3y,解得y=2秒钟后,四边形PDCQ为平行四边形,此时四边形PDCQ的周长是6×2+15×2=42cm.【点评】本题用到的知识点为:一组对边平行且相等的四边形是平行四边形.平行四边形的两组对边分别相等.。
(必考题)初中数学八年级数学下册第六单元《平行四边形》检测(包含答案解析)
解: 四边形 是平行四边形,
, ,
平分 ,
是等边三角形,
, ,
,
,
,故①错误;
可得
,
,故②正确;
,
为 中点,
,
,
,
;故③不正确;
四边形 是平行四边形,
,
,
,
,
,
,
,故④正确;
故正确的个数为2个,
故选:B.
【点睛】
此题主要考查了平行四边形的性质,以及等边三角形的判定与性质.注意证得 是等边三角形是关键.
A.六边形B.八边形C.十边形D.十二边形
4.一个多边形的内角和外角和之比为4:1,则这个多边形的边数是()
A.7B.8C.9D.10
5.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()
A.4B.5C.6D.7
6.若一个正多边形的每个内角度数都为135°,则这个正多边形的边数是()
A.6B.8C.10D.12
16.有一个正五边形和一个正方形边长相等,如图放置,则∠1=______.
17.如图,在五边形ABCDE中,∠A+∠B+∠E=320°,DP、CP分别平分∠EDC、∠BCD,则∠CPD的度数是_____.
18.如图,将平行四边形ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=6,AB=12,则AE的长为_______.
解析:8
【分析】
结合题意,根据正多边形外角和的性质计算,即可得到多边形的边数,经计算即可得到答案.
【详解】
根据题意得:机器人行走的多边形外角为
∴多边形的边数为:
∴多边形的周长为: 米
故答案为:8.
【点睛】
(典型题)初中数学八年级数学下册第六单元《平行四边形》检测(有答案解析)
一、选择题1.一个多边形的每一外角都等于60°,那么这个多边形的内角和为( )A .1440°B .1080°C .720°D .360° 2.一个多边形的内角和等于它的外角和的3倍,则它是( )边形. A .六B .七C .八D .九 3.正多边形的每个外角为60度,则多边形为( )边形.A .4B .6C .8D .10 4.如图,在平行四边形ABCD 中,AB≠BC ,点F 是BC 上一点,AE 平分∠FAD ,且点E 是CD 的中点,有如下结论:①AE ⊥EF ;②AF=CF+CD ;③AF=CF+AD ;④AB =BF ,其中正确的是( )A .①③B .②③C .②④D .①③④ 5.在ABCD 中,6AB =,4=AD ,则ABCD 的周长为( )A .10B .20C .24D .12 6.如图,□ABCD 中,AB =3,BC =5,AE 平分∠BAD 交BC 于点E ,则CE 的长为( )A .1B .2C .3D .4 7.如图,在平行四边形ABCD 中,AE 平分∠BAD ,交CD 边于E ,AD =3,EC =2,则AB的长为( )A .1B .2C .3D .58.如图,在ABCD 中,点,E F 分别在边BC AD ,上.若从下列条件中只选择一个添加到图中的条件中:①//AE CF ;②AE CF =;③BE DF =;④BAE DCF ∠=∠.那么不能使四边形AECF 是平行四边形的条件相应序号是( )A .①B .②C .③D .④ 9.若一个正n 边形的每个内角为156°,则这个正n 边形的边数是( )A .13B .14C .15D .16 10.如图,在平行四边形ABCD 中,下列结论错误的是( )A .∠BDC =∠ABDB .∠DAB =∠DCBC .AD =BCD .AC ⊥BD 11.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AB AC ⊥,若6AB =,8AC =,则BD 的长是( )A .10B .213C .413D .1212.如图,在Rt △ABC 中,∠B=90°,AB=8,BC=5,点E 是AB 上的点,AC 为平行四边形AECF 的对角线,则EF 的最小值是( )A .5B .6C .8D .10二、填空题13.如图,在ABC 中,BD 平分ABC ∠,AF BD ⊥于点E ,交BC 于点F ,点G 是AC 的中点,若10BC =,7AB =,则EG 的长为______.14.如图,点C 在线段AB 上,等腰ADC 的顶角120ADC =∠︒,点M 是矩形CDEF 的对角线DF 的中点,连接MB ,若63AB =,6AC =,则MB 的最小值为为______.15.多边形每一个内角都等于108°,多边形一个顶点可引的对角线的条数是________条. 16.已知直角坐标系内有四个点A(-1,2),B(3,0),C(1,4),D(x ,y),若以A ,B ,C ,D 为顶点的四边形是平行四边形,则D 点的坐标为___________________.17.三角形的三边长分别是 4cm ,5cm ,6cm ,则连结三边中点所围成的三角形的周长是______________cm .18.如图,平行四边形ABCD 在平面直角坐标系中,已知∠DAB =60°,A (﹣2,0),点P 在AD 上,连接PO ,当OP ⊥AD 时,点P 到y 轴的距离为_____.19.如图,己知ABCD 中,点M 是BC 的中点,线段AM 、BD 互相垂直,AM=3,BD=6,则该平行四 边形的面积为____.20.如图,将平行四边形ABCD 沿EF 对折,使点A 落在点C 处,若∠A=60°,AD=6,AB=12,则AE 的长为_______.三、解答题21.操作探究:(1)现有一块等腰三角形纸板,BC 为底边,量得周长为32cm ,底比一腰多2cm .若把这个三角形纸板沿其对称轴剪开,拼成一个四边形,请在下列方框中画出你能拼成的各种四边形的示意图,并在图中标出四边形的各边长;(2)计算拼成的各个四边形的两条对角线长的平方和.22.如图,ABCD 的对角线AC 、BD 交于点O ,M ,N 分别是AB 、AD 的中点. (1)求证:四边形AMON 是平行四边形;(2)若6AC =,4BD =,90AOB ∠=︒,求NO 的长度.23.如图,在△ABC 中,∠ACB =90°,CA =CB ,点O 在△ABC 的内部,⊙O 经过B ,C 两点,交AB 于点D ,连接CO 并延长交AB 于点G ,以GD ,GC 为邻边作平行四边形GDEC . (1)判断DE 与⊙O 的位置关系,并说明理由;(2)若DE =17,CE =13,求⊙O 的半径.24.如图,已知1,23180BDE ︒∠=∠∠+∠=.(1)证明://AD EF .(2)若DA 平分BDE ∠,FE AF ⊥于点F ,140∠=︒,求BAC ∠的度数. 25.如图,在平行四边形AFCE 中,EF 是对角线,B 、D 是直线EF 上的点,且DE BF =.求证:四边形ABCD 是平行四边形.26.如图,将平行四边形ABCO 放置在平面直角坐标系xOy 中,O 为坐标原点,若点A 的坐标是()6,0,点C 的坐标是()1,4.(1)点B 的坐标为_______;(2)求直线AC 的表达式;(3)若点C 关于x 轴的对称点为点E ,设过点E 的直线y kx b =+,与四边形ABCO 有公共点,结合函数图象,求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由一个多边形的每一个外角都等于60°,且多边形的外角和等于360°,即可求得这个多边形的边数,由多边形内角和公式可求解.【详解】解:∵一个多边形的每一个外角都等于60°,且多边形的外角和等于360°,∴这个多边形的边数是:360°÷60°=6,∴这个多边形的内角和=180°×(6-2)=720°,故选:C.【点睛】本题考查了多边形的外角和定理.此题比较简单,注意掌握多边形的外角和等于360度是关键.2.C解析:C【分析】根据多边形的内角和等于它的外角和的3倍可列方程求得边数.【详解】解:设多边形的边数为n,根据题意得:(n−2)×180°=360°×3.解得n=8.故选:C.【点睛】本题主要考查的是多边形的内角和与外角和,掌握多边形的内角和公式是解题的关键.3.B解析:B【分析】利用多边形的外角和360除以外角60得到多边形的边数.【详解】=6,多边形的边数为36060故选:B.【点睛】此题考查多边形的外角和定理,正多边形的性质,利用外角和除以外角的度数求正多边形的边数是最简单的题型.4.A解析:A【分析】首先延长AD ,交FE 的延长线于点M ,易证得△DEM ≌△CEF ,即可得EM=EF ,又由AE 平分∠FAD ,即可判定△AEM 是等腰三角形,由三线合一的知识,可得AE ⊥EF .