(完整版)历年中考数学易错题汇编(含答案)
(易错题精选)初中数学命题与证明的易错题汇编及答案解析
(易错题精选)初中数学命题与证明的易错题汇编及答案解析一、选择题1.下列命题中真命题是()A.若a2=b2,则a=b B.4的平方根是±2C.两个锐角之和一定是钝角 D.相等的两个角是对顶角【答案】B【解析】【分析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.【详解】A、若a2=b2,则a=±b,错误,是假命题;B、4的平方根是±2,正确,是真命题;C、两个锐角的和不一定是钝角,故错误,是假命题;D、相等的两个角不一定是对顶角,故错误,是假命题.故选B.【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.2.下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0【答案】A【解析】【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;故选A.【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.3.下列命题中正确的是().A.所有等腰三角形都相似B.两边成比例的两个等腰三角形相似C.有一个角相等的两个等腰三角形相似D.有一个角是100°的两个等腰三角形相似【答案】D【解析】【分析】根据相似三角形进行判断即可.【详解】解:A、所有等腰三角形不一定都相似,原命题是假命题;B、两边成比例的两个等腰三角形不一定相似,原命题是假命题;C、有一个角相等的两个等腰三角形不一定相似,原命题是假命题;D、有一个角是100°的两个等腰三角形相似,是真命题;故选:D.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.4.下列结论中,不正确的是()A.两点确定一条直线B.两点之间,直线最短C.等角的余角相等D.等角的补角相等【答案】B【解析】【分析】根据直线线段的性质和余角、补角的定义逐项分析可得出正确选项.【详解】A.两点确定一条直线,正确;B.两点之间,线段最短,所以B选项错误;C.等角的余角相等,正确;D.等角的补角相等,正确.故选B考点:定理5.现给出下列四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于60°.其中不正确的命题的个数是()A.1个 B.2个 C.3个 D.4个【答案】C【解析】①根据等边三角形的性质知,等边三角形是轴对称图形,不是中心对称图形,错误;②由相似三角形的性质知相似三角形的面积比等于它们的相似比的平方,错误; ③根据菱形的面积公式,错误;④根据三角形内角和定理可知,三角形的三个内角中至少有一内角不小于60°,正确. 综合以上分析,不正确的命题包括①②③.故选C .6.下列命题中,是假命题的是( )A .若a>b ,则-a<-bB .若a>b ,则a+3>b+3C .若a>b ,则44a b > D .若a>b ,则a 2>b 2【答案】D【解析】【分析】 利用不等式的性质分别判断后即可确定正确的选项.【详解】A 、若a >b ,则-a <-b ,正确,是真命题;B 、若a >b ,则a+3>b+3,正确,是真命题;C 、若a >b ,则44a b >,正确,是真命题; D 、若a >b ,则a 2>b 2,错误,是假命题;故选:D .【点睛】 此题考查命题与定理的知识,解题的关键是了解不等式的性质,难度不大.7.下列命题正确的是( )A .在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的.B .两个全等的图形之间必有平移关系.C .三角形经过旋转,对应线段平行且相等.D .将一个封闭图形旋转,旋转中心只能在图形内部.【答案】A【解析】【分析】根据平移的性质:平移后图形的大小、方向、形状均不发生改变结合选项即可得出答案.【详解】解:A、经过旋转后的图形两个图形的大小和形状也不变,半径相等的两个圆是等圆,圆还具有旋转不变性,故本选项正确;B、两个全等的图形位置关系不明确,不能准确判定是否具有平移关系,错误;C、三角形经过旋转,对应线段相等但不一定平行,所以本选项错误;D、旋转中心可能在图形内部,也可能在图形边上或者图形外面,所以本选项错误.故选:A.【点睛】本题考查平移、旋转的基本性质,注意掌握①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.8.下列命题中,正确的命题是()A.度数相等的弧是等弧B.正多边形既是轴对称图形,又是中心对称图形C.垂直于弦的直径平分弦D.三角形的外心到三边的距离相等【答案】C【解析】【分析】根据等弧或垂径定理,正多边形的性质一一判断即可;【详解】A、完全重合的两条弧是等弧,错误;B、正五边形不是中心对称图形,错误;C、垂直于弦的直径平分弦,正确;D、三角形的外心到三个顶点的距离相等,错误;故选:C.【点睛】此题考查命题与定义,正多边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9.下列命题中①等腰三角形底边的中点到两腰的距离相等②如果两个三角形全等,则它们必是关于直线成轴对称的图形③如果两个三角形关于某直线成轴对称,那么它们是全等三角形④等腰三角形是关于底边中线成轴对称的图形⑤一条线段是关于经过该线段中点的直线成轴对称的图形正确命题的个数是()A.2个B.3个C.4个D.5个【答案】A【解析】【分析】根据等腰三角形的性质、轴对称图形的定义、全等三角形的判定逐个判断即可.【详解】根据等腰三角形的三线合一可知,底边中点在顶角角平分线上,再根据角平分线的性质可知,其到两腰的距离相等,则命题①正确全等的三角形不一定是成轴对称,则命题②错误成轴对称的两个三角形一定全等,则命题③正确等腰三角形是以底边中线所在直线为对称轴的轴对称图形,则命题④错误成轴对称的图形必须是两个,一个图形只能是轴对称图形,则命题⑤错误综上,正确命题的个数是2个故选:A.【点睛】本题考查了等腰三角形的性质、轴对称图形的定义、全等三角形的判定等知识点,掌握理解各定义与性质是解题关键.10.下列各命题的逆命题成立的是()A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.如果两个角都是45°,那么这两个角相等【答案】C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A、逆命题是三个角对应相等的两个三角形全等,错误;B、绝对值相等的两个数相等,错误;C、同位角相等,两条直线平行,正确;D、相等的两个角都是45°,错误.故选C.11.下列命题是假命题的是()A.三角形的外心到三角形的三个顶点的距离相等B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限D.若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.12.下列命题中,其中真命题的个数是()①平面直角坐标系内的点与实数对一一对应;②内错角相等;③平行于同一条直线的两条直线互相平行;④对顶角相等A.1个B.2个C.3个D.4个【答案】B【解析】【分析】正确的命题是真命题,根据真命题的定义依次进行判断.【详解】①平面直角坐标系内的点与有序实数对一一对应,是假命题;②两直线平行,内错角相等,是假命题;③平行于同一条直线的两条直线不一定相互平行,是真命题;④对顶角相等,是真命题;故选:B.【点睛】此题考查真命题的定义,正确掌握坐标与图形,平行线的性质,平行公理,对顶角性质是解题的关键.13.下列命题正确的是()A.矩形对角线互相垂直B.方程214x x=的解为14x=C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等【答案】D【解析】【分析】由矩形的对角线互相平分且相等得出选项A不正确;由方程x2=14x的解为x=14或x=0得出选项B不正确;由六边形内角和为(6-2)×180°=720°得出选项C不正确;由直角三角形全等的判定方法得出选项D正确;即可得出结论.【详解】A.矩形对角线互相垂直,不正确;B.方程x2=14x的解为x=14,不正确;C.六边形内角和为540°,不正确;D.一条斜边和一条直角边分别相等的两个直角三角形全等,正确;故选D.【点睛】本题考查了命题与定理、矩形的性质、一元二次方程的解、六边形的内角和、直角三角形全等的判定;要熟练掌握.14.下列命题是假命题的是()A.有一个角是60°的等腰三角形是等边三角形B.等边三角形有3条对称轴C.有两边和一角对应相等的两个三角形全等D.线段垂直平分线上的点到线段两端的距离相等【答案】C【解析】【分析】根据等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质一一判断即可.【详解】A.正确;有一个角是60°的等腰三角形是等边三角形;B.正确.等边三角形有3条对称轴;C.错误,SSA无法判断两个三角形全等;D.正确.线段垂直平分线上的点到线段两端的距离相等.故选:C.【点睛】本题考查了命题与定理,等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.15.已知下列命题:①若a>b,则ac>bc;②若a=1;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是( )A .1个B .2个C .3个D .4个【答案】A【解析】【分析】先对原命题进行判断,再判断出逆命题的真假即可.【详解】解:①若a >b ,则ac >bc 是假命题,逆命题是假命题;②若a=1是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选A .点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.16.能说明命题“关于x 的方程240x x m -+=一定有实数根”是假命题的反例为( ) A .1m =-B .0m =C .4m =D .5m =【答案】D【解析】【分析】利用m=5使方程x 2-4x+m=0没有实数解,从而可把m=5作为说明命题“关于x 的方程x 2-4x+m=0一定有实数根”是假命题的反例.【详解】当m=5时,方程变形为x 2-4x+m=5=0,因为△=(-4)2-4×5<0,所以方程没有实数解,所以m=5可作为说明命题“关于x 的方程x 2-4x+m=0一定有实数根”是假命题的反例. 故选D .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.17.已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设( )A .AB ∠=∠B .AB BC = C .B C ∠=∠D .A C ∠=∠【答案】C【解析】【分析】反证法的步骤:1、假设命题反面成立;2、从假设出发,经过推理得出和反面命题矛盾,或者与定义、公理、定理矛盾;3、得出假设命题不成立是错误的,即所求证命题成立.【详解】已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设B C ∠=∠,由“等角对等边”可得AB=AC,这与已知矛盾,所以.B C ∠≠∠故选C【点睛】本题考核知识点:反证法. 解题关键点:理解反证法的一般步骤.18.下列命题中,真命题的序号为( )①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两角的角平分线互相垂直.A .①②B .①③C .①②④D .②④【答案】D【解析】【分析】根据对顶角的性质、平行线的判定、平行线的性质、角平分线的性质判断即可.【详解】①相等的角不一定是对顶角,是假命题;②在同一平面内,若a ∥b ,b ∥c ,则a ∥c ,是真命题;③两直线平行,同旁内角互补; 是假命题;④互为邻补角的两角的角平分线互相垂直,是真命题;故选:D .【点睛】此题考查命题的真假判断,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.19.下面说法正确的个数有( )①方程329x y +=的非负整数解只有13x y ==,;②由三条线段首尾顺次连接所组成的图形叫做三角形;③如果1122A B C ∠=∠=∠,那么ABC V 是直角三角形;④各边都相等的多边形是正多边形;⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形一定是钝角三角形.A .0个B .1个C .2个D .3个 【答案】A【解析】【分析】根据二元一次方程的解的定义可对①进行判断;根据三角形的定义对②进行判断;根据直角三角形的判定对③进行判断;根据正多边形的定义对④进行判断;根据钝角三角形的定义对⑤进行判断.【详解】解:①二元一次方程329x y +=的非负整数解是x=3,y=0或x=1,y=3,原来的说法错误;②由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形,原来的说法错误;③如果3672=72A B C ∠=︒∠=︒∠︒,,,那么ABC V 不是直角三角形,故错误; ④各边都相等,各角也相等的多边形是正多边形,故错误.⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形是钝角三角形或直角三角形,故错误,故选A.【点睛】此题考查命题与定理的知识,解题的关键是了解二元一次方程的解的定义、三角形的定义、直角三角形的判定、正多边形的定义及钝角三角形的定义等知识,难度不大.20.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设( )A .三角形的三个外角都是锐角B .三角形的三个外角中至少有两个锐角C .三角形的三个外角中没有锐角D .三角形的三个外角中至少有一个锐角【答案】B【解析】【分析】反证法的步骤中,第一步是假设结论不成立,反面成立.【详解】解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,故选B .【点睛】考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.。
中考数学—外汇的易错题汇编含解析
一、选择题1.人民币外汇牌价(人民币/100美元)时间美元人民币2017年9月7日100元827.68元2018年9月7日100元739.68元上表情况说明( )A.外汇汇率降低,外币币值下降,人民币币值上升B.外汇汇率升高,外币币值上升,人民币币值下降C.外汇汇率升高,外币币值下降,人民币币值上升D.外汇汇率降低,外币币值上升,人民币币值下降2.2018年1月10日,1美元兑换人民币为6.5025元,而2018年11月15日,1美元兑换人民币为6.9113元。
人民币汇率按此趋势,不考虑其他因素,可以推断出A.中国对美投资规模扩大B.中国留美学生费用支出减少C.有利于中国扩大对美国出口D.中国公民前往美国旅游费用减少3.下表为中国人民银行外汇牌价变动情况。
若不考虑其他因素,下列推导正确的是①美元兑人民币升值,我国企业在美国投资成本上升,不利于我国企业到美国投资②人民币兑美元贬值,我国出口美国商品的价格下降,不利于我国商品出口到美国③欧元兑人民币升值,同等数量的人民币可以换取较少的欧元,有利于我国偿还外债④人民币兑欧元升值,我国进口欧洲商品价格相对下降有利于我国进口企业降低成本A.①③B.②③C.②④D.①④4.如果在一定时期内,人民币对美元贬值。
若不考虑其他因素,对我国这段时间对外经济造成的影响是①中国企业在美国投资成本上升,不利于中国企业在美国投资②美国商品在中国市场的价格下降,有利于中国进口美国商品③美国公民来华旅游成本下降,有利于吸引美国公民赴华旅游④中国商品在美国市场的价格上升,不利于中国商品出口美国A.①③B.②③C.①④D.②④5.《上海证券报》10月21日消息,澳洲铁矿石巨头力拓以人民币计价方式与国内企业签订了铁矿石贸易合同。
相关专家认为,这一事件将有助于人民币国际化更进一步。
海外矿企对我国企业采用人民币计价,有助于A.提升我国在国际贸易中的地位B.降低我国外贸企业的结汇成本C.加速我国外贸企业的转型升级D.增强我国人民币的国际购买力6.人民币本身的币值稳定,涉及到国内资源配置的效率,涉及到收入分配的公正,还有人民币长远的国际地位。
历年备战中考数学易错题汇编-相似练习题及答案解析
一、相似真题与模拟题分类汇编(难题易错题)1.已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.(1)若∠AOB=60°,AB∥x轴,AB=2,求a的值;(2)若∠AOB=90°,点A的横坐标为﹣4,AC=4BC,求点B的坐标;(3)延长AD、BO相交于点E,求证:DE=CO.【答案】(1)解:如图1,∵抛物线y=ax2的对称轴是y轴,且AB∥x轴,∴A与B是对称点,O是抛物线的顶点,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=2,AB⊥OC,∴AC=BC=1,∠BOC=30°,∴OC= ,∴A(-1,),把A(-1,)代入抛物线y=ax2(a>0)中得:a= ;(2)解:如图2,过B作BE⊥x轴于E,过A作AG⊥BE,交BE延长线于点G,交y轴于F,∵CF∥BG,∴,∵AC=4BC,∴ =4,∴AF=4FG,∵A的横坐标为-4,∴B的横坐标为1,∴A(-4,16a),B(1,a),∵∠AOB=90°,∴∠AOD+∠BOE=90°,∵∠AOD+∠DAO=90°,∴∠BOE=∠DAO,∵∠ADO=∠OEB=90°,∴△ADO∽△OEB,∴,∴,∴16a2=4,a=± ,∵a>0,∴a= ;∴B(1,);(3)解:如图3,设AC=nBC,由(2)同理可知:A的横坐标是B的横坐标的n倍,则设B(m,am2),则A(-mn,am2n2),∴AD=am2n2,过B作BF⊥x轴于F,∴DE∥BF,∴△BOF∽△EOD,∴,∴,∴,DE=am2n,∴,∵OC∥AE,∴△BCO∽△BAE,∴,∴,∴CO= =am2n,∴DE=CO.【解析】【分析】(1)抛物线y=ax2关于y轴对称,根据AB∥x轴,得出A与B是对称点,可知AC=BC=1,由∠AOB=60°,可证得△AOB是等边三角形,利用解直角三角形求出OC的长,就可得出点A的坐标,利用待定系数法就可求出a的值。
中考数学易错100题(必考)及答案
中考数学易错100题(必考)1、在实数123.0,330tan ,60cos ,722,2121121112.0,,14.3,64,3,80032----Λπ中,无理数有( )A 、3个B 、4个C 、5个D 、6个2、下列运算正确的是( )A 、x 2 x 3 =x 6B 、x 2+x 2=2x 4C 、(-2x)2=4x 2 D 、(-2x)2 (-3x )3=6x 53、算式可化为( )A 、B 、C 、D 、4、“世界银行全球扶贫大会”于2004年5月26日在上海开幕.从会上获知,我国国民生产总值达到11.69万亿元,人民生活总体上达到小康水平,其中11.69万亿用科学记数法表示应为( )A 、11.69×1410B 、1410169.1⨯C 、1310169.1⨯ D 、14101169.0⨯ 5、不等式2)2(2-≤-x x 的非负整数解的个数为( )A 、1B 、2C 、3D 、46、不等式组⎩⎨⎧-≤-->x x x 28132的最小整数解是( )A 、-1B 、0C 、2D 、37、为适应国民经济持续协调的发展,自2004年4月18日起,全国铁路第五次提速,提速后,火车由天津到上海的时22222222+++422882162间缩短了7.42小时,若天津到上海的路程为1326千米,提速前火车的平均速度为x 千米/小时,提速后火车的平均速度为y 千米/时,则x 、y 应满足的关系式是( )A 、x – y =42.71326 B 、 y – x = 42.71326 C 、y x 13261326-= 7.42 D 、x y 13261326-= 7.428、一个自然数的算术平方根为a ,则与它相邻的下一个自然数的算术平方根为( )A 、1+aB 、 1+aC 、12+aD 、1+a9、设B A ,都是关于x 的5次多项式,则下列说法正确的是( )A 、B A +是关于x 的5次多项式 B 、B A -是关于x 的4次多项式C 、 AB 是关于x 的10次多项式D 、B A 是与x 无关的常数10、实数a,b 在数轴对应的点A 、B 表示如图,化简a a a b 244-++-||的结果为( )A 、22a b --B 、22+-b aC 、2-bD 、2+b11、某商品降价20%后出售,一段时间后恢复原价,则应在售价的基础上提高的百分数是 ( )A 、20%B 、25%C 、30% A BD 、35%12、某种出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费),超过3km 以后,每增加,加收2.4元(不足1km 按1km 计),某人乘这种车从甲地到乙地共支付车费19元,那么,他行程的最大值是( )A 、11 kmB 、8 kmC 、7 kmD 、5km13、在高速公路上,一辆长4米,速度为110千米/小时的轿车准备超越一辆长12米,速度为100千米/小时的卡车,则轿车从开始追及到超越卡车,需要花费的时间约是( )A 、1.6秒B 、4.32秒C 、5.76秒D 、345.6秒14、如果关于x 的一元二次方程0962=+-x kx 有两个不相等的实数根,那么k 的取值范围是( )A 、1<kB 、0≠kC 、1<k 且0≠kD 、1>k15、若a 2+ma +18在整数范围内可分解为两个一次因式的乘积,则整数m 不可能是( )A 、 ±9B 、±11C 、±12D 、±1916、在实数范围内把8422--x x 分解因式为( )A 、)1)(3(2+-x xB 、)51)(51(--+-x xC 、)51)(51(2--+-x xD 、)51)(51(2++-+x x 17、用换元法解方程x x x x +=++2221时,若设x 2+x=y, 则原方程可化为( ) A 、y 2+y+2=0 B 、y 2-y -2=0 C 、y 2-y+2=0D 、y 2+y -2=018、某商品经过两次降价,由每件100元降至81元,则平均每次降价的百分率为( )A 、8.5%B 、9%C 、9.5%D 、10%19、一列火车因事在途中耽误了5分钟,恢复行驶后速度增加5千米/时,这样行了30千米就将耽误的时间补了回来,若设原来的速度为x 千米/时,则所列方程为( )A 、30305560x x --= B 、30530560x x +-= C 、30305560x x -+= D 、303055x x -+= 20、已知关于x 的方程02=+-m mx x 的两根的平方和是3,则m的值是( )A 、1-B 、1C 、3D 、1-或321、如果关于x 的一元二次方程0)1(222=+--m x m x 的两个实数根为βα,,则βα+的取值范围是( )A 、1≥+βαB 、1≤+βαC 、21≥+βα D 、21≤+βα22、已知数轴上的点A 到原点的距离为2,那么在数轴上到A点的距离是3的点所表示的数有( )A 、1个B 、 2个C 、 3个D 、4个23、已知)0(1,≥+==a a y a x ,则y 和x 的关系是( ) A 、x y = B 、1+=x y C 、2x y = D 、)0(12≥+=x x y24、点A (2 ,-1)关于y 轴的对称点B 在( )A 、一象限B 、二象限C 、三象限D 、第四象限25、点P(x+1,x -1)不可能在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限26、已知函数式32+-=x y ,当自变量增加1时,函数值( )A 、增加 1B 、减少 1C 、增加 2D 、减少227、在平面直角坐标系内,A、B、C三点的坐标为(0,0) 、(4,0)、(3,2),以A、B、C三点为顶点画平行四边形,则第四个顶点不可能在( )A、第一象限 B、第二象限 C、第三象限 D、第四象限28、已知一元二次方程02=++c bx ax 有两个异号根,且负根的绝对值较大,则),(bc ab M 在( )A 、第一象限B 、第二象限C 、第三象限 D 、第四象限29、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓缓爬行的乌龟,骄傲起来,睡了一觉。
历年备战中考数学易错题汇编-圆的综合练习题含详细答案
