-历年考研数学三真题及答案解析

合集下载

考研数学三(概率论与数理统计)历年真题试卷汇编15(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编15(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编15(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2002年] 设X1和X2是两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)和.f2(x),分布函数分别为F1(x)和F2(x),则( ).A.f1(x)+f2(x)必为某一随机变量的概率密度B.F1(x)F2(x)必为某一随机变量的分布函数C.F1(x)+F2(x)必为某一随机变量的分布函数D.f1(x)f2(x)必为某一随机变量的概率密度正确答案:B解析:解一由命题3.2.1.2知,仅(B)入选.解二F1(x)F2(x)=P(X1≤x)P(X2≤x)=P(X1≤x,X2≤x).取X=max{X1,X2),并由于P(X1≤x,X2≤x)=P(max{X1,X2)≤x),则由定义可知,F1(x)F2(x)必为随机变量X=max{X1,X2}的分布函数.仅(B)入选.解三因故(A)不正确.又故(C)错误.取Xi在区间[0,2]上服从均匀分布,则于是有因而(D)也不成立.仅(B)入选.注:命题3.2.1.2 若F1(x),F2(x),…,Fn(x)分别是随机变量X1,X2,…,Xn的分布函数,则也是分布函数,且是随机变量max{X1,X2,…,X2)的分布函数.知识模块:概率论与数理统计2.[2011年] 设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是( ).A.f1(x)f2(x)B.2f2(x)F1(x)C.f1(x)F2(x)D.f1(x)F2(x)+f2(x)F1(x)正确答案:D解析:解一因f1(x),f2(x),F1(x),F2(x)分别为随机变量的密度函数与分布函数,故f1(x)≥0,f2(x)≥0,0≤F1(x)≤1,0≤F2(x)≤1,所以f1(x)F2(x)+f2(x)F1(x)≥0.而故f1(x)F2(x)+f2(x)F1(x)为概率密度.仅(D)入选.解二由题设有则f1(x)F2(x)+f2(x)F1(x)=F1’(x)F2(x)+F1(x)F2’(x)=(F1(x)F2(x))’.因F1(x)F2(x)为随机变量max{X1,X2)的分布函数(见命题3.2.1.2),故其导数f1(x)F2(x)+f2(x)F1(x)必为随机变量max{X1,X2}的概率密度.仅(D)入选.注:命题3.2.1.2 若F1(x),F2(x),…,Fn(x)分别是随机变量X1,X2,…,Xn的分布函数,则也是分布函数,且是随机变量max{X1,X2,…,X2)的分布函数.知识模块:概率论与数理统计3.[2018年] 设随机变量X的概率密度f(x)满足f(1+x)=f(1-x),且则P{X ≤0}=( ).A.0.2B.0.3C.0.4D.0.5正确答案:A解析:因为f(1+x)=f(1-x),所以f(x)的图形关于x=1对称,因此P(x≤0)=P(x≥2).又因为所以P(x≤0)+P(x≥2)=2P(x≤0)=1-0.6=0.4,从而P(x≤0)=0.2,故选(A).知识模块:概率论与数理统计4.[2010年] 设随机变量X的分布函数则P(X=1)=( ).A.0B.1/2C.1/2-e-1D.1-e-1正确答案:C解析:因P(X=1)=P(X≤1)-P(X<1)=F(1)-F(1-0),而故P(X=1)=1-e-1-1/2=1/2-e-1.仅(C)入选.知识模块:概率论与数理统计5.[2013年] 设X1,X2,X3是随机变量,且X1~N(0,1),X2~N(0,22),X3~N(5,32),pi=P{-2≤Xi≤2)(i=1,2,3),则( ).A.p1>p2>p3B.p2>p1>p3。

2024考研(数学三)真题答案及解析完整版

2024考研(数学三)真题答案及解析完整版

2024考研(数学三)真题答案及解析完整版2024年全国硕士研究生入学考试数学(三)真题及参考答案考研数学三考什么内容?数学三在高等数学这一部分因为要求的内容相对较少,所以很多学校经济类、管理类专业在本科期间所用教材并非理工类专业通常会使用的《高等数学》同济大学版,更多的学校本科阶段的教材是中国人民大学版《微积分》。

而考数学三的同学中在实际复习过程中使用哪一本教材的都有)(函数、极限、连续、一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数、常微分方程与差分方程);线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);概率论与数理统计(随机事件和概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。

考研的考试内容有哪些一、考研公共课:政治、英语一、英语二、俄语、日语、数学一、数学二、数学三,考研公共课由国家教育部统一命题。

各科的考试时间均为3小时。

考研的政治理论课(马原22分、毛中特30分、史纲14分、思修18分、形势与政策16分)。

考研的英语满分各为100分(完型10分、阅读理解60分、小作文10分、大作文20分)。

数学(其中理工科考数一、工科考数二、经管类考数三)满分为150分。

数一的考试内容分布:高数56%(84分)、线代22%(33分)、概率22%(33分);数二的内容分布:高数78%(117分)、线代22%(33分);数三的内容分布:高数56%(84分)、线代22%(33分)、概率22%(33分)。

这些科目的考试知识点和考试范围在各科考试大纲上有详细规定,一般变动不大,因此可以参照前一年的大纲,对一些变动较大的科目,必须以新大纲为准进行复习。

二、考研专业课统考专业课:由国家教育部考试中心统一命题,科目包括:西医综合、中医综合、计算机、法硕、历史学、心理学、教育学、农学。

其中报考教育学、历史学、医学门类者,考专业基础综合(满分为300分);报考农学门类者,考农学门类公共基础(满分150分)。

考研数学三真题试卷带答案解析(高清版)

考研数学三真题试卷带答案解析(高清版)

2023考研数学三真题试卷带答案解析(高清版)2024年全国硕士研究生入学考试数学(三)真题及参考答案2024年考研数学复习时间规划复习的阶段大致可以分为三个阶段:基础奠定,强化训练,模拟冲刺。