【详解】延长AD ,交FE 的延长线于点M ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠M=∠EFC ,∵E 是CD 的中点,∴DE=CE ,在△DEM 和△CEF 中,M EFC DEM CEF DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEM ≌△CEF (AAS ),∴EM=EF ,∵AE 平分∠FAD ,∴AM=AF ,AE ⊥EF .即AF=AD+DM=CF+AD ;故①,③正确,②错误.∵AF 不一定是∠BAD 的角平分线,∴AB 不一定等于BF ,故④错误.故选:A .【点睛】本题考查了平行四边形的性质、等腰三角形的判定与性质以及全等三角形的判定与性质.注意掌握辅助线的作法,注意掌握数形结合思想的应用.5.B解析:B【分析】根据平行四边形的性质得出ABCD的周长为:2AB+2AD,求解即可.【详解】解:∵四边形ABCD为平行四边形,∴AB=CD=6,AD=BC=4,∴ABCD的周长为:2AB+2AD=2(6+4)=20,故选B.【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.6.B解析:B【分析】利用平行四边形性质得∠DAE=∠BEA,再利用角平分线性质证明△BAE是等腰三角形,得到BE=AB即可解题.【详解】∵四边形ABCD是平行四边形,∴AD=BC=5,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=3,∴CE=BC-BE=5-3=2,故选B.【点睛】本题考查了平行四边形的性质,等腰三角形的判定,属于简单题,熟悉平行线加角平分线得到等腰三角形这一常用解题模型是解题关键.7.D解析:D【分析】首先证明DA=DE,再根据平行四边形的性质即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴BA∥CD,AB=CD,∴∠DEA=∠EAB,∵AE平分∠DAB,∴∠DAE=∠EAB,∴∠DAE=∠DEA,∴DE=AD=3,∴CD=CE+DE=2+3=5,∴AB=5.故选:D.【点睛】本题考查平行四边形的性质,等腰三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.8.B解析:B【分析】利用平行四边形的性质,依据平行四边形的判定方法,即可得出不能使四边形AECF是平行四边形的条件.【详解】解:①∵四边形ABCD平行四边形,∴AD//BC,∴AF//EC,∵AE∥CF,∴四边形AECF是平行四边形;②∵AE=CF不能得出四边形AECF是平行四边形,∴条件②符合题意;③∵四边形ABCD平行四边形,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.④∵四边形ABCD是平行四边形,∴∠B=∠D,∵∠BAE=∠DCF,∴∠AEB=∠CFD.∵AD∥BC,∴∠AEB=∠EAD.∴∠CFD=∠EAD.∴AE∥CF.∵AF∥CE,∴四边形AECF是平行四边形.综上所述,不能使四边形AECF是平行四边形的条件有1个.故选:B.【点睛】本题考查了平行四边形的性质定理和判定定理,以及平行线的判定定理;熟记平行四边形的判定方法是解决问题的关键.9.C解析:C【解析】试题分析:由一个正多边形的每个内角都为156°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案.解:∵一个正多边形的每个内角都为156°,∴这个正多边形的每个外角都为:180°﹣156°=24°,∴这个多边形的边数为:360°÷24°=15,故选C.考点:多边形内角与外角.10.D解析:D【分析】根据平行四边形的性质进行判断即可.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BDC=∠ABD,故选项A正确;∵四边形ABCD是平行四边形,∴∠DAB=∠DCB,故选项B正确;∵四边形ABCD是平行四边形,∴AD=BC,故选项C正确;由四边形ABCD是平行四边形,不一定得出AC⊥BD,故选D.【点睛】本题主要考查平行四边形的性质,掌握平行四边形的相关知识点是解答本题的关键.11.C解析:C【分析】由平行四边形的性质得出OB=OD,OA=OC=12AC=4,由AC⊥AB,根据勾股定理求出OB,即可得出BD的长.【详解】解:∵四边形ABCD是平行四边形,∴OB=OD,OA=OC=1AC=4,2∵AB⊥AC,∴由勾股定理得:==∴故选:C.【点睛】本题考查了平行四边形的性质、勾股定理;熟练掌握平行四边形的性质,由勾股定理求出OB是解题的关键.12.A解析:A【分析】由平行四边形的对角线互相平分、垂线段最短知,当OE⊥AB时,EF取最小值.【详解】解:∵在Rt△ABC中,∠B=90°,∴BC⊥AB,∵四边形AECF是平行四边形,∴OE=OF,OA=OC,∴当OE取最小值时,线段EF最短,此时OE⊥AB,∴OE是△ABC的中位线,∴OE=1BC=2.5,2∴EE=2OE=5,∴EF的最小值是5.故选:A.【点睛】本题考查平行四边形的性质,以及垂线段最短,解题关键是熟练掌握“平行四边形的对角线互相平分”的性质.二、填空题13.5【分析】根据角平分线的定义和全等三角形的判定和性质定理以及三角形的中位线定理即可得到结论;【详解】∵BD平分∠ABCAF⊥BD∴∠ABE=∠FBE∠AEB=∠FEB=90°∵BE=BE∴△ABE≌解析:5【分析】根据角平分线的定义和全等三角形的判定和性质定理以及三角形的中位线定理即可得到结论;【详解】∵BD 平分∠ABC ,AF ⊥BD ,∴∠ABE=∠FBE ,∠AEB=∠FEB=90°,∵BE=BE ,∴△ABE ≌△FBE(ASA),∴BF=AB=7,AE=EF ,∵BC=10,∴CF=3,∵点G 是AC 的中点,∴AG=CG ,∴EG=12CF=32, 故答案为:1.5.【点睛】本题考查了三角形的中位线定理,全等三角形的判定和性质,角平分线的定义,正确的识别图形是解题的关键;14.【分析】过D 作DG ⊥AC 于G 取FC 中点H 连结MHHB 由等腰的顶角可得DG 平分∠ADCAG=CG=可求∠GDC=60°∠DCG=30°在Rt △DGC 中由勾股定理DC2=DG2+GC2即4DG2=DG2解析:9-【分析】过D 作DG ⊥AC 于G ,取FC 中点H ,连结MH ,HB 由等腰ADC 的顶角120ADC =∠︒,可得DG 平分∠ADC ,AG=CG=1AC=32,可求∠GDC=60°,∠DCG=30°,在Rt △DGC 中,由勾股定理DC 2=DG 2+GC 2,即4DG 2=DG 2+9,可求由M ,H 为中点,可得MH=12MB MH+HB ,MH 为定值,HB 最小时,MB 最短,BH ⊥CF ,可求∠HCB=60°,CH=()11BC=22,由勾股定理9=-,BH 最小-【详解】解:过D 作DG ⊥AC 于G ,取FC 中点H ,连结MH ,HB ,∵等腰ADC 的顶角120ADC =∠︒,∴DG 平分∠ADC ,AG=CG=1AC=32, ∴∠GDC=60°,∠DCG=90°-∠GDC=90°-60°=30°,∴CD=2DG ,在Rt △DGC 中,由勾股定理DC 2=DG 2+GC 2,即4DG 2=DG 2+9,∴DG=3,CD=23, ∵M ,H 为中点,∴MH=1DC=32, 根据两点之间线段最短,则有MBMH+HB ,MH 为定值, ∴HB 最小时,MB 最短,∴BH ⊥CF ,∠HCB=180°-∠DCA-∠DCF=180°-30°-90°=60°,CH=()11BC=63-6=33-322, BH=()2233333933CB CH CH -==-=-,BH 最小=3+9-33=923-,故答案为:923-.【点睛】本题考查等腰三角形的性质,勾股定理,30°角直角三角形性质,三角形中位线,三角形三边关系,掌握等腰三角形的性质,勾股定理,30°角直角三角形性质,三角形中位线,三角形三边关系是解题关键.15.2【分析】多边形的每一个内角都是108°则每个外角是72°多边形的外角和是360°这个多边形的每个外角相等因而用360°除以外角的度数就得到外角的个数外角的个数就是多边形的边数再根据从n 边形的一个顶解析:2【分析】多边形的每一个内角都是108°,则每个外角是72°.多边形的外角和是360°,这个多边形的每个外角相等,因而用360°除以外角的度数,就得到外角的个数,外角的个数就是多边形的边数.再根据从n边形的一个顶点出发可引出(n−3)条对角线,连接这个点与其余各顶点,可以把一个多边形分割成(n−2)个三角形,依此作答.【详解】根据题意得:360°÷(180°−108°)=360°÷72°=5,那么它的边数是五,从它的一个顶点出发的对角线共有5−3=2条,故答案为:2.