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,△ABC是⊙O的内接三角形,点D在BC上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.(1)求证:AC=CE;(2)求证:BC2﹣AC2=AB•AC;(3)已知⊙O的半径为3.①若ABAC=53,求BC的长;②当ABAC为何值时,AB•AC的值最大?【答案】(1)证明见解析;(2)证明见解析;(3)2;②3 2【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证△BEF∽△BGA得BE BGBF BA=,即BF•BG=BE•A B,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(3)①设AB=5k、AC=3k,由BC2-AC2=AB•AC知6k,连接ED交BC于点M,Rt△DMC中由DC=AC=3k、MC=126k求得22CD CM-3,可知OM=OD-3,在Rt△COM中,由OM2+MC2=OC2可得答案.②设OM=d,则MD=3-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=36-4d2、AC2=DC2=DM2+CM2=(3-d)2+9-d2,由(2)得AB•AC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.详解:(1)∵四边形EBDC为菱形,∴∠D=∠BEC,∵四边形ABDC是圆的内接四边形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四边形AEFG是⊙C的内接四边形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴BE BGBF BA=,即BF•BG=BE•AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;(3)设AB=5k、AC=3k,∵BC2﹣AC2=AB•AC,∴6k,连接ED交BC于点M,∵四边形BDCE是菱形,∴DE垂直平分BC,则点E、O、M、D共线,在Rt△DMC中,DC=AC=3k,MC=126k,∴223CD CM k-=,∴OM=OD﹣DM=33k,在Rt△COM中,由OM2+MC2=OC2得(33)2+6k)2=32,解得:k=33或k=0(舍),∴62;②设OM=d,则MD=3﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC 2=(2MC )2=36﹣4d 2,AC 2=DC 2=DM 2+CM 2=(3﹣d )2+9﹣d 2,由(2)得AB•AC=BC 2﹣AC 2=﹣4d 2+6d+18=﹣4(d ﹣34)2+814, ∴当d=34,即OM=34时,AB•AC 最大,最大值为814, ∴DC 2=272, ∴AC=DC=362, ∴AB=964,此时32AB AC =. 点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.2.如图,AB 为O 的直径,弦//CD AB ,E 是AB 延长线上一点,CDB ADE ∠=∠. ()1DE 是O 的切线吗?请说明理由;()2求证:2AC CD BE =⋅.【答案】(1)结论:DE 是O 的切线,理由见解析;(2)证明见解析.【解析】【分析】 (1)连接OD ,只要证明OD DE ⊥即可;(2)只要证明:AC BD =,CDB DBE ∽即可解决问题.【详解】()1解:结论:DE 是O 的切线.理由:连接OD .CDB ADE ∠=∠,ADC EDB ∴∠=∠,//CD AB ,CDA DAB ∴∠=∠,OA OD =,OAD ODA ∴∠=∠,ADO EDB ∴∠=∠, AB 是直径,90ADB ∴∠=,90ADB ODE ∴∠=∠=,DE OD ∴⊥,DE ∴是O 的切线.()2//CD AB ,ADC DAB ∴∠=∠,CDB DBE ∠=∠,AC BD ∴=,AC BD ∴=,DCB DAB ∠=∠,EDB DAB ∠=∠,EDB DCB ∴∠=∠,CDB ∴∽DBE ,CD DB BD BE∴=, 2BD CD BE ∴=⋅,2AC CD BE ∴=⋅.【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的判定等知识,解题的关键是学会添加常用辅助线,准确寻找相似三角形解决问题,属于中考常考题型.3.如图,在ABC ∆中,90,BAC ∠=︒ 2,AB AC == AD BC ⊥,垂足为D ,过,A D 的⊙O 分别与,AB AC 交于点,E F ,连接,,EF DE DF .(1)求证:ADE ∆≌CDF ∆;(2)当BC 与⊙O 相切时,求⊙O 的面积.【答案】(1)见解析;(2)24π.【解析】 分析:(1)由等腰直角三角形的性质知AD =CD 、∠1=∠C =45°,由∠EAF =90°知EF 是⊙O 的直径,据此知∠2+∠4=∠3+∠4=90°,得∠2=∠3,利用“ASA”证明即可得;(2)当BC 与⊙O 相切时,AD 是直径,根据∠C =45°、AC =2可得AD =1,利用圆的面积公式可得答案.详解:(1)如图,∵AB =AC ,∠BAC =90°,∴∠C =45°.又∵AD ⊥BC ,AB =AC ,∴∠1=12∠BAC =45°,BD =CD ,∠ADC =90°. 又∵∠BAC =90°,BD =CD ,∴AD =CD . 又∵∠EAF =90°,∴EF 是⊙O 的直径,∴∠EDF =90°,∴∠2+∠4=90°.又∵∠3+∠4=90°,∴∠2=∠3.在△ADE 和△CDF 中.∵123C AD CD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△CDF (ASA ).(2)当BC 与⊙O 相切时,AD 是直径.在Rt △ADC 中,∠C =45°,AC 2,∴sin ∠C =AD AC ,∴AD =AC sin ∠C =1,∴⊙O 的半径为12,∴⊙O 的面积为24π. 点睛:本题主要考查圆的综合问题,解题的关键是熟练掌握等腰直角三角形的性质、全等三角形的判定与性质、与圆有关的位置关系等知识点.4.问题发现.(1)如图①,Rt △ABC 中,∠C =90°,AC =3,BC =4,点D 是AB 边上任意一点,则CD 的最小值为______.(2)如图②,矩形ABCD 中,AB =3,BC =4,点M 、点N 分别在BD 、BC 上,求CM+MN 的最小值.(3)如图③,矩形ABCD 中,AB =3,BC =4,点E 是AB 边上一点,且AE =2,点F 是BC 边上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG 、CG ,四边形AGCD 的面积是否存在最小值,若存在,求这个最小值及此时BF 的长度.若不存在,请说明理由.【答案】(1) 125CD =;(2) CM MN +的最小值为9625.(3) 152【解析】 试题分析:(1)根据两种不同方法求面积公式求解;(2)作C 关于BD 的对称点C ',过C '作BC 的垂线,垂足为N ,求C N '的长即可;(3) 连接AC ,则ADC ACG AGCD S S S =+四,321GB EB AB AE ==-=-=,则点G 的轨迹为以E 为圆心,1为半径的一段弧.过E 作AC 的垂线,与⊙E 交于点G ,垂足为M ,由AEM ACB ∽求得GM 的值,再由ACD ACG AGCD S SS =+四边形 求解即可.试题解析: (1)从C 到AB 距离最小即为过C 作AB 的垂线,垂足为D ,22ABC CD AB AC BC S ⋅⋅==, ∴341255AC BC CD AB ⋅⨯===, (2)作C 关于BD 的对称点C ',过C '作BC 的垂线,垂足为N ,且与BD 交于M ,则CM MN +的最小值为C N '的长,设CC '与BD 交于H ,则CH BD ⊥,∴BMC BCD ∽,且125CH =,∴C CB BDC ∠=∠',245CC '=,∴C NC BCD '∽,∴244965525CC BC C N BD ⨯⋅==='', 即CM MN +的最小值为9625. (3)连接AC ,则ADC ACG AGCD S S S =+四,321GB EB AB AE ==-=-=,∴点G 的轨迹为以E 为圆心,1为半径的一段弧.过E 作AC 的垂线,与⊙E 交于点G ,垂足为M , ∵AEM ACB ∽,∴EM AE BC AC=, ∴24855AE BC EM AC ⋅⨯===, ∴83155GM EM EG =-=-=, ∴ACD ACG AGCD S S S =+四边形,113345225=⨯⨯+⨯⨯, 152=. 【点睛】本题考查圆的综合题、最短问题、勾股定理、面积法、两点之间线段最短等知识,解题的关键是利用轴对称解决最值问题,灵活运用两点之间线段最短解决问题.5.如图,AB 是半圆O 的直径,半径OC ⊥AB ,OB =4,D 是OB 的中点,点E 是弧BC 上的动点,连接AE ,DE .(1)当点E 是弧BC 的中点时,求△ADE 的面积;(2)若3tan 2AED ∠= ,求AE 的长; (3)点F 是半径OC 上一动点,设点E 到直线OC 的距离为m ,当△DEF 是等腰直角三角形时,求m 的值.【答案】(1)62ADE S =;(2)1655AE =;(3)23m = ,22m =,71m =-.【解析】【分析】(1)作EH ⊥AB ,连接OE ,EB ,设DH =a ,则HB =2﹣a ,OH =2+a ,则EH =OH =2+a ,根据Rt △AEB 中,EH 2=AH•BH ,即可求出a 的值,即可求出S △ADE 的值;(2)作DF ⊥AE ,垂足为F ,连接BE ,设EF =2x ,DF =3x ,根据DF ∥BE 故AF AD EF BD=,得出AF =6x ,再利用Rt △AFD 中,AF 2+DF 2=AD 2,即可求出x ,进而求出AE 的长; (3)根据等腰直角三角形的不同顶点进行分类讨论,分别求出m 的值.【详解】解:(1)如图,作EH ⊥AB ,连接OE ,EB ,设DH =a ,则HB =2﹣a ,OH =2+a ,∵点E 是弧BC 中点,∴∠COE =∠EOH =45°,∴EH =OH =2+a ,在Rt △AEB 中,EH 2=AH•BH ,(2+a )2=(6+a )(2﹣a ), 解得a =222±-,∴a =222-,EH=22,S △ADE =1622AD EH =;(2)如图,作DF ⊥AE ,垂足为F ,连接BE设EF =2x ,DF =3x∵DF ∥BE ∴AF AD EF BD = ∴622AF x ==3 ∴AF =6x 在Rt △AFD 中,AF 2+DF 2=AD 2(6x )2+(3x )2=(6)2解得x =255AE =8x =1655 (3)当点D 为等腰直角三角形直角顶点时,如图设DH =a由DF=DE,∠DOF=∠EHD=90°,∠FDO+∠DFO=∠FDO+∠EDH ,∴∠DFO=∠EDH∴△ODF ≌△HED∴OD =EH =2在Rt △ABE 中,EH 2=AH•BH(2)2=(6+a )•(2﹣a )解得a =±232-m =23当点E 为等腰直角三角形直角顶点时,如图同理得△EFG ≌△DEH设DH=a,则GE=a,EH=FG=2+a在Rt△ABE中,EH2=AH•BH(2+a)2=(6+a)(2﹣a)解得a=222±-∴m=22当点F为等腰直角三角形直角顶点时,如图同理得△EFM≌△FDO设OF=a,则ME=a,MF=OD=2∴EH=a+2在Rt△ABE中,EH2=AH•BH(a+2)2=(4+a)•(4﹣a)解得a=71m71【点睛】此题主要考查圆内综合问题,解题的关键是熟知全等三角形、等腰三角形、相似三角形的判定与性质.6.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作AC、CB、BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点l为对称轴的交点.(1)如图2,将这个图形的顶点A与线段MN作无滑动的滚动,当它滚动一周后点A与端点N重合,则线段MN的长为;(2)如图3,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;(3)如图4,将这个图形的顶点B与⊙O的圆心O重合,⊙O的半径为3,将它沿⊙O的圆周作无滑动的滚动,当它第n次回到起始位置时,点I所经过的路径长为(请用含n的式子表示)【答案】(1)3π;(2)27π;(3)23nπ. 【解析】试题分析:(1)先求出AC 的弧长,继而得出莱洛三角形的周长为3π,即可得出结论; (2)先判断出莱洛三角形等边△DEF 绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;(3)先判断出莱洛三角形的一个顶点和O 重合旋转一周点I 的路径,再用圆的周长公式即可得出.试题解析:解:(1)∵等边△ABC 的边长为3,∴∠ABC =∠ACB =∠BAC =60°,AC BC AB ==,∴AC BC l l ==AB l =603180π⨯=π,∴线段MN 的长为AC BC AB l l l ++=3π.故答案为3π;(2)如图1.∵等边△DEF 的边长为2π,等边△ABC 的边长为3,∴S 矩形AGHF =2π×3=6π,由题意知,AB ⊥DE ,AG ⊥AF ,∴∠BAG =120°,∴S 扇形BAG =21203360π⨯=3π,∴图形在运动过程中所扫过的区域的面积为3(S 矩形AGHF +S 扇形BAG )=3(6π+3π)=27π;(3)如图2,连接BI 并延长交AC 于D .∵I 是△ABC 的重心也是内心,∴∠DAI =30°,AD =12AC =32,∴OI =AI =3230AD cos DAI cos ∠=︒=3,∴当它第1次回到起始位置时,点I所经过的路径是以O 为圆心,OI 为半径的圆周,∴当它第n 次回到起始位置时,点I 所经过的路径长为n •2π•3=23n π.故答案为23n π.点睛:本题是圆的综合题,主要考查了弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解(1)的关键是求出AC 的弧长,解(2)的关键是判断出莱洛三角形绕等边△DEF 扫过的图形,解(3)的关键是得出点I 第一次回到起点时,I 的路径,是一道中等难度的题目.7.已知P 是O 的直径BA 延长线上的一个动点,∠P 的另一边交O 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O 经过点C 、D ,圆心距1OO n =. (1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.【答案】(1)CD=25;(2)m=23812n n;(3) n 的值为955或9155 【解析】分析:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .解Rt △POH ,得到OH 的长.由勾股定理得CH 的长,再由垂径定理即可得到结论; (2)解Rt △POH ,得到Rt 3mOH OCH =.在和Rt △1O CH 中,由勾股定理即可得到结论;(3)△1POO 成为等腰三角形可分以下几种情况讨论:① 当圆心1O 、O 在弦CD 异侧时,分1OP OO =和11O P OO =.②当圆心1O 、O 在弦CD 同侧时,同理可得结论. 详解:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .在Rt △1sin 63POH P PO =中,=,,∴2OH =. ∵AB =6,∴3OC =.由勾股定理得: CH = ∵OH ⊥DC ,∴2CD CH ==.(2)在Rt △1sin 3POH P PO m 中,=,=,∴3m OH =. 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. 在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. 可得: 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -:=.(3)△1POO 成为等腰三角形可分以下几种情况: ① 当圆心1O 、O 在弦CD 异侧时i )1OP OO =,即m n =,由23812n n n-=,解得9n :=.即圆心距等于O 、1O 的半径的和,就有O 、1O 外切不合题意舍去.ii )11O P OO = n =,解得:23m n =,即23n 23812n n-=,解得n : ②当圆心1O 、O 在弦CD 同侧时,同理可得: 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132nn n-=,解得n :综上所述:n 点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.8.如图,线段BC 所在的直线 是以AB 为直径的圆的切线,点D 为圆上一点,满足BD =BC ,且点C 、D 位于直径AB 的两侧,连接CD 交圆于点E . 点F 是BD 上一点,连接EF ,分别交AB 、BD 于点G 、H ,且EF =BD . (1)求证:EF ∥BC ;(2)若EH =4,HF =2,求BE 的长.【答案】(1)见解析;(2) 233【解析】【分析】(1)根据EF=BD可得EF=BD,进而得到BE DF,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”即可得出角相等进而可证.(2)连接DF,根据切线的性质及垂径定理求出GF、GE的长,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”及平行线求出相等的角,利用锐角三角函数求出∠BHG,进而求出∠BDE的度数,确定BE所对的圆心角的度数,根据∠DFH=90°确定DE为直径,代入弧长公式即可求解.【详解】(1)∵EF=BD,∴EF=BD∴BE DF∴∠D=∠DEF又BD=BC,∴∠D=∠C,∴∠DEF=∠CEF∥BC(2)∵AB是直径,BC为切线,∴AB⊥BC又EF∥BC,∴AB⊥EF,弧BF=弧BE,GF=GE=12(HF+EH)=3,HG=1DB平分∠EDF,又BF∥CD,∴∠FBD=∠FDB=∠BDE=∠BFH ∴HB=HF=2∴cos∠BHG=HGHB =12,∠BHG=60°.∴∠FDB=∠BDE=30°∴∠DFH=90°,DE为直径,DE=43,且弧BE所对圆心角=60°.∴弧BE=16×43π=233π【点睛】本题是圆的综合题,主要考查圆周角、切线、垂径定理、弧长公式等相关知识,掌握圆周角的有关定理,切线的性质,垂径定理及弧长公式是解题关键.9.如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF 上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)当AB=AC时,若CE=2,EF=3,求⊙O的半径.【答案】(1)证明见解析;(235.【解析】【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)根据余角的性质和等腰三角形的性质得到∠F=∠EDF,根据等腰三角形的判定得到DE=EF=3,根据勾股定理得到CD225DE CE-=△CDE∽△DBE,根据相似三角形的性质即可得到结论.【详解】(1)如图,连接BD.∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)∵∠BAF =∠BDE =90°,∴∠F +∠ABC =∠FDE +∠ADB =90°. ∵AB =AC ,∴∠ABC =∠ACB .∵∠ADB =∠ACB ,∴∠F =∠FDE ,∴DE =EF =3. ∵CE =2,∠BCD =90°,∴∠DCE =90°,∴CD 225DE CE =-=.∵∠BDE =90°,CD ⊥BE ,∴∠DCE =∠BDE =90°. ∵∠DEC =∠BED ,∴△CDE ∽△DBE ,∴CD BD CE DE =,∴BD 5335⨯==,∴⊙O 的半径354=.【点睛】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定,勾股定理,求出DE =EF 是解答本题的关键.10.如图,AB 是⊙O 的直径,AD 是⊙O 的弦,点F 是DA 延长线上的一点,过⊙O 上一点C 作⊙O 的切线交DF 于点E ,CE ⊥DF . (1)求证:AC 平分∠FAB ;(2)若AE =1,CE =2,求⊙O 的半径.【答案】(1)证明见解析;(2)52【解析】试题分析:(1)连接OC ,根据切线的性质和圆周角定理,得出∠OCA =∠OAC 与∠CAE=∠OCA,然后根据角平分线的定义可证明;(2)由圆周角定理得到∠BCA=90°,由垂直的定义,可求出∠CEA=90°,从而根据两角对应相等的两三角形相似可证明△ACB∽△AEC,再根据相似三角形的对应边成比例求得AB的长,从而得到圆的半径.试题解析:(1)证明:连接OC.∵CE是⊙O的切线,∴∠OCE =90°∵CE⊥DF,∴∠CEA=90°,∴∠ACE+∠CAE=∠ACE+∠OCA=90°,∴∠CAE=∠OCA∵OC=OA,∴∠OCA=∠OAC.∴∠CAE=∠OAC,即AC平分∠FAB(2)连接BC.∵AB是⊙O的直径,∴∠ACB =∠AEC =90°.又∵∠CAE=∠OAC,∴△ACB∽△AEC,∴AB AC AC AE=.∵AE=1,CE=2,∠AEC =90°,∴AC=∴2251ACABAE===,∴⊙O的半径为52.。
中考数学重难点易错题汇总含答案解析
精品基础教育教学资料,仅供参考,需要可下载使用!最新初三九年级中考数学易错题集锦汇总学校:__________ 姓名:__________ 班级:__________ 考号:__________ 题号 一 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分 一、选择题1.如图,能判定 AB ∥CD 的条件是( )A .∠1=∠2B .∠1+∠2= 180°C .∠3=∠4D .∠3+∠1=180°2.下列各式中从左到右的变形,是因式分解的是( )A .(a+3)(a-3)=a 2-9;B .x 2+x-5=(x-2)(x+3)+1;C .a 2b+ab 2=ab (a+b )D .x 2+1=x (x+x1) 3.用科学记数方法表示0000907.0,得( )A .41007.9-⨯B .51007.9-⨯C .6107.90-⨯D .7107.90-⨯ 4.小马虎在下面的计算中只做对了一道题,则他做对的题目是 ( )A .222)(b a b a -=-B .6234)2(a a =-C .5232a a a =+D .1)1(--=--a a5.方程x 3=22-x 的解的情况是( ) A .2=x B .6=xC .6-=xD .无解 6.已知235x x ++的值为 3,则代数式2391x x +-的值为( )A .-9B .-7C .0D .37.下列事件中,届于不确定事件的是( )A .2008年奥运会在北京举行B .太阳从西边升起C .在1,2,3,4中任取一个教比 5大D .打开数学书就翻到第10页8.下列长度的三条线段能组成三角形的是( )A .5cm,3cm,1cmB .6cm,4cm,2cmC . 8cm, 5cm, 3cmD . 9cm,6cm,4cm9.在下面四个图形中,既包含图形的旋转,又有图形的轴对称设计的是( )A .B .C .D .10.下列说法中,正确的是( )A .一颗质地均匀的骰子已连续抛掷了 2000次,其中抛掷出 5点的次数最少,则第2001次一定抛掷出 5点B .某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C .天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D .抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等11.某地区10户家庭的年消费情况如下:年消费l0万元的有2户,年消费5万元的有l 户,年消费1.5万元的有6户,年消费7千元的有1户.可估计该地区每户年消费金额的一般水平为()A.1.5万元 B.5万元 C.10万元 D.3.47万元12.三角形的一个外角小于与它相邻的内角,这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.属于哪一类不能确定13.下列图形中,由已知图形通过平移变换得到的是()14.在同一平面内垂直于同一条直线的两条直线必然()A.互相平行B.互相垂直C.互相重合D.关系不能确定15.△ABC和△DEF都是等边三角形,若△ABC的周长为24 cm ,△DEF的边长比△ABC 的边长长3 cm,则△DEF的周长为()A.27 cm B.30 cm C.33 cm D.无法确定16.下列命题不正确的是()A.在同一三角形中,等边对等角B.在同一三角形中,等角对等边C.在等腰三角形中与顶角相邻的外角等于底角的2倍D.等腰三角形是等边三角形17.在△ABC中,∠A:∠B:∠C=2:3:5,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定18.等腰三角形的“三线合一”是指()A.中线、高、角平分线互相重合B.腰上的中线、腰上的高、底角的平分线互相重合C.顶角的平分线、中线、高线三线互相重合D . 顶角的平分线、底边上的高及底边上的中线三线互相重合19.在△ABC 中,已知AC AB = ,DE 垂直平分AC ,50=∠A °,则DCB ∠的度数是( )A . 15°B .30°C . 50°D . 65°20.将如图1所示的Rt △ABC 绕直角边BC 旋转一周,所得几何体的左视图是( )21.画一个物体的三视图时,一般的顺序是( )A .主视图、左视图、俯视图B .主视图、俯视图、左视图C .俯视图、主视图、左视图D .左视图、俯视图、主视图22.要了解一批电视机的使用寿命,从中任意抽取30台电视机进行试验,在这个问题中,30是( )A .个体B .总体C .样本容量D .总体的一个样本23.济南市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S (吨)与时间t (小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )A .4小时B .4.4小时C .4.8小时D .5小时 24.若分式3242x x +-有意义,则字母x 的取值范围是( ) A .12x = B .23x =- C .12x ≠ 23x ≠-25.把图中的角表示成下列形式:①∠AP0;②∠P;③∠0PC;④∠0;⑤∠CP0;⑥∠AOP.其中正确的有()A.6个B.5个C.4个D.3个26.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为()A.90个B.24个C.70个D.32个27.如图所示的 6 个数是按一定规律排列的,根据这个规律,括号内的数应是()A.27 B.56 C.43 D.3028.现有两个有理数 a、b,它们的绝对值相等,则这两个有理数()A.相等 B.相等或互为相反数 C.都是零 D.互为相反数29.某天股票A 开盘价 19 元,上午 11:30 跌1. 5 元,下午收盘时又涨了 0. 5 元,则投票A 这天收盘价为()A.0.3 元B.l6.2 元C.16.8 元D.18 元30.蜗牛在井里距井口 lm 处,它每天白天向上爬行 30 cm,每天夜晚又下滑 20 cm,则蜗牛爬出井口需要的天数是()A.11 天B.10 天C.9 天D.8 天31.小红妈妈的 2 万元存款到期了,按规定她可以得到 2 的利息,但同时必须向国家缴 纳 20% 的利息所得税,则小红妈妈缴税的金额是( )A .80 元B .60 元C .40 元D .20 元32.求0.0529的正确按键顺序为( )A .B .C .D .33.下列方程中,是一元一次方程的为( )A .x+y=1B .2210x x -+=C .21x =D .x=034.有下列计算 :①0-(-5)=-5;②(-3)+(-9)=-12;③293()342⨯-=-;④(36)(9)4-÷-=-.其中正确的有( )A . 1个B . 2个C .3个D .4个35.一个五次多项式,它的任何一项的次数( )A .都小于5B .都等于5C .都不大于5D .都不小于536.⎩⎨⎧==21y x 是方程3=-y ax 的解,则a 的值是( ) A .5 B .5- C .2 D .137.下列说法中正确的是 ( )A .直线大于射线B .连结两点的线段叫做两点的距离C .若AB=BC ,则B 是线段AC 的中点D .两点之间线段最短38. 在△ABC 中,∠A =30°,∠B =50°,则∠C 的外角=( )A .60°B .80°C .100°D .120°39.如图,∠AOC=∠BOD=90°,下列结论中正确的个数是( )①∠AOB=∠COD ;②∠AOD=3∠B0C ;③∠AOD+∠BOC=∠AOC+∠BODA .0个B .l 个C .2个D .3个40.若两个角互为补角,则这两个角( )A .都是锐角B .都是钝角C .一个是锐角,另一个是钝角D .以上结论都不全对41.下列说法中,错误的是( )A .经过一点可以画无数条直线B .经过两点可以画一条直线C .两点之间线段最短D .三点确定一条直线42.12-的绝对值是( ) A .2- B .12- C .2 D .1243.下列说法中正确的是( )A .从三角形一个顶点向它对边所在直线画垂线,此垂线就是三角形的高B .三角形的角平分线是一条射线C.直角三角形只有一条高D.钝角三角形的三条高所在的直线的交点在此三角形的外部44.如图所示,是轴对称图形的个数有()A.4个B.3个C.2个D.1个45.将如图所示的图形按照顺时针方向旋转90°后所得的图形是()46.如图,已知 6.75r=,则图中阴影部分的面积为(结果保留π)()R=, 3.25A.35π⋅B.12.25πC.27πD.35π47.如图,由△ABC平移而得的三角形有()A. 8个B. 9个C. 10个D. 16个48.下列各式中不是不等式的为()A.25x=D.610x+≤C.58-<B.92y+> 49.关于单项式322-的系数、次数,下列说法中,正确的是()2x y zA.系数为-2,次数为 8B.系数为-8,次数为 5C.系数为-23,次数为 4D .系数为-2,次数为 750.直角三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A . 43B . 34C . 53D . 5451.下列说法中,正确的个数是( )①样本的方差越小,波动性越小,说明样本稳定性越好;②一组数据的方差一定是正数;③一组数据的方差的单位与原数据的单位是一致的;④一组数据的标准差越大,则这组数据的方差一定越大.A .1个B .2个C .3个D .4个52.如图,在两半径不同的圆心角中,∠AOB=∠A ′O ′B ′=60°,则( )A .AB=A ′B ′ B .AB<A ′B ′C .AB 的度数=A ′B ′的度数D .AB 的长度=A ′B ′的长度53.△ABC 中,A = 47°,AB = 1.5 cm ,AC=2 cm ,△DEF 中,E = 47°,ED =2.8 cm ,EF=2. 1 cnn ,这两个三角形( )A . 相似B .不相似C . 全等D . 以上都不对54.在△ABC 中,AB=AC ,∠A=36°.以点A 为位似中心,把△ABC 放大2倍后得△A ′B ′C ′,则∠B 等于( )A .36°B .54°C .72°D .144°55.如图,∠APD =90°,AP =PB =BC =CD ,则下列结论成立的是( )A .ΔPAB ∽ΔPCA B .ΔPAB ∽ΔPDAC .ΔABC ∽ΔDBAD .ΔABC ∽ΔDCA56.如图,已知21∠=∠,那么添加下列一个条件后,仍无法..判定ABC ∆∽ADE ∆的是( )A .AE AC AD AB = B .DE BC AD AB = C .D B ∠=∠ D .AED C ∠=∠57.若正比例函数2y x =-与反比例函数k y x=的图象交于点A ,且A 点的横坐标是1-,则此反比例函数的解析式为( )A .12y x =B .12y x =-C .2y x =D .2y x=- 58.如图,梯形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2cm ,CD =4cm .以BC 上一点O 为圆心的圆经过A 、D 两点,且∠AOD =90°,则圆心O 到弦AD 的距离是( )A .6cmB .10cmC .32cmD .52cm59.等腰三角形的腰长为32,底边长为6,那么底角等于( )A . 30°B . 45°C . 60°D .120°60.下列事件,是必然事件的是( )A .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是1B .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是偶数C .打开电视,正在播广告D .抛掷一枚硬币,掷得的结果不是正面就是反面61.如图,扇形 OAB 的圆心角为 90°,分别以 OA 、OB 为直径在扇形内作半圆,P 和Q 分别表示两个阴影部分的面积,那么 P 和Q 的大小关系是( )A .P=QB .P>QC .P<QD . 无法确定62.某飞机于空中 A 处探测到平面目标 B ,此时从飞机上看目标B 的俯角α=30°,飞行高度AC= 1200 m,那么飞机到目标B 的距离AB为()A.2400m B.1200m C.4003 m D.12003 m 63.已知二次函数22(21)1y x a x a=+++-的最小值为 0,则a的值为()A.34B.34-C.54D.54-64.一箱灯泡有 24 个,灯泡的合格率是87.5%,则从中任意拿出一个是次品的概率是()A.0 B.124C.78D.1865.设有 10 个型号相同的杯子,其中一等品 7个、二等品 2个、三等品 1 个,从中任取一个杯子是一等品的概率等于()A.310B.70lC.37D.1766.书架的第一层放有 2 本文艺书、3 本科技书,书架的第二层放有 4 本文艺书、1 本科技书,从两层各取 1 本书,恰好都是科技书的概率是()A.325B.49C.1720D.2567.在一个有 10 万人的小镇,随机调查了 2000人,其中有 250 人看中央电视台的早新闻,在该镇随机问一个人,他看早新闻的概率大约是()A.0.75 B. 0.5 C. 0.25 D. 0.12568.有左、中、右三个抽屉,左边的抽屉里放有 2个白球,中间和右边的抽屉里各放一个红球和一个白球,从三个抽屉里任选一个球是红球的概率是()A.14B.13C.16D.2569.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。