1、6月之前:夯实基础通过看老师的基础课程数,学习基础知识,有视频的可以结合视屏看,看完一节,知道里面讲的什么,公式、概念。

看完一章,结合之前做的笔记,复盘这一章的内容,主要将说明,各知识点都用在什么地方,然后刷一刷这一章的讲义。

看完一章视频或书籍之后,最后做一做三大计算+660题。

2、7-9月:强化训练方法同打基础阶段。

看完视频后做对应的习题330题。

3、10-11月20日:真题冲刺后期可以做一做近10年的真题了,从近往远做,越近的真题越要花时间研究,不懂的地方可以看看名师的知识点讲解。

真题的错题,尤其要弄懂。

4、11月20日-考前:模拟训练最后一两个星期,就需要持续的模拟考场做试卷的状态和题型,建议大家做一做模拟卷,网上就可以购买,一般12月初都出来了,挑自己喜欢的老师即可。

提示:不要看押题卷,知识点学就会后,以不变应万变。

考研必考科目政治、英语和专业课。

所有专业都会考查政治,虽然管理类联考初试不涉及,但复试会考查。

除小语种专业外,其他专业都会考查英语,主要有英语一和英语二。

考研专业分为13个学科大类,包含上百个专业,每一专业都会有自己的专业课考试。

考研初试科目:初试方式为笔试,共四个科目:两门公共课、两门业务课。

两门公共课:政治、英语一或英语二;业务课一:数学或专业基础;业务课二(分为13大类):哲学、经济学、法学、教育学、文学、历史学、理学、工学、农学、医学、军事学、管理学、艺术学等。

法硕、西医综合、中医综合、教育学、历史学、心理学、计算机、农学等属于统考专业课,其他非统考专业课都是各院校自主命题,具体考试科目请参照各大考研院校招生简章。

会计硕士(MPAcc)、图书情报硕士、工商管理硕士(MBA)、公共管理硕士(MPA)、旅游管理硕士、工程管理硕士和审计硕士只考两门,即:英语二和管理类联考综合能力。

考研数学三-101_真题(含答案与解析)-交互

考研数学三-101_真题(含答案与解析)-交互

考研数学三-101(总分150, 做题时间90分钟)一、选择题每小题给出的四个选项中,只有一项符合题目要求。

1.已知且,f(0)=0,则等于( )SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:D[详解] 记为常数,于是有Af'(x)=8,即两边积分得f(x)=由f(0)=0,得C=0,从而于是故应选(D)。

2.已知函数f(x,y)=|x-y|g(x,y),其中g(x,y)在点(0,0)的某邻域内有定义,则f(x,y)在点(0,0)处偏导数存在的充分条件是( )SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:D[分析] 因为f(x,y)含有绝对值且已知只给出g(x,y)在点(0,0)的某邻域内有定义,所以,利用偏导数定义讨论偏导数的存在性。

[详解] 因为所以f'x (0,0)与f'y(0,0)存在的充要条件是极限存在且都等于零。

因此,当g(x,y)在点(0,0)处连续,且g(0,0)=0时,有即故应选(D)。

[评注] 本题考查二元函数偏导数、极限、连续的概念。

反之则不然,所以,(D)是充分条件而不是必要条件。

3.设X1,X2,X3,X4为来自总体X~N(1,1)的简单随机样本,且服从χ2(n)分布,则常数k和χ2分布的自由度n分别为( )SSS_SIMPLE_SIN该题您未回答:х该问题分值: 4答案:C[详解] 因从而故即选(C)。

4.累次积分f(ρcosθ,ρsinθ)ρdρ可写成( )SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:D[分析] 先将积分区域D用极坐标表示,再转化为用直角坐标表示,然后可表示成直角坐标下的二次积分形式。

[详解] 其图形如图6,由图形即可看出可知应选(D)。

[评注] 一般都是由直角坐标化为极坐标,反过来,由极坐标转换为直角坐标也应熟悉。

5.设随机变量X与Y相互独立,且X服从区间(0,2)上的均匀分布,Y服从参数为1的指数分布,则概率P(X+Y>1)的值为( )SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:A[详解] X与Y的联合密度为f(x,y)=fX (x)fY(y)6.设A为m×n矩阵,B为n×p矩阵,则矩阵方程AX=B有解的充分必要条件是( )SSS_SIMPLE_SIN该题您未回答:х该问题分值: 4答案:B[详解] 设A=[α1,α2,…,αn],X=[x1,x2,…,xp],B=[β1,β2,…,β3],则矩阵方程AX=B有解Axj=βj有解(j=1,2,…,p)。

考研数学三历年真题答案与解析-模拟试题

考研数学三历年真题答案与解析-模拟试题

考研数学三历年真题答案与解析|模拟试题展开全文第一部分历年真题及详解2008年全国硕士研究生入学统一考试考研数学三真题及详解2009年全国硕士研究生入学统一考试考研数学三真题及详解2010年全国硕士研究生入学统一考试考研数学三真题及详解2011年全国硕士研究生入学统一考试考研数学三真题及详解详解2013年全国硕士研究生入学统一考试考研数学三真题及详解2014年全国硕士研究生入学统一考试考研数学三真题及详解2015年全国硕士研究生招生考试考研数学三真题及详解2016年全国硕士研究生招生考试考研数学三真题及详解2017年全国硕士研究生招生考试考研数学三真题及详解2018年全国硕士研究生招生考试考研数学三真题及详解2019年全国硕士研究生招生考试考研数学三真题及详解(2)模拟试题及详解部分:精选了3套模拟试题,且附有详尽解析。

考生可通过模拟试题部分的练习,掌握最新考试动态,提前感受考场实战。

第二部分模拟试题及详解全国硕士研究生招生考试考研数学三模拟试题及详解(一)全国硕士研究生招生考试考研数学三模拟试题及详解(二)全国硕士研究生招生考试考研数学三模拟试题及详解(三)第一部分历年真题及详解解一、选择题(1~8小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项符合题目要求。

)1设函数f(x)在区间[-1,1]上连续,则x=0是函数的()。

A.跳跃间断点B.可去间断点C.无穷间断点D.振荡间断点【答案】B查看答案【考点】函数间断点的类型【解析】首先利用间断点的定义确定该点为间断点,然后利用如下的间断点的类型进行判断。