【点睛】此题考查了多边形内角与外角,根据多边形的外角和求多边形的边数是常用的一种方法,需要熟记.另外需要记住从n边形的一个顶点出发可引出(n−3)条对角线,把这个多边形分割成(n−2)个三角形.16.(52)(-36)(1-2)【分析】D的位置分三种情况分析;由平行四边形对边平行关系用平移规律求出对应点坐标【详解】解:根据平移性质可以得到AB对应DC 所以由BC的坐标关系可以推出AD的坐标关系即D解析:(5,2),(-3,6),(1,-2) .【分析】D的位置分三种情况分析;由平行四边形对边平行关系,用平移规律求出对应点坐标.【详解】解:根据平移性质可以得到AB对应DC,所以,由B,C的坐标关系可以推出A,D的坐标关系,即D(-1-2,2+4),所以D点的坐标为(-3,6);同理,当AB与CD对应时,D点的坐标为(5,2);当AC与BD对应时,D点的坐标为(1,-2)故答案为:(5,2),(-3,6),(1,-2).【点睛】本题考核知识点:平行四边形和平移.解题关键点:用平移求出点的坐标.17.【分析】三角形两边中点的连线是三角形的中位线如下图DEDFEF都是△ABC的中位线根据中位线的性质可分别求出长度从而得到周长【详解】如下图在△ABC中点DEF分别是ABBCCA的中点AB=4cmBC解析:15 2【分析】三角形两边中点的连线是三角形的中位线,如下图,DE,DF,EF都是△ABC的中位线,根据中位线的性质可分别求出长度,从而得到周长.【详解】如下图,在△ABC中,点D、E、F分别是AB、BC、CA的中点,AB=4cm,BC=5cm,AC=6cm∵点D、E分别是AB、BC的中点∴DE是△BAC的中位线∴DE=12AC=3cm同理,EF=12AB=2cm,DF=1522CB=cm∴△DEF的周长=3+2+51522=cm故答案为:15 2【点睛】本题考查三角形中位线的定理,需要注意,三角形的中位线平行且等于对应底边的一半,且不可弄错边之间的关系.18.【分析】首先根据点A的坐标求得OA的长然后求得PO的长从而求得点P 到y轴的距离即可【详解】解:∵A(﹣20)∴OA=2∵∠DAB=60°OP⊥AD∴∠AOP=30°∴AP=1∴OP=作PE⊥y轴∵∠解析:3 2【分析】首先根据点A的坐标求得OA的长,然后求得PO的长,从而求得点P到y轴的距离即可.【详解】解:∵A(﹣2,0),∴OA=2,∵∠DAB=60°,OP⊥AD,∴∠AOP=30°,∴AP=1,∴OP3作PE ⊥y 轴,∵∠POA =30°,∴∠OPE =30°,∴OE=3 ∴PE =32, ∴点P 到y 轴的距离为32, 故答案为32. 【点睛】 考查了平行四边形的性质,能够将点的坐标转化为线段的长是解答本题的关键,难度不大.19.12【分析】由题意连接MD 根据三角形同底同高可得再利用平行四边形的性质得出进而运用面积的比例进行分析计算即可求得平行四边形的面积【详解】解:由题意连接MD ∵点M 是BC 的中点∴∵四边形是平行四边形∴∵ 解析:12【分析】由题意连接MD,根据三角形同底同高可得DBM DCM S S =,再利用平行四边形的性质得出 ABD DBC S S =,进而运用面积的比例进行分析计算即可求得平行四边形的面积.【详解】解:由题意连接MD,∵点M 是BC 的中点,∴DBM DCM S S =,22DBC DCM DBM S S S ==,∵四边形ABCD 是平行四边形,∴ABD DBC S S =,∵线段AM 、BD 互相垂直,AM=3,BD=6,∴S 四边形ABMD =1136922AM BD =⨯⨯=, ∵S 四边形ABMD =223DCM ABD DBC DCM DCM DCM DCM DCM ABCD S S S S S S S S S -=+-=+-=, ∴933DCM S=÷=, ∴44312D ABC M D C S S ==⨯=.故答案为:12.【点睛】本题考查平行四边形的性质,熟练掌握三角形同底同高其面积相等以及平行四边形的对角线平分平行四边形的面积是解题的关键.20.4【分析】过点C 作CG ⊥AB 的延长线于点G 设AE=x 由于▱ABCD 沿EF 对折可得出AE=CE=x 再求出∠BCG=30°BG=BC=3由勾股定理得到则EG=EB+BG=12-x+3=15-x 在△CEG解析:4.【分析】过点C 作CG ⊥AB 的延长线于点G ,设AE=x ,由于▱ABCD 沿EF 对折可得出AE=CE=x, 再求出∠BCG=30°,BG=12BC=3, 由勾股定理得到33CG =,则EG=EB+BG=12-x+3=15-x ,在△CEG 中,利用勾股定理列出方程即可求出x 的值.【详解】解:过点C 作CG ⊥AB 的延长线于点G ,∵▱ABCD 沿EF 对折,∴AE=CE设AE=x ,则CE=x ,EB=12-x ,∵AD=6,∠A=60°,∴BC=6, ∠CBG=60°,∴∠BCG=30°,∴BG=12BC=3, 在△BCG 中,由勾股定理可得:33CG =∴EG=EB+BG=12-x+3=15-x在△CEG 中,由勾股定理可得:222153x x -+=()(3),解得:8.4x =故答案为8.4【点睛】本题考查平行四边形的综合问题,解题的关键是证明△D′CF ≌△ECB ,然后利用勾股定理列出方程,本题属于中等题型.三、解答题21.(1)见解析;(2)200或328或272或192.16【分析】(1)正确画出图形;(2)分别根据勾股定理计算四个图形中对角线长的平方和.【详解】解:(1)如图所示:(2)设AB =AC =xcm ,则BC =(x +2)cm ,由题意得(x +2)+2x =32,解得x =10cm .因此AB =AC =10cm ,则BC =12cm ,过点A 作AD ⊥BC 于D ,∴BD =CD =6cm ,∴AD =8cm .可以拼成四种四边形,如上图所示.如图1,两对角线长的平方和为102+102=200;如图2,AC 2=()22483+,∴两对角线长的平方和为()2224836328++=;如图3,BC 2=22128+,∴两对角线长的平方和为2221288272++=;如图4,∵12×AB ×CO =12×AC ×BC ,10CO =6×8.∴CO =4.8cm ,CD =9.6cm .∴两对角线长的平方和为229.610192.16+=.【点睛】本题考查了图形的剪拼,勾股定理等知识,解题的关键是根据题意画出所有的图形,用到的知识点是勾股定理、平行四边形的性质等.22.(1)证明见解析;(2)NO =. 【分析】(1)根据平行四边形的性质得到AO =OC ,BO =OD ,根据三角形中位线的性质得到MO ∥AD ,NO ∥AB ,根据平行四边形的判定可证得结论;(2)由勾股定理求得AB =12NO AB =进而可得结论.【详解】(1)∵四边形ABCD 是平行四边形,∴AO =OC ,BO =OD .∵M ,N 分别是AB 、AD 的中点,∴//MO AD ,//NO AB ,∴//MO AN ,//NO AM ,∴四边形AMON 是平行四边形;(2)解:∵四边形ABCD 是平行四边形,∴AO OC =,BO OD =.∵6AC =,4BD =,∴3AO =,2BO =.∵90AOB ∠=︒, ∴AB =∵N 是AD 的中点,BO OD =, ∴12NO AB =,∴NO =【点睛】本题主要考查了平行四边形的性质和判定,三角形中位线的性质,勾股定理,根据三角形中位线的性质得到12NO AB =是解决问题的关键. 23.(1)DE 是⊙O 的切线,理由见解析;(2)12r =【分析】(1)连接OD ,求得∠ABC =45°,根据圆周角定理可得∠COD =2∠ABC =90°,根据平行四边形的性质可得DE ∥CG ,得到∠EDO +∠COD =180°,推出OD ⊥DE 于是即可求得结论; (2)设⊙O 的半径为r ,根据平行四边形的性质可得DG =CE =13,CG =DE =17,由勾股定理可得关于r 的方程,解方程即可求解.【详解】(1)DE 是⊙O 的切线.证明:连接OD ,∵∠ACB =90°,CA =CB ,∴∠ABC =45°,∴∠COD =2∠ABC =90°,又∵四边形GDEC 是平行四边形,∴DE ∥CG ,∴∠EDO +∠COD =180°,∴∠EDO =90°,∴OD ⊥DE ,∴DE 是⊙O 的切线;(2)解:设⊙O 的半径为r ,∵四边形GDEC 为平行四边形,∴DG =CE =13,CG =DE =17,∵∠DOG =180°-∠DOC =180°-90°=90°,∴222OD OG DG +=,即222(17)13r r +-=,解得125,12r r ==,当=5r 时,OG =12,点G 在⊙O 外,∴=5r 不成立,舍去,∴12r =, .【点睛】本题考查了直线与圆的位置关系,圆周角定理、平行四边形的性质、勾股定理的应用,解题的关键是综合利用所学知识.24.