中考数学图形与几何专题知识易错题50题-含答案
中考数学图形与几何专题知识易错题50题含答案一、单选题1.下列说法中:①比的前项和后项同时乘或除以相同的数(0除外),比值不变;①学校食堂新进一批煤,使用天数与每天的平均用煤量成正比例;①实验小组用200颗种子做发芽试验,全部发芽,则这子的发芽率为200%;①圆锥的体积等于圆锥体积的13.其中正确的个数有( ) A .3个 B .2个 C .1个 D .0个 2.在一个直径为8cm 的圆中,小明画了一个圆心角为60°的扇形,则这个扇形的面积为( ).A .2πcmB .23πcmC .28πcm 3D .26πcm 3.小圆的半径是4cm ,大圆的半径是8cm ,小圆面积是大圆面积的( ) A .12 B .14 C .34 D .184.有大小两个圆,大圆半径是5厘米,小圆半径是4厘米,小圆面积是大圆面积的( ).A .45B .1625C .114D .不能确定 5.一个闹钟的分针长是6cm ,从6:00到10:00,这根分针的尖端走了( ) A .2πcm B .48πcm C .6πcm D .12πcm 6.大圆圆周率与小圆圆周率的大小关系是( )A .大圆的圆周率大B .小圆的圆周率大C .一样大D .无法确定7.下列说法正确的有( )个.①长方体有六个面、八个顶点、十二条棱;①长方体的十二条棱可以分为三组,每组中的四条棱的长度相等;①长方体的六个面可以分为三组,每组中的两个面的形状和大小都相同.A .0B .1C .2D .3 8.一个圆环,外圆的半径是内圆半径的2倍,则圆环的面积和外圆的面积比是( )A .1①2B .4①3C .2①1D .3①4 9.下列说法正确的是( )A .圆柱和圆锥都只有一条高B .圆的半径扩大到原来的2倍,直径就扩大到原来的4倍C .圆柱体体积是圆锥表面积的三倍D .正数和负数可以表示两种相反意义的量 10.一个扇形,如果半径缩小2倍,圆心角扩大2倍,那么扇形的面积( )A .扩大2倍B .缩小2倍C .缩小4倍D .不变11.如果大圆的周长是小圆周长的4倍,那么小圆面积是大圆面积的( )A .14B .15C .116D .12512.圆柱的高不变,底面半径扩大原来的两倍,它的体积就扩大到原来的( )倍. A .4 B .8 C .12 D .1613.两圆半径的比为2:3,则两圆的面积比为( )A .2:3B .3:2C .4:9D .4:514.圆的半径扩大为原来的4倍,则( )A .周长扩大为原来的16倍B .周长扩大为原来的4倍C .周长扩大为原来的2倍D .周长不变15.九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方案是( )A .方案1B .方案2C .方案3D .无法确定 16.一个圆锥的三视图如图所示,则此圆锥的底面积...为( )A .230cm πB .225cm πC .264cm πD .280cm π 17.下列说法中不正确的是( ).A .用“长方形纸片”可以检查直线与平面平行B.用“三角尺”可以检查直线与平面垂直C.用“合页型折纸”可以检查平面与平面垂直D.空间两条直线有四种位置关系:平行、相交,垂直、异面18.将棱长为10cm的正方体表面涂上红色切成边长为1cm的小正方体后,一面是红色的小正方体有()A.256个B.992个C.384个D.880个19.下列命题中,正确的是()A.三角形的三个顶点在同一个圆上B.过圆心的线段叫做圆的直径C.大于劣弧的弧叫优弧D.圆内任一点到圆上任一点的距离都小于半径二、填空题20.直线PQ垂直于平面ABCD,记作:______________.21.用长为7cm,宽为6cm的长方形裁出最大圆的面积是__________cm222.某长方体中,有一个顶点出发的三条棱的长度之比为5:8:10;已知最小的一个面的面积是360平方厘米,那么这个长方体的表面积是_____________平方厘米.23.圆的直径为5cm,则它的面积是_______.24.一个圆柱的侧面展开图是正方形,这个圆柱底面周长与高的比是__________.25.如图,在长方体ABCD EFGH-中:(1)与面ABCD垂直的面有______________________________________.(2)与面ADHE垂直的面有_____________________________________.(3)与面ABFE垂直的面有_____________________________________.(4)在长方体中,每一个面都有______________个面与它垂直.26.等底等高的圆柱和圆锥的体积相差183dm,则圆锥的体积是_____3dm.27.一扇形面积是所在圆面积的23,扇形的圆心角是=_________.28.若圆的半径是4cm,那么弧长为83π的弧所对的圆心角是__________.29.如图,在长方体ABCD EFGH中,既与平面ADHE垂直,又与棱AD异面的棱是______.30.一个圆柱的底面直径为20,母线长为15,则这个圆柱的侧面积为______.31.若圆的半径扩大2倍,则面积扩大__________倍.32.将一个圆的半径扩大为原来的3倍,则它的面积将扩大为原来的_______倍.33.用圆规画一个周长为18.84厘米的圆,圆规两脚间的距离应取______厘米,所画圆的面积是______平方厘米.34.如图,是教室相邻的三面墙(或地面),1)与墙面ADFE垂直的墙角线是_________________________,2)与墙角线AD垂直的墙面是___________________________,3)与墙角线DF垂直的墙面是___________________________,4)与地面ABCD垂直的墙角线是_________________________.35.当一个圆的半径是____时,它的面积和周长相等36.将两个长是5cm,宽是4cm,高是3cm的长方体重叠放置,它的表面积是_______ 2cm.37.如果一个圆环的外圆半径等于它内圆的直径,那么此圆环称为“平等圆环”,环宽(环宽等于两圆的半径之差)是10厘米的“平等圆环”面积为___________平方厘米.38.如图,圆柱形玻璃杯高为14cm,底面圆周长为32cm,在杯内壁离杯底4cm的B 点出有一滴蜂蜜,此时一只蚂蚁正好也在杯内壁,离杯上沿2cm与蜂蜜正相对的点A 处,则蚂蚁从内壁A处到达内壁B处的最短距离为____________ .三、解答题39.小明用一根长为24分米的铅质角铁,截开后刚好可以搭一个长方体小鱼缸架子,这个长方体的长、宽、高的长度均为整数分米,且互不相等,求这个长方体的体积.OA=,圆心角40.按如图所示的方法把圆锥的侧面展开,得到一个扇形,其半径3cm∠=︒,求AB的长及扇形的面积.AOB12041.如图,在正方形网格中,小正方形的边长均为1个单位长度,ABC的三个顶点都在正方形网络的格点上.''',点A的对应点是点A',点B、C的对应点分别是(1)将ABC经过平移后得到A B C''';点B'、C',画出平移后的A B C''的面积.(2)连接BB'、CC',求出四边形BB C C42.图用两根绳子据扎着三根直径均为8cm的酱油瓶,若不计绳子接头.则绳总长是多少厘米?43.如图,是某个运动场跑道图,每条跑道宽1米,共6个跑道,最里侧半圆的直径为18米,直跑道长90米.(1)若给6条跑道铺设塑胶,问所需塑胶的面积是多少平方米?(2)若给运动场非跑道区域植上价格为每平方米100元的草皮,共需多少元?44.用长方形和正方形纸板作侧面和底面,做成图中竖式和横式的两种无盖纸盒,已知制作一个竖式无盖纸盒的成本比制作一个横式无盖纸盒的成本多1元,制作20个竖式无盖纸盒和30个横式无盖纸盒的总成本是670元.(1)将横式长方体补充完整(遮住部分用虚线表示).(2)求制作一个竖式无盖纸盒和一个横式无盖纸盒的成本分别是多少?(3)如果需要制作这两种无盖纸盒共80个,且总成本不超过1100元,竖式无盖纸盒最多可以制作多少个?45.根据图中标出的数据,求阴影部分面积46.如图,长方体中,M、N、P、Q分别是棱EH、棱AD、棱BC和棱GF上的中点(1)请找出与平面MNBF 平行的棱;(2)请找出与平面HDPQ 平行以及垂直的平面.47.小明过生日,妈妈给他买了一个生日蛋糕.(1)在蛋糕盒的整个侧面贴上商标纸,商标纸的面积是多少平方厘米(结果保留π)?(2)这个蛋糕盒的体积是多少立方厘米(结果保留π).48.小明家最近新建了一幢楼房,楼房前是一个很大的院子.小明爸爸设计了一个大的半圆形花坛(以AB 为直径),接着又准备在大的半圆形花坛里围两个小的半圆形花坛来种植三种不同的花卉(如下图所示),其中直径2AC =米,直径3BC =米.(1)小明妈妈看到隔壁邻居家的白色护栏很漂亮,准备在各花坛四周围上白色护栏,小明妈妈犯愁了,到底要买多少白色护栏才够而又不浪费呢?请你帮小明妈妈计算至少需要护栏多少米?(2)如果小明爸爸想要种植更多的花卉,在大的半圆形花坛内多设计几个半圆形花坛,(如上图所示)那小明妈妈买的白色护栏还够吗?请写出必要的计算过程.参考答案:1.C【分析】根据比的性质,反比例的意义,发芽率以及圆锥体积的计算方法逐项进行判断即可.【详解】解:①比的前项和后项同时乘或除以相同的数(0除外),比值不变,是正确的; ②学校食堂新进一批煤,使用天数与每天的平均用煤量成反比例,因此②是错误的; ③实验小组用200颗种子做发芽试验,全部发芽,则这种子的发芽率为100%,因此③是错误的;④圆锥的体积等于与它等底等高的圆柱体积的13,因此④是错误的, 综上所述,正确的有①,共1个,故选:C .【点睛】本题考查认识立体图形,比的性质,反比例的意义,发芽率的计算方法,掌握比的性质,反比例的意义,发芽率的计算方法是正确判断的前提.2.C 【分析】根据扇形面积公式2=360n r S π扇形求解即可. 【详解】解:由题意,这个扇形的面积为28602360π⎛⎫ ⎪⎝⎭=28cm 3π, 故选:C .【点睛】本题考查求扇形的面积,熟记扇形面积公式是解答的关键.3.B【分析】用小圆面积除以大圆面积,即可求解.【详解】解:根据题意得:小圆面积是大圆面积的()()2214816644ππππ⨯÷⨯=÷=. 故选:B【点睛】本题主要考查了求圆的面积,熟练掌握圆的面积公式是解题的关键.4.B【分析】首先求出两个圆的面积,然后根据分数的意义求解即可.【详解】①大圆半径是5厘米,小圆半径是4厘米,①大圆的面积为2525ππ⨯=,小圆的面积为2416ππ⨯=,①16162525ππ÷=. ①小圆面积是大圆面积的1625. 故选:B .【点睛】此题考查了圆的面积,分数的意义,解题的关键是熟练掌握圆的面积公式,分数的意义.5.B【分析】从6:00到10:00分针正好转了4圈,又因分针长6cm ,即分针所经过的圆的半径是6cm ,从而利用圆的周长公式即可求出分针走过的路程.【详解】解:264π⨯⨯⨯48(cm)π=.答:这根分针的尖端走了48πcm .故选:B .【点睛】此题考查圆的周长公式的应用,熟练掌握周长公式是解答本题的关键. 6.C【分析】圆周率是周长与直径的比值π,是个固定数值,不随圆的大小变化而变化.【详解】圆周率是周长与直径的比值π,是个固定数值,所以大圆圆周率与小圆圆周率一样大.故选C .【点睛】本题主要考查圆周率的概念,熟记概念是解题关键.7.D【分析】根据长方体的特征解答即可【详解】解:①长方体有六个面、八个顶点、十二条棱,故①正确;①长方体的十二条棱可以分为三组,每组中的四条棱的长度相等,故①正确;①长方体的六个面可以分为三组,每组中的两个面的形状和大小都相同,故①正确. 所以正确的有①①①这3个.故选D .【点睛】本题主要考查了长方形的特征,长方体有6个面,每组相对的面完全相同; 长方体有12条棱,相对的四条棱长度相等;按长度可分为三组,每一组有4条棱;长方体有8个顶点.8.D【分析】根据圆的面积公式2S r π=、以及圆环的面积等于外圆的面积减去内圆的面积即可得.【详解】解:由圆的面积公式可知,圆的面积之比等于半径的平方之比,外圆的半径是内圆半径的2倍,∴外圆的面积是内圆面积的4倍, 又圆环的面积等于外圆的面积减去内圆的面积,∴圆环的面积和外圆的面积比是3:4,故选:D .【点睛】本题考查了圆的面积,熟记圆的面积公式是解题关键.9.D【分析】根据圆柱和圆锥的意义、圆的半径与直径、正负数的意义逐一判断即可.【详解】解:A 、圆柱有无数条高,圆锥只有一条高,原说法错误,该选项不符合题意; B 、圆的半径扩大到原来的2倍,直径也扩大到原来的2倍,原说法错误,该选项不符合题意;C 、圆柱体体积是圆锥表面积没有直接的关系,原说法错误,该选项不符合题意;D 、正数和负数可以表示两种相反意义的量,原说法正确,该选项符合题意;故选:D .【点睛】本题考查了正数和负数,圆柱和圆锥的意义,注意基础知识的积累是解题的关键.10.B【分析】根据题意可以分别表示出原来和后来扇形的面积,从而可以计算出这个扇形的面积扩大的倍数.【详解】解:设原来扇形的圆心角为α,半径为r , 则原来扇形的面积为:2360r απ⋅, 后来扇形的圆心角为2α,半径为12r , 则后来扇形的面积为:2212()123602360r r απαπ⋅⋅⋅=⨯, ①扇形的面积缩小2倍.故选B .【点睛】本题考查了扇形的面积计算,熟记扇形的面积公式是解答本题的关键. 11.C【详解】解:设小圆的周长为a ,则大圆周长为4a , 因此小圆半径为a 2π,大圆半径为42a π, 所以小圆面积为22()24a a πππ⨯=,大圆的面积为22416()24a a πππ⨯=, 因此小圆面积是大圆面积的116, 故选:C . 【点睛】本题考查认识平面图形,解题的关键是掌握圆的周长和面积的计算方法. 12.A【分析】根据圆柱的体积公式:2V r h π=和圆的面积公式2S r π=,如果圆柱的高不变,圆柱的底面半径扩大为原来的2倍,它的底面积就扩大为原来的4倍,则体积就扩大为原来的4倍,据此解答.【详解】解:如果圆柱的高不变,圆柱的底面半径扩大2倍,它的底面积就扩大为原来的2×2=4倍,则体积就扩大为原来的4倍,故A 正确.故选:A .【点睛】本题主要考查圆柱的体积公式和圆的面积公式,熟练掌握圆柱的体积公式2V r h π=和圆的面积公式2S r π=,是解题的关键.13.C【分析】根据题意,可设甲乙两圆的半径分别为2m ,3m ,然后利用面积公式进行计算,即可得到答案.【详解】解:根据题意,①两圆半径的比为2:3,设甲乙两圆的半径分别为2m ,3m ,①圆的面积比为:22:[(2)]:[(3)]4:9S S m m ππ=⨯⨯=甲乙;故选:C .【点睛】本题考查了圆的面积公式,解题的关键是掌握圆的面积公式进行计算. 14.B【分析】根据题意,可设圆的半径为r ,那么根据圆的周长公式可计算出原来圆的周长与扩大后的圆的周长,最后再用扩大后的周长除以原来的周长,即可得到答案.【详解】设原来圆的半径为r ,圆的周长为:2πr ,半径扩大为原来的4倍后,圆的半径为4r ,圆的周长为:8πr ,周长扩大到原来的:8πr÷2πr=4;答:周长扩大为原来的4倍.故选:B .【点睛】本题考查了圆的周长,解答此题的关键是设原来圆的半径,然后再根据圆的周长公式进行计算即可.15.C【分析】分别计算出三个方案的菜园面积进行比较即可.【详解】解:方案1,设AD x =米,则(82)AB x =-米,则菜园的面积(82)x x =-228x x =-+22(2)8x =--+,当2x =时,菜园面积取最大值,最大面积为8平方米;方案2,作CD AB ⊥交AB 于点D ,则菜园的面积111sin 44sin 8sin 222AB CD AB AC BAC BAC BAC =⋅=⋅⋅∠=⨯⨯⋅∠=∠, 当90BAC ∠=︒时,菜园面积取最大值,最大面积818=⨯=平方米;方案3,半圆的半径8π=,此时菜园面积28π32π2π⎛⎫⨯ ⎪⎝⎭==平方米8>平方米, 故选C .【点睛】本题主要考查同周长的几何图形的面积问题,解题的关键是分别求出三个方案中面积的最大值.16.B【分析】根据主视图与左视图可以得到:圆锥的底面直径是10cm ,利用圆的面积公式即可求解.【详解】解:根据主视图与左视图可以得到:圆锥的底面直径是10cm , 则此圆锥的底面积为:()2210==25cm 2S ππ⎛⎫⨯ ⎪⎝⎭底, 故选:B .【点睛】本题主要考查了圆锥的三视图,圆的面积公式,根据主视图与左视图得到圆锥的底面直径是10cm ,是解题的关键.17.D【分析】根据直线与平面平行,直线与平面垂直,平面与平面垂直的检验方式以及空间中两直线的位置关系对各选项进行判断即可.【详解】A 选项:根据长方形的对边平行,所以用“长方形纸片”可以检验直线与平面平行,故A 正确;不符合题意;B 选项:利用“三角尺”中的直角可以检验直线与平面垂直,故B 正确;不符合题意;C 选项:“合页型折纸”其折痕与纸被折断的一边垂直,即折痕与被折断的两线段垂直,把折断的两边放到平面上,可判断折痕与水平面垂直,从而检验平面与平面垂直,故C 正确;不符合题意;D 选项:空间的两条直线有以下三种位置关系:相交直线、平行直线、异面直线.故D 错误,符合题意.故选D .【点睛】本题考查了直线与平面平行,直线与平面垂直,平面与平面垂直,空间中两直线的位置关系等知识.解题的关键在于对知识的熟练掌握与灵活运用.18.C【分析】根据题意分析出三面涂色、两面涂色、没有涂色的小正方体的个数,然后进行求【详解】解:小正方体个数:10110÷=(个),根据题意可发现顶点处的小正方体三面涂色,除顶点外位于棱上的小正方体两面涂色,而处于正中心的则没徐色,则一面红色的有:()()1021026886384-⨯-⨯=⨯⨯=(个).故选C .【点睛】本题主要考查长方体面与面的位置关系的应用,关键是根据题意得到除了一面涂色以外的小正方形,然后直接求解即可.19.A【分析】根据三角形的外接圆、圆的直径、弧以及点与圆的位置关系判断求解即可.【详解】解:A.每个三角形都有一个外接圆,故三角形的三个顶点在同一个圆上,此项正确,符合题意;B.直径是经过圆心的弦,两端点要在圆上,故此项错误,不符合题意;C.大于半圆的弧叫做优弧,故此项错误,不符合题意;D.圆内任意一点到圆心的距离都小于半径,故此项错误,不符合题意;故选:A .【点睛】考查了命题与定理的知识,解题的关键是了解圆的有关性质及定义,难度不大. 20.直线PQ ⊥平面ABCD【分析】根据平行与垂直的特征及性质可知:平行记做“①”,垂直记做“①”,由此解答即可.【详解】解:直线PQ 垂直于平面ABCD ,记作:直线PQ ⊥平面ABCD .故答案为:直线PQ ⊥平面ABCD .【点睛】本题考查棱与平面的位置关系认识.明确平行和垂直的含义及平行和垂直的记做方法,是解答此题的关键.21.28.26【分析】根据长方形的宽可以确定最大圆的直径,根据圆的面积公式即可求解.【详解】用长为7cm ,宽为6cm 的长方形裁处最大圆的直径为6cm ,S=πr 2=π(d÷2)2=3.14×3×3=28.26cm 2.故答案为:28.26.【点睛】本题主要考查了圆的面积,根据条件确定圆的直径是解题的关键.【分析】设长方体的三条棱分别是5x ,8x 和10x ,根据最小的一个面的面积即可求得x 的值,从而可求得其表面积.【详解】解:因为长方体中,有一个顶点出发的三条棱的长度之比为5:8:10, 所以,设这三条棱分别是5x ,8x 和10x ,则58360x x ,解得x=3(舍去负值),所以5x=15,8x=24,10x=30,故表面积为:2(152415302430)3060,故答案为:3060.【点睛】本题考查长方体的表面积.熟记面积公式是解答本题的关键.23.219.625cm【分析】根据题意易得圆的半径为2.5cm ,然后根据圆的面积计算公式求解即可.【详解】解:因为圆的直接为5cm ,所以半径为2.5cm ,所以22=3.14 2.5=19.625cm S ⨯圆. 故答案为219.625cm .【点睛】本题主要考查圆的面积计算,熟记圆的面积计算公式是解题的关键.24.1:1【分析】根据圆柱的侧面展开图是正方形,即可知道圆柱底面周长与高相等,即可得出答案.【详解】解:设圆柱底面周长为a ,高为h ,①圆柱的侧面展开图是正方形,①a h =,①:1:1a h =,故答案为:1:1.【点睛】本题考查了圆柱的展开图,求比值,数形结合得出圆柱的侧面展开图是本题的关键.25.(1)面ABFE 、面BCGF 、面DCGH 、面ADHE ;(2)面ABFE 、面EFGH 、面DCGH 、面ABCD ;(3)面ADHE 、面EFGH 、面BCGF 、面ABCD ;(4)4【分析】根据长方体面与面的位置关系判断即可;【详解】(1)与面ABCD垂直的面有:面ABFE、面BCGF、面DCGH、面ADHE (2)与面ADHE垂直的面有:面ABFE、面EFGH、面DCGH、面ABCD(3)与面ABFE垂直的面有:面ADHE、面EFGH、面BCGF、面ABCD(4)在长方体中,每一个面都有4个面与它垂直.【点睛】本题主要考查了长方体中面与面的关系,准确判断是解题的关键.26.9【分析】因为等底等高的圆柱的体积是圆锥体积的3倍,所以等底等高的圆柱与圆锥的体积差相当于圆锥体积的(3−1)倍,根据已知一个数的几倍是多少,求这个数,用除法解答.【详解】解:18÷(3−1)=18÷2=93dm()答:圆锥的体积是93dm.故答案为:9.【点睛】此题考查的目的是理解掌握等底等高的圆柱与圆锥体积之间的关系及应用.27.240°【分析】扇形的面积是它所在圆面积的23,那么扇形的圆心角就是它所在圆的圆心角的23,圆的圆心角为360°,那么可用圆心角乘扇形的圆心角占它所在圆的圆心角的分率即可得到答案.【详解】解:360°×23=240°,故答案为:240°.【点睛】此题主要考查的是:扇形面积与它所在圆的面积的比等于扇形的圆心角与它所在圆的圆心角的比,掌握知识点是解题关键.28.120︒【分析】设圆心角为n,然后利用弧长公式求解即可得到答案.【详解】解:设圆心角为n.由题意,48 1803nππ⋅=,解得120n=,故答案为:120.【点睛】本题主要考查了弧长公式,解题的关键在于能够熟练掌握弧长公式.29.EF 和HG【分析】根据长方体的棱与棱和棱与面的位置关系可直接解答.【详解】解:由题意得与平面ADHE 垂直的棱有EF AB DC HG 、、、,上述棱中与棱AD 异面的棱是EF HG 、,故答案为:EF 和HG .【点睛】本题主要考查长方体中棱与棱和棱与面的位置关系,正确理解概念是解题的关键.30.300π【分析】根据圆柱侧面积=底面周长×高即可求得侧面积.【详解】圆柱的侧面展开图的面积是:π×20×15=300π,故答案为:300π.【点睛】本题考查了圆柱的计算,解题的关键是弄清圆柱的侧面积的计算方法,圆柱的侧面积=底面圆的周长×高.31.4【分析】根据圆的面积公式即可得.【详解】圆的面积公式为2S r π=,其中S 为圆的面积,r 圆的半径,则当圆的半径扩大2倍时,其面积扩大224=倍,故答案为:4.【点睛】本题考查了圆的面积,熟记公式是解题关键.32.9【分析】设原来圆的半径为r ,则扩大后的圆的半径为3r ,利用圆的面积公式即可解决问题.【详解】设原来圆的半径为r ,则扩大后圆的半径为3r ,原来圆的面积为:πr 2;扩大后圆的面积为:π(3r)2=9πr 2;原来圆的面积:扩大后圆的面积=πr 2:9πr 2=1:9;答:它的面积将扩大为原来的9倍.故答案为:9.【点睛】本题考查了圆面积的计算,解答本题的关键是明确题意,利用圆的面积计算公式解答.33. 3 28.26【分析】(1)圆规两脚间的距离即圆的半径,根据“π2r C =÷÷”代入数值解答即可; (2)根据圆的面积计算公式“2πS r =”解答即可.【详解】解:18.84 3.1423÷÷=(厘米);23.14328.26⨯=(平方厘米); 故答案为:3,28.26.【点睛】解答此题应根据圆的周长的计算公式和圆的面积的计算公式进行解答即可. 34. 棱CD 面DCGF 面ABCD 棱DF【分析】根据题意,利用长方体中棱与平面的位置关系来判断题目中棱与面的垂直关系.【详解】(1)与墙面ADFE 垂直的墙角线是棱CD ;(2)与墙角线AD 垂直的墙面是面DCGF ;(3)与墙角线DF 垂直的墙面是面ABCD ;(4)与地面ABCD 垂直的墙角线是棱DF .故答案是:棱CD ;面DCGF ;面ABCD ;棱DF .【点睛】本题考查长方体中棱与面的垂直关系,需要注意题目中的墙面和墙角线的含义,不要写错棱和面.35.2【分析】根据圆的面积与周长公式列方程求解即可.【详解】根据题意得:22r r ππ=,解得:2r =【点睛】本题考查了圆的面积与周长,熟练掌握公式并正确列方程是解题关键. 36.148或164或158.【分析】分三种情况讨论,由重叠的面不同得到不同的表面积,从而可得答案.【详解】解:如图,所以:此时的表面积为:[](5343)2542148⨯+⨯⨯+⨯⨯=.如图,所以此时的表面积为:[](5453)2432164⨯+⨯⨯+⨯⨯=,所以此时的表面积为:[](5443)2532158⨯+⨯⨯+⨯⨯=.故答案为:148,164,158.【点睛】本题考查的是长方体的表面积,解答本题的关键是将两个长方体两个面重叠在一起,分三种情况.37.942【分析】根据题意可知,环宽是10厘米,也就是内圆的半径是10厘米,外圆半径等于它内圆的直径,那么外圆的半径是()102⨯厘米,根据环形面积公式:()22πS R r =-,代入求解即可.【详解】解:()223.1410210⎡⎤⨯⨯-⎣⎦ ()3.14400100=⨯-3.14300=⨯942=(平方厘米)故答案为:942.【点睛】本题考查了环形面积,熟练掌握环形面积公式是解题 的关键.38.cm【分析】将圆柱侧面展开,运用勾股定理计算即可.【详解】将圆柱侧面展开,如图所示,根据题意,得BC =16,AC =14-2-4=8,根据勾股定理,得AB )cm ,故答案为:.【点睛】本题考查了圆柱的侧面展开,勾股定理,熟练掌握圆柱的侧面展开和勾股定理是解题的关键.39.6立方分米【分析】根据题意易得长宽高的和为6分米,然后可直接根据体积计算公式进行求解即可.【详解】解:2446÷=(分米),①6321=++,①长、宽、高分别为3分米、2分米、1分米,体积为3216⨯⨯=(立方分米).答:这个长方体的体积为6立方分米.【点睛】本题主要考查长方体的体积计算,关键是根据题意得到长方体的长宽高,然后直接进行求解即可.40.AB 的长:6.28(cm);()29.42cm【分析】根据弧长公式及扇形面积公式求解即可.【详解】解:AB 的长120 3.143 6.28()180180n l r cm π==⨯⨯=; 扇形面积()211 6.2839.4222cm S lr ==⨯⨯=. 【点睛】本题考查了弧长公式及扇形的面积公式.熟记相关公式是解题的关键. 41.(1)见解析(2)13【分析】(1)通过题中网格图,由点A 的对应点是点A ',可得点A 向下平移3格,然后再向右平移1格,得到点A ',所以点B 、C 也向下平移3格,然后再向右平移1格,得到点B '、C ',然后依次连接,即可得出结论;(2)由(1)中,可得四边形BB C C ''的面积等于中间长方形的面积加上左右两个三角形的面积,再加上下两个三角形的面积.(1)解:如图所示,(2)。