第一类间断点:x=x0为函数f(x)的间断点,且与均存在,则称x=x0为函数f(x)的第一类间断点,其中:①跳跃型间断点:②可去型间断点:第二类间断点:x=x0为函数f(x)的间断点,且与之中至少有一个不存在,则称x=x0为函数f(x)的第二类间断点,其中:①无穷型间断点:与至少有一个为∞;②振荡型间断点:或为振荡型,极限不存在。

考研数学三(概率论与数理统计)历年真题试卷汇编12(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编12(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编12(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.对任意两个随机变量X和Y,若E(XY)=E(X).E(Y),则A.D(XY)=D(X).D(Y).B.D(X+Y)=D(X)+D(Y).C.X与Y独立.D.X与Y不独立.正确答案:B解析:∵D(X+Y)=D(X)+D(Y)+2[E(XY)-E(X)E(Y)],可见选项B与E(XY)=E(X)E(Y)是等价的.知识模块:概率论与数理统计2.设随机变量X和Y独立同分布,记U=X-Y,V=X+Y,则随机变量U与V必然A.不独立.B.独立.C.相关系数不为零.D.相关系数为零.正确答案:D解析:∵X与Y同分布,∴DX=DY 得cov(U,V)=cov(X-Y,X+Y)=cov(X,X)+cov(X,Y)~cov(Y.X)-cov(Y,Y) =DX-DY==0 ∴相关系数ρ=0 知识模块:概率论与数理统计3.将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于A.-1B.0C.D.1正确答案:A解析:∵X+Y=n,∴Y=n-X 故DY=D(n-X)=DX,cov(X,Y)=cov(X,n-X)=-cov(X.X)=-DX.∴X和Y的相关系数ρ(X,Y)==-1.知识模块:概率论与数理统计4.设随机变量(X,Y)服从二维正态分布,且X与Y不相关,fX(χ),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下,X的条件概率密度fX|Y(χ|y)为A.fX(χ).B.fY(y).C.fX(χ)fY(y).D.正确答案:A解析:由(X,Y)服从二维正态分布,且X与Y不相关.故X与Y独立,∴(X,Y)的概率密度f(χ,y)=fX(χ).fY(y),(χ,y)∈R2.得fX|Y(X|Y)==fX(χ) 故选A.知识模块:概率论与数理统计填空题5.设随机变量Xij(i,j=1,2,…,n;n≥2)独立同分布,EXij=2,则行列式的数学期望EY=_______.正确答案:0解析:由n阶行列式的定义知Y=,p1,…,pn为(1,…,n)的排列,τ(p1p2…pn)为排列p1p2…pn的逆序数.而Xij(i,j=1,2,…,n)独立同分布且EXij=2,故知识模块:概率论与数理统计6.设随机变量X在区间[-1,2]上服从均匀分布,随机变量则方差DY=_______.正确答案:解析:由题意,X的概率密度为:则P(X>0)=∫0+∞f(χ)dχ=P(X <0)=∫-∞0=,而P(X=0)=0 故EY=1.P(X>0)+0.P(X=0)+(-1)P(x <0)=E(Y2)=12.P(X>0)+02.P(X=0)+(-1)2P(X<0)==1 ∴DY=E(Y)2-(EY)21-知识模块:概率论与数理统计7.设随机变量X和Y的联合概率分布为则X2和Y2的协方差cov(X2,Y2)=_______.正确答案:-0.02解析:E(X2Y2)=02×(-1)2×0.07+02×02×0.18+02×12×0.15+12×(-1)2×0.08+12×02×0.32+12×12×0.20=0.28 而关于X的边缘分布律为:关于Y的边缘分布律为:∴EX2=02×0.4+12×0.6=0.6,EY2=(-1)2×0.15+02×0.5+12×0.35=0.5 故cov(X2,Y2)=E(X2Y2)-EX2.EY2=0.28-0.6×0.5=-0.02.知识模块:概率论与数理统计8.设随机变量X和Y的相关系数为0.9,若Z=X-0.4,则Y与Z的相关系数为_______.正确答案:0.9解析:因为D(Z)=D(X-0.4)=DX,且cov(Y,Z)=cov(Y,X-0.4)=cov(Y,X)=cov(X,Y) 故ρ(Y,Z)==ρ(X,Y)=0.9.知识模块:概率论与数理统计9.设随机变量X服从参数为λ的指数分布,则P{X>}=_______.正确答案:解析:由题意,DX=,而X的概率密度为故=e-1.知识模块:概率论与数理统计10.设随机变量服从参数为1的泊松分布,则P{X=EX2}=_______.正确答案:解析:由EX2=DX+(EX)2=1+12=2,故P{X=EX2}=P{X=2}=知识模块:概率论与数理统计11.设二维随机变量(X,Y)服从正态分布N(μ,μ;σ2,σ2;0),则E(XY2)=_______.正确答案:μ3+μσ2解析:由题意知X与Y独立同分布,且X~N(μ,σ2),解:由题意知X与Y独立同分布,且X~N(μ,σ2),故EX=μ,E(Y2)=DY+(EY)2=σ2+μ2 ∴E(XY2)=EX.E(Y2)=μ(σ2+μ2)=μ3+μσ2 知识模块:概率论与数理统计12.设随机变量X服从标准正态分布N(0,1),则E(Xe2X)=_______.正确答案:2e2解析:E(Xe2X)=而-χ2+2χ=-(χ2-4χ+4-4)=-(χ-2)2+2 ∴E(Xe2X)==2e2 知识模块:概率论与数理统计13.设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY-Y<0}=_______.正确答案:解析:由题意可知X~N(1,1),Y~N(0,1),且X与Y独立.可得X-1~N(0,1),于是P(Y>0)=P(Y<0)=,P(X-1>0)=P(X-1<0)=,可得P(XY -Y<0)=P{Y(X-1)<0}=P{Y>0,X-1<0}+P{Y<0,X-1>0} =P(Y >0)P(X-1<0)+P(Y<0)P(X-1>0) =知识模块:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。