(1)见解析;(2)70°【分析】(1)根据平行线的判定得出AC//DE ,根据平行线的性质得出∠2=∠ADE ,求出∠3+∠ADE=180°,根据平行线的判定得出即可;(2)求出∠BDE的度数,求出∠2的度数,求出∠3的度数,根据四边形的内角和定理求出∠B,再根据三角形内角和定理求出即可.【详解】(1)证明:∵∠1=∠BDE,∴AC//DE,∴∠2=∠ADE,∵∠2+∠3=180°,∴∠3+∠ADE=180°,∴AD//EF;(2)∵∠1=∠BDE,∠1=40°,∴∠BDE=40°,∵DA平分∠BDE,∠BDE=20°,∴∠ADE=12∴∠2=∠ADE=20°,∵∠2+∠3=180°∴∠3=160°,∵FE⊥AF,∴∠F=90°,∴∠B=360°-90°-160°-40°=70°,在△ABC中,∠BAC=180°-∠1-∠B=180°-40°-70°=70°.【点睛】本题考查了平行线的性质和判定,多边形的内角和定理,角平分线的定义,能灵活运用知识点进行推理和计算是解此题的关键.25.见解析【分析】连接AC交BD于点O,根据平行四边形的对角线互相平分可得OA=OC,OE=OF,然后求出OB=OD,再根据对角线互相平分的四边形是平行四边形即可证明.【详解】连接AC交BD于点O,如图所示:∵四边形AFCE是平行四边形,∴OA=OC,OE=OF,∵DE=BF,∴OE+DE=OF+BF,即OB=OD,∴四边形ABCD是平行四边形.【点睛】本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质,证出OB=OD是解题的关键.26.(1)(7,4);(2)y=-424 55 x+;(3)k≤-4或k≥45.【分析】(1)根据平行四边形的性质及A点和C的坐标求出点B的坐标即可;(2)设直线AC的表达式为:y=kx+b,把点A的坐标是(6,0),点C的坐标是(1,4)代入,解方程组即可得到结论;(3)根据轴对称的性质得到E(1,-4),分别求得直线OE,AE,BE的解析式,于是得到结论.【详解】解:(1)∵四边形ABCO是平行四边形,O为坐标原点,点A的坐标是(6,0),点C的坐标是(1,4),∴BC=OA=6,6+1=7,∴点B的坐标是(7,4),故答案为:(7,4);(2)设直线AC的表达式为:y=kx+b,∵点A的坐标是(6,0),点C的坐标是(1,4),∴604k bk b+=⎧⎨+=⎩,解得:45245kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AC的表达式为:y=42455x-+;(3)∵点C关于x轴的对称点为点E,点C的坐标是(1,4),∴E(1,-4),把O(0,0)和E(1,-4)代入y=kx+b得y=-4x;把A(6,0)和E(1,-4)代入y=kx+b得y=424 55x-;把B(7,4)和E(1,-4)代入y=kx+b得y=416 33x-;∴k的取值范围为:k≤-4或k≥45【点睛】本题考查了一次函数的综合题,一次函数的图象上点的坐标特征,待定系数法求一次函数的解析式,一次函数的图象与系数的关系等,求得对应点的坐标是解题的关键.。
(典型题)初中数学八年级数学下册第六单元《平行四边形》检测(含答案解析)
一、选择题1.如图,已知△ABC 中,点M 是BC 边上的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,若AB =8,MN =2,则AC 的长为( )A .12B .11C .10D .92.如图,作边长为4的等边11OA B ,延长11A B 至点2A ,使得121112B A A B =,再以 12B A 为边作等边122B A B .延长22A B 至点3A ,使得23B A =222A B ,再以23B A 为边作等边233B A B ,以此类推…….若点C 、1C 、2C 、3C ……分别是1OA 、11A B 、32A B 、33A B ……的中点,则2021CC 的长度为( )A .6058B .6060C .6062D .6064 3.在平面直角坐标系中,已知四边形AMNB 各顶点坐标分别是:(0,2)(2,2),(3,),(3,)A B M a N b -,,且1,MN a b =<,那么四边形AMNB 周长的最小值为( )A .625+B .613+C .34251++D .34131++ 4.如图,在□ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边于点E ,且AE =4,则AB 的长为( )A .4B .3C .52D .25.如图,在平行四边形ABCD 中,AB≠BC ,点F 是BC 上一点,AE 平分∠FAD ,且点E 是CD 的中点,有如下结论:①AE ⊥EF ;②AF=CF+CD ;③AF=CF+AD ;④AB =BF ,其中正确的是( )A .①③B .②③C .②④D .①③④6.如图,在周长为20厘米的平行四边形ABCD 中,AB ADAC BD ≠,,相交于点O ,OE BD ⊥交AD 于点E ,则ABE △的周长为( )A .10厘米B .12厘米C .14厘米D .16厘米 7.如图,AD 、BE 分别是ABC 的中线和角平分线,AD BE ⊥,4AD BE ==,F 为CE 的中点,连接DF ,则AF 的长等于( )A .2B .3C .5D .25 8.如图,在ABCD 中,AD= 10,点M 、N 分别是BD 、CD 的中点,则MN 等于( )A .4B .5C .6D .不能确定 9.如图,平行四边形ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F .若AB =4,BC =5,OE =1.5,那么四边形EFCD 的周长为( )A .16B .14C .10D .1210.如图,在周长为12cm 的▱ABCD 中,AB <AD ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为( )A .4cmB .5cmC .6cmD .7cm 11.正多边形的一个外角的度数为72°,则这个正多边形的边数为( )A .4B .5C .6D .7 12.如图,ABCD 的对角线AC 与BD 相交于点O ,AB AC ⊥,若4AB =,6AC =,则BO 的长为( )A .5B .8C .10D .11二、填空题13.如图,点C 在线段AB 上,等腰ADC 的顶角120ADC =∠︒,点M 是矩形CDEF 的对角线DF 的中点,连接MB ,若63AB =,6AC =,则MB 的最小值为为______.14.如图,在OABC 中,对角线,AC BD 相交于点,O AE BD ⊥于点,E CF BD ⊥于点,F 连接,AF CE ,给出下列结论:;AF CE OE OF ==①②;DE BF =③;④图中共有八对全等三角形.其中正确结论的序号是______.15.某数学学习小组发现:通过连多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角钱共有3条,那么该多边形的内角和是______度.16.有一个正五边形和一个正方形边长相等,如图放置,则∠1=______.17.如图,在Rt △ABC 中,∠B =90°,AB =6,BC =8,点D 在线段BC 上一动点,以AC 为对角线的平行四边形ADCE 中,则DE 的最小值是______.18.现有①正三角形、②正方形、③正五边形三种形状的地砖,只选取其中一种地砖镶嵌地面,不能进行地面镶嵌的有___________(填序号).19.如图,在ABCD 中,对角线AC 、BD 相交于点O ,且DB BC ⊥,垂足为B ,若10AC =,6BD =,则BC 的长等于_______.20.如图,平行四边形ABCD 中,AB=8cm ,AD=12cm ,点P 在AD 边上以每秒1cm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒4cm 的速度从点C 出发,在CB 间往返运动,两个点同时出发,当点P 到达点D 时停止(同时点Q 也停止),在运动以后,以P 、D 、Q 、B 四点组成平行四边形的次数有______次.三、解答题21.如图,将正方形ABCD 绕点B 顺时针旋转()090θθ︒<<︒,得到正方形BEFG .连接AG ,与正方形交于点H ,K ,连接EC ,DF .(1)求BAG∠的值(用θ表示);(2)求证://AG EC;(3)写出线段AG,EC,DF之间的数量关系,并证明.22.如图,在66⨯的正方形网格中,每个小正方形的边长为1,小正方形的顶点叫做格点,连续任意两个格点的线段叫做格点线段.(1)如图1,格点线段AB、CD,请添加一条格点线段EF,使它们构成轴对称图形.(2)如图2,格点线段AB和格点C,在网格中找出一个符合的点D,使格点A、B、C、D四点构成中心对称图形(画出一个即可).23.