中考数学图形与几何专题知识易错题50题-含参考答案
中考数学图形与几何专题知识易错题50题含答案一、单选题1.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从点A出发爬到点B,只考虑路径、时间、路程等因素,下列结论正确的为()A.乙比甲先到B.甲比乙先到C.甲和乙同时到D.无法确定哪只蚂蚁先到2.一张长方形纸片长10厘米、宽6厘米,以它的宽边为轴旋转一周得到一个圆柱体,下面关于这个圆柱描述正确的是()A.底面直径6厘米,高10厘米B.底面直径10厘米,高6厘米C.底面半径6厘米,高10厘米D.底面半径10厘米,高6厘米3.下列说法正确的是()A.213的倒数是52B.计算弧长的公式是2180πnl r=⨯C.1是最小的自然数D.1的因数只有14.在长方体中,与一条棱异面的棱有()A.2条B.3条C.4条D.5条5.学校食堂要用铁皮做一根横截面半径是3分米,高是3米的圆柱形烟囱,至少需要()平方米的铁皮.A.18πB.27πC.0.27πD.1.8π6.将下图沿着虚线折起来,可折成一个正方体,这时正方体的5号面所对的面是()A.1B.2C.3D.47.如图,线段AB是图中最大的半圆的直径,而AA1、A1A2、A2A3、A3A4、A4B分别是另外五个小的半圆的直径,有两只小虫以相同的速度同时从点A出发到点B,甲虫沿着用实线表示的大的半圆爬行,乙虫沿用虚线表示的五个小的半圆爬行,则下列结论正确的是()A.甲先到点B B.乙先到点BC.甲、乙同时到点B D.无法确定8.一个圆柱和一个圆锥的底面积相等,圆柱的高是圆锥高的2倍,则圆锥的体积是圆柱体积的()A.12B.13C.16D.2倍9.比较下图长方形内阴影部分面积的大小,甲()乙A.>B.<C.=D.无法确定10.下列语句中正确的是()A.线段AB就是A、B两点间的距离B.如果AB=BC,那么B是线段AC的中点C.比较两个角的大小的方法只有度量法D.长方形纸片能检测平面与平面平行11.如图,一圆柱形油桶中恰好装有半桶油,现将油桶由直立状态放倒成水平放置状态,在整个过程中,桶中油面的形状不可能是()A.B.C.D.12.已知小圆半径是2cm,大圆半径是4cm,小圆周长是大圆周长的()A.12B.14C.16D.1813.与长方体中任意一条棱既不平行也不相交的棱有()A.2条B.4条C.6条D.8条14.小圆的半径是2,大圆的半径是4,小圆的面积是大圆面积的()A.18B.14C.12D.215.用同样长的铁丝分别围成长方形、圆形和正方形,围成()的面积最大.A.长方形B.正方形C.圆D.无法确定16.圆的半径由3厘米增加了6厘米,圆的面积增加了()平方厘米A.72πB.27πC.36πD.82π17.一个拧紧瓶盖的瓶子里装有一些水(如右图),根据图中的数据,可以计算瓶子的容积是()立方厘米.A.24πB.28πC.32πD.40π18.如果一个扇形的半径扩大到原来的3倍,圆心角缩小到原来的13,那么这个扇形的面积()A.扩大到原来的3倍B.不变C.缩小为原来的13D.扩大到原来的9倍19.一个铁环直径是60厘米,从操场东端滚到西端转了90圈,另一个铁环的直径是40厘米,它从东端滚到西端要转的圈数是().A.270B.135C.100D.12020.一个圆形花坛周围围上了一圈栅栏,栅栏长18.84米,又沿栅栏一周砌有一条宽1米的鹅卵石小路.若每平方米约需鹅卵石100颗,则共需鹅卵石()A.1570颗B.1884颗C.2198颗D.2512颗二、填空题21.用圆规画一个周长是12.56厘米的圆,圆规两脚间的距离是______厘米.(π取3.14)22.如图,是将一个长方体沿它的底面切去一刀后剩下的部分.(1)与棱HD 平行的棱有______________________________________. (2)与棱EF 异面的棱有______________________________________. (3)与棱NQ 相交的棱有______________________________________.23.数学老师的教具里有一个圆柱和一个圆锥,老师告诉大家,圆柱和圆锥的体积相等,底面积也相等,已知圆锥的高是2厘米.请你算一算,这个圆柱的高是_______厘米.24.如图所示,在长方体1111ABCD A B C D 中与棱BC 垂直的平面是_________.25.在一个边长为6cm 的正方形里画一个最大的圆,这个圆的面积占正方形面积的____.26.将一个正方体放在桌面上,且已知正方体的边长为4厘米,那么与桌面垂直的平面面积之和为________.27.一个圆柱的侧面展开图是正方形,这个圆柱底面周长与高的比是__________. 28.将一个圆分割成三个扇形,它们的面积之比为2:3:4,则这三个扇形中最大的圆心角的度数为_________.29.半径为r ,圆心角为n°的扇形面积S 扇=______.30.一扇形面积是所在圆面积的23,扇形的圆心角是=_________.31.将一个长为4厘米,宽为3厘米的长方形,绕它的一边所在的直线旋转一周,得到的圆柱体的体积是___________.32.一个圆锥的高不变,底面半径扩大到原来的2倍,底面积扩大到原来的( )倍,体积扩大到原来的( )倍.33.一个圆环,外圆的半径是内圆半径的3倍,这个圆环的面积和内圆面积的比是( ).34.一个正方体的棱长是12cm,把它削成一个最大的圆柱体,圆柱体的体积是_____ 3cm,再把这个圆柱体削成一个最大的圆锥体,圆锥体的体积是_____3cm.35.时钟的分针长3厘米,从9点到9点40分;分针扫过区域的面积是_______平方厘米,分针的针尖走的路程长_______厘米.36.如果一个扇形的圆心角扩大为原来的3倍,半径长缩小为原来的13,那么所得的扇形的面积与原来扇形的面积的比为____.37.如右下图所示,长方体按如图方式截去一个角之后,余下的几何体有_________个面,_________个顶点,_________条棱.38.如图,在长方体ABCD-EFGH中(1)长方体中棱AB与___________个面平行,分别是____________长方体中棱BC与___________个面平行,分别是____________长方体中棱AE与___________个面平行,分别是____________通过观察思考可以得到:长方体中每条棱都与__________个面平行.(2)长方体中面ABCD与___________条棱平行,分别是____________长方体中面ADHE与___________条棱平行,分别是____________长方体中面ABFE与___________条棱平行,分别是____________通过观察思考可以得到:长方体中每个面都与____________条棱平行(3)长方体中一共可以写出多少对棱与面的平行关系?39.如图,已知在矩形ABCD 中,AB =1,BC P 是AD 边上的一个动点,连结BP ,点C 关于直线BP 的对称点为1C ,连接C 1C .当点P 运动时,点1C 也随之运动.若点P 从点A 运动到点D ,则线段C 1C 扫过的区域的面积是_______.三、解答题40.如图,在长方体ABCD EFGH 中,分别写出与棱EH 相交、平行、异面的所有的棱.41.补画长方体(被遮住的线段用虚线表示).42.小磊房间窗户的装饰物如图阴影部分所示,它们由两个半径相同的四分之一圆组成(单位:米).(1)请用字母表示装饰物的面积(结果保留π):_.(2)请用字母表示窗户能射进阳光的部分面积(结果保留π):_.(3)若23a=,2b=时,请求出窗户能射进阳光的面积(π取3).43.如图,准备在一个广场中心建一个直径为24m的圆形花坛,并将圆形花坛分割成面积相等的四个部分.(1)请你求出花坛中小圆部分的周长;(2)如果在花坛中小圆以外的三个区域内种上不同品种的花卉,已知A品种与B品种的费用之比为25:0.5,B品种和C品种的费用之比为2:3,如果购买C品种花卉比购买A品种花卉多花了7000元,那么购买三种花卉总费用多少元?44.求出如图图形的体积.45.一个装满稻谷的粮囤,上面是圆锥形,下面是圆柱形,量得圆柱底面的周长是62.8米,高2米,圆锥的高是1.2米.这个粮囤能装稻谷多少立方米?如果每立方米稻谷重500千克,这个粮囤最多能装稻谷多少吨?46.如图是用两个正方形(边长如图所示)和一个直角三角形拼成的五边形,(1)用含a的代数式表示阴影部分的面积.(结果要化简)(2)求当a=2时,阴影部分的面积.47.如图,是一个长为x米,宽为y米的长方形休闲广场,在它的四角各修建一块半径均为r米的四分之一圆形的花坛(阴影部分),其余部分作为空地.(1)用代数式表示空地的面积;(2)若长方形休闲广场的长为50米,宽为20米,四分之一圆形花坛的半径为8米,求长方形广场空地的面积.( 取3)48.用斜二测画法画长方体直观图:(1)补全长方体ABCD﹣A1B1C1D1;(2)量得B1C1的长度是cm,所表示的实际长度是cm.(3)与平面A1ABB1,平行的平面是.49.(1)如图1,ABC是等边三角形,曲线CDEFGH……叫做“等边三角形的渐开线”,曲线的各部分均为圆弧.设ABC的边长为3厘米,求前5段弧长的和(即曲线CDEFGH的长)是多少厘米?(2)如图2,有一只狗被拴在一建筑物的墙角上,这个建筑物是边长为400厘米的正方形,拴狗的绳子长18米.现狗从点A出发,将绳子拉紧按顺时针方向跑,可跑多少米?参考答案:1.C【分析】根据平移可得出两蚂蚁行程相同,结合二者速度相同即可得出结论.【详解】根据平移可得出两蚂蚁行程相同,∵甲乙两只蚂蚁的行程相同,且两只蚂蚁的爬行速度也相同,∵两只蚂蚁同时到达点B.故选C.【点睛】本题考查了生活中的平移现象,结合图形找出甲、乙两只蚂蚁的行程相等是解题的关键.2.D【分析】根据题意可知,以长方形的宽边为周旋转一周得到一个圆柱,这个圆柱的底面半径是10厘米,高是6厘米.据此解答.【详解】解:一张长方形纸片长10厘米、宽6厘米,以它的宽边为轴旋转一周得到一个圆柱体,关于这个圆柱描述正确的是底面半径是10厘米,高是6厘米.故选:D.【点睛】此题主要考查了圆柱的特征及应用.3.D【分析】依次对各选项进行分析.【详解】A选项:213的倒数是35,故错误;B选项:计算弧长的公式是180πnl r=⨯,故错误;C选项:0是最小的自然数,故错误;D选项:1的因数只有1,故正确.故选:D.【点睛】考查了倒数、弧长的公式、自然数和因数,解题关键是熟记相关概念、计算公式.答案第1页,共21页【分析】直接根据长方体棱与面的位置关系可直接排除选项.【详解】如图所示:假设与棱AB 异面的棱有:111111A D B C DD CC 棱、棱、棱、棱;所以棱在长方体中,与一条棱异面的棱有4条,故选C .【点睛】本题主要考查长方体的棱与棱之间的位置关系,熟记概念是解题的关键. 5.D【分析】根据横截面的半径可求出地面圆的周长,用底面圆的周长乘以圆柱的高可得展开图形的面积.【详解】解:3分米=0.3米,∵横截面半径是3分米即0.3米,∵横截面的圆的周长为:2×0.3×π=0.6π,故长方形铁皮的面积为:3×0.6π=1.8π,故选:D .【点睛】本题考查圆柱题的展开图,与侧面积,圆柱体的横截面,能够利用圆柱的横截面的半径以及高求出圆柱的侧面积是解决本题的关键.6.B【分析】如图,属于正方体展开图的“1-3-2”型,折成一个正方体后,1号面与4号面相对,2号面与5号面相对,3号面与6号面相对.【详解】折成一个正方体后,1号面与4号面相对,2号面与5号面相对,3号面与6号面相对.故选:B .【点睛】正方体展开图分四种类型,11种情况,每种情况折成正方体后哪些面相对是有规律的,可自己动手操作一下并记住,能快速解答此类题.【详解】解:1123243411()22AA A A A A A A A B AB ππ++++=⨯,因此乙虫走的四段半圆的弧长正好和甲虫走的大半圆的弧长相等,因此甲、乙同时到点B .故选:C . 【点睛】本题考查的是弧长的计算,解题的关键是掌握弧长公式:180n R l π=(弧长为l ,圆心角度数为n ,圆的半径为R)是解题的关键.8.C【分析】由一个圆柱和一个圆锥的底面积相等,可设圆柱和圆锥的底面积为S ,由圆柱的高是圆锥高的2倍,可设圆锥的高为h ,圆柱的高为2h ,根据圆柱与圆锥的体积公式,分别求出它们的体积,利用比的意义,即可求解.【详解】解:设圆柱和圆锥的底面积为S ,设圆锥的高为h ,圆柱的高为2h , 圆柱的体积=S ×2h = 2Sh ,圆锥的体积=13Sh , 则圆锥的体积是圆柱体积的比是:11:2:61:636Sh Sh Sh Sh , 答:圆锥的体积是圆柱体积的16. 故选C .【点睛】本题考查了圆柱与圆锥的体积计算以及比的意义的应用,灵活应用圆柱与圆锥的体积计算公式是解题的关键.9.C【分析】如图,在三角形中,等底等高的两个三角形的面积相等,由此可得三角形1面积=三角形2面积,三角形3面积=三角形4面积,根据两个大三角形的面积相等,即甲的面积加上三角形1和三角形3的面积等于乙的面积加上三角形2和三角形4的面积,即可求得甲的面积等于乙的面积.【详解】解:如图,在三角形中,等底等高的两个三角形的面积相等,由此可得三角形1面积=三角形2面积,三角形3面积=三角形4面积,根据长方形的对边相等,则长方形对角线分成的两个三角形面积等相等,所以甲的面积加上三角形1和三角形3的面积等于乙的面积加上三角形2和三角形4的面积,则甲的面积等于乙的面积.故选:C.【点睛】此题考查了三角形的面积,等底等高的两个三角形的面积相等是解答此题的关键.10.D【分析】根据线段的性质,中点的性质,面与棱之间的关系,角的比较方法逐项分析判断即可.【详解】A选项:线段AB的长度就是A、B两点间的距离,则此选项语句错误,不符合题意,故A错误;B选项:如果AB=BC,且点B在线段AB上,那么B是线段AC的中点,则此选项语句错误,不符合题意,故B错误;C选项:比较两个角的大小的方法常用的有叠合法和度量法,则此选项语句错误,不符合题意,故C错误;D选项:长方形纸片有直角,则可以使用长方形纸片检测平面与平面是否平行,则此选项语句正确,符合题意,故D正确;故选D.【点睛】本题考查了线段的性质,中点的性质,面与棱之间的关系,角的比较方法,掌握以上知识是解题的关键.11.C【分析】根据油桶由直立状态放倒成水平放置状态的整个过程,从不同方向观察油桶中的油的形状,即可.【详解】A、油桶处于水平放置状态时,从油桶的上方向下看,得到,不符合题意;B、油桶处于倾斜状态,从油桶的开口观察,可以得到,不符合题意;C、油桶由直立状态放倒成水平放置状态,在整个过程中无法得到,符合题意;D、油桶处于直立状态时,可以得到,不合题意.故选:C.【点睛】本题考查圆柱的截面的认识,解题的关键是从油桶的不同状态,观察油桶中油面的形状.12.A【分析】根据圆的面积公式计算即可.【详解】∵小圆半径是2cm ,大圆半径是4cm ,∵小圆的周长是2×2π=4π(cm ),大圆周长的周长是2×4π=8π(cm ),∵小圆周长是大圆周长的4π÷8π=12, 故选:A .【点睛】本题考查了圆的面积的计算,熟练掌握圆的面积公式是解题的关键.13.B【分析】根据题意,画出图形即可得出结论.【详解】解:看图以AB 为例,与它既不平行也不相交的棱有HD 、GC 、HE 和GF ,共有4条,故选B .【点睛】此题考查的是长方体的特征,根据题意画出图形是解决此题的关键.14.B【分析】根据圆的面积公式分别计算出小圆和大圆的面积,从而得出答案.【详解】解:根据题意知,小圆的面积为22=4ππ⨯,大圆的面积为2416ππ⨯=, 所以小圆的面积是大圆的面积的41=164,故B 正确. 故选:B .【点睛】本题主要考查圆的面积公式的应用,比值的计算,解题的关键是掌握圆的面积公式2S r π=.15.C【分析】要比较周长相等的正方形、长方形和圆形,谁的面积最大,谁面积最小,可以先假设这三种图形的周长是多少,再利用这三种图形的面积公式,分别计算出它们的面积,最后比较这三种图形面积的大小.【详解】解:为了便于理解,假设正方形、长方形和圆形的周长都是16,则圆的半径为:()8162ππ÷=, 面积为:2864π20.38ππ⎛⎫⨯=≈ ⎪⎝⎭; 正方形的边长为:1644÷=,面积为:4416⨯=;长方形的长、宽越接近面积越大,就取长为5宽为3,面积为:5315⨯=,当长方形的长和宽最接近时面积也小于16;所以周长相等的正方形、长方形和圆形,圆面积最大.故选:C .【点睛】此题主要考查长方形、正方形、圆形的周长、面积公式,根据周长求出面积是解题的关键.16.A【分析】根据题意可得半径增加后圆增加的面积等于半径增加后圆的面积减去原来圆的面积,即可求解.【详解】解:根据题意得:圆的面积增加了22363 2293819 72.故选∵A【点睛】本题主要考查求圆环的面积,熟练掌握圆的面积公式是解题的关键.17.C【分析】由图可知瓶子底部的半径是2厘米,然后求出水的体积和空余部分的体积即可得出答案.【详解】解:由图得:瓶子底部的半径是2厘米,∵水的体积是:22624ππ⋅⨯=(立方厘米),空余部分的体积是:()221088ππ⋅⨯-=(立方厘米),∵瓶子的容积是24π+8π=32π(立方厘米),故选:C .【点睛】本题考查了圆柱的体积计算,有理数的混合运算,正确计算是解题的关键.18.A【分析】πR 2是圆的面积公式,圆可以当作非常特别的扇形(360°),扇形的面积公式根据圆的面积公式来算的,圆心角缩小到原来的13,面积缩小到原来的13,(圆心角缩小的基础上)半径扩大3倍面积扩大9倍,总的算起来面积扩大到原来3倍.【详解】原扇形面积=圆心角÷360°×π×R 2,新扇形面积=(圆心角×13)÷360°×π×(3R )2=圆心角÷360×13×π×9R 2 =圆心角÷360°×π×R 2×3,所以新扇形面积:原扇形面积=3:1=3.故选:A【点睛】考核知识点:扇形面积.理解扇形面积计算方法是关键.19.B【分析】已知一个铁环直径是60厘米,可计算的其周长,再结合滚动的圈数即可计算得操场东端滚到西端长度,再根据另一个铁环的直径,即可求出其周长和它从东端滚到西端要转的圈数.【详解】∵一个铁环直径是60厘米∵铁环周长=π⨯直径=60π∵铁环从操场东端滚到西端转了90圈∵操场东端滚到西端长度=6090=5400ππ⨯∵另一个铁环的直径是40厘米∵另一个铁环周长=π⨯直径=40π∵另一个铁环从东端滚到西端要转的圈数=操场东端滚到西长度÷铁环周长∵另一个铁环从东端滚到西端要转的圈数=540040135ππ÷=故选:B .【点睛】本题考查了圆的周长的知识;求解的关键是熟练掌握圆的周长计算方法,从而完成求解.20.C【分析】由题意知,要求这条小路的面积就是求圆环的面积,已知内圆的周长是18.84米,利用C=2πr 可求得内圆半径,用内圆半径加上环宽1米就是外圆半径,再利用S 圆环=π(R 2-r 2)求得环形的面积,最后再乘以100即可.【详解】内圆半径:18.84÷3.14÷2=3(米),外圆半径:3+1=4(米);小路的面积:3.14×(42-32)=3.14×(25-9)=3.14×7=21.98(平方米);⨯=(颗) .则共需鹅卵石:10021.982198答:共需鹅卵石2198颗.故选:C.【点睛】本题考查了圆环的面积公式的灵活应用,解答关键是把实际问题转化成数学问题中,再把对应的数据代入圆环公式计算即可.解答此题要注意:求圆环的面积要先知道内、外圆的半径,再用外圆面积减去内圆面积.21.2【分析】先求解圆的半径,从而可得答案.【详解】解:一个周长是12.56厘米的圆的半径为:12.562 3.14=12.56 6.28=2,所以用圆规画一个周长是12.56厘米的圆,圆规两脚间的距离是2厘米.故答案为:2【点睛】本题考查的是利用圆的周长求解圆的半径,理解圆的周长公式是解本题的关键. 22.(1)棱AE、棱BF、棱NQ、棱MP;(2)棱HD、棱MP、棱NQ、棱AD、棱BQ、棱PQ;(3)棱MN、棱NF、棱BQ、棱PQ【分析】(1)根据长方体的棱与棱之间的位置关系解答即可;(2)根据长方体棱与面之间的位置关系直接解答即可;(3)根据长方体棱与棱之间的位置关系解答即可.【详解】由题意及图形可得:(1)棱AE、棱BF、棱NQ、棱MP;(2)棱HD、棱MP、棱NQ、棱AD、棱BQ、棱PQ;(3)棱MN、棱NF、棱BQ、棱PQ.故答案为(1)棱AE、棱BF、棱NQ、棱MP;(2)棱HD、棱MP、棱NQ、棱AD、棱BQ 、棱PQ ;(3)棱MN 、棱NF 、棱BQ 、棱PQ .【点睛】本题主要考查长方体的棱与面的位置关系,熟记概念是解题的关键.23.4【分析】根据圆锥的体积公式、圆柱的体积公式计算即可.【详解】解:设圆锥和圆柱的底面积都是s ,圆柱的高为h ,则圆锥的体积=13sh =13s ×12=4s ,圆柱的体积=sh , 由题意得,sh =4s ,解得,h =4,即圆柱的高是4厘米,故答案为:4.【点睛】本题考查的是圆锥、圆柱的计算,解题的关键是掌握圆锥的体积公式、圆柱的体积公式.24.面11ABB A 、面11CDD C【分析】根据长方体的认识,即可求解.【详解】解:由图可知,与棱BC 垂直的平面为面11ABB A 、面11CDD C .故答案为:面11ABB A ,面11CDD C【点睛】本题主要考查了长方体的认识,熟练掌握长方体的特征是解题的关键. 25.4π 【分析】在一个边长为6cm 的正方形纸片上剪下一个最大的圆,则这个最大的圆的直径就是这个正方形的边长即6厘米,由此利用圆的面积=πr 2和正方形的面积=a 2代入数据即可解决问题.【详解】解:π(6÷2)2÷(6×6)=9π÷364π=, 故答案为:4π 【点睛】本题考查了圆的面积与正方形的面积,掌握圆的面积公式与正方形的面积公式是解题的关键.26.64平方厘米【分析】根据正方体的边长为4厘米,可得到正方形的每个面的面积,而与桌面垂直的平面有4个,即可求解.【详解】解:∵正方体的边长为4厘米∵该正方形的每个面:S4416=⨯=(平方厘米)∵与桌面垂直的平面面积之和为:16464⨯=(平方厘米)故答案为:64平方厘米.【点睛】此题主要考查正方形的面积,正确理解与桌面垂直的平面有4个是解题关键.27.1:1【分析】根据圆柱的侧面展开图是正方形,即可知道圆柱底面周长与高相等,即可得出答案.【详解】解:设圆柱底面周长为a,高为h,∵圆柱的侧面展开图是正方形,∵a h=,∵:1:1a h=,故答案为:1:1.【点睛】本题考查了圆柱的展开图,求比值,数形结合得出圆柱的侧面展开图是本题的关键.28.160°【分析】根据面积之比即为圆心角度数之比进行求解即可.【详解】解:由题意可知,三个圆心角的和为360°,∵三个扇形的面积比为2:3:4,∵三个扇形的圆心角度数之比为2:3:4,∵最大的圆心角度数为:4360160234︒⨯=︒++.故答案为:160°.【点睛】本题考查了扇形圆心角的度数问题,掌握周角的度数即三个扇形圆心角的和是360°是解题关键.29.2 360 n rπ【分析】根据扇形的面积公式即可填写本题.【详解】解:半径为r ,圆心角为n°的扇形面积2360n r S π=扇. 故答案为:2360n r π. 【点睛】本题考查了扇形的面积公式的字母表示形式,熟记和掌握公式是解题的关键. 30.240° 【分析】扇形的面积是它所在圆面积的23,那么扇形的圆心角就是它所在圆的圆心角的23,圆的圆心角为360°,那么可用圆心角乘扇形的圆心角占它所在圆的圆心角的分率即可得到答案.【详解】解:360°×23=240°, 故答案为:240°.【点睛】此题主要考查的是:扇形面积与它所在圆的面积的比等于扇形的圆心角与它所在圆的圆心角的比,掌握知识点是解题关键.31.36π或48π立方厘米【分析】根据圆柱体的体积=底面积×高,由于没有说清楚是绕长方形的哪条边旋转,所以分两种情况讨论.【详解】解:绕长所在的直线旋转一周得到圆柱体积为:23436ππ⨯⨯=(立方厘米); 绕宽所在的直线旋转一周得到圆柱体积:24348ππ⨯⨯=(立方厘米).故得到的几何体的体积是36π或48π立方厘米,故答案为:36π或48π立方厘米.【点睛】本题考查圆柱体的体积的求法及面动成体的知识,注意分两种情况讨论,不要漏解.32. 4 4【分析】根据圆锥的体积公式:213V r h π=,圆锥的高不变,底面半径扩大到原来的2倍,底面积就扩大到原来的4倍,体积扩大到原来的4倍,据此解答即可.【详解】解:∵圆的面积公式为2S r π=,∵圆锥的高不变,底面半径扩大到原来的2倍,底面积就扩大到原来的4倍,∵圆锥的体积公式:213V r h π=,∵圆锥的体积扩大到原来的4倍. 故答案为:4;4.【点睛】本题主要考查圆锥体积公式和圆的面积公式的灵活运用,解题的关键关键是熟记圆的面积公式2S r π=和圆锥的体积公式213V r h π=.33.8∵1【分析】设内圆的半径为a ,则外圆的半径为3a ,圆环的面积等于外圆的面积减去内圆的面积,则问题得解.【详解】设内圆的半径为a ,则外圆的半径为3a , 则外圆的面积为:()2239S a a ππ==外圆,内圆的面积为:22S a a ππ==内圆,则圆环的面积为:22298S S S a a a πππ=-=-=圆环外圆内圆, ∵()22881S S a a ππ==圆环内圆:::, 故答案为:8:1.【点睛】本题考查了比的知识、圆的面积以及圆环面积的计算,掌握圆面积的计算公式是解答本题的关键. 34. 1356.48 452.16【分析】由题意知,削成的最大圆柱体的底面直径是12cm ,高也是12cm ,可利用V =sh 求出它的体积,再把圆柱削成最大的圆锥体,则圆锥是与圆柱等底等高的,圆锥的体积就是圆柱体积的13,其要求圆锥的体积可用圆柱的体积乘13即可.【详解】()233.1412212 3.1436121356.48cm ⨯÷⨯=⨯⨯= 311356.48452.16cm 3⨯=故答案为:1356.48;452.16.【点睛】本题考查圆柱、圆锥的体积计算,正确理解题意并熟练掌握体积公式是解题的关键.35. 18.84 12.56【分析】分析:因为从上午9点到9点40分,经过了40分钟,则分针的针尖扫过区域为。
中考数学易错题集锦及答案 [整理版]