考研数学三(线性代数)历年真题试卷汇编4(题后含答案及解析)

考研数学三(线性代数)历年真题试卷汇编4(题后含答案及解析)

考研数学三(线性代数)历年真题试卷汇编4(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(99年)设n阶矩阵A与B相似,E为n阶单位矩阵,则【】A.λE-A=λE-B.B.A与B有相同的特征值和特征向量.C.A和B都相似于一个对角矩阵.D.对任意常数t,tE-A与tE-B相似正确答案:D解析:由已知条件,存在可逆矩阵P,使得P-1AP=B 所以P-1(tE -A)P=tE-P-1AP=tE-B 这说明tE-A与tE-B相似,故D正确.知识模块:线性代数2.(02年)设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是【】A.P-1αB.PTαC.PαD.(P-1)Tα正确答案:B解析:由条件有AT=A,Aα=λα,故有(P-1AP)T(PTα)=PTA(PT)-1PTα=PTAα=PTλα=λ(PTα) 因为PTa≠0(否则PTα=0,两端左乘(PT)-1,得α=0,这与特征向量必为非零向量矛盾),故由特征值与特征向量的定义,即知非零向量PTα是方阵(PTAP)T的属于特征值λ的特征向量.因此,B正确.知识模块:线性代数3.(05年)设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是【】A.λ1=0B.λ2=0C.λ1≠0D.λ2≠0正确答案:D解析:由条件知α1,α2线性无关.向量组α1,A(α1+α2),即向量组α1,λ1α1+λ2α2,显然等价于向量组α1,λ2α2,当λ2=0时,α1,λ2α2线性相关,当λ2≠0时,α1,λ2α2线性无关,故向量组α1,A(α1+α2)线性无关向量组α1,λ2α2线性无关≠0,只有选项D正确.知识模块:线性代数4.(10年)设A为4阶实对称矩阵,且A2+A=O.若A的秩为3,则A 相似于【】A.B.C.D.正确答案:D解析:设A按列分块为A=[α1 α2 α3 α4],由r(A)=3,知A的列向量组的极大无关组含3个向量,不妨设α1,α2,α3是A的列向量组的极大无关组.由于A2=-A,即A[α1 α2 α3 α4]=-[α1 α2 α3 α4],即[Aα1 Aα2 Aα3 Aα4]=[-α1-α2-α3-α4],得Aαj=-αj,j=2,3,4.由此可知-1是A的特征值值且α1,α2,α3为对应的3个线性无关的特征向量,故-1至少是A的3重特征值.而r(A)=3<4,知0也是A的一个特征值.于是知A的全部特征值为:-1,-1,-1,0,且每个特征值对应的线性无关特征向量个数正好等于该特征值的重数,故A相似于对角矩阵D =diag(-1,-1,-1,0),故选项D正确.知识模块:线性代数5.(13年)矩阵相似的充分必要条件为【】A.a=0,b=2.B.a=0,b为任意常数.C.a=2,b=0.D.a=2,b为任意常数.正确答案:B解析:B为对角矩阵,B的特征值为其主对角线元素2,6,0.若A与B相似,则由相似矩阵有相同的特征值,知2为A的一个特征值,从而有由此得a=0.当a=0时,矩阵A的特征多项式为由此得A的全部特征值为2,b,0.以下可分两种情形:若b为任意实数,则A为实对称矩阵,由于实对称矩阵必相似于对角矩阵,且对角矩阵的主对角线元素为该实对称矩阵的全部特征值,所以此时A必相似于B.综上可知,A与B相似的充分必要条件为a=0,b为任意常数.所以只有选项B正确.知识模块:线性代数6.(16年)设A,B是可逆矩阵,且A与B相似,则下列结论错误的是【】A.AT与BT相似.B.A-1与B-1相似.C.A+AT与B+BT相似.D.A+A-1与B+B-1相似.正确答案:C解析:由已知条件知,存在可逆矩阵P,使得P-1AP=B……(1).由(1)两端取转置,得PTAT(PT)-1=BT,可见AT与BT相似,因此选项A正确;由(1)两端取逆矩阵,得P-1A-1P=B-1……(2),可见A-1与B-1相似,因此选项B 正确;将(1)与(2)相加,得P-1(A+A-1)P=B+B-1,可见A+A-1与B+B-1相似,因此选项D正确.故只有选项C错误.知识模块:线性代数7.(07年)设矩阵,则A与B 【】A.合同,且相似.B.合同,但不相似.C.不合同,但相似.D.既不合同,也不相似.正确答案:B解析:由A的特征方程得A的全部特征值为λ1=λ2=3,λ3=0,由此知A不相似于对角矩阵B(因为A的相似对角矩阵的主对角线元素必是A的全部特征值3,3,0),但由A的特征值知3元二次型f(χ1,χ2,χ3)=χTAχ的秩及正惯性指数均为(二次型f=χTAχ经适当的正交变换可化成标准形f=3y12+3y22,再经可逆线性变换可化成规范形f=z12+z22,而f的矩阵A与f 的规范形的矩阵B=diag(1,1,0)是合同的).知识模块:线性代数8.(08年)设A=则在实数域上与A合同的矩阵为【】A.B.C.D.正确答案:D解析:记(D)中的矩阵为D,则由知A与D有相同的特征值3与-1,它们又都是实对称矩阵,因此存在正交矩阵P与Q,使PTAP==QTDQ,QPTAPQT=D,或(PQT)A(PQT)=D,其中PQT可逆,所以A与D合同.知识模块:线性代数9.(15年)设二次型f(χ1,χ2,χ3)在正交变换χ=Py下的标准形为2y12+y22-y32,其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(χ1,χ2,χ3)在正交变换χ=Qy,下的标准形为【】A.2y12-y22+y32.B.2y12+y22-y32.C.2y12-y22-y32.D.2y12+y22+y32.正确答案:A解析:设二次型的矩阵为A,则由题意知矩阵P的列向量e1,e2,e3是矩阵A的标准正交的特征向量.对应的特征值依次是2,1,-1.即有Ae1=2e1,Ae2=2e2,Ae3=2e3 从而有AQ=a(e1,-e3,e2)=(Ae1,-Ae3,Ae2)=(2e1,-(-e3),e2) =(e1,-e3,e2) 矩阵Q的列向量e1,-e3,e2仍是A的标准正交的特征向量,对应的特征值依次是2,-1,1.矩阵Q是正交矩阵,有Q-1=QT,上式两端左乘Q-1,得Q-1AQ=QTAQ=从而知厂在正交变换χ=Py下的标准形为f=2y12-y22+y32.于是选A.知识模块:线性代数10.(16年)设二次型f(χ1,χ2,χ3)=a(χ12+χ22+χ32)+2χ1χ2+2χ2χ3+2χ1χ3的正、负惯性指数分别为1,2,则【】A.a>1B.a<-2C.-2<a<1D.a=1或a=-2正确答案:C解析:先来求二次型的矩阵A的特征值,由得A的全部特征值为λ1=λ2=a-1,λ3=a+2,由题设条件知有两个特征值小于零,有一个特征值大于零,所以a-1<0<a+2,由此得-2<a<1,故只有选项C正确.知识模块:线性代数填空题11.(04年)二次型f(χ1,χ2,χ3)=(χ1+χ2)2+(χ2-χ3)2+(χ3+χ1)2的秩为_______.正确答案:2解析:f的矩阵A=的秩为2,所以f的秩为2.知识模块:线性代数12.(11年)设二次型f(χ1,χ2,χ3)=χTAχ的秩为1,A的各行元素之和为3,则f在正交变换χ=Qy下的标准形为_______.正确答案:3y12解析:由f的秩为1,知f的矩阵A只有一个不为零的特征值,A的另外两个特征值均为零.再由A的各行元素之和都等于3,即,知A的全部特征值为λ1=3,λ2=λ3=0.于是f经正交变换化成的标准形为f=λ1y12+λ2y22+λ3y32=3y12.知识模块:线性代数13.(14年)设二次型f(χ1,χ2,χ3)=χ12-χ22+2aχ1χ3+4χ2χ3的负惯性指数为1,则a的取值范围是_______.正确答案:[-2,2]解析:对f配方,可得f(χ1+aχ3)2-(χ2-2χ3)2+(4-a2)χ32 于是f可经可逆线性变换化成标准形f=z12-z22+(4-a2)z32 若4-a2<0,则f的负惯性指数为2,不合题意;若4-a2≥0,则f的负惯性指数为1.因此,当且仅当4-a2≥0,即|a|≤2时,f的负惯性指数为1.知识模块:线性代数14.(07年)设矩阵A=,则A3的秩为_______.正确答案:1解析:利用矩阵乘法,容易计算得由于A3中非零子式的最高阶数为1,故由矩阵的秩的定义,即知r(A3)=1.知识模块:线性代数15.(09年)设α=(1,1,1)T,β=(1,0,k)T.若矩阵αβT相似于,则k=_______.正确答案:2解析:矩阵A=αβT=由A的特征方程得A的特征值为λ1=λ2=0,λ3=k+1.又由A与对角矩阵相似,知A的特征值为3,0,0.比较得k+1=3,所以k=2.知识模块:线性代数16.(97年)若二次型f(χ1,χ2,χ3)=2χ12+χ22+χ32+2χ1χ2+t χ2χ3是正定的,则t的取值范围是_______.正确答案:解析:f的矩阵为因为,f正定甘A的顺序主子式全为正,显然A的1阶和2阶顺序主子式都大于零,故f正定知识模块:线性代数解答题解答应写出文字说明、证明过程或演算步骤。