如图,将平行四边形ABCD的边AD边延长至点E,使DE=12AD,连接CE,F是BC边的中点,连接FD.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠A=60°,求CE的长.24.如图,在平面直角坐标系中,点A、B、C的坐标分别为(0,2)、(-1,0)、(2,0).(1)求直线AB的函数表达式;(2)直线AB上有一点P,使得△PBC的面积等于9,求点P的坐标;(3)设点D 与A 、B 、C 点构成平行四边形,直接写出所有符合条件的点D 的坐标.25.如图,将平行四边形ABCO 放置在平面直角坐标系xOy 中,O 为坐标原点,若点A 的坐标是()6,0,点C 的坐标是()1,4.(1)点B 的坐标为_______;(2)求直线AC 的表达式;(3)若点C 关于x 轴的对称点为点E ,设过点E 的直线y kx b =+,与四边形ABCO 有公共点,结合函数图象,求k 的取值范围.26.在平面直角坐标系中,ABC ∆的三个项点的位置如图所示,现将ABC ∆沿'AA 的方向平移,使得点A 移至图中的点'A 的位置.(1)在直角坐标系中,画出平移后所得'''A B C ∆ (其中','B C 分别是,B C 的对应点). (2)求ABC ∆的面积.(3)以A B C D 、、、为顶点构造平行四边形,则D 点坐标为__________.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】延长BN 交AC 于D ,证明△ANB ≌△AND ,根据全等三角形的性质、三角形中位线定理计算即可.【详解】解:延长BN 交AC 于D ,在△ANB 和△AND 中,90NAB NAD AN ANANB AND ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△ANB ≌△AND ,∴AD=AB=8,BN=ND ,∵M 是△ABC 的边BC 的中点,∴DC=2MN=4,∴AC=AD+CD=12,故选:A .【点睛】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.2.C解析:C【分析】由作法知两类等边三角形11OA B ,122B A B 边长分比为4,2,由点C 、1C 、2C 、3C ……分别是1OA 、11A B 、32A B 、33A B ……的中点,利用中位线可求123452CC C C C C ==== 同理34564C C C C ===求出26CC =由此求出2k 6CC k =,利用相等线段关系2021202020202021110106CC CC C C CC =+=⨯+即可求出.【详解】由作法知11OA B ,233B A B ,455B A B ……都是边长为4的等边三角形,122B A B ,344B A B ,566B A B ……都是边长为2的等边三角形,∵点C 、1C 、2C 、3C ……分别是1OA 、11A B 、32A B 、33A B ……的中点,∴CC 1=111OB =4=222⨯=C 2C 3=C 4C 5=……, ∵1211111111=2=222B A A B B C B C =⨯=, ∵23B A =222A B ,∴232222=22B A B C A B =即2222B C A B =,∴121224C C B B ==,同理34564C C C C ===,∴2112246CC CC C C =+=+=,∴2242226k k CC C C C C +====,∴422426CC CC C C =+=⨯,∴644626636CC CC C C =+=⨯+=⨯,∴2k 6CC k =,∴20212020202020212110101010626062CC CC C C CC CC =+=+=⨯+=,故选择:C .【点睛】本题考查图形规律探究问题,从图形分布入手:由图形特点⇒找出特殊情况⇒推广到一般情况⇒总结规律.3.A解析:A【分析】如图,把()02A -,向上平移一个单位得:()101A -,,作1A 关于直线3x =的对称点()261A -,, 连接2A B ,交直线3x =于N , 连接1A N ,则此时四边形AMNB 的周长最短,再利用勾股定理可得:AB ==25A B ==,利用AMNB C 四边形2AB MN A B =++从而可得答案.【详解】解:如图,把()02A -,向上平移一个单位得:()101A -,,作1A 关于直线3x =的对称点()261A -,, 连接2A B ,交直线3x =于N , 连接1A N ,122A N BN A N BN A B ∴+=+=,由111//MN AA MN AA ==,, ∴ 四边形1AMNA 是平行四边形,12,A N AM A N ∴==所以此时:四边形AMNB 的周长最短,()()()2022261A B A --,,,,,, ()()22022225AB ∴=-+--=, ()()22262125A B =-+--=,2AMNB C AM AB BN MN A N BN AB MN =+++=+++四边形2AB MN A B =++251525 6.=++=+故选:.A【点睛】本题考查的是图形与坐标,勾股定理的应用,轴对称的性质,平行四边形的判定与性质,掌握以上知识是解题的关键.4.A解析:A【分析】根据平行四边形性质得出AB=DC ,AD//BC ,推出∠DEC=∠BCE ,求出∠DEC=∠DCE ,推出DE=DC=AB ,得出AD=2DE 即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB=DC ,AD//BC ,∴∠DEC=∠BCE ,∵CE 平分∠DCB ,∴∠DCE=∠BCE ,∴∠DEC=∠DCE ,∴DE=DC=AB ,∵AD=2AB=2CD ,CD=DE ,∴AD=2DE ,∴AE=DE=4,∴DC=AB=DE=4,故选A .【点睛】本题考查了平行四边形性质,平行线性质,角平分线的定义,等腰三角形的判定的应用,关键是求出DE=AE=DC .5.A解析:A【分析】首先延长AD ,交FE 的延长线于点M ,易证得△DEM ≌△CEF ,即可得EM=EF ,又由AE 平分∠FAD ,即可判定△AEM 是等腰三角形,由三线合一的知识,可得AE ⊥EF .【详解】延长AD ,交FE 的延长线于点M ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠M=∠EFC ,∵E 是CD 的中点,∴DE=CE ,在△DEM 和△CEF 中,M EFC DEM CEF DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEM ≌△CEF (AAS ),∴EM=EF ,∵AE 平分∠FAD ,∴AM=AF ,AE ⊥EF .即AF=AD+DM=CF+AD ;故①,③正确,②错误.∵AF 不一定是∠BAD 的角平分线,∴AB 不一定等于BF ,故④错误.故选:A .【点睛】本题考查了平行四边形的性质、等腰三角形的判定与性质以及全等三角形的判定与性质.注意掌握辅助线的作法,注意掌握数形结合思想的应用.6.A解析:A【分析】由平行四边形求出OB=OD ,再利用等腰三角形的三线合一求出BE=DE 由此即可求出ABE △的周长.【详解】∵四边形ABCD 是平行四边形,∴OB OD =.∵OE BD ⊥,∴BE DE =,∴ABE △的周长为20210AB AE BE AB AE DE AB AD ++=++=+=÷=(厘米),故选:A.【点睛】此题考查平行四边形的对角线互相平分、对边相等的性质,等腰三角形的三线合一的性质. 7.D解析:D【分析】已知AD 是ABC 的中线,F 为CE 的中点,可得DF 为△CBE 的中位线,根据三角形的中位线定理可得DF ∥BE ,DF=12BE=2;又因AD BE ⊥,可得∠BOD=90°,由平行线的性质可得∠ADF=∠BOD=90°,在Rt △ADF 中,根据勾股定理即可求得AF 的长.【详解】∵AD 是ABC 的中线,F 为CE 的中点,∴DF 为△CBE 的中位线,∴DF ∥BE ,DF=12BE=2; ∵AD BE ⊥,∴∠BOD=90°,∵DF ∥BE ,∴∠ADF=∠BOD=90°,在Rt △ADF 中,AD=4,DF=2,∴==故选D.【点睛】本题考查了三角形的中位线定理及勾股定理,利用三角形的中位线定理求得DF∥BE,DF=12BE=2是解决问题的关键.8.B解析:B【分析】利用平行四边形的性质和三角形的中位线定理即可解决问题.【详解】∵四边形ABCD是平行四边形,∴BC=AD=10,∵点M、N分别是BD,CD的中点,∴MN=12BC=5,故选:B.