初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( )A 、2千米/小时B 、3千米/小时C 、6千米/小时D 、不能确定 4、方程2x+3y=20的正整数解有( ) A 、1个 B 、3个 C 、4个 D 、无数个 5、下列说法错误的是( )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线 6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( )A B C D 9、有理数中,绝对值最小的数是( ) A 、-1 B 、1 C 、0 D 、不存在10、21的倒数的相反数是( )A 、-2B 、2C 、-21D 、2111、若|x|=x ,则-x 一定是( )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为013、长方形的周长为x ,宽为2,则这个长方形的面积为( ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( ) A 、-x-3 B 、-(x+3) C 、3-xD 、x+315、如果0<a<1,那么下列说法正确的是( ) A 、a 2比a 大B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( )A 、12cmB 、10cmC 、8cmD 、4cm18、21-的相反数是( )A 、21+B 、12-C 、21--D 、12+-19、方程x(x-1)(x-2)=x 的根是( )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253- D 、x 1=0,x 2=353+, x 3=253- 20、解方程04)1(5)1(322=-+++xx x x 时,若设y x x =+1,则原方程可化为( )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=0 21、方程x 2+1=2|x|有( )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( )A 、-4B 、4C 、-8D 、823、解关于x 的不等式⎩⎨⎧-<>ax ax ,正确的结论是( )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( ) A 、0.2 B 、±0.2 C 、510D 、±510 26、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( ) A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n 的平均数与方差分别是( ) A 、k x , k 2s2B 、x , s2C 、k x , ks2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( )A 、a ≠1B 、a ≠-1C 、a ≠2D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形 30、已知dcb a =,下列各式中不成立的是( )A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于( ) A 、30B 、45C 、550D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心33、下列三角形中是直角三角形的个数有( )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( ) A 、4cm, 6cm B 、4cm, 3cm C 、2cm, 12cm D 、4cm, 8cm 36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( ) A 、AE=CD B 、AE>CD C 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( ) A 、矩形 B 、梯形 C 、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是( )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 不可能相等 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( )A 、30B 、60C 、150D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( )A 、∠B=30B 、斜边上的中线长为1C 、斜边上的高线长为552 D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( ) A 、0 B 、1 C 、2 D 、3 43、不等式6322+>+x x 的解是( )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( )A 、m ≤1B 、m ≥31且m ≠1C 、m ≥1D 、-1<m ≤1 45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( )ABA B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( )A 、1个B 、2个C 、3个D 、无数个47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( ) A 、a B 、a - C 、-a D 、-a -51、若a+|a|=0,则22)2(a a +-等于( ) A 、2-2a B 、2a-2 C 、-2 D 、252、已知02112=-+-x x ,则122+-x x 的值( )A 、1B 、±21 C 、21 D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( )A 、18B 、6C 、23D 、±23 54、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似 A 、2个 B 、3个 C 、4个 D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_________。
(完整版)历年中考数学易错题汇编(含答案)
历年中考数学易错题汇编?(附答案)一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( )A 、2aB 、2bC 、2a-2bD 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( )A 、2千米/小时B 、3千米/小时C 、6千米/小时D 、不能确定4、方程2x+3y=20的正整数解有( )A 、1个B 、3个C 、4个D 、无数个5、下列说法错误的是( )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( )A 、当m ≠3时,有一个交点B 、1±≠m 时,有两个交C 、当1±=m 时,有一个交点D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( )A 、内切B 、外切C 、内切或外切D 、不能确定 8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( )A D9、有理数中,绝对值最小的数是( )A 、-1B 、1C 、0D 、不存在 10、21的倒数的相反数是( )A 、-2B 、2C 、-21D 、2111、若|x|=x ,则-x 一定是( )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( )A 、互为相反数B 、互为倒数C 、互为相反数且不为0D 、有一个为013、长方形的周长为x ,宽为2,则这个长方形的面积为( )A 、2xB 、2(x-2)C 、x-4D 、2·(x-2)/214、“比x 的相反数大3的数”可表示为( )b C A BA 、-x-3B 、-(x+3)C 、3-xD 、x+315、如果0<a<1,那么下列说法正确的是( )A 、a 2比a 大B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( )A 、12cmB 、10cmC 、8cmD 、4cm18、21-的相反数是( ) A 、21+ B 、12- C 、21-- D 、12+- 19、方程x(x-1)(x-2)=x 的根是( )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253-D 、x 1=0,x 2=353+, x 3=253- 20、解方程04)1(5)1(322=-+++x x x x 时,若设y x x =+1,则原方程可化为( )A 、3y 2+5y-4=0B 、3y 2+5y-10=0C 、3y 2+5y-2=0D 、3y 2+5y+2=021、方程x 2+1=2|x|有( )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根22、一次函数y=2(x-4)在y 轴上的截距为( )A 、-4B 、4C 、-8D 、823、解关于x 的不等式⎩⎨⎧-<>a x a x ,正确的结论是( ) A 、无解 B 、解为全体实数 C 、当a>0时无解 D 、当a<0时无解24、反比例函数x y 2=,当x ≤3时,y 的取值范围是( )A 、y ≤32B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( )A 、0.2B 、±0.2C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( )A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …,kx n 的平均数与方差分别是( )A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( ) 28、 A 、a ≠1 B 、a ≠-1 C 、a ≠2 D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( )30、 A 、线段 B 、正三角形 C 、平行四边形 D 、等腰梯形29、已知d c b a =,下列各式中不成立的是( ) A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd a c b a 23++= D 、ad=bc 31、31、一个三角形的三个内角不相等,则它的最小角不大于( )32、 A 、300 B 、450 C 、550 D 、60033、已知三角形内的一个点到它的三边距离相等,那么这个点是( )34、 A 、三角形的外心 B 、三角形的重心 C 、三角形的内心D 、三角形的垂心35、33、下列三角形中是直角三角形的个数有( )36、 ①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形37、A 、1个 B 、2个 C 、3个 D 、4个 34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为()A 、3πcmB 、32πcmC 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( )A 、AE=CDB 、AE>CDC 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( ) A 、矩形 B 、梯形 C 、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是( )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 不可能相等39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( )A 、300B 、600C 、1500D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( ) A 、∠B=300 B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为1 42、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300 (2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( )A 、0B 、1C 、2D 、343、不等式6322+>+x x 的解是( )BA 、x>2B 、x>-2C 、x<2D 、x<-2 44、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( )A 、m ≤1B 、m ≥31且m ≠1 C 、m ≥1 D 、-1<m ≤145、函数y=kx+b(b>0)和y=x k-(k ≠0),在同一坐标系中的图象可能是( )A B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( )A 、1个B 、2个C 、3个D 、无数个47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数x y 1=的图像上,则下列结论中正确的是( )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 248、下列根式是最简二次根式的是( )A 、a 8B 、22b a +C 、x 1.0D 、5a49、下列计算哪个是正确的( )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把a a 1--(a 不限定为正数)化简,结果为( )A 、aB 、a -C 、-aD 、-a -51、若a+|a|=0,则22)2(a a +-等于( )A 、2-2aB 、2a-2C 、-2D 、252、已知02112=-+-x x ,则122+-x x 的值( )A 、1B 、±21C 、21D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a 等于( )A 、18B 、6C 、23D 、±2354、下列命题中,正确的个数是( )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似⑧全等三角形相似A 、2个B 、3个C 、4个D 、5个二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_____ ____。
中考数学图形与几何专题知识易错题50题(含答案)
中考数学图形与几何专题知识易错题50题含答案一、单选题1.圆的半径扩大到原来的3倍,它的周长扩大到原来的3倍,它的面积扩大到原来的()倍.A.3倍B.6倍C.9倍D.12倍2.小圆的半径是4cm,大圆的半径是8cm,小圆面积是大圆面积的()A.12B.14C.34D.183.如果大圆的半径长是小圆半径长的2倍,那么大圆周长是小圆周长的多少倍?()A.2B.4C.2πD.4π4.学校食堂要用铁皮做一根横截面半径是3分米,高是3米的圆柱形烟囱,至少需要()平方米的铁皮.A.18πB.27πC.0.27πD.1.8π5.矩形ABCD中,AB=3,BC=4,以AB为轴旋转一周得到圆柱,则它的表面积是().A.56πB.32πC.24πD.60π6.圆的半径扩大为原来的3倍()A.面积扩大为原来的9倍B.面积扩大为原来的6倍C.面积扩大为原来的3倍D.面积不变7.如图,直径为2个单位长度的圆从原点开始沿数轴向右无滑动地滚动一周到达点A,则点A表示的数是()A.1B.2C.πD.2π8.圆的面积扩大到原来的16倍,半径扩大到原来的()A.4倍B.8倍C.16倍D.32倍9.两个圆的直径比是1:2,其周长比是()A.1:2B.1:4C.1:πD.2:110.小明在计算一道求圆的面积的题时,错把半径当成直径的长度计算,这时只要把计算的结果乘()就能求出正确答案.A .4B .2C .圆周率11.一个圆柱体和一个圆锥体的底面周长之比是1:3,它们的体积比也是1:3,圆柱和圆锥的高的比是( ) A .1:1B .3:1C .1:9D .1:312.小圆半径是4cm ,大圆半径是8cm ,小圆面积是大圆面积的( ) A .12B .14C .16D .1813.在长方体中,下列说法错误的是( ) A .长方体中互相垂直的面共有12对 B .长方体中互相平行的面共有3对 C .长方体中相交的棱共有12对 D .长方体中异面的棱共有24对14.下列说法正确的是( ) A .半圆面积是圆面积的一半 B .半径为2的圆的面积和周长相等 C .周长相等的两个圆的面积也相等 D .两个圆的面积不相等是因为圆心位置不同15.如图,长方形的长是4厘米,宽是2厘米.分别以长边和宽边所在的直线为轴,旋转一周可以得到两个不同的圆柱.这两个圆柱的体积( )A .甲大B .乙大C .同样大D .无法判断谁大16.下列说法中不正确的是( ).A .用“长方形纸片”可以检查直线与平面平行B .用“三角尺”可以检查直线与平面垂直C .用“合页型折纸”可以检查平面与平面垂直D .空间两条直线有四种位置关系:平行、相交,垂直、异面17.如图,在矩形ABCD 中放入正方形AEFG ,正方形MNRH ,正方形CPQN ,点E 在AB 上,点M 、N 在BC 上,若4AE =,3MN =,2CN =,则图中右上角阴影部分的周长与左下角阴影部分的周长的差为( )A.5B.6C.7D.8BC=,则O的面积为()18.如图,O为正方形ABCD的外接圆,若2A.2πB.3πC.4πD.8π19.下列说法:①一个圆的周长总是直径的π倍;①甲数除以乙数(不等于0)等于甲数乘乙数的倒数;①圆心角越大,扇形就越大;①一个非零自然数除以一个假分数,商一定小于被除数;①圆的对称轴是直径;错误的个数为()A.1个B.2个C.3个D.4个二、填空题20.门的转轴和地面的位置关系_______________.21.周长是720毫米的圆上,有一条长为360毫米的弧,这条弧所对的圆心角的度数为________.22.如图所示,在长方体ABCD EFGH-中:棱AD与平面ABFE的位置关系是__________;与棱CD平行的平面是_______________.23.长方体中棱与面的位置关系有________________________________.24.圆的半径为4厘米,它的周长是________厘米.25.如图,与棱AB平行的棱有__________________________;与棱FG相交的棱有__________________________;与棱AE异面的棱有__________________________;与棱HG相交的棱有__________________________.26.在一个边长为6cm的正方形里画一个最大的圆,这个圆的面积占正方形面积的____.27.如图,在长方体ABCD-EFGH中,1)与棱DH垂直的面是_________________________,2)与棱BC垂直的面是_________________________,3)与棱AB垂直的面是_________________________,4)与面ABCD垂直的棱有_________________________________,5)与面ABFE垂直的棱有_________________________________,6)与面BCGF垂直的棱有__________________________________,7)在长方体中的每一条棱有_________个面和它垂直,每一个面有________条棱和它垂直.28.半圆形的周长等于它所在圆的周长的一半,______(判断对错)29.用______________可以检验教室里黑板的边沿是否平行于地面.30.如图所示,平面BDHF垂直于平面_______.31.把一个底面直径4分米的圆柱体,截去一个高2分米的小圆柱体,原来的圆柱体表面积减少_____平方分米.(结果保留π)32.如图,在长方体ABCD EFGH中,既与平面ADHE垂直,又与棱AD异面的棱是______.33.若把一个圆分割成3个扇形,且各个扇形面积的比为3:2:1,则最小的扇形的圆心角的度数是___.34.如图,圆柱形容器的底面半径为0.5m,高为1.5m.其里面盛有1m深的水,将底面半径为0.3m,高为0.5m的圆柱形铁块沉入水中,此时容器内的水面高度上升了______m.35.扇形的圆心角是72°,则扇形的面积是其所在圆面积的________(填分数).36.如图1中的瓶子盛满了水,如果将这个瓶子中的水全部倒入图2的杯子中,那么一共需要________个这样的杯子(瓶子和杯子的厚度忽略不计).37.如图,阴影部分面积是小圆面积的23,是大圆面积的38,则大圆面积与小圆面积的比是________.38.一根圆柱形木料长200厘米,把它截成三段圆柱形,表面积增加了12平方厘米,原来木料的体积是__________立方厘米.39.如果两个扇形A 、B 的面积相等,A 的圆心角占B 的圆心角的14,则A 的半径与B 的半径的比为________.三、解答题40.直径为18cm 的圆中,圆心角40°的扇形面积是多少?41.一个装满稻谷的粮囤,上面是圆锥形,下面是圆柱形,量得圆柱底面的周长是20π米,高2米,圆锥的高是1.2米.221ππ3V r h V r h 圆柱圆锥,⎛⎫== ⎪⎝⎭(1)这个粮囤能装稻谷多少立方米?(结果保留π)(2)如果每立方米稻谷重500千克,这个粮囤最多能装稻谷多少吨?(结果保留π) 42.如图所示,将一个横截面是正方形(面BCGF )的长方体木料,沿平面AEGC (长方形)分割成大小相同的两块,表面积增加了230cm ,已知EG 长5cm ,分割后每块木料的体积是318cm ,问原来这块长方体木料的表面积是多少?43.一块正方形的草皮,边长为4米,在两个相对的角上各有一棵树,树上各拴一只羊,绳长4米,问两只羊都能吃到的草的草皮有多少?44.如图所示:正方形的边长为2,以各边为直径在正方形内画半圆,求所围成的图形(阴影部分)的面积.45.如图,一个半圆和一条直径组成的图形的周长为20.56厘米,它的面积是多少平方厘米?46.如图,,AB BC ⊥4cm,BC =45C ∠=︒,O 为圆心,求阴影部分的面积.47.如图,两个正方形的边长分别是6和5.求图形中阴影部分的面积.48.求图中AB 的长度.49.王明用长40cm ,宽20cm 的两张长方形纸围成了甲、乙两个圆柱(如图,粘接处重叠部分不计),再给每个圆柱配上一个底面,做成了两个圆柱形容器.(1)甲、乙两个圆柱谁的体积大?先提出你的猜想;(2)如何验证你的猜想?请你设计一个验证方案.(只需设计方案,写出主要步骤,不需要列式计算.)参考答案:1.C【分析】设圆的半径为r ,则圆的面积为2r π,半径扩大到原来的3倍后为3r ,然后得到面积为()2239r r ππ⨯=,相除即可得到答案. 【详解】解:设圆的半径为r ,则圆的面积为2r π, ①半径扩大到原来的3倍后为3r ,面积为()2239r r ππ⨯=, ①2299r r ππ÷=.①它的面积扩大到原来的9倍. 故选:C .【点睛】此题考查了圆的面积公式,除法运算,解题的关键是熟练掌握圆的面积公式. 2.B【分析】用小圆面积除以大圆面积,即可求解.【详解】解:根据题意得:小圆面积是大圆面积的()()2214816644ππππ⨯÷⨯=÷=.故选:B【点睛】本题主要考查了求圆的面积,熟练掌握圆的面积公式是解题的关键. 3.A【分析】设小圆的半径长为r ,则大圆的半径长为2r ,即可分别求得大圆、小圆的周长,据此即可解答.【详解】解:设小圆的半径长为r ,则大圆的半径长为2r , 故大圆的周长为:224r r ,小圆的周长为:2r π,422r r ππ÷=,∴大圆周长是小圆周长的2倍,故选:A .【点睛】本题考查了求圆的周长公式,根据题意,列出代数式是解决本题的关键. 4.D【分析】根据横截面的半径可求出地面圆的周长,用底面圆的周长乘以圆柱的高可得展开图形的面积.【详解】解:3分米=0.3米, ①横截面半径是3分米即0.3米,①横截面的圆的周长为:2×0.3×π=0.6π,故长方形铁皮的面积为:3×0.6π=1.8π,故选:D.【点睛】本题考查圆柱题的展开图,与侧面积,圆柱体的横截面,能够利用圆柱的横截面的半径以及高求出圆柱的侧面积是解决本题的关键.5.A【详解】①以直线AB为轴旋转一周得到的圆柱体,得出底面半径为4cm,母线长为3cm,①圆柱侧面积=2π•AB•BC=2π•3×4=24π(cm2),①底面积=π•BC2=π•42=16π(cm2),①圆柱的表面积=24π+2×16π=56π(cm2).故选A【点睛】此题主要考查了圆柱的表面积的计算公式,根据旋转得到圆柱体,利用圆柱体的侧面积等于底面圆的周长乘以母线长是解决问题的关键.6.A【分析】根据圆的面积公式判断即可.【详解】S=πr2,圆的半径扩大为原来的3,所以面积扩大为原来的9倍.故答案为:A.【点睛】本题主要考查了圆的面积问题,熟练掌握圆的面积公式是解题的关键.7.D【分析】根据圆的周长πd作答即可.【详解】解:圆旋转一周,周长为2π,①点A所表示的数为0+2π=2π.故选:D.【点睛】考查圆的周长及数轴上点的意义,解题关键是通过图形求得圆的周长.8.A【分析】设圆的半径为r,面积=πr2,由此可得:圆的面积与半径的平方成正比例,所以圆的面积扩大到原来的16倍,则圆的半径则扩大到原来的4倍,由此即可解答.【详解】解:设圆的半径为r,面积=πr2,π是一个定值,则:圆的面积与r2成正比例:即半径r扩大到原来的4倍,则r2就扩大4×4=16倍,所以圆的面积就扩大16倍,反之圆的面积扩大到原来的16倍,因为16=4×4,所以圆的半径就扩大到原来的4倍. 答:一个圆的面积扩大到原来的16倍,则这个圆的半径就扩大到原来的4倍. 故选:A .【点睛】本题考查了比例,关键是掌握圆的面积与半径的平方成正比例的灵活应用. 9.A【分析】设小圆直径为d ,则根据“两个圆的直径之比是1:2,”得出大圆直径为2d ,再根据圆的周长公式C =πd ,分别表示出它们的周长,写出相应的比,再化简即可. 【详解】解:设小圆直径为d ,则大圆直径为2d , 小圆的周长:C d π=,大圆的周长:22C d d ππ'⨯==, 周长的比:πd :2πd =1:2,故A 正确. 故选:A .【点睛】本题主要考查比的意义和圆的周长公式,解题的关键是熟练掌握圆的周长公式C =πd . 10.A【分析】根据直径是半径的2倍即可得出答案. 【详解】解:①直径是半径的2倍,①只要把计算的结果乘4就能求出正确答案,故A 正确. 故选:A .【点睛】本题主要考查了圆的面积的有关计算,解题的关键是熟练掌握圆的面积公式,以及圆的直径与半径的关系. 11.A【分析】根据圆的周长公式知道底面周长的比就是半径的比,设圆柱的底面半径是1,则圆锥的底面半径是3,设圆柱的体积是1,则圆锥的体积是3,再根据圆柱的体积公式2V sh r h π==与圆锥的体积公式21133V sh r h π==得出圆柱的高与圆锥的高,进而根据题意,进行比即可.【详解】解:设圆柱的底面半径是1,则圆锥的底面半径是3,设圆柱的体积是1,则圆锥的体积是3,则:221[1(1)]:[3(3)]3ππ÷⨯÷÷⨯,11:ππ= 1:1=故选:A .【点睛】此题主要考查了圆柱的体积公式与圆锥的体积公式,关键在于熟悉圆柱的体积公式与圆锥的体积公式,利用公式推导出圆柱与圆锥的高的关系.12.B【分析】分别求出大圆和小圆的面积即可得到答案.【详解】解:由题意得:大圆的面积28864cm ππ=⨯⨯=,小圆的面积24416cm ππ=⨯⨯=,①小圆面积是大圆面积的161=644ππ, 故选B .【点睛】本题主要考查了圆的面积,求一个数是另一个数的几分之几,熟知圆面积公式是解题的关键.13.C【分析】直接根据长方体中棱、面之间的位置关系进行排除即可.【详解】A 、长方体中互相垂直的面共有12对,故正确;B 、长方体中互相平行的面共有3对,故正确;C 、长方体中相交的棱共有24对,故错误;D 、长方体中异面的棱共有24对,故正确.故选C .【点睛】本题主要考查长方体中棱、面之间的位置关系,熟练掌握概念是解题的关键. 14.C【分析】根据圆的面积及周长计算公式直接进行判断即可.【详解】A 、“半圆面积是圆面积的一半”缺少半径相等这个前提,所以错误;B 、半径为2的圆的面积和周长不相等,因为单位不一样,故错误;C 、周长相等的两个圆的面积也相等,故正确;D 、两个圆的面积不相等是由半径来决定的,圆心只决定圆的位置关系,故错误; 故选C .【点睛】本题主要考查圆的面积与周长,正确理解圆的面积及周长是解题的关键. 15.B【分析】根据题意可知,以长方形的长边为轴旋转一周得到的圆柱的底面半径是2厘米,高是4厘米;以长方形的宽边为轴旋转一周得到的圆柱的底面半径是4厘米,高是2厘米;根据圆柱的体积公式:2V r h π=,把数据分别代入公式求出它们的体积进行比较即可.【详解】解:甲:23.1424⨯⨯=3.14×4×4=50.24(立方厘米)乙:23.1442⨯⨯=3.14×16×2=100.48(立方厘米)100.48>50.24答:乙的体积大.故选:B 。