考研数学三(概率论与数理统计)历年真题试卷汇编13(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编13(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编13(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设随机变量X~N(0,1),y~N(1,4),且相关系数ρXY=1,则A.P{Y=-2X-1}=1B.P{Y=2X-1}=1C.P{Y=-2X+1}=1D.P{Y=2X+1}=1正确答案:D解析:如果选项A或C成立,则应ρXY=1,矛盾;如果选项B成立,那么EY=2EX-1=-1,与本题中EY=1矛盾.只有选项D成立时,ρXY=1,EY=2EX+1=1,DY=4DX=4,符合题意,故选D.知识模块:概率论与数理统计2.设随机变量X与Y相互独立,且X~N(1,2),Y~N(1,4),则D(XY)=A.6.B.8.C.14.D.15.正确答案:C解析:由题意知:EX=1,DX=2,EY=1,DY=4,于是E(X2)=DX+(EX)2=2+12=3,E(Y2)=DY+(EY)2=4+12=5,注意到X2与y2是独立的,于是D(XY)=E(XY)2-E[(XY)]2 =E(X2Y2)-[EX.EY]2 =E(X2).EY2-(EX)2(EY)2 =3×5-12×12=14 故选C.知识模块:概率论与数理统计3.设”个随机变量X1,X2,…,Xn独立同分布,DX1=σ2,,则A.S是σ的无偏估计量.B.S是σ的最大似然估计量.C.S是σ的相合估计量(即一致估计量).D.S与相互独立.正确答案:C 涉及知识点:概率论与数理统计4.设一批零件的长度服从正态分布N(μ,σ2),其中μ,σ2均未知.现从中随机抽取16个零件,测得样本均值=20(cm),样本标准差s=1(cm),则μ的置信度为0.90的置信区间是A.(20-t0.05(16),20+t0.05(16))B.(20-t0.1(16),20+t0.1(16))C.(20-t0.05(15),20+t0.05(15))D.(20-t0.1(15),20+t0.1(15))正确答案:C 涉及知识点:概率论与数理统计填空题5.设随机变量X的概率分布为P{X=-2}=,P{X=1}=a,P(X=3}=b.若EX=0,则DX=_______.正确答案:解析:由题知:+a+b=1,0=EX=(-2)×+1×a+3×b=a+3b-1 联立得a=b=所以DX=E(X2)-(EX)2=E(X2)=(-2)2×.知识模块:概率论与数理统计6.设X为随机变量且EX=μ,DX=σ2.则由切比雪夫不等式,有P{|X-μ|≥3σ}≤_______.正确答案:解析:由题意及切比雪夫不等式,得:P{|X-μ|≥3σ}≤.知识模块:概率论与数理统计7.在天平上重复称量一重为a的物品.假设各次称量结果相互独立且服从正态分布N(a,0,2*).若以表示n次称量结果的算术平均值,则为使n的最小值应不小于自然数_______.P{|-a|<0.1}≥0.95正确答案:16解析:设第i次称量结果为Xi,i=1,2,…,n.由题意:,且X1,…,Xn独立同分布,X1~N(a,0.22).由题意得2Ф()-1≥0.95,∴Ф()≥0.075 查表得≥1.96,∴n≥4×(1.96)2=15.36 故n的最小值应不小于自然数16.知识模块:概率论与数理统计8.设随机变量X和Y的数学期望分别为一2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式有P{|X+Y|≥6}≤_______.正确答案:解析:若记ξ=X+Y,则Eξ=EX+EY=-2+2=0,而Dξ=D(X ×Y)=DX+DY+2cov(X,Y)=DX+DY+2.ρ(χ,y) =1+4+2×(-0.5).=3 其中ρ(χ,y) 知识模块:概率论与数理统计9.设总体X的方差为1,根据来自X的容量为100的简单随机样本,测得样本均值为5.则X的数学期望的置信度近似等于0.95的置信区间为________.正确答案:(4.804,5.196) 涉及知识点:概率论与数理统计10.设由来自正恣总体X~N(μ,0.92)容量为9的简单随机样本,得样本均值=5.则未知参数μ的置信度为0.95的置信区间是_______.正确答案:(4.412,5.588) 涉及知识点:概率论与数理统计11.设总体X的概率密度为而X1,X2,…,Xn是来自总体X的简单随机样本,则未知参数θ的矩估计量为_______.正确答案:Xi-1-1解析:知识模块:概率论与数理统计12.设总体X的概率密度为f(χ)=e-|χ|(-∞<χ<+∞),X1,X2,…,Xn为总体X的简单随机样本,其样本方差为S2,则ES2_______.正确答案:2解析:EX=∫-∞+∞χf(χ)dχ=∫-∞+∞χ.e|-χ|dχ=0 DX =E(X2)-(EX)2=E(X2)=∫-∞+∞χ2f(χ)dχ=∫-∞+∞χ2.e|-χ|d χ=∫0+∞χ2e-χdχ=2 而E(S2)=DX,故ES2=2.知识模块:概率论与数理统计13.设X1,…,Xn是来自正态总体N(μ,σ2)的简单随机样本,其中参数μ,σ2未知.记则假设H0:μ=0的t检验使用的统计量t=_______.正确答案:解析:由题意可得:又有~χ2(n-1),且Q2与相互独立,故由t分布的构成得:当H0成立(即μ=0)时,成舍~t(n-1).故填知识模块:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。