【点睛】本题考查了平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握基本知识.9.D解析:D【分析】由题意根据平行四边形的性质可知AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE 和∠COF是对顶角相等,所以△OAE≌△OCF,所以OF=OE=1.5,CF=AE,所以四边形EFCD 的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF,进而计算求出周长即可.【详解】解:∵四边形ABCD平行四边形,∴AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE=∠COF,∴△OAE≌△OCF,∴OF=OE=1.5,CF=AE,∴四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF=4+5+1.5+1.5=12.故选:D.【点睛】本题考查平行四边形的性质和全等三角形的判定与性质,能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键.10.C解析:C【分析】根据平行四边形的性质得出OB=OD,进而利用线段垂直平分线得出BE=ED,进而解答即可.【详解】解:∵四边形ABCD是平行四边形,∴OB=OD,∵OE⊥BD,∴OE是线段BD的垂直平分线,∴BE=ED,∵△ABE的周长=AB+AE+BE=AB+AE+ED=AB+AD=6cm.故选:C.【点睛】此题考查平行四边形的性质,解题关键是根据平行四边形的性质得出OB=OD,再结合线段垂直平分线的定义解答.11.B解析:B【分析】正多边形的外角和是360°,且正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角和中外角的个数,外角的个数就是多边形的边数.【详解】∵正多边形的外角和是360°,∴360÷72=5,那么它的边数是5.故选B.【点睛】本题考查了多边形的内角与外角.根据正多边形的外角和求多边形的边数是常用的一种方法,需要熟练掌握.12.A解析:A【分析】由题意根据平行四边形的性质可得AO=CO=12AC=3,再利用勾股定理可得BO的长.【详解】解:∵四边形ABCD是平行四边形,∴AO=CO=12AC=3,∵AB⊥AC,AB=4,∴5BO =. 故选:A .【点睛】 本题主要考查平行四边形的性质,解题的关键是掌握平行四边形的对角线互相平分.二、填空题13.【分析】过D 作DG ⊥AC 于G 取FC 中点H 连结MHHB 由等腰的顶角可得DG 平分∠ADCAG=CG=可求∠GDC=60°∠DCG=30°在Rt △DGC 中由勾股定理DC2=DG2+GC2即4DG2=DG2解析:9-【分析】过D 作DG ⊥AC 于G ,取FC 中点H ,连结MH ,HB 由等腰ADC 的顶角120ADC =∠︒,可得DG 平分∠ADC ,AG=CG=1AC=32,可求∠GDC=60°,∠DCG=30°,在Rt △DGC 中,由勾股定理DC 2=DG 2+GC 2,即4DG 2=DG 2+9,可求由M ,H 为中点,可得MH=12MB MH+HB ,MH 为定值,HB 最小时,MB 最短,BH ⊥CF ,可求∠HCB=60°,CH=()11BC=22,由勾股定理9=-,BH 最小-【详解】解:过D 作DG ⊥AC 于G ,取FC 中点H ,连结MH ,HB ,∵等腰ADC 的顶角120ADC =∠︒,∴DG 平分∠ADC ,AG=CG=1AC=32, ∴∠GDC=60°,∠DCG=90°-∠GDC=90°-60°=30°,∴CD=2DG ,在Rt △DGC 中,由勾股定理DC 2=DG 2+GC 2,即4DG 2=DG 2+9,∴,∵M ,H 为中点,∴MH=12根据两点之间线段最短,则有MBMH+HB ,MH 为定值, ∴HB 最小时,MB 最短,∴BH ⊥CF ,∠HCB=180°-∠DCA-∠DCF=180°-30°-90°=60°,CH=()11BC=63-6=33-322, BH=()2233333933CB CH CH -==-=-, BH 最小=3+9-33=923-, 故答案为:923-.【点睛】本题考查等腰三角形的性质,勾股定理,30°角直角三角形性质,三角形中位线,三角形三边关系,掌握等腰三角形的性质,勾股定理,30°角直角三角形性质,三角形中位线,三角形三边关系是解题关键.14.①②③【分析】根据平行四边形的性质全等三角形的判定和性质及中心对称的性质进行判断即可【详解】解:在中于点于点四边形是平行四边形故①②正确即故③正确∵和是中心对称图形点是对称中心易证∴共10对全等三角解析:①②③【分析】根据平行四边形的性质,全等三角形的判定和性质及中心对称的性质进行判断即可.【详解】解:在OABC 中,,,AB CD AD BC ==BD DB =,()ABD CDB SSS ∴≌,ABD CDB S ∴△△=S ,AE BD ⊥于点E ,CF BD ⊥于点F ,1122BD AE BD CF ∴=,//AE CFAE CF ∴=,∴四边形AECF 是平行四边形,,AF CE OE OF ∴== ,故①②正确,OB OD =,OD OE OB OF ∴+=+,即DE BF =,故③正确,∵,,OA OC OB OD OE OF ===,ABCD ∴和AECF 是中心对称图形,点O 是对称中心,易证,,,ADC CBA ABD CDB AOB COD AOD COB △≌△△≌△△≌△△≌△ , ,,,AEF CFE AFC CEA AOF COE COF AOE △≌△△≌△△≌△△≌△,,,,ABE CDF AFD CEB ABF CDE AED CFB △≌△△≌△△≌△△≌△,∴共10对全等三角形,故④错误;故答案为:①②③【点睛】本题是平行四边形的综合题,考查了平行四边形的判定和性质,全等三角形的判定和性质,中心对称的性质等知识,正确理解中心对称的性质是解本题的关键.15.720【分析】由多边形的一个顶点出发的对角线共有(n-3)条可求出边数然后求内角和【详解】∵多边形的一个顶点出发的对角线共有(n-3)条∴n-3=3∴n=6∴内角和=(6-2)×180°=720°故解析:720【分析】由多边形的一个顶点出发的对角线共有(n-3)条可求出边数,然后求内角和.【详解】∵多边形的一个顶点出发的对角线共有(n-3)条,∴n-3=3,∴n=6,∴内角和=(6-2)×180°=720°,故答案是:720.【点睛】本题运用了多边形的内角和定理,关键是要知道多边形的一个顶点出发的对角线共有(n-3)条.16.18°【解析】根据多边形的内角和公式可求得正五边形的内角∠BAE=108°所以∠1=∠BAE-∠BAG=108°-90°=18°解析:18°【解析】根据多边形的内角和公式可求得正五边形的内角∠BAE =108°,所以∠1=∠BAE -∠BAG =108°-90°=18°.17.6【分析】平行四边形ADCE 的对角线的交点是AC 的中点O 当OD ⊥BC 时OD最小即DE最小根据三角形中位线定理即可求解【详解】解:平行四边形ADCE的对角线的交点是AC的中点O当OD⊥BC时OD最小即解析:6【分析】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.【详解】解:平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小.∵OD⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位线,∴OD=1AB=3,2∴DE=2OD=6.故答案为6.【点睛】本题考查了三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半,正确理解DE最小的条件是关键.18.③【分析】根据正多边形的内角度数解答即可【详解】∵正三角形的每个内角都是60度能将360度整除故可以用其镶嵌地面;∵正方形的每个内角都是90度能将360度整除故可以用其镶嵌地面;∵正五边形的每个内角解析:③【分析】根据正多边形的内角度数解答即可.【详解】∵正三角形的每个内角都是60度,能将360度整除,故可以用其镶嵌地面;∵正方形的每个内角都是90度,能将360度整除,故可以用其镶嵌地面;∵正五边形的每个内角都是108度,不能将360度整除,故不可以用其镶嵌地面,故答案为:③.【点睛】此题考查正多边形的性质,镶嵌地面问题,正确计算正多边形的每个内角的度数与360度的整除关系是解题的关键.19.4【分析】由平行四边形的性质得出AD=BCOC=AC=5OB=BD=3cm由勾股定理得出BC的长即可【详解】解:∵四边形ABCD是平行四边形AC=10BD =6∴AD=BCOC=AC=5OB=BD=3解析:4【分析】由平行四边形的性质得出AD=BC,OC=12AC=5,OB=12BD=3cm,由勾股定理得出BC的长即可.