初三数学易错题100道
初三数学易错题100道初三是初中学习的关键阶段,数学作为重要学科,同学们在学习过程中难免会遇到各种易错题。
下面为大家整理了 100 道初三数学易错题,希望能帮助大家查漏补缺,提高数学成绩。
一、函数部分1、已知函数 y =(m 1)x + m² 1 是正比例函数,则 m 的值为()A 1B -1C ±1D 0【易错点】忽略正比例函数的定义,即形如 y = kx(k 为常数,k ≠ 0)的函数。
【答案】B【解析】因为函数 y =(m 1)x + m² 1 是正比例函数,所以 m² 1 = 0 且m 1 ≠ 0,解得 m =-1。
2、对于二次函数 y = x² 2x + 2,当 x ()时,y 随 x 的增大而增大。
A < 1B > 1C <-1D >-1【易错点】对二次函数的对称轴和单调性理解不清。
【答案】B【解析】二次函数 y = x² 2x + 2 的对称轴为 x = 1,且开口向上,所以当 x > 1 时,y 随 x 的增大而增大。
3、函数 y =中,自变量 x 的取值范围是()A x ≠ 0B x >-2C x ≠ -2D x ≠ 2【易错点】忽略分母不能为 0 的条件。
【答案】C【解析】要使函数有意义,分母 x +2 ≠ 0,即x ≠ -2。
二、几何部分1、一个三角形的两边长分别为 3 和 7,第三边长为整数,则第三边的长度可能是()A 4B 5C 6D 9【易错点】未考虑三角形三边关系:两边之和大于第三边,两边之差小于第三边。
【答案】C【解析】设第三边为 x,根据三角形三边关系可得 7 3 < x < 7 +3,即 4 < x < 10,因为 x 为整数,所以 x 可能是 5、6、7、8、9,故选 C。
2、在平行四边形 ABCD 中,∠A :∠B :∠C :∠D 的值可能是()A 1 : 2 : 3 : 4B 1 : 2 : 2 : 1C 2 : 1 : 2 : 1D 2 : 2 :1 : 1【易错点】不清楚平行四边形的对角相等。
(完整)初三数学易错题集锦及答案
初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( C )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( A ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( B ) A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定4、方程2x+3y=20的正整数解有( B )A 、1个B 、3个C 、4个D 、无数个 5、下列说法错误的是( C )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( C ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( B ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( D )A B C D 9、有理数中,绝对值最小的数是( C ) A 、-1 B 、1 C 、0 D 、不存在 10、21的倒数的相反数是( A )A 、-2B 、2C 、-21 D 、2111、若|x|=x ,则-x 一定是( B )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( C ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为0 13、长方形的周长为x ,宽为2,则这个长方形的面积为( C ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( C ) A 、-x-3 B 、-(x+3) C 、3-x D 、x+3 15、如果0<a<1,那么下列说法正确的是( B ) A 、a 2比a 大 B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( B )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( A )A 、12cmB 、10cmC 、8cmD 、4cm 18、21-的相反数是( B ) A 、21+B 、12- C 、21-- D 、12+-19、方程x(x-1)(x-2)=x 的根是( D )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253-D 、x 1=0,x 2=353+, x 3=253-20、解方程04)1(5)1(322=-+++xx x x 时,若设yx x =+1,则原方程可化为( B )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=021、方程x 2+1=2|x|有( B )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( C ) A 、-4 B 、4 C 、-8 D 、823、解关于x 的不等式⎩⎨⎧-<>a x ax ,正确的结论是( C )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( C ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( C ) A 、0.2 B 、±0.2 C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( D )A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n的平均数与方差分别是( A )A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( B ) A 、a ≠1 B 、a ≠-1 C 、a ≠2 D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( A )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形30、已知dcb a =,下列各式中不成立的是( C ) A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于( D ) A 、300 B 、450 C 、550 D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( C )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心 33、下列三角形中是直角三角形的个数有( B )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个 34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( A )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( D )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( A )A 、AE=CDB 、AE>CDC 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( A ) A 、矩形 B 、梯形 C、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形 38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是(C )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( D ) A 、300 B 、600 C 、1500 D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( C )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( C )A 、∠B=300B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E 直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( D ) A 、0 B 、1 C 、2 D 、343、不等式6322+>+x x 的解是( C )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( B ) A 、m ≤1 B 、m ≥31且m ≠1 C 、m ≥1 D 、-1<m ≤1 AB45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( B ) A B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( B )A 、1个B 、2个C 、3个D 、无数个 47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( D )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( B ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( D )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( B )A 、aB 、a- C 、-aD 、-a-51、若a+|a|=0,则22)2(a a +-等于( A ) A 、2-2a B 、2a-2 C 、-2 D 、252、已知02112=-+-x x ,则122+-x x 的值( C ) A 、1 B 、±21 C 、21D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( C )A 、18B 、6C 、23D 、±2354、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A 、2个B 、3个C 、4个D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_____非正数____。
2024中考数学易错题专题易错06 圆(六大易错分析+举一反三+易错题通关)(解析版)
易错06圆易错点一:忽略了两个圆周角易错提醒:在同一个圆中,一条弦对着两种圆周角,这两种圆周角互补。
例1.如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是( )A.60o B.120oC.60o或120o D.30o或150o【答案】C【详解】作OD⊥AB,如图,∵点P 是弦AB 上的动点,且12OP ££, ∴OD =1,30OAB \Ð=o , 120AOB \Ð=o , 1602AEB AOB \Ð=Ð=o , 180E F Ð+Ð=o Q ,120.F \Ð=o即弦AB 所对的圆周角的度数为60o 或120.o故选C.点睛:圆内接四边形的对角互补.例2.在半径为1的O e 中,弦AB =,则弦AB 所对的圆周角的度数为( ).A .45°B .30°C .45°或135°D .60°或120°【答案】C【分析】本题考查了圆周角定理,勾股定理的逆定理,掌握一条弦所对的圆周角有两种情况是解答本题的关键.连结OA ,OB ,先根据勾股定理的逆定理得到90AOB Ð=°,再根据圆周角的顶点在优弧和劣弧上两种情况,分别求出弦AB 所对的圆周角的度数即可.【详解】如图,连结OA ,OB ,=1OA OB =Q ,AB ,222+OA OB AB \=,90AOB Ð=°∴,当圆周角的顶点在优弧上时,1452ADB AOB а=Ð=,当圆周角的顶点在劣弧上时, 90AB =°,36090270ADB \=°-°=°,135ADB \Ð=°综上所述,弦AB 所对的圆周角的度数为45°或135°.故选C .变式1.圆中一条弦所对的圆心角是30°,则这条弦所对的圆周角的度数是 .【答案】15°或165°【分析】本题考查圆周角定理,分弦所对的弧为优弧和劣弧两种情况进行讨论即可.解题时,要注意分类讨论.【详解】解:当弦所对的弧为劣弧时,∵该弦所对的圆心角是30°,∴这条弦所对的圆周角的度数是15°;当弦所对的弧为优弧时,则:这条弦所对的圆周角的度数是18015165°-°=°;故答案为:15°或165°.变式2.已知AB 为e O 的弦,沿AB 折叠e O ,圆心O 恰好落在e O 上,则弦AB 所对的圆周角的度数为 .【答案】60°或120°【分析】本题考查了折叠的性质,圆的基本概念,等边三角形的性质,解题关键是“数形结合”.由沿AB 折叠e O ,圆心O 恰好落在e O 上点O ¢,可得OBO ¢△是等边三角形,即可得AOB Ð,再由圆的基本概念即可求解.【详解】解:沿AB 折叠e O ,圆心O 恰好落在e O 上点O ¢,OO ¢交AB 于点C 如图:由折叠可得:,OB O B OA O A ¢¢==,OB O B OO ¢¢\==,OBO ¢\V 是等边三角形,60O OB ¢\Ð=°,120AOB \Ð=°,\弦AB 所对的圆周角的度数为:60°或120°故答案为:60°或120°变式3.如图,O e 的半径为1,AB 是O e 的一条弦,且=1AB ,则弦AB 所对的圆周角的度数为 .【答案】30°或150°【分析】连接OA ,OB ,判定AOB △是等边三角形,再根据圆周角定理可得1==302C AOB Ðа,根据圆内接四边形的性质,即可得到答案.【详解】解:如图:连接OA ,OB ,在优弧AB 上取一点C ,在劣弧AB 上取一点D ,1AB =Q ,O e 的半径为1,OA OB AB \==,AOB \V 是等边三角形,=60AOB \а,∴1==302C AOB Ðа,=180=150ADB C \Ð-а°,∴弦AB 所对的圆周角的度数为30°或150°.故答案为:30°或150°.【点睛】本题考查的是圆周角定理,圆内接四边形的性质,等边三角形的判定和性质,掌握同弧所对的圆周角是圆心角的一半是解题的关键.变式4.线段AB 是圆内接正十边形的一条边,则AB 所对的圆周角的度数是 度.【答案】18或162/162或18【分析】作出图形,求出一条边所对的圆心角的度数,再根据圆周角和圆心角的关系解答.【详解】解:如下图,圆内接正十边形的边AB 所对的圆心角1=36010=36а¸°,则2=36036=324а-°°,根据圆周角等于同弧所对圆心角的一半,AB 所对的圆周角的度数是136=182°´°或1324=1622°´°.故答案为:18或162.【点睛】本题主要考查了正多边形的中心角、圆周角定理等知识,解题关键是熟练掌握圆周角和圆心角的关系,并要注意分两种情况讨论.1.已知弦AB 把O e 的周长分成1:3的两部分,则弦AB 所对的圆周角的度数为 .【答案】45°或135°【分析】此题考查了圆周角定理与圆的内接四边形的性质,以及圆心角与弧的关系.此题难度不大,解题的关键是注意数形结合思想的应用.先根据题意画出图形,然后由圆的一条弦AB 把圆周分成1:3两部分,求得AOB Ð的度数,又由圆周角定理,求得ACB Ð的度数,然后根据圆的内接四边形的对角互补,求得ADB Ð的度数,继而可求得答案.【详解】解:Q 弦AB 把O e 分成1:3两部分,1360904AOB \Ð=´°=°,1452ACB AOB \Ð=Ð=°,Q 四边形ADBC 是O e 的内接四边形,180135ADB ACB \Ð=°-Ð=°.\弦AB 所对的圆周角的度数为45°或135°,故答案为45°或135°.2.已知AB 是半径为6的圆的一条弦,若AB =AB 所对圆周角的度数是( )A .60°B .30°或150°C .60°或120°D .120°【答案】C【分析】根据垂径定理和正弦定义求得60AOC Ð=°,进而得到AOB Ð的度数,再根据圆周角定理和圆内接四边形的对角互补求解即可.【详解】解:如图,OC AB ^于C ,则12AC BC AB ===在Rt OAC V 中,OA =AC =∴sin AC AOC OA Ð==,∴60AOC Ð=°,∵OA OB =,OC AB ^,∴60BOC AOC Ð=Ð=°,∴2120AOB AOC Ð=Ð=°,∴1602ADB AOB Ð=Ð=°,∵四边形ADBE 是圆内接四边形,∴180120AEB ADB Ð=°-Ð=°,故AB 所对圆周角的度数是60°或120°,故选:C .【点睛】本题考查垂径定理、圆周角定理、等腰三角形的性质、解直角三角形以及圆内接四边形的性质,熟练掌握圆周角定理是解答的关键.3.在半径为5的O e 中,弦5AB =,则弦AB 所对的圆周角的度数为 .【答案】30°或150°【分析】本题考查了圆周角定理,圆内接四边形对角互补;弦所对的弧有优弧和劣弧,故弦所对的圆周角也有两个,它们的关系是互补关系;弦长等于半径时,弦所对的圆心角为60°.【详解】解:如图,弦AB 所对的圆周角为C Ð,D Ð,连接OA 、OB ,因为5AB OA OB ===,所以,60AOB Ð=°,根据圆周角定理知,1302C AOB Ð=Ð=°,根据圆内接四边形的性质可知,180150D C Ð=°-Ð=°,所以,弦AB 所对的圆周角的度数30°或150°.故答案为:30°或150°.4.在O e 中,84AOB Ð=°,则弦AB 所对的圆周角的度数为 .【答案】42°或138°【分析】画出图形,可知弦AB 所对的圆周角有两个,根据“同弧所对的圆周角等于圆心角的一半”,“圆的内接四边形对角互补”即可求解,本题考查圆周角定理和圆的内接四边形的性质,解题的关键是注意弦所对的圆周角有两个,且互补.【详解】解:如图,ACB Ð和ADB Ð都是弦AB 所对的圆周角,Q 弦AB 所对的圆心角84AOB Ð=°,\ACB Ð1422AOB =Ð=°,Q 四边形ADBC 是O e 的内接四边形,\180ADB ACB Ð+Ð=°,\180138ADB ACB Ð=°-Ð=°,故答案为:42°或138°.5.已知⊙O 半径为r ,弦AB =r ,则AB 所对圆周角的度数为 .【答案】30°或150°【分析】先计算出AOB Ð的度数,根据圆周角定理即可求出C Ð的度数,再根据圆的内接四边形定理,可得的ADB Ð度数 ,这两个角都是弦AB 所对的圆周角.【详解】解:如图,O e 中 OA OB AB ==,∴60AOB Ð=°, ∴1302C AOB ==°∠∠,∵四边形ACBD 是O e 的内接四边形,∴180C ADB Ð+Ð=°,∴ADB Ð=18030150°-°=°,∴弦AB 所对的圆周角的度数是30°或150°.故答案为:30°或150°.【点睛】本题考查了圆周角定理和圆内接四边形定理,熟练掌握这两个定理是解题的关键.注意:圆当中一条弦对了两条弧,也就对了两个圆周角,做题时防止漏掉一个解.6.如图,四边形ABCD 内接于O e ,4OC =,AC =(1)求点O 到AC 的距离;(2)求出弦AC 所对的圆周角的度数.【答案】(1)(2)∠B =45°,∠D =135°.【分析】(1)连接OA ,作OH ⊥AC 于H ,根据勾股定理的逆定理得到∠AOC =90°,根据等腰直角三角形的性质解答;(2)根据圆周角定理求出∠B ,根据圆内接四边形的性质计算,得到答案.【详解】(1)连接OA ,作OH ⊥AC 于H ,∵4OA OC ==,AC =,∴22224432OA OC +=+=,232AC ==, ∴OA 2+OC 2=AC 2,∴△AOC 为等腰直角三角形,90,AOC Ð=° 又∵OH AC ^,∴AH CH =,∴OH =12AC =O 到AC 的距离为;(2)90,AOC Ð=°Q\ ∠B =12∠AOC =45°,∵四边形ABCD 内接于⊙O , ∴∠D =180°-45°=135°.综上所述:弦AC 所对的圆周角∠B =45°,∠D =135°.【点睛】本题考查的是圆内接四边形的性质,圆周角定理,勾股定理的逆定理,掌握圆内接四边形对角互补是解本题的关键.7.如图,四边形ABCD 内接于4O OC AC ==,,e .(1)求点O 到AC 的距离;(2)直接写出弦AC 所对的圆周角的度数.【答案】(1)点O 到到AC 的距离为(2)弦AC 所对的圆周角的度数为45°或135°【分析】(1)过点O 作OE AC ^于点E ,利用勾股定理求解即可;(2)连接OA ,利用圆周角定理求出B Ð,再利用圆内接四边形的性质求出ADC Ð即可.【详解】(1)解:过点O 作OE AC ^于点E ,则12CE AC =,∵AC =∴CE =,在Rt OCE V 中,4OC =,∴OE ===∴点O 到到AC 的距离为;(2)解:连接OA ,由(1)知,在Rt OCE V 中,OE CE =,∴45OCE EOC Ð=Ð=°,∵OA OC =,∴45OAC OCA Ð==°,∴=90AOC а,∴45B Ð=°,∴180********ADC B Ð=°-Ð=°-°=°,∴弦AC 所对的圆周角的度数为45°或135°.【点睛】本题考查了垂径定理,勾股定理,灵活运用所学知识求解是解决本题的关键.易错点二:忽略两弦与圆心的位置易错提醒:求两条弦间的距离时要分类讨论两条弦与圆心的相对位置:两弦在圆心的同侧,两弦在圆心的异侧.例3.如图,一下水管道横截面为圆形,直径为260cm ,下雨前水面宽为100cm ,一场大雨过后,水面宽为240cm ,则水位上升 cm .【答案】70或170/170或70【分析】过圆心作垂直于弦的线段,构造直角三角形,再分水位分别在圆心上方和下方的两种情况去讨论,垂径定理与勾股定理结合求解即可.【详解】解:如图所示:,OE CD OF AB ^^,由题意=100cm AB ,=240cm CD ,根据垂径定理,1120cm 2DE CD ==,150cm 2BF AB ==,直径为260cm ,半径130cm OD OB ==,\在Rt OED V 中,222221*********OE OD DE =-=-=,\50cmOE =\在Rt OFB △中,222221305014400OF OB BF =-=-=,\120cmOF =①当CD 在圆心下方时,1205070cmEF OF OE =-=-=②当CD 在圆心上方时,12050170cmEF OF OE =+=+=故答案为:70或170【点睛】本题考查了垂径定理的应用,掌握垂径定理、灵活运用分类讨论的思想是解题的关键.例4.已知⊙O 的直径为20, AB , CD 分别是⊙O 的两条弦,且AB//CD ,AB=16,CD=10,则AB ,CD 之间的距离是 .【答案】6-或【分析】分两种情况考虑:当两条弦位于圆心O 一侧时,如图1所示,过O 作OE CD ^,交CD 于点E ,交AB 于点F ,连接OA ,OC ,由AB //CD ,得到OF AB ^,利用垂径定理得到E 与F 分别为CD 与AB 的中点,在直角三角形AOF 中,利用勾股定理求出OF 的长,在三角形COE 中,利用勾股定理求出OE 的长,由OE OF -即可求出EF 的长;当两条弦位于圆心O 两侧时,如图2所示,同理由OE OF +求出EF 的长即可.【详解】解:分两种情况考虑:当两条弦位于圆心O 一侧时,如图1所示,过O 作OE AB ^,交CD 于点E ,交AB 于点F ,连接OA ,OC ,AB //CD Q ,OE CD \^,∴F 、E 分别为AB 、CD 的中点,1AF BF AB 82\===,1CE DE CD 52===,在Rt COE V 中,OC 10=,CE 5=,根据勾股定理得:OE =,在Rt AOF V 中,OA 10=,8AF =,根据勾股定理得:OF =,则6EF OE OF =-=-;当两条弦位于圆心O 两侧时,如图2所示,同理可得6EF OE OF =+=,综上,弦AB 与CD 的距离为6或6,故答案为:6或6.【点睛】此题考查了垂径定理,勾股定理,利用了分类讨论的思想,熟练掌握垂径定理是解本题的关键.变式1.如图,O e 的半径为4,AB ,CD 是O e 的弦,且//AB CD ,4AB =,CD =,则AB 和CD 之间的距离为 .【答案】【分析】作OE AB ^于E ,交CD 于F ,连结OA ,OC ,根据平行线的性质等到OF CD ^,再利用垂径定理得到1122AE AB CF CD ==,,再由勾股定理解得OE ,OF 的长,继而分类讨论解题即可.【详解】作OE AB ^于E ,交CD 于F ,连结OA ,OC ,如图,//AB CDQ OF CD\^11222AE BE AB CF DF CD \======,在Rt OAE △中,42OA AE ==Q ,OE \==在Rt OCF V 中,4OC ==Q ,C FOF \==当圆心O 在AB 与CD 之间时,EF OF OE =+=当圆心O 不在AB 与CD 之间时,EF OF OE =-=即AB 和CD 之间的距离为故答案为:【点睛】本题考查勾股定理、垂径定理、分类讨论等知识,是重要考点,难度较易,掌握相关知识是解题关键.变式2.在圆柱形油槽内装有一些油,油槽直径MN 为10分米.截面如图,油面宽AB 为6分米,如果再注入一些油后,当油面宽变为8分米,油面AB 上升( )A .1分米B .4分米C .3分米D .1分米或7分米【答案】D 【分析】实质是求两条平行弦之间的距离.根据勾股定理求弦心距,作和或差分别求解.【详解】解:连接OA .作OG ⊥AB 于G ,则在直角△OAG 中,AG =3分米,因为OA =5分米,根据勾股定理得到:OG =4分米,即弦AB 的弦心距是4分米,同理当油面宽AB 为8分米时,弦心距是3分米,当油面没超过圆心O 时,油上升了1分米;当油面超过圆心O 时,油上升了7分米.因而油上升了1分米或7分米.故选:D .【点睛】本题考查了垂径定理和勾股定理,灵活运用是本题解题关键,注意要分类讨论.变式3.⊙O 的半径是10,弦AB CD ∥,1612AB CD ==,,则弦AB 与CD 的距离是( )A .2B .14C .2或14D .7或1【答案】C【分析】本题考查了垂径定理的应用.作OE AB ^于E ,OF CD ^于F ,由垂径定理得118622AE AB CF CD ====,,由于AB CD ∥,易得E 、O 、F 三点共线,在Rt AOE △和Rt OCF V 中,利用勾股定理分别计算出OE 与OF ,然后讨论:当圆心O 在弦AB 与CD 之间时,AB 与CD 的距离OF OE =+;当圆心O 在弦AB 与CD 的外部时,AB 与CD 的距离OF OE =-.【详解】解:如图,作OE AB ^于E ,OF CD ^于F ,连10OA OC OA OC ==,,,则118622AE AB CF CD ====,,∵AB CD ∥,∴E 、O 、F 三点共线,在Rt AOE △中,6OE ===,在Rt OCF V 中,8OF ===,当圆心O 在弦AB 与CD 之间时,AB 与CD 的距离8614OF OE +=+=;当圆心O 在弦AB 与CD 的外部时,AB 与CD 的距离862OF OE -=-=.所以AB 与CD 的距离是14或2.故选:C .变式4.已知O e 的半径为13,弦AB 平行于CD ,1024CD AB ==,,求AB 和CD 之间的距离.【答案】AB 和CD 之间的距离为7或17【分析】本题主要考查了垂径定理,勾股定理,分当O e 的圆心O 位于AB 、CD 之间时,当O e 的圆心O 不在两平行弦AB 、CD 之间时,两种情况分别利用勾股定理和垂径定理求出点O 到AB 和CD 的距离,据此可得答案.【详解】解:如图,当O e 的圆心O 位于AB 、CD 之间时,作OE AB ^于点E ,并延长EO ,交CD 于F 点.分别连接AO 、CO .