考研数学三(多元函数微积分学)历年真题试卷汇编1(题后含答案及解析)

考研数学三(多元函数微积分学)历年真题试卷汇编1(题后含答案及解析)

考研数学三(多元函数微积分学)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2008年] 设则( ).A.fx’(0,0),fy’(0,0)都存在B.fx’(0,0)不存在,fy’(0,0)存在C.fx’(0,0)存在,fy’(0,0)不存在D.fx’(0,0),fy’(0,o)都不存在正确答案:B解析:因而则极限不存在,故偏导数fx’(0,0)不存在.而因而偏导数fy’(0,0)存在.仅(B)入选.知识模块:多元函数微积分学2.[2003年] 设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是( ).A.f(x0,y)在y=y0处的导数大于零B.f(x0,y)在y=y0处的导数等于零C.f(x0,y)在y=y0处的导数小于零D.f(x0,y)在y=y0处的导数不存在正确答案:B解析:解一因f(x,y)在点(x0,y0)处可微,故f(x,y)在点(x0,y0)处两个偏导数存在,因而一元函数f(x0,y)在y=y0处的导数也存在.又因f(x,y)在点(x0,y0)处取得极小值,故f(x0,y0)在y=y0处的一阶(偏)导数等于零.仅(B)入选.解二由函数f(x,y)在点(x0,y0)处可微知,f(x.y)在点(x0,y0)处的两个偏导数存在.又由二元函数极值的必要条件即得f(x,y)在点(x0,y0)处的两个偏导数都等于零.因而有知识模块:多元函数微积分学3.[2016年] 已知函数则( ).A.fx’-fy’=0B.fx’+fy’=0C.fx’-fy’=fD.fx’+fy’=f正确答案:D解析:则仅(D)入选.知识模块:多元函数微积分学4.[2017年] 二元函数z=xy(3-x-y)的极值点为( ).A.(0,0)B.(0,3)C.(3,0)D.(1,1)正确答案:D解析:zy’=y(3-x-y)-xy=y(3-2x-y),zy’=x(3-x-y)-xy=x(3-x-2y),又zxx’=-2y,zxy=3-2x-2y,zyy’=-2x,将选项的值代入可知,只有(D)符合要求,即A=zxx”(1,1)=-2,B=zxy”(1,1)=-1,C=zyy”(1,1)=-2.满足B2-AC=-3<0,且A=-2<0,故点(1,1)为极大值点.仅(D)入选.知识模块:多元函数微积分学5.[2006年] 设f(x,y)与φ(z,y)均为可微函数,且φy’(x,y)≠0,已知(x0,y0)是f(x,y)在约束条件φ(x,Y)=0下的一个极值点,下列选项正确的是( ).A.若fx’(x0,y0)=0,则fy’(x0,y0)=0B.若fx’(x0,y0)=0,则f’y(x0,y0)≠0C.若fx’(x0,y0)≠0,则fy’(x0,y0)=0D.若fx’(x0,y0)≠0,则f’y(x0,y0)≠0正确答案:D解析:解一由拉格朗日乘数法知,若(x0,y0)是f(x,y)在条件φ(x,y)=0下的极值点,则必有fx’(x0,y0)+λφx’(x0,y0)=0,①fx’(x0,y0)+λφx’(x0,y0)=0.②若fx’(x0,y0)≠0,由式①知λ≠0.又由题设有φy’(x0,y0)≠0,再由式②知fy’(x0,y0)≠0.仅(D)入选.解二构造拉格朗日函数F(x,y,λ)=f(x,y)+λφ(x,y),并记对应于极值点(x0,y0)处的参数的值为λ0,则由式③与式④消去λ0得到fx’(x0,y0)/φx’(0,y0)=一λ0=f’y(x0,y0)/φ’y(x0,y0).即f’x(x0,y0)φ’y(x0,y0)一fy’(x0,y0)φx’(x0,y0)=0.整理得若fx’(x0,y0)≠0,则由式③知,φx’(x0,y0)≠0.因而fy’(x0,y0)≠0.仅(D)入选.解三由题设φy’(x,y)≠0知,φ(x,y)=0确定隐函数y=y(x).将其代入f(x,y)中得到f(x,y(x)).此为一元复合函数.在φ(x,y)=0两边对x求导,得到因f(x,y(x))在x=x0处取得极值,由其必要条件得到f’x+fy’y’=fx’+fy’(一φx’/φy’)=0.因而当fx’(x0,y0)≠0时,必有fy’(x0,y0)≠0.仅(D)入选.知识模块:多元函数微积分学填空题6.[2012年] 设连续函数z=f(x,y)满足则dz|(0,1)=__________.正确答案:2dx-dy解析:用函数f(x,y)在(x0,y0)处的微分定义:与所给极限比较易知:z=f(x,y)在点(0,1)处可微,且fx’(0,1)=2,fy’(0,1)=-1,f(0,1)=1,故dz|(0,1)=fx’(0,1)dx+fy’(0,1)dy=2dx-dy.