【详解】解:∵四边形ABCD是平行四边形,AC=10,BD=6,∴AD=BC,OC=12AC=5,OB=12BD=3,∵DB⊥BC,∴∠OBC=90°,∴BC=4,故答案为:4.【点睛】本题考查了平行四边形的性质、勾股定理;熟练掌握平行四边形的性质是解题的关键.20.3【解析】∵四边形ABCD是平行四边形∴BC=AD=12AD∥BC∵四边形PDQB 是平行四边形∴PD=BQ∵P的速度是1cm/秒∴两点运动的时间为12÷1=12s∴Q 运动的路程为12×4=48cm∴解析:3【解析】∵四边形ABCD是平行四边形,∴BC=AD=12,AD∥BC,∵四边形PDQB是平行四边形,∴PD=BQ,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次.第一次PD=QB时,12−t=12−4t,解得t=0,不合题意,舍去;第二次PD=QB时,Q从B到C的过程中,12−t=4t−12,解得t=4.8;第三次PD=QB时,Q运动一个来回后从C到B,12−t=36−4t,解得t=8;第四次PD=QB时,Q在BC上运动3次后从B到C,12−t=4t−36,解得t=9.6.∴在运动以后,以P、D. Q、B四点组成平行四边形的次数有3次,故答案为3.点睛:本题考查了平行四边形的判定.注意能求出符合条件的所有情况是解此题的关键,注意掌握分类讨论思想的应用.三、解答题21.(1)452BAG θ︒=-∠;(2)见解析;(3)AG DF EC =+,见解析【分析】 (1)根据旋转的性质得出△BAG 为等腰三角形即可求解;(2)先根据等腰三角形求出∠CEB 的度数(用θ表示),再由外角的性质求出∠AHE 的度数(用θ表示),根据内错角相等即可求证;(3)延长FD 构造平行四边形,根据平行四边形的性质即可求证.【详解】(1)由旋转得090EBG =∠,AB BG =∴000180(90)4522BAG θθ-+==-∠ (2)∵BE BC =,090EBC θ-∠=∴()0180-90-=2245CEB θθ︒︒+∠= 又∵00452245EHA θθθ-+=+∠= ∴∠CEB=∠EHA∴ AG EC ∥.(3)如图延长FD 到I 使DI EC =,联结EI ,AI∵BE CB =∴BEC BCE ∠=∠∴12∠=∠∴EJ JC =∵CD EF =∴DJ JF =∴34∠=∠∵EJC DJF ∠=∠∴23∠∠=∵DF EC ∥即DI EC ∥又∵DI EC =∴四边形DIEC 为平行四边形∴DC IE =,DC IE ∥∵DC AB =,DC AB ∥∴IE AB =,IE AB ∥∴四边形IABE 为平行四边形∴IA EB =,IA EB ∥∵FG EB =,FG EB∴FG IA =,FG IA ∥∴四边形IAGF 为平行四边形∴AG IF =∴AG DF EC =+.【点睛】此题主要考察了旋转的性质,等腰三角形的性质,平行线的判定以及平行四边形的性质和判定;解题的关键是掌握平移的性质,等腰三角形的性质,平行线的判定以及平行四边形的性质和判定,以及正确作出辅助线.22.(1)画图见解析.(2)画图见解析.【分析】(1)轴对称图形沿某条直线折叠后,直线两旁的部分能完全重合得出答案即可; (2)利用中心对称图形的定义得出D 点位置即可;【详解】(1)如图,(2)如图,【点睛】本题考查了轴对称、中心对称作图,以及平行四边形的判定与性质,掌握画图的方法和图形的特点是解题的关键.23.(1)见解析;(2)13【分析】(1)利用平行四边形的性质得出AD=BC ,AD ∥BC ,进而利用已知得出DE=FC ,DE ∥FC ,进而得出答案;(2)首先过点D 作DN ⊥BC 于点N ,再利用平行四边形的性质结合勾股定理得出DF 的长,进而得出答案.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∵DE =12AD ,F 是BC 边的中点, ∴DE =FC ,DE ∥FC ,∴四边形CEDF 是平行四边形; (2)解:过点D 作DN ⊥BC 于点N ,∵四边形ABCD 是平行四边形,∠A =60°,∴∠BCD =∠A =60°,CD=AB ,BC=AD ,∵AB =4,AD =6,∴FC =3,NC =12DC =2,DN 3, ∴FN = FC - NC =1, 则DF =EC ()2222231DN FN +=+13 【点睛】本题主要考查了平行四边形的判定与性质以及勾股定理等知识,熟练应用平行四边形的判定方法是解题关键.24.(1)y=2x+2;(2)(2,6)或(-4,-6);(3)(3,2)、(-3,2)、(1,-2)【分析】(1)根据待定系数法,可得函数解析式;(2)设点P 的坐标为(x ,2x+2),根据三角形的面积公式列方程求解即可;(3)分三种情况求解即可:①当AB 、BC 为邻边时,②当AB 为对角线时,③当BC 为对角线时.【详解】解:(1)设直线AB 的函数解析式为y=kx+b ,∵直线AB 经过点A (0,2)、B (-1,0),得20b k b =⎧⎨-+=⎩, 解得22k b =⎧⎨=⎩. ∴直线AB 的函数解析式为y=2x+2;(2)由题意,设点P 的坐标为(x ,2x+2),S △POA =12×BC×|p y |=12×3×|2x+2|=9. 解得x=2或x=-4.故点P 的坐标是(2,6)或(-4,-6);(3)①当AB 、BC 为邻边时,作D 1E ⊥BC 于E ,∵四边形ABCD 1是平行四边形,∴AD 1=BC=3,AB=CD 1,∠ABC=∠D 1CE ,又∵∠AOB=∠D 1EC ,∴△AOB ≌△D 1EC ,∴CE=BO=1,∴D 1(3,2);同理可求:②当AB 为对角线时,D 2(-3,2);③当BC 为对角线时,D 3(1,-2);综上所述:点D 与A 、B 、C 点构成平行四边形,点D 的坐标为(3,2)、(-3,2)、(1,-2).【点睛】本题考查了待定系数法求一次函数解析式,坐标与图形的性质,三角形的面积公式,平行四边形的性质,以及全等三角形的判定与性质.熟练掌握待定系数法和平行四边形的性质是解答本题的关键25.(1)(7,4);(2)y =-42455x +;(3)k ≤-4或k ≥45. 【分析】(1)根据平行四边形的性质及A点和C的坐标求出点B的坐标即可;(2)设直线AC的表达式为:y=kx+b,把点A的坐标是(6,0),点C的坐标是(1,4)代入,解方程组即可得到结论;(3)根据轴对称的性质得到E(1,-4),分别求得直线OE,AE,BE的解析式,于是得到结论.【详解】解:(1)∵四边形ABCO是平行四边形,O为坐标原点,点A的坐标是(6,0),点C的坐标是(1,4),∴BC=OA=6,6+1=7,∴点B的坐标是(7,4),故答案为:(7,4);(2)设直线AC的表达式为:y=kx+b,∵点A的坐标是(6,0),点C的坐标是(1,4),∴604k bk b+=⎧⎨+=⎩,解得:4 5 24 5kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AC的表达式为:y=42455x-+;(3)∵点C关于x轴的对称点为点E,点C的坐标是(1,4),∴E(1,-4),把O(0,0)和E(1,-4)代入y=kx+b得y=-4x;把A(6,0)和E(1,-4)代入y=kx+b得y=42455x-;把B(7,4)和E(1,-4)代入y=kx+b得y=41633x-;∴k的取值范围为:k≤-4或k≥45【点睛】本题考查了一次函数的综合题,一次函数的图象上点的坐标特征,待定系数法求一次函数的解析式,一次函数的图象与系数的关系等,求得对应点的坐标是解题的关键. 26.(1)画图见解析;(2)5.5;(3) (-1,-1),(5,3),(-3,5).【分析】(1)'AA 长度为32,将,B C 沿着'AA 平行方向分别平移32个单位长度即可; (2)应用割补法,ABC ∆的面积等于大矩形面积减去三个小三角形面积;(3)分别以ABC ∆的三边为对角线讨论,因此应该有三种情况.【详解】(1)如图,△A′B′C′为所作;(2)△ABC 的面积11134413231 5.5222=⨯-⨯⨯-⨯⨯-⨯⨯=; (3)分别以AB 、AC 、BC 三边为对角线,平移另外两条边, 第一种情况:以AC 为对角线,平移AB 和BC ,得到交点1D (-1,-1);第二种情况:以BC 为对角线,平移AB 和AC ,得到交点2D (5,3);第三种情况:以AB 为对角线,平移AC 和BC ,得到交点3D (-3,5);因此,点1D 、2D 、3D 的坐标分别为:(-1,-1),(5,3),(-3,5).【点睛】本题考查了平移变换,割补法求组合图形的面积,以及平行四边形的判定,要注意应以三角形三边分别为平行四边形的对角线,不要漏掉条件.。
人教版八年级数学下册 第18章 《平行四边形》 单元测试卷(包含答案)