∵AB CD P ,∴EF CD ^,∵1024CD AB ==,,∴1112522AE AB CF CD ====,,在Rt AEO △中,由勾股定理得5OE ==,在Rt CFO △中,由勾股定理得12OE ==,∴51217EF OE OF =+=+=,∴AB 和CD 之间的距离为17;如图所示,当O e 的圆心O 不在两平行弦AB 、CD 之间(即弦AB 、CD 在圆心O 的同侧)时,同理可得:125OF OE ==,,∴7EF OF OE =-=,∴AB 和CD 之间的距离为7;综上所述,AB 和CD 之间的距离为7或17.1.在半径为4cm 的O e 中,弦CD 平行于弦AB ,AB =,90BOD Ð=°,则AB 与CD 之间的距离是 cm .【答案】2或2【分析】根据题意,分析两种AB 的位置情况进行求解即可;【详解】解:①如图,AB //CD ,过点O 作GH AB GH CD^^、在O e 中∵90BOD Ð=°,GH AB GH CD^^、∴90GOB DOH Ð+Ð=°∴GOB ODHÐ=Ð∵OGB DHOGOB ODHOB ODÐ=ÐìïÐ=Ðíï=î∴()ΔΔGOB DHO AAS @∴BG OH=∵OG AB^∴12OH BG AB ===∴2OG ===∴2GH OH OG =+=∵AB //CD∴AB 与CD 之间的距离即GH∴AB与CD 之间的距离为2+②如图,作OF AB PD AB ^^、,连接AD则有四边形PEFD 是矩形,∴EF =PD∵90BOD Ð=°∴45BAD Ð=°∵PD AB^∴AP PD =∵OF AB^∴12BE AB ==∴2OE===∵222OD OF FD =+∴()()22242PD PD=++∴2PD =故答案为:2或2-【点睛】本题主要圆的的性质、三角形的全等,勾股定理,掌握相关知识并正确做出辅助线是解题的关键.2.已知AB 、CD 是⊙O 的两条平行弦,⊙O 的半径为17cm ,30AB cm =,16CD cm =,则AB 、CD 间的距离为 .【答案】7或23【分析】过圆心作两条平行线的垂线,根据垂径定理分别在直角三角形中计算即可.【详解】如图,当两条弦在圆心两侧时:Q AB 、CD 是⊙O 的两条平行弦,\过圆心作MN 分别垂直于AB 、CD ,则根据垂径定理可得:15BN =,8DM =,在Rt DMO △中,15OM ===;同理在Rt BNO V 中,8ON ===;则15823MN =+=,同理可得:当两条弦位于圆心同侧时,1587MN =-=,故答案为:7或23.【点睛】本题考查了垂径定理及勾股定理解直角三角形,熟练掌握垂径定理并仔细计算是解题关键.3.如图,已知AB 是半圆O 的直径,弦CD ∥AB ,CD =8.AB =10,则CD 与AB 之间的距离是 .【答案】3【分析】过点O作OH⊥CD于H,连接OC,先利用垂径定理得到CH=4,然后在Rt△OCH中,利用勾股定理即可求解.【详解】解:过点O作OH⊥CD于H,CD=4,连接OC,如图,则CH=DH=12在Rt△OCH中,OH=3,所以CD与AB之间的距离是3.故答案为3.【点睛】此题主要考查垂径定理和勾股定理,熟练掌握垂径定理和勾股定理是解题关键.4.若弦AB,CD是⊙O的两条平行弦,⊙O的半径为13,AB=10,CD=24,则AB,CD之间的距离为A.7B.17C.5或12D.7或17【答案】D【分析】过O作OE⊥AB交AB于E点,过O作OF⊥CD交CD于F点,连接OA、OC,由题意可得:OA=OC=13,AE=EB=12,CF=FD=5,E、F、O在一条直线上,EF为AB、CD之间的距离,再分别解Rt △OEA、Rt△OFC,即可得OE、OF的长,然后分AB、CD在圆心的同侧和异侧两种情况求得AB与CD 的距离.【详解】解:①当AB、CD在圆心两侧时;过O作OE⊥AB交AB于E点,过O作OF⊥CD交CD于F点,连接OA、OC,如图所示:∵半径r=13,弦AB∥CD,且AB=24,CD=10∴OA=OC=13,AE=EB=12,CF=FD=5,E、F、O在一条直线上∴EF为AB、CD之间的距离在Rt△OEA中,由勾股定理可得:OE2=OA2-AE2∴在Rt△OFC中,由勾股定理可得:OF2=OC2-CF2∴∴EF=OE+OF=17AB与CD的距离为17;②当AB、CD在圆心同侧时;同①可得:OE=5,OF=12;则AB与CD的距离为:OF-OE=7;故答案为:17或7.【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理以及分类讨论思想的运用.5.AB和CD是⊙O的两条平行弦,AB=6,CD=8,⊙O的半径为5,则AB与CD间的距离为( )A.1或7B.7C.1D.3或4【答案】A【分析】分两种情况:①当AB、CD在圆心两侧时;②当AB、CD在圆心同侧时;利用垂径定理及勾股定理求出答案.【详解】解:①当AB、CD在圆心两侧时;过O作OE⊥CD交CD于E点,过O作OF⊥AB交AB于F点,连接OA、OC,如图所示:∵半径r=5,弦AB∥CD,且AB=6,CD=8,∴OA=OC=5,CE=DE=4,AF=FB=3,E、F、O在一条直线上,∴EF为AB、CD之间的距离在Rt△OEC中,由勾股定理可得:OE2=OC2﹣CE2∴OE==3,在Rt△OFA中,由勾股定理可得:OF2=OA2﹣AF2∴OF==4,∴EF=OE+OF=3+4=7,AB与CD的距离为7;②当AB 、CD 在圆心同侧时;同①可得:OE =3,OF =4;则AB 与CD 的距离为:OF ﹣OE =1;综上所述:AB 与CD 间的距离为1或7.故选:A.【点睛】此题考查圆的垂径定理、直角三角形的勾股定理,解题中注意运用分类讨论的思想避免漏解.6.已知O e 的半径长为5R =,弦AB 与弦CD 平行,6AB =,8CD =,求,AB CD 间的距离.【答案】1或7【分析】先根据勾股定理求出OF=4,OE=3,再分AB 、CD 在点O 的同侧时,AB 、CD 在点O 的两侧时两种情况分别计算求出EF 即可.【详解】如图,过点O 作OE ⊥CD 于E ,交AB 于点F ,∵//AB CD ,∴OE ⊥AB ,在Rt △AOF 中,OA=5,AF=12AB=3,∴OF=4,在Rt △COE 中,OC=5,CE=12CD=4,∴OE=3,当AB 、CD 在点O 的同侧时,AB 、CD 间的距离EF=OF-OE=4-3=1;当AB 、CD 在点O 的两侧时,AB 、CD 间的距离EF=OE+OF=3+4=7,故答案为:1或7.【点睛】此题考查了圆的垂径定理,勾股定理,在圆中通常利用垂径定理和勾股定理求半径、弦的一半、弦心距三者中的一个量.7.已知O e 的半径为5cm ,弦//AB CD ,6cm AB =,8cm CD =,求AB 与CD 间的距离.【答案】7cm 或1cm【分析】有两种情况,即AB ,CD 在圆心O 的同侧或两侧两种情况,需分类讨论.【详解】解:如图①,过O 作OF AB ^于F 交CD 于E ,连接OA ,OC ,//AB CD Q ,OE CD \^;由垂径定理得132AF FB AB ===,142CE DE CD ===,4OF \,3OE ==,1EF OF OE cm \=-=;如图②,过O 作OF AB ^于F ,OE CD ^于E ,连接AO ,CO ,同理可得4OF cm =,3OE cm =,当AB ,CD 在圆心O 的两侧时,7()EF OF OE cm =+=,AB \与CD 的距离为7cm 或1cm .【点睛】此题主要考查的是勾股定理及垂径定理的应用,需注意AB 、CD 的位置关系有两种,不要漏解.易错点三:理解不准确切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.切线性质定理及推论:①圆的切线垂直于过切点的半径;②经过圆心且垂直于切线的直线必经过切点;③经过切点且垂直于切线的直线必经过圆心易错提醒:运用判定和性质时,要严格根据方法及定理进行说明,不能凭主观进行判断.例5.如图,AB 是O e 的直径,弦CD AB ^,垂足为点E ,DF 为O e 的切线,AF 交CD 于点G ,若3AE =,43BE =,FD FG =,则AGGF =( )A .165B .3C .103D .247【答案】C【分析】本题考查圆的相关知识,三角形相似的判定及性质,等腰三角形的性质.连接OD ,由题意易证O e 的半径长,从而在Rt ODE △中,求得2ED ==.由DF 是O e 的切线,得到90ODE CDF Ð+Ð=°,又90EAG AGE Ð+Ð=°,CDF FGD AGE Ð=Ð=Ð,得到EAG EDO Ð=Ð,从而∴AEG DEO V V ∽,根据对应边成比例求得54EG =,进而34DG ED EG =-=,过点F 作FM CD ^于点M ,根据“三线合一”可得1328GM GD ==,因此由AEG FMG V V ∽即可解答.【详解】连接OD ,∵3AE =,43BE =,∴413333AB AE EB =+=+=,∴O e 的半径1113132236OD OA AB ===´=.∴135366OE AE AO =-=-=,∵CD AB ^,即90AED Ð=°∴在Rt ODE △中,2ED ===,∵DF 是O e 的切线,∴OD DF^∴90ODF Ð=°,即90ODE CDF Ð+Ð=°,∵90AEG Ð=°,∴90EAG AGE Ð+Ð=°,∵FD FG =,∴CDF FGD AGE Ð=Ð=Ð,∴EAG EDO Ð=Ð,∵90AEG DEO Ð=Ð=°,∴AEG DEO V V ∽,∴AE EG DE EO=,即3526EG=,∴54EG =,∴53244DG ED EG =-=-=.过点F 作FM CD ^于点M ,∵FD FG =,∴11332248GM GD ==´=,∵AGE FGM Ð=Ð,90AEG GMG Ð=Ð=°,∴AEG FMG V V ∽,∴5104338AG EG FG MG ===.故选:C例6.如图,AC 是O e 的切线,B 为切点,连接OA OC ,.若30A Ð=°,AB OC ==BC 的长度是( )A .3B .C .D .4【答案】B【分析】本题考查切线性质、正切定义、勾股定理,连接OB ,先根据切线性质得到90OBA Ð=°,再利用正切定义求得OB ,然后利用勾股定理求解即可.【详解】解:连接OB ,∵AC 是O e 的切线,∴90OBA OBC Ð=Ð=°,∵30A Ð=°,AB OC ==∴tan30OB AB =×°=∴BC ==故选:B .变式1.(1)如图①,ABC V 中,90,C AD Ð=°平分BAC Ð交BC 于点D ,点O 在边AB 上,且O e 经过A 、D 两点,分别交AB 、AC 于点E 、F .求证:BC 是O e 的切线:(2)如图②,ABC V 中,90C Ð=°,用直尺和圆规作P e ,使它满足以下条件:圆心P 在边AB 上,经过点A ,且与边BC 相切.(保留作图痕迹,不用写出作法)【答案】(1)证明见解析(2)作图见解析【分析】本题考查了圆的性质、圆的切线的判定、等边对等角、平行线的判定与性质,解题的关键是作出恰当的辅助线.连接OD ,由OA OD =得OAD ODA Ð=Ð,再由OAD CAD Ð=Ð得ODA CAD Ð=Ð,从而得OD AC ∥,结合90C Ð=°可证OD BC ^,因OD 为圆的半径,从而得证.【详解】(1)证明:连接OD ,如图.∵O e 经过A 、D 两点,∴OA OD =,∴OAD ODA Ð=Ð,∵AD 平分BACÐ∴OAD CAD Ð=Ð∴ODA CAD Ð=Ð∴OD AC ∥∵90C Ð=°,∴90ODB Ð=°,∴OD BC ^,又点D 在O e 上,∴BC 是O e 的切线.(2)根据(1)题的证明过程,所作P e 如下图.变式2.如图,BD 是O e 的直径,A 是BD 延长线上的一点,点E 在O e 上,BC AE ^,交AE 的延长线于点C ,BC 交O e 于点F ,且点E 是 DF的中点.(1)求证:AC 是O e 的切线;(2)若3,AD AE CE ===,求BC 的长.【答案】(1)证明见解析(2)2【分析】(1)由圆周角定理及等腰三角形的性质可得EBC DBE BEO Ð=Ð=Ð,经过角的转化即可证明90OEC Ð=°,再根据切线的判定定理可得答案;(2)设O e 的半径为r ,在Rt AOE △中,由勾股定理可得关于r 的方程,求出r 的值,再根据等角,利用三角函数即可求出BC 的值.【详解】(1)证明:如图,连接OE ,∵BD 为直径,∴90DBE BDE Ð+Ð=°,又AE BC ^,∴90EBC BEC Ð+Ð=°,又OB OE =,∴DBE BEO Ð=Ð,又E 为 DF中点,∴EBC DBE BEO Ð=Ð=Ð,∴90BEO BEC Ð+Ð=°,即90OEC Ð=°∴OE AC ^,则AC 为O e 的切线.(2)设O e 半径为r ,∵AC 为O e 的切线,∴90OEC Ð=°,即AOE △为直角三角形,∴222AE OE AO +=,而AE =,3AD =,∴()22183r r +=+,∴ 1.5r =,∴3BD =,15OD =.,∴在Rt AOE △中,1.51sin 4.53OE A AO Ð===,∴在Rt ABC △中,sin BCA ABÐ=,1sin 623BC A AB =д=´=,∴2BC =.【点睛】本题考查了圆的切线的判定、勾股定理及锐角的三角函数等知识点,熟练掌握相关性质及定理是解题的关键.变式3.如图,已知等腰ABC V ,AB AC =,以AB 为直径作O e 交BC 于点D ,过D 作DF AC ^于点E ,交BA 延长线于点F .(1)求证:DF 是O e 的切线;(2)若CE 2CD =,求O e 的半径.【答案】(1)证明【分析】本题主要考查切线的性质和判定及特殊角的三角函数的应用,掌握切线问题中的辅助线的作法是解题的关键.(1)连接OD ,证明ODB C Ð=Ð,推出AC OD ∥,即可证明结论成立;(2)连接AD ,在Rt CED V 中,求得利用三角形函数的定义求得30C Ð=°,60AOD Ð=°,在Rt ADB V 中,利用勾股定理列式计算求得圆的半径即可.【详解】(1)证明:连接OD ,∵AB AC =,B C \Ð=Ð,又OB OD =Q ,B ODB \Ð=Ð,ODB C \Ð=Ð,AC OD \∥,DF AC ^Q ,OD DF \^,DF \是O e 的切线;(2)连接AD ,设O e 半径为r ,在Rt CED V 中,2CE CD ==Q ,222ED CD CE \=-222=-1=,又cos CE C CD Ð==Q 30C \Ð=°,30B \Ð=°,60AOD \=°∠,AB Q 是O e 的直径.90ADB \Ð=°,12AD AB r \==,∵AB AC =,∴2CD BD ==,又222AD BD AB +=Q ,2222(2)r r \+=,r \负值已舍).变式4.如图,AB 是O e 的直径,CD 是O e 的弦,AB CD ^,垂足是点H ,过点C 作直线分别与AB ,AD 的延长线交于点E ,F ,且2ECD BAD Ð=Ð.(1)求证:CF 是O e 的切线;(2)如果20AB =,12CD =,求AE 的长.【答案】(1)证明见解析(2)452【分析】(1)连接OC ,BC ,利用圆周角定理,垂径定理,同圆的半径线段,等腰三角形的性质和圆的切线的判定定理解答即可;(2)利用勾股定理在Rt OCH V 中求出8OH =,同理求出BC =,AC =,利用切线的性质及勾股定理建立等式解答即可.【详解】(1)证明:连接OC 、BC ,如图所示:AB Q 是O e 的直径,90ACB \Ð=°,AO OB =,AB CD ^Q ,AB \平分弦CD ,AB 平分 CD,CH HD \=, CBDB =,90CHA CHE Ð=°=Ð,BAD BAC DCB \Ð=Ð=Ð,2ECD BAD Ð=ÐQ ,22ECD BAD BCD \Ð=Ð=Ð,ECD ECB BCD Ð=Ð+ÐQ ,BCE BCD \Ð=Ð,BCE BAC \Ð=Ð,OC OA =Q ,BAC OCA \Ð=Ð,ECB OCA \Ð=Ð,90ACB OCA OCB Ð=°=Ð+ÐQ ,90ECB OCB \Ð+Ð=°,\半径CO FC ^,CF \是O e 的切线;(2)解:20AB =Q ,12CD =,在(1)的结论中有10AO OB ==,6CH HD ==,在Rt OCH V 中,8OH ===,则1082BH OB OH =-=-=,在Rt BCH △中,BC ==在Rt ACH V 中,81018HA OA OH =+=+=,则AC ==,Q HE BH BE =+,\在Rt ECH △中,222226(2)EC HC HE BE =+=++,CF Q 是O e 的切线,90OCB \Ð=°,在Rt ECO △中,2222222()10(10)10EC OE OC OB BE BE =-=+-=+-,()()2222101062BE BE \+-=++,解得52BE =,\5452022AE AB BE =+=+=.【点睛】本题主要考查了圆的切线的判定,圆周角定理,垂径定理,勾股定理,解题的关键是连接经过切点的半径是解决此类问题常添加的辅助线.1.一个边长为4cm 的等边三角形ABC 与O e 等高,如图放置,O e 与BC 相切于点C ,O e 与AC 相交于点 E ,则CE 的长为 cm【答案】3【分析】本题连接OC ,并过点O 作OF CE ^于F ,根据等边三角形的性质,等边三角形的高等于底边的4cm 的等边三角形 ABC 与O e 等高,说明O e 的半径为OC =60ACB Ð=°,故有30OCF Ð=°,在Rt OFC △中,利用锐角三角函数,可得出FC 的长,利用垂径定理即可得出CE 的长.【详解】解: 连接OC ,并过点O 作OF CE ^于F ,ABC V 为等边三角形,边长为4,故高为 OC =Q O e 与BC 相切于点C ,90OCB \Ð=°,又60ACB Ð=°,故有30OCF Ð=°,在Rt OFC △中,可得 3cos302FC OC =×°=,OF 过圆心,且OFCE ^,根据垂径定理易知23CE FC ==.故答案为:3.【点睛】本题考查了等边三角形的性质、切线的性质、锐角三角函数、垂径定理,熟练掌握相关性质并灵活运用,即可解题.2.如图,正方形ABCD 的边长为4,点E 是AB 边上的一点,将BCE V 沿着CE 折叠至FCE △,若CF 、CE 恰好与正方形ABCD 的中心为圆心的O e 相切,则折痕CE 的长为( )A .B .5CD .以上都不对【答案】C【分析】此题考查了翻折变换的知识.连接OC ,则根据正方形的性质可推出1303ECF BCE BCD Ð=Ð=Ð=°,在Rt BCE V 中,设BE x =,则2CE x =,利用勾股定理可得出x 的值,也即可得出CE 的长度.【详解】解:连接OC ,则DCO BCO Ð=Ð,FCO ECO Ð=Ð,DCO FCO BCO ECO \Ð-Ð=Ð-Ð,即DCF BCE Ð=Ð,又BCE QV 沿着CE 折叠至FCE △,BCE ECF \Ð=Ð,1303ECF BCE BCD \Ð=Ð=Ð=°,在Rt BCE V 中,设BE x =,则2CE x =,得222CE BE =,即22244x x =+,解得BE =,2CE x \=故选:C .3.如图,在ABC V 中,AB AC =,AD 平分BAC Ð,交BC 于点D ,以AD 为直径作O e ,交AB 于点E ,交AC 于点F ,连接EF 交AD 于点G ,连接OB 交EF 于点P ,连接DF .(1)求证:BC 是O e 的切线;(2)若3OG =,4EG =,求:①tan DFE Ð的值;②线段PG 的长.【答案】(1)见解析;(2)①12;②3.【分析】(1)根据三线合一得到AD BC ^,即可证明BC 是O e 的切线;(2)①如图所示,连接DE ,DF ,OE ,由角平分线的定义和圆周角定理得到∠∠E A D F A D =,即可利用三线合一得到AG EF ^,利用勾股定理求出5OE =,即可求出AD 的长,从而得出2DG =,由垂径定理得出GF ,最后根据正切的定义即可得出答案;②证明EF BC ∥,得到AEG ABD △∽△,利用相似三角形的性质求出5BD =,证得ODB △,OPG V 是等腰直角三角形即可求出PG 的长.【详解】(1)证明:∵AB AC =,AD 平分BAC Ð,∴AD BC ^,∵OD 是O e 的半径,∴BC 是O e 的切线;(2)解:①连接DE ,DF ,OE ,∵AD 为O e 的直径,∴90AED AFD Ð=Ð=°,∵AD 平分BAC Ð,∴∠∠E A D F A D =,∴ADE ADF Ð=Ð,∴ AE AF =,∴AG EF ^,∵3OG =,4EG =,∴5OE ==,∴8AG =,10AD =,∴2DG =,由垂径定理可得4GF EG ==,∴21tan 42DG DFE GF Ð===;②∵AG EF ^,AD BC ^,∴EF BC ∥,∴AEG ABD △∽△,∴AG EGAD BD =,∴8410BD=,∴5BD =,∴BD OD =,∴ODB △是等腰直角三角形,∴45OBD Ð=°,∵EF BC ∥,∴45OPG OBD Ð=Ð=°,∴OPG V 是等腰直角三角形,∴3PG OG ==.【点睛】本题主要考查了切线的判定,圆周角定理,三线合一定理,勾股定理,相似三角形的性质与判定等等,正确作出辅助线构造直角三角形是解题的关键.4.如图,在ABC V 中,AB AC =,AD BC ^于点D ,E 是AC 上一点,以BE 为直径的O e 交BC 于点F ,连接DE ,DO ,且90DOB Ð=°.(1)求证:AC 是O e 的切线;(2)若1DF =,3DC =,求BE 的长.【答案】(1)见解析(2)【分析】此题重点考查圆周角定理、切线的判定定理、勾股定理、三角形的中位线定理、等腰三角形的“三线合一”、线段的垂直平分线的性质等知识,正确地作出辅助线是解题的关键.(1)由AB AC =,AD BC ^于点D ,得BD DC =,而BO OE =,根据三角形的中位线定理得OD EC ∥,则90CEB DOB Ð=Ð=°,即可证明AC 是O e 的切线;(2)连接EF ,由3BD DC ==,1DF =得到314BF BD DF =+=+=,由DO 垂直平分BE ,得3BD DE ==,由 BE 是O e 的直径,得90BFE Ð=°,则EF ===BE ===【详解】(1)证明:∵AB AC =,AD BC ^,∴BD DC =,又∵BO OE =,∴OD EC ∥.。
历年中考数学易错题汇编-初中数学 旋转练习题附答案解析
历年中考数学易错题汇编-初中数学旋转练习题附答案解析一、旋转1.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF⊥BD 交BC 于F,连接DF,G 为DF 中点,连接EG,CG.(1) 求证:EG=CG;(2) 将图①中△BEF 绕B 点逆时针旋转 45∘,如图②所示,取DF 中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3) 将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).【答案】解:(1)CG=EG(2)(1)中结论没有发生变化,即EG=CG.证明:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵ AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG.∴ AG=CG.在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG.∴ MG=NG在矩形AENM中,AM=EN.在Rt△AMG 与Rt△ENG中,∵ AM=EN, MG=NG,∴△AMG≌△ENG.∴ AG=EG∴ EG=CG.(3)(1)中的结论仍然成立.【解析】试题分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.还知道EG⊥CG;试题解析:解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴,同理,在Rt△DEF中,,∴CG=EG;(2)(1)中结论仍然成立,即EG=CG;连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,如图所示:在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DC=DC,∴△DAG≌△DCG,∴AG=CG,在△DMG与△FNG中,∵∠DGM=∠FGN,DG=FG,∠MDG=∠NFG,∴△DMG≌△FNG,∴MG=NG,在矩形AENM中,AM=EN.,在Rt△AMG与Rt△ENG中,∵AM=EN,MG=NG,∴△AMG≌△ENG,∴AG=EG,∴EG=CG,(3)(1)中的结论仍然成立,即EG=CG且EG⊥CG。
中考数学易错题综合专题五附答案详解