知识模块:多元函数微积分学7.[2009年] 设z=(x+ey)x,则正确答案:2ln2+1解析:解一为简化计算,先将y=0代入z中得到z(x,0)=(x+1)x,z为一元函数.将x=1代入上式,得到解二考虑到z(x,0)=(x+1)x为幂指函数,先取对数再求导数:lnz=xln(x+1).在其两边对x求导,得到则知识模块:多元函数微积分学8.[2007年] 设f(u,v)是二元可微函数,则正确答案:解析:解一设u=y/x,v=x/y.为方便计,下面用“树形图”表示复合层次与过程.由式①一式②得到解二令f1’,f2’分别表示z=f(y/x,x /y)对第1个和第2个中间变量y/x、x/y求导数,则知识模块:多元函数微积分学9.[2004年] 函数f(u,v)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则正确答案:解析:令u=xg(y),v=y,由此解出于是知识模块:多元函数微积分学10.[2005年] 设二元函数z=xex+y+(x+1)ln(1+y),则dz|(1,0)=_________.正确答案:2edx+(e+2)dy解析:dz=d[xex+y+(x+1)ln(1+y)]=d(xex+y)+d[(x+1)ln(1+y)] =ex+ydx+xex+y(dx+dy)+ln(1+y)dx+[(x+1)/(1+y)]dy.①将x=1,y=0代入上式(其中dz,dx,dy不变),得到dz|(1,0)=edx+e(dx+dy)+2dy=2edx+(e+2)dy.解二利用全微分公式求之.为此,先求出偏导数故解三用定义简化法求之.固定一个变量转化为另一个变量的一元函数求导.由z(x,0)=xex得到由z(1,y)=ey+2ln(1+y)得到故知识模块:多元函数微积分学11.[2006年] 设函数f(u)可微,且f’(0)=1/2,则z=f(4x2-y2)在点(1,2)处的全微分dz|1,2=___________.正确答案:4dx一2dy解析:解一dz=df(4x2-y2)=f’(u)du=f’(u)d(4x2-y2)=f’(u)(8xdx-2ydy),其中u=4x2-y2.于是dz|1,2=f’(0)(8dx-4dy)=4dx-2dy.解二利用复合函数求导公式和定义简化法求之.由z=f(4x2-y2)得到解三由z=f(4x2-y2)得到于是故dz|1,2=4dx-2dy.知识模块:多元函数微积分学12.[2011年] 设函数则dz|1,1=____________.正确答案:(1+2ln2)(dx—dy)解析:解一所给函数为幂指函数,先在所给方程两边取对数,然后分别对x,y求偏导:由得到则解二先用定义简化法求出然后代入全微分公式求解.故dz|1,1=2(ln2+1/2)dx-2(ln2+1/2)dy=(1+2ln2)(dx-dy).知识模块:多元函数微积分学13.[2015年] 若函数z=z(x,y)由方程ex+2y+3z+xyz=1确定,则dz|0,0=_______________.正确答案:解析:在ex+2y+3z+xyz=1①两边分别对x,y求偏导得到同法可得将x=0,y=0代入式①易求得z=0,代入式②、式③分别得到则知识模块:多元函数微积分学14.[2014年] 二次积分正确答案:解析:注意到不易求出,需先交换积分次序,由积分区域的表达式D={(x,y)|y≤x≤1,0≤y≤1)-{(x,y)|0≤y≤x,0≤x≤1}及交换积分次序得到故知识模块:多元函数微积分学解答题解答应写出文字说明、证明过程或演算步骤。

考研数学三真题及答案

考研数学三真题及答案

6、设二次型 f x , x , x 在正交变换 x Py 下的标准形为 2 y2 y2 y2 ,其中 P e , e , e ,
133
1
2
3
123
若 Q e1, e3, e2 ,则 f x1, x3 , x3 在正交变换 x Qy 下的标准形为( )
(n +1)! nn (n+1)
= limç
n
÷n = 1 <1 ,所以(D)是收敛的。
n (n +1) n! n ç1+ n÷ e
1 1 ç 1÷ 1
1 ç 1÷
对于(B)选项, n1
n
ln
1

n


ln
ç1+
n
÷
,所以
n
n ln ç1+ n÷
11 ,根据 p 级数的
nn

5
f 1 2
11. 若函数 z z(x, y) 由方程 ex2 y3z xyz 1确定,则 dz (0,0)
【答案】 1 dx 2dy
3
zz 【解析】这道题目主要考查的是隐函数求偏导数。对于这道题目求全微分,分别求出 ,
xy
ex2
y3z
1
3
z x
【答案】2
【解析】对于这道题目主要是考查变上限积分求导数。
(1)
1
f (t)dt 1
0
x2
x2
(x) 0 xf (t)dt x0 f (t)dt
(x) x2 f (t)dt xf x 2 2x 0
(1)