人教版八年级数学下册第18章平行四边形单元综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.在□ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则□ABCD的周长是() A.22 B.20 C.22或20 D.182. 如图,由六个全等的正三角形拼成的图,图中平行四边形的个数是()A.4个B.6个C.8个D.10个3.如图,在▱ABCD中,AE平分∠BAD,若CE=3 cm,AB=4 cm,则▱ABCD的周长是() A.20 cm B.21 cmC.22 cm D.23 cm4.如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.DE⊥DCC.∠ADB=90° D.CE⊥DE5.如图,在▱ABCD中,∠ABC的平分线交AD于点E,∠BED=150°,则∠A的大小为( ) A.150° B.130° C.120° D.100°6.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤7. 如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°8.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B. 2 C.4-2 2 D.32-49.如图,是边长分别为4和8的正方形ABCD、正方形CEFG并排放在一起,连接BD并延长交EG 于点T,交FG于点P,则GT的长为()A.2 2 B.2 C. 2 D.110. 如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连接EF,BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有( )A.1个B.2个C.3个D.4个二.填空题(共8小题,3*8=24)11.如图,在□ABCD中,对角线AC与BD交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折,若点B的落点记为B′,则DB′的长为______ .12.如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为________.13. 已知平行四边形的三个顶点坐标分别为(-1,0)(0,2)(2,0),则在第四象限的第四个顶点的坐标为___________。
平行四边形单元测试卷
平行四边形单元测试卷# 平行四边形单元测试卷一、选择题(每题2分,共20分)1. 平行四边形的对边具有什么性质?A. 相等B. 平行C. 垂直D. 相交2. 平行四边形的对角线有什么特点?A. 相等B. 平行C. 垂直D. 相交3. 下列哪个不是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 内角和为360度4. 矩形是平行四边形的一种特殊类型,其特点是:A. 对角线相等B. 对角线垂直C. 四个角都是直角D. 相邻边相等5. 菱形也是平行四边形的一种,其特点是:A. 对角线相等B. 对角线垂直C. 四边相等D. 四个角都是直角二、填空题(每空1分,共10分)6. 平行四边形的面积公式是:________。
7. 如果一个平行四边形的对角线互相垂直,那么它是一个________。
8. 平行四边形的内角和是________度。
9. 矩形的对角线________(相等/不相等)。
10. 菱形的对角线________(互相平分/不互相平分)。
三、简答题(每题5分,共10分)11. 解释什么是平行四边形,并列举其三个基本性质。
12. 描述如何判断一个四边形是否为平行四边形。
四、计算题(每题7分,共14分)13. 已知平行四边形的底边长度为10厘米,高为5厘米,求其面积。
14. 如果一个平行四边形的对角线长度分别为12厘米和16厘米,且它们互相平分,求平行四边形的边长。
五、证明题(每题6分,共6分)15. 证明:如果一个平行四边形的对角线互相垂直,那么它是一个菱形。
六、应用题(每题10分,共10分)16. 一个矩形花园的长是30米,宽是20米。
如果花园的一边靠墙,那么围起这个花园需要多少米的篱笆?注意:本测试卷旨在检验学生对平行四边形概念、性质、公式和应用的理解和掌握程度。
请在规定时间内完成所有题目,并确保答案的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平行四边形》单元测试卷
满分:100分考试时间:90分钟不准使用计算器
班级:学号:姓名:成绩:
一、选择题(每题3分,共30分)
1、①两组对边分别平行②两组对边分别相等③有一组对边平行且相等④对角线相等。
以上四个条件中可以判定四边形是平行四边形的有()。
(A)1个(B)2个(C)3个(D)4个
2、菱形具有而矩形不具有的性质是()
(A)对角线互相平分(B)四条边都相等(C)对角相等(D)邻角互补
3、如图,在□ABCD中, ∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F的值为( ). (A)110°(B)30°(C)50°(D)70°
第3题图第5题图第7题图
4、顺次连结对角线相等
.....的四边形各边中点所得的四边形必定是()
(A)菱形(B)矩形(C)正方形(D)等腰梯形
5、如图,AD∥BC,若△ABC面积是15,则△DBC的面积是()
(A)12 (B)13 (C)14 (D)15
6、能够判定一个四边形是矩形的条件是()。
(A)对角线互相平分且相等(B)对角线互相垂直平分
(C)对角线相等且互相垂直(D)对角线互相垂直
7、如图,菱形ABCD中对角线相交于点O,且OE⊥AB,若AC=8,BD=6,则OE的长是()(A)2.5 (B)5 (C)2.4 (D)不清楚8、在菱形ABCD中,∠A:∠B:∠C:∠D的值可以是()
(A)1:2:3:4 (B)3:4:4:3 (C)3:3:4:4 (D)3:4:3:4
9、在正方形ABCD中,AB=12 cm,对角线AC、BD相交于O,则△ABO的周长是()(A)12+122(B)12+62(C)12+2(D)24+62
10、在平行四边形ABCD中,点
1
A,
2
A,
3
A,
4
A和
1
C,
2
C,
3
C,
4
C分别是AB和CD的
五等分点,点
1
B,
2
B和
1
D,
2
D分别是BC和DA的三等分点,已知
四边形
4242
A B C D的面积为1,则平行四边形ABCD的面积为()
(A)2(B)
3
5
(C)
5
3
(D)15
二、填空题(每题3分,共18分)
11、平行四边形ABCD中,∠A=50°,AB=30cm,则∠B=__ __,DC=__ __
12、菱形的两条对角线分别长10cm,24cm,则菱形的边长为__ ___ cm,面积为__ ____ cm2.
13、在□ABCD 中,
(1)若添加一个条件_____ __,则四边形ABCD是矩形;
(2)若添加一个条件,则四边形ABCD是菱形.
14、在R t△ABC中,∠ACB=90°,若CA=8,BC=6,点D、E分别是AC、AB的中点。
则DE= ,CE= 。
15、如图,在平行四边形ABCD中,DB=DC,∠C=70°, AE⊥BD于E.则∠DAE=度.
16、在平面直角坐标系中,四边形AOBC是菱形。
若点A的坐标是(3 , 4),则菱形的周长为,点C的坐标是
第14题图第15题图第16题图
D
D1
D2
A
A1 A2 A3 A4
B1
B2
C
C2 C1
C3
C4
B
三、解答题(6小题,共52分)
17、(8分)如图,在□ABCD中,E、F为对角线BD上的两点,且∠DAE=∠BCF.
(1)求证:AE=CF.(2)求证:AE∥CF
18、(8分)如图,矩形ABCD中,AC与BD相交于点O。
若AO=3,
∠OBC=30°,求矩形的周长和面积。
19、(8分)已知Rt△ABC中,∠ACB=90°, CD平分∠ACB,
且DE⊥AC,DF⊥BC。
求证:四边形DECF是正方形。
20、(8分)如图所示,AD是△ABC的角平分线.DE∥AC交AB于E,DF∥AB交AC于F.请判断四
边形AEDF是什么图形?并说明理由。
21、(8分) 如图,点D、E、F分别是△ABC各边中点。
(1)求证:四边形ADEF是平行四边形。
(2)若AB=AC=10,BC=12,求四边形ADEF的周长和面积。
22、(12分)在平面直角坐标系中,有点A(0,4)、B(9,4)、C(12,0)。
已知点P从点A
出发沿AB路线向点B运动,点Q从点C出发沿CO路线向点O运动,运动速度都是每秒一
个单位长度,运动时间为t秒。
(1)当四边形AQCB是平行四边形时,求t值。
(2)连接PQ,当四边形APQO是矩形时,求t值。