卷错题一.选择题(共9小题)1.(2011?鸡西)如图,A、B、C、D是⊙O上的四个点,AB=AC,AD交BC于点E,AE=3,ED=4,则AB的长为()A.3B.2C.D.32.(2011?黑龙江)把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.则共有学生()A.4人B.5人C.6人D.5人或6人3.(2012?黑龙江)如图,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,点E、F分别是AB、BC边的中点,连接AF、CE交于点M,连接BM并延长交CD于点N,连接DE交AF于点P,则结论:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE=:3;⑤S△EPM=S梯形ABCD,正确的个数有()A.5个B.4个C.3个D.2个4.(2012?鸡西)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①(BE+CF)=BC;②S△AEF≤S△ABC;③S=AD?EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()四边形AEDFA.1个B.2个C.3个D.4个5.(2012?牡丹江)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O.则下列结论:①△ABF≌△CAE,②∠AHC=120°,③AH+CH=DH,④AD2=OD?DH中,正确的是()A.①②④B.①②③C.②③④D.①②③④6.四边形ABCD中,AC和BD交于点E,若AC平分∠DAB,且AB=AE,AC=AD,有以下四个命题:①AC⊥BD;②BC=DE;③∠DBC=∠DAB;④AB=BE=AE.其中命题一定成立的是()A.①②B.②③C.①③D.②④7.已知一个圆锥的底面半径是5cm,侧面积是65πcm2,则圆锥的母线长是()A.6.5cm B.13cm C.15cm D.26cm8.(2007?黑龙江)如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=BC,CE=AC,BE、AD相交于点F,连接DE,则下列结论:①∠AFE=60°;②DE⊥AC;③CE2=DF?DA;④AF?BE=AE?AC,正确的结论有()A.4个B.3个C.2个D.1个9.(2010?牡丹江)在锐角△ABC中,∠BAC=60°,BD、CE为高,F为BC的中点,连接DE、DF、EF,则结论:①DF=EF;②AD:AB=AE:AC;③△DEF是等边三角形;④BE+CD=BC;⑤当∠ABC=45°时,BE=DE中,一定正确的有()A.2个B.3个C.4个D.5个二.填空题(共4小题)10.(2010?牡丹江)观察下表,请推测第5个图形有_________ 根火柴棍.11.(2011?黑龙江)已知关于x的分式方程﹣=0无解,则a的值为_________ .12.矩形纸片ABCD中,AB=3,AD=4,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为_________ .13.(2012?宁波)把二次函数y=(x﹣1)2+2的图象绕原点旋转180°后得到的图象的解析式为_________ .卷错题一.选择题(共9小题)1.(2011?鸡西)如图,A、B、C、D是⊙O上的四个点,AB=AC,AD交BC于点E,AE=3,ED=4,则AB的长为()A.3B.2C.D.3分析:根据圆周角定理可得∠ACB=∠ABC=∠D,再利用三角形相似△ABD∽△AEB,即可得出答案.解答:解:∵AB=AC,∴∠ACB=∠ABC=∠D,∵∠BAD=∠BAD,∴△ABD∽△AEB,∴,∴AB2=3×7=21,∴AB=.故选C.点评:此题主要考查了圆周角定理以及相似三角形的判定与性质,根据题意得出△ABD∽△AEB是解决问题的关键.2.(2011?黑龙江)把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.则共有学生()A.4人B.5人C.6人D.5人或6人分析:根据每人分3本,那么余8本,如果前面的每个学生分5本,那么最后一人就分不到3本,得出3x+8≥5(x﹣1),且5(x﹣1)+3>3x+8,分别求出即可.解答:解:假设共有学生x人,根据题意得出:5(x﹣1)+3>3x+8≥5(x﹣1),解得:5<x≤.故选:C.点评:此题主要考查了不等式组的应用,根据题意找出不等关系得出不等式组是解决问题的关键.3.(2012?黑龙江)如图,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,点E、F分别是AB、BC边的中点,连接AF、CE交于点M,连接BM并延长交CD于点N,连接DE交AF于点P,则结论:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE=:3;⑤S△EPM=S梯形ABCD,正确的个数有()A.5个B.4个C.3个D.2个分析:连接DF,AC,EF,如图所示,由E、F分别为AB、BC的中点,且AB=BC,得到EB=FB,再由一对公共角相等,利用SAS可得出△ABF与△CBE全等,由确定三角形的对应角相等得到一对角相等,再由AE=FC,对顶角相等,利用AAS 可得出△AME与△CMF全等,由全等三角形的对应边相等可得出ME=MF,再由BE=BF,BM=BM,利用SSS得到△BEM与△BFM全等,根据全等三角形的对应角相等可得出∠ABN=∠CBN,选项①正确;由AD=AE,梯形为直角梯形,得到∠EAD 为直角,可得出△AED为等腰直角三角形,可得出∠AED为45°,由∠ABC为直角,且∠ABN=∠CBN,可得出∠ABN为45°,根据同位角相等可得出DE 平行于BN,选项②正确;由AD=AE=AB=BC,且CF=BC,得到AD=FC,又AD与FC平行,根据一组对边平行且相等的四边形为平行四边形得到ADCF为平行四边形,可得出AF=DC,又AF=CE,等量代换可得出DC=EC,即△DCE为等腰三角形,选项③正确;由EF为△ABC的中位线,利用三角形中位线定理得到EF平行于AC,由两直线平行得到两对内错角相等,根据两对对应角相等的两三角形相似可得出△EFM与△ACM相似,且相似比为1:2,可得出EM:MC=1:2,设EM=x,则有MC=2x,用EM+MC表示出EC,设EB=y,根据BC=2EB,表示出BC,在直角三角形BCE中,利用勾股定理表示出EC,两者相等得到x 与y的比值,即为EM与BE的比值,即可判断选项④正确与否;由E为AB的中点,利用等底同高得到△AME的面积与△BME的面积相等,由△BME与△BFM全等,得到面积相等,可得出三个三角形的面积相等都为△ABF面积的,由E为AB的中点,且EP平行于BM,得到P为AM的中点,可得出△AEP 的面积等于△PEM的面积,得到△PEM的面积为△ABF面积的,由ABFD为矩形得到△ABF与△ADF全等,面积相等,由△ADF与△CFD全等得到面积相等,可得出三个三角形面积相等都为梯形面积的,综上得到△PEM的面积为梯形面积的,可得出选项⑤错误,综上,得到正确的个数.解解:连接DF,AC,EF,如图所示:答:∵E、F分别为AB、BC的中点,且AB=BC,∴AE=EB=BF=FC,在△ABF和△CBE中,,∴△ABF≌△CBE(SAS),∴∠BAF=∠BCE,AF=CE,在△AME和△CMF中,,∴△AME≌△CMF(AAS),∴EM=FM,在△BEM和△BFM中,,∴△BEM≌△BFM(SSS),∴∠ABN=∠CBN,选项①正确;∵AE=AD,∠EAD=90°,∴△AED为等腰直角三角形,∴∠AED=45°,∵∠ABC=90°,∴∠ABN=∠CBN=45°,∴∠AED=∠ABN=45°,∴ED∥BN,选项②正确;∵AB=BC=2AD,且BC=2FC,∴AD=FC,又AD∥FC,∴四边形AFCD为平行四边形,∴AF=DC,又AF=CE,∴DC=EC,则△CED为等腰三角形,选项③正确;∵EF为△ABC的中位线,∴EF∥AC,且EF=AC,∴∠MEF=∠MCA,∠EFM=∠MAC,∴△EFM∽△CAM,∴EM:MC=EF:AC=1:2,设EM=x,则有MC=2x,EC=EM+MC=3x,设EB=y,则有BC=2y,在Rt△EBC中,根据勾股定理得:EC==y,∴3x=y,即x:y=:3,∴EM:BE=:3,选项④正确;∵E为AB的中点,EP∥BM,∴P为AM的中点,∴S△AEP=S△EPM=S△AEM,又S△AEM=S△BEM,且S△BEM=S△BFM,∴S△AEM=S△BEM=S△BFM=S△ABF,∵四边形ABFD为矩形,∴S△ABF=S△ADF,又S△ADF=S△DFC,∴S△ABF=S△ADF=S△DFC=S梯形ABCD,∴S△EPM=S梯形ABCD,选项⑤错误.则正确的个数有4个.故选B点评:此题考查了直角梯形的性质,全等三角形的判定与性质,勾股定理,等腰直角三角形的性质,平行四边形的判定与性质,相似三角形的判定与性质,以及三角形的中位线定理,熟练掌握性质与定理是解本题的关键.4.(2012?鸡西)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①(BE+CF)=BC;②S△AEF≤S△ABC;③S 四边形AEDF=AD?EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()A.1个B.2个C.3个D.4个分析:先由ASA证明△AED≌△CFD,得出AE=CF,再由勾股定理即可得出BE+CF=AB=BC,从而判断①;设AB=AC=a,AE=CF=x,先由三角形的面积公式得出S△AEF=﹣(x﹣a)2+a2,S△ABC=×a2=a2,再根据二次函数的性质即可判断②;由勾股定理得到EF的表达式,利用二次函数性质求得EF最小值为a,而AD=a,所以EF≥AD,从而④错误;先得出S四边形AEDF=S△ADC=AD,再由EF≥AD得到AD?EF≥AD2,∴AD?EF>S四,所以③错误;边形AEDF如果四边形AEDF为平行四边形,则AD与EF互相平分,此时DF∥AB,DE∥AC,又D为BC中点,所以当E、F分别为AB、AC的中点时,AD与EF互相平分,从而判断⑤.解答:解:∵Rt△ABC中,AB=AC,点D为BC中点,∴∠C=∠BAD=45°,AD=BD=CD,∵∠MDN=90°,∴∠ADE+∠ADF=∠ADF+∠CDF=90°,∴∠ADE=∠CDF.在△AED与△CFD中,∵,∴△AED≌△CFD(ASA),∴AE=CF,在Rt△ABD中,BE+CF=BE+AE=AB==BD=BC.故①正确;设AB=AC=a,AE=CF=x,则AF=a﹣x.∵S△AEF=AE?AF=x(a﹣x)=﹣(x﹣a)2+a2,∴当x=a时,S△AEF有最大值a2,又∵S△ABC=×a2=a2,∴S△AEF≤S△ABC.故②正确;EF2=AE2+AF2=x2+(a﹣x)2=2(x﹣a)2+a2,∴当x=a时,EF2取得最小值a2,∴EF≥a(等号当且仅当x=a时成立),而AD=a,∴EF≥AD.故④错误;由①的证明知△AED≌△CFD,∴S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=AD2,∵EF≥AD,∴AD?EF≥AD2,∴AD?EF>S四边形AEDF故③错误;当E、F分别为AB、AC的中点时,四边形AEDF为正方形,此时AD与EF互相平分.故⑤正确.综上所述,正确的有:①②⑤,共3个.故选C.点评:本题主要考查了全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,图形的面积,函数的性质等知识,综合性较强,有一定难度.5.(2012?牡丹江)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O.则下列结论:①△ABF≌△CAE,②∠AHC=120°,③AH+CH=DH,④AD2=OD?DH中,正确的是()A.①②④B.①②③C.②③④D.①②③④分析:由菱形ABCD中,AB=AC,易证得△ABC是等边三角形,则可得∠B=∠EAC=60°,由SAS即可证得△ABF≌△CAE;则可得∠BAF=∠ACE,利用三角形外角的性质,即可求得∠AHC=120°;在HD上截取HK=AH,连接AK,易得点A,H,C,D四点共圆,则可证得△AHK是等边三角形,然后由AAS即可证得△AKD≌△AHC,则可证得AH+CH=DH;易证得△OAD∽△AHD,由相似三角形的对应边成比例,即可得AD2=OD?DH.解答:解:∵四边形ABCD是菱形,∴AB=BC,∵AB=AC,∴AB=BC=AC,即△ABC是等边三角形,同理:△AD C是等边三角形∴∠B=∠EAC=60°,在△ABF和△CAE中,,∴△ABF≌△CAE(SAS);故①正确;∴∠BAF=∠ACE,∵∠AEH=∠B+∠BCE,∴∠AHC=∠BAF+∠AEH=∠BAF+∠B+∠BCE=∠B+∠ACE+∠BCE=∠B+∠ACB=60°+60°=120°;故②正确;在HD上截取HK=AH,连接AK,∵∠AHC+∠ADC=120°+60°=180°,∴点A,H,C,D四点共圆,∴∠AHD=∠ACD=60°,∠ACH=∠ADH,∴△AHK是等边三角形,∴AK=AH,∠AKH=60°,∴∠AKD=∠AHC=120°,在△AKD和△AHC中,,∴△AKD≌△AHC(AAS),∴CH=DK,∴DH=HK+DK=AH+CH;故③正确;∵∠OAD=∠AHD=60°,∠ODA=∠ADH,∴△OAD∽△AHD,∴AD:DH=OD:AD,∴AD2=OD?DH.故④正确.故选D.点评:此题考查了相似三角形的判定与性质、菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.6.四边形ABCD中,AC和BD交于点E,若AC平分∠DAB,且AB=AE,AC=AD,有以下四个命题:①AC⊥BD;②BC=DE;③∠DBC=∠DAB;④AB=BE=AE.其中命题一定成立的是()A.①②B.②③C.①③D.②④分析:根据等腰三角形的性质,等边三角形的判定,圆内接四边形的性质,全等三角形的性质判断各选项是否正确即可.解答:解:∵AB=AE,一个三角形的直角边和斜边一定不相等,∴AC不垂直于BD,①错误;利用边角边定理可证得△ADE≌△ABC,那么BC=DE,②正确;由△ADE≌△ABC可得∠ADE=∠ACB,那么A,B,C,D四点共圆,∴∠DBC=∠DAC=∠DAB,③正确;△ABE不一定是等边三角形,那么④不一定正确;②③正确,故选B.点评:此题主要考查了全等三角形的性质,以及直角三角形中斜边最长;全等三角形的对应边相等;等边三角形的三边相等.7.已知一个圆锥的底面半径是5cm,侧面积是65πcm2,则圆锥的母线长是()A.6.5cm B.13cm C.15cm D.26cm解答:解:设圆锥的母线长为R,则:65π=π×5×R,解得R=13cm,故选B.点评:本题考查圆锥侧面积公式的灵活运用,掌握公式是关键.8.(2007?黑龙江)如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=BC,CE=AC,BE、AD相交于点F,连接DE,则下列结论:①∠AFE=60°;②DE⊥AC;③CE2=DF?DA;④AF?BE=AE?AC,正确的结论有()A.4个B.3个C.2个D.1个分析:本题是开放题,对结论进行一一论证,从而得到答案.①利用△ABD≌△BCE,再用三角形的一个外角等于与它不相邻的两个内角和,即可证∠AFE=60°;②从CD上截取CM=CE,连接EM,证△CEM是等边三角形,可证明DE⊥AC;③△BDF∽△ADB,由相似比则可得到CE2=DF?DA;④只要证明了△AFE∽△BAE,即可推断出AF?BE=AE?AC.解答:解:∵△ABC是等边三角形∴AB=BC=AC,∠BAC=∠ABC=∠BCA=60°∵BD=BC,CE=AC∴BD=EC∴△ABD≌△BCE∴∠BAD=∠CBE,∵∠ABE+∠EBD=60°∴∠ABE+∠CBE=60°∵∠AFE是△ABF的外角∴∠AFE=60°∴①是对的;如图,从CD上截取CM=CE,连接EM,则△CEM是等边三角形∴EM=CM=EC∵EC=CD∴EM=CM=DM∴∠CED=90°∴DE⊥AC,∴②是对的;由前面的推断知△BDF∽△ADB∴BD:AD=DF:DB∴BD2=DF?DA∴CE2=DF?DA∴③是对的;在△AFE和△BAE中,∠BAE=∠AFE=60°,∠AEB是公共角∴△AFE∽△BAE∴AF?BE=AE?AC∴④是正确的.故选A.点评:本题主要应用到了三角形外角与内角的关系,直角三角形的判定,全等三角形和相似三角形的判定及性质,内容较多,较为复杂.9.(2010?牡丹江)在锐角△ABC中,∠BAC=60°,BD、CE为高,F为BC的中点,连接DE、DF、EF,则结论:①DF=EF;②AD:AB=AE:AC;③△DEF是等边三角形;④BE+CD=BC;⑤当∠ABC=45°时,BE=DE中,一定正确的有()A.2个B.3个C.4个D.5个分析:根据直角三角形的性质、相似三角形的判定和性质、等边三角形的判定、锐角三角函数的定义可知.解答:解:①∵BD、CE为高,∴∠BDC=∠CEB=90°,又∵F为BC的中点,∴DF=BC,EF=BC,∴DF=EF;②∵∠A=∠A,∠ADB=∠AEC,∴△ADB∽△AEC,∴AD:AB=AE:AC;③∵∠BAC=60°,∴∠ABC+∠ACB=120°,∵DF=CF,EF=BF,∴∠BEF+∠CDF=120°,∴∠BFE+∠CFD=120°,∴∠DFE=60°,又∵DF=EF,∴△DEF是等边三角形;④∵∠BAC=60°,BD、CE为高,∴∠ABD=∠ACE=30°,∴∠DBC+∠ECB=180°﹣∠A﹣∠ABD﹣∠ACE=60°,∴∠CBD=60°﹣∠BCE,∴BE+CD=BC?sin∠BCE+BC?sin∠CBD=BC?(sin∠BCE+sin∠CBD)=BC?[sin∠BCE+sin(60°﹣∠BCE)],不一定等于BC;⑤∵∠ABC=45°,∴BE=BC=DE.正确的共4个.故选C.点评:本题综合性较强,有一定的难度.主要考查了直角三角形的性质、相似三角形的判定和性质、等边三角形的判定、锐角三角函数的定义.二.填空题(共4小题)10.(2010?牡丹江)观察下表,请推测第5个图形有45 根火柴棍.分析:本题是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.解答:解:依题意得,第1个图形中的火柴棍有3根,即3×1根;第2个图形中的火柴棍有9根,即3×(1+2)根;第3个图形中的火柴棍有18根,即3×(1+2+3)根;第4个图形中的火柴棍有30根,即3×(1+2+3+4)根;第5个图形中的火柴棍有45根,即3×(1+2+3+4+5)根.第n个图形中的火柴棍有:3×(1+2+…+n)=根.点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.11.(2011?黑龙江)已知关于x的分式方程﹣=0无解,则a的值为0、或﹣1 .考点:分式方程的解.专题:计算题.分析:根据题意得出方程无解时x的值,注意多种情况,依次代入得出a的值.解答:解:去分母得ax﹣2a+x+1=0.∵关于x的分式方程﹣=0无解,(1)x(x+1)=0,解得:x=﹣1,或x=0,当x=﹣1时,ax﹣2a+x+1=0,即﹣a﹣2a﹣1+1=0,解得a=0,当x=0时,﹣2a+1=0,解得a=.(2)方程ax﹣2a+x+1=0无解,即(a+1)x=2a﹣1无解,∴a+1=0,a=﹣1.故答案为:0、或﹣1.点评:本题主要考查了分式方程无解的情况,需要考虑周全,不要漏解,难度适中.12.矩形纸片ABCD中,AB=3,AD=4,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为.分析:由翻折的性质知,BP=B′P,而要点P到CD的距离等于PB,则该垂线段必为PB′,故有PB′⊥CD,延长AE交DC的延长线于点F,由于DF∥AB,则∠F=∠BAE=∠B′AE,所以B′F=B′A=AB=3,而B′P∥AC,利用平行线分线段成比例定理(或相似三角形的性质)即可求得B′P的长,由此得解.解答:解:根据折叠的性质知:BP=PB′,若点P到CD的距离等于PB,则此距离必与B′P相同,所以该距离必为PB′.延长AE交CD的延长线于F.由题意知:AB=AB′=3,∠BAE=∠B′AE,∵Rt△ACB′中,AB′=3,AC==,∴CB′==,由于DF∥AB,则∠F=∠BAE,又∵∠BAE=∠B′AE,∴∠F=∠B′AE,∴FB′=AB′=3;∵PB′⊥CD,AC⊥CD,∴PB′∥AC,∴,∴=,解得:PB'=故答案为:.点评:此题考查了矩形的性质、图形的翻折变换以及相似三角形的性质等知识的应用,此题的关键是能够发现PB′就是所求的P到CD的距离.13.(2012?宁波)把二次函数y=(x﹣1)2+2的图象绕原点旋转180°后得到的图象的解析式为y=﹣(x+1)2﹣2 .分析:根据顶点式解析式求出原二次函数的顶点坐标,然后根据关于中心对称的点的横坐标与纵坐标互为相反数求出旋转后的二次函数的顶点坐标,最后根据旋转变换只改变图形的位置,不改变图形的形状写出解析式即可.解答:解:二次函数y=(x﹣1)2+2顶点坐标为(1,2),绕原点旋转180°后得到的二次函数图象的顶点坐标为(﹣1,﹣2),所以,旋转后的新函数图象的解析式为y=﹣(x+1)2﹣2.故答案为:y=﹣(x+1)2﹣2.点评:本题考查了二次函数图象与几何变换,利用点的变换解决函数图象的变换,求出变换后的顶点坐标是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
历年中考数学易错题汇编?(附答案)一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( )A 、互为相反数B 、绝对值相等C 、是符号不同的数数12、两个有理数的和除以这两个有理数的积,其商为 0,则这两个有理数为( )A 、互为相反数B 、互为倒数C 、互为相反数且不为0D 、有一个为02、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( t ----------- 0 ---- !>-► -----b Oam 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( B 、3千米/小时 的正整数解有( A 、 2a B 、 2b 3、 轮船顺流航行时 A 、2千米/小时4、 方程 2x+3y=20 A 、1个 B 、3个 C 、2a-2b D 、2a+b C 、6千米/小时 )D 、不能确定 C 、 )D 、无数个5、 下列说法错误的是( )A 、两点确定一条直线 C 、一条直线是一个平角 6、 函数 y=(m 2-1)x 2-(3m-1)x+2 A 、当m 工3时,有一个交点 C 、当m 1时,有一个交点 7、 如果两圆的半径分别为 R 和 关系是( ) A 、内切 B 、外切 8、在数轴上表示有理数 a 、b 、 确的是() B 、线段是直线的一部分 D 、把线段向两边延长即是直线的图象与x 轴的交点情况是()B 、m 1时,有两个交 D 、不论m 为何值,均无交点(R>r ),圆心距为 d ,且(d-r )2=R 2,则两圆的位置 C 、内切或外切c 的小点分别是A 、 D 、不能确定B 、C 且b<a<c ,则下列图形正A 、-1B 、1C 、0D 、不存在10、2的倒数的相反数是()A 、-2B 、2111、若 |x|=x ,则-x 疋疋( :)A 、正数B 、非负数C 、负数D 、非正数)■G ----- Q ---------- O-C A B----- O -- [>A~O -- --------------- 0 -- 0 -- ----9、有理数中,C 绝对值最小C 勺数是(D 、都是负-0 -- O --- OB A C13、长方形的周长为x,宽为2,则这个长方形的面积为()A、2xB、2(x-2)C、x-4D、2 (x-2)/214、“比x的相反数大3的数”可表示为()A 、-X-3B 、-(x+3)C 、3-xD 、x+315、如果0<a<1,那么下列说法正确的是( )A 、a 2比a 大C 、a 2与a 相等 B 、a 2比a 小D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9 个单位,又向左移动5个单位,这时,A 点表示的数是( )A 、-1B 、0C 、1D 、819、方程 x(x-1)(x-2)=x 的根是3y 2+5y+2=021、方程 x 2+1=2|x| 有没有实数根17、线段AB=4cm ,延长 AB 到C ,使BC=AB 再延长BA 至U D ,使AD=AB , 段CD 的长为() A 、 12cm则线B 、 10cm18、1 的相反数是()B 、 、2 1C 、1C 、8cmD 、4cmA 、X 1=1, x 2=2B 、X 1=0, x 2=1, x 3=2 C、“斗,x 2=^D 、X 1=0, X 2= 35, X 3= 353220、解方程3(x 2需5(x丄)x0时,若设y,则原方程可化为( A 、3y 2+5y-4=0B 、3y 2+5y-10=0C 、3y 2+5y-2=0A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;22、一次函数 y=2(x-4) 在y 轴上的截距为( )A 、 -4B 、 4C 、-8D 、823、解关于x 的不等式 aa,正确的结论是(A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无224、 反比例函数y二,当x <3时,y 的取值范围是()2 2 2 、 2A 、y <-3B 、y >石C 、y >-3 或 y<0D 、0<y <-325、 0.4的算术平方根是( )A 、0.2B > ±0.2C 、』D 、土5526、 李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象, 符合以上情况的是()27、若一数组X 1, X 2, X 3,…,X n 的平均数为X ,方差为s 2,则另一数组kx 1, kX 2, kX 3, kx n 的平均数与方差分别是( )A 、k X , k 2s 2B 、X , s 2C 、k X , ks 2D 、k 2 x , ks 2X 128、若关于X 的方程 C 2有解,则a 的取值范围是(B 、a ^-1C 、a 工229、下列图形中既是中心对称图形,又是轴对称图形的是()30、 A 、线段 B 、正三角形C 、平行四边形D 、等腰梯形a c 29、已知b 厂下列各式中不成立的是()31 >31 > 一个三角形的三个内角不相等,贝尼的最小角不大于( 33、已知三角形内的一个点到它的三边距离相等,那么这个点是( )34、 A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心35、 33、下列三角形中是直角三角形的个数有()36、 ①三边长分别为、3 :1:2的三角形 ②三边长之比为1:2:3的三角形③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 37、A 、1 个 B 、2 个 C 、3 个 D 、4 个J 334、如图,设 AB =1,S ^OAB = T cmc a 3c db 3da c 3ab d 2bD 、ad=bc32、 A 、300 B 、450 C 、550 D 、600 则弧AB 长为(2A 、 cmB 、 — cmC 、- cmD 、-2 cm^33635、平行四边形的一边长为 5cm ,则它的两条对角线长可以是(37、顺次连结四边形各边中点得到一个菱形,则原四边形必是(38、在圆0中,弧AB=2CD ,那么弦 AB 和弦CD 的关系是(A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如图,△ ABC 与△BDE 都是正三角形,且ABvBD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中, AE 与CD 的大小关系是(A 、AE=CDB 、AE>CDC 、AE>CDD 、无法确定A 、矩形B 、梯形C 、两条对角线互相垂直的四边形D 、两条对角线相等的四边形A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 不可能相等39、在等边三角形 ABC 外有一点D ,满足AD=AC ,则/ BDC 的度数为(A 、30°B 、60°C 、150°D 、30 0 或 150 040 > △ABC 的三边a 、b 、c 满足a <b <c ,^ABC 的周长为18,则(A 、a <6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于 641、如图,在△ ABC 中,/ACB=Rt Z ,AC=1,BC=2,则下列说法正确的是(A 、Z B=30 0B 、斜边上的中线长为 1C 、斜边上的高线长为 2、5D 、该三角形外接圆的半径为1542、如图,把直角三角形纸片沿过顶点 B 的直线BE ( BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1 ) Z A=30 0 ( 2)点C 与AB 的中点重合 (3 )点E 到AB 的距离等于 CE 的长,正确的个数是( )A 、0B 、1C 、2D 、343、不等式' 2 x 2、3 x 6的解是()EA52、已知、2x 1 ,1 2x 0,则 .x 2 2x 1的值()A 、x> .2B 、x>- . 2 c 、xv .244、已知一元二次方程(m-1)x 2-4mx+4m-2=0 有实数根,则m 的取值范围是( A 、m <1B 、m >1 且 m 工 1C 、m >1D 、-1<m <1k46、在一次函数 y=2x-1 的图象上,到两坐标轴距离相等的点有(D 、无数个47、若点(-2 , y i )、(-1 , y 2)、(1 ,1y 3)在反比例函数y 匸的图像上,则下列结论中正确的是( A 、y i >y 2>y 3 B 、y i <y 2<y 3C 、y 2>y 1 >y 3D 、y 3>y i >y 248、下列根式是最简二次根式的是( A 、 、8a B 、.a 2 b 2C 、 0.1xD 、 Ja 549、下列计算哪个是正确的('.5C 、 -a 2b 2a b•、22 ■. 21、22 2150、把叩I (a 不限定为正数) 化简, 结果为( B 、 a51、若 a+|a|=O ,则,(a 2)2 ,a 2等于() A 、2-2aB 、2a-2C 、-2D 、2rB45、函数y=kx+b (b>0) 和y= — (k 工0),在同一坐标系中的图象可能是( xD1B 、士一253、设a 、b 是方程X 2-12X +9=0 的两个根,则xb 等于( )54、下列命题中,正确的个数是()①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似⑧全等三角形相似二、填空题1、 如果一个数的绝对值等于它的相反数,那么这个数一定是 ____________2、 a 是有理数,且a 的平方等于a 的立方,贝U a 是 ____ 。
3、 已知有理数 a 、b 满足(a+2) 2+|2b-6|=0 ,贝U a-b= _____ 。
4、 已知 a-b=1, b+c=2, 则 2a+2c+1= ________ 。
5、 当 x时,|3-x|=x-3 。
6、 从3点到3点30分,分针转了 _____ ,时针转了 _______ 度。
7、 某种商品的标价为120元,若以标价的90%出售,仍相对进价获利20%,则该 商品的进价为 _____ 。