1
0f

2023年考研数学真题卷及答案(数学三)

2023年考研数学真题卷及答案(数学三)

2023年全国硕士研究生招生考试(数学三)试题及答案解析1.已知函数,ln sin f x y y x y ,则A. 0,1fx 不存在,0,1f y 存在.B. 0,1fx 存在,0,1f y 不存在.C. 0,1fx ,0,1f y均存在.D. 0,1fx ,0,1f y均不存在.x 0,2.函数f (x )(x 1)cos x ,x 0的一个原函数为 x ),x 0,A.F (x )(x 1)cos x sin x ,x 0. x ) 1,x 0,B.F (x )(x 1)cos x sin x ,x 0. x ),x 0,C.F (x )(x 1)sin x cos x ,x 0. x ) 1,x 0,D.F (x )(x 1)sin x cos x ,x 0.上有界,则B.a 0,b 0.D.a 0,b 0.3.若微分方程y ay by 0的解在 ,A.a 0,b 0.C.a 0,b 0.4.已知a n b nn 1n 1,2, ,若级数n 1an与n 1bn均收敛,则“n 1an绝对收敛”是“bn绝B.充分不必要条件.D.既不充分也不必要条件.对收敛”的A.充分必要条件.C.必要不充分条件.5.设,A B 为n 阶可逆矩阵,E 为n 阶单位矩阵, M 为矩阵M 的伴随矩阵,则=A E OB A..A B B A O B A B..B A A B O A B C..B A B A OA B D..A B A B OB A 6二次型f x 1,x 2,x 3 x 1 x 22x 1 x 324 x 2 x 32的规范形为A.y 12y 22B.y 12y 22C.y 12y 224y 32D.y 12y 22y 322311 12 2 15 09 17.已知向量α1 ,α2 ,β1 ,β2 ,若γ既可由α1,α2线性表示,也可由β1,β2线性表示,则γ 34 3A.k,k R50 3 B.k1 ,k R1 2 1 C.k,k R1 D.k 58,k R8.设随机变量X 服从参数为1的泊松分布,则EA.1eB.12C.X EX2eD.19.设X 1,X 2, ,X n 为来自总体N1,2的简单随机样本,Y 1,Y 2, ,Ym为来自总体N 2,2 2 的简单随机样本,且两样本相互独立,记111111n m n m i i n m n m i 1i 1X X i ,Y Y i ,S 12 X i X 2,S 22Y i Y1 1 2,则A. 2122,S F n m S B. 21221,1S F n m S C. 21222,S F n m S D. 212221,1S F n m S 10.设X 1,X 2为来自总体N,2的简单随机样本,其中 0 是未知参数.记a X 1 X 2,若E,则aA.2B.2二、填空题1111.l x x x i mx 22 x sin cos _______.2πx d y y d x x y 12.已知函数f (x ,y )满足d f (x ,y ),f 1,1 24则f .!=2nx 2nn 013. .14.设某公司在t 时刻的资产为f (t ),从0时刻到t 时刻的平均资产等于f (t )tt ,假设f (t )连续且f (0)=0,则f (t )=1231230,20x ax x x ax 15.已知线性方程组 x ax 1 bx 2 2,有解,其中a ,b 为常数,若a110a211a 4,则1a 112aa b 0.16.设随机变量X 与Y 相互独立,且X B 1,p ,Y B 2,p ,p 0,1 ,则X +Y 与X Y .的相关系数为三、解答题17.已知可导函数y =y (x )满足ae x y 2 y ln(1 x )cos y b 0,且y (0) 0,y '(0) 0.(1)求a ,b 的值;(2)判断x 0是否为y (x )的极值点.18.已知平面区域D ={(x,y )|0 y x 1}.(1)求D 的面积;(2)求D 绕x 轴旋转所成旋转体的体积.D1|d x d y .19.已知平面区域D {(x ,y )|(x 1)2 y 2 1}.计算二重积分 |20.(12分)设函数f (x )在[-a ,a ]上具有2阶连续导数,证明:1a(1)若f (0)=0,则存在 a ,a ,使得f ''( )2[f (a ) f ( a )];(2)若f(x )在(-a ,a )内取得极值,则存在 a ,a 使得1.2f ''a2f (a ) f ( a )12x 1x 2x 3x 1x 2x 3x21.设矩阵A 满足对任意x 1,x 2,x 3均有A2 . x x3 x 2 x 3(1)求A ;(2)求可逆矩阵P 与对角矩阵 ,使得P 1AP Λ.xx22.设随机变量变量X 的概率密度为f x 1 e e 2, x ,令Y e x.(1)求X 的分布函数;(2)求Y 的概率密度;(3)Y的期望是否存在?2023年全国硕士研究生入学统一考试数学三答案一、选择题1.A2.D3.C4.A5.D6.B7.D8.C9.D10.A空题11、二、填23π12、113、e x2+2e −x14、f (t )=2(1-t )-2e t 15、816、p (p-1)将y (0) 0代入ae x2yy y1 1xcos y ln(1 x )(sin y )y 0得a 0 1 0,所以a 1b 1 1xcos y ln(1 x )sin y y 0(2)由e x2yy y1两边对x 求导,得:(1)将(0,0)代入得a b 01e x 2 y 22yy y(1 1x )2cos y 11xsin ysin y y ln(1 x ) 2sin yy cos y y 01 x代入,得1 y (0) 1 0,y (0) 2 0,x 0为极大值.17【解析】2141tan ttan t xsec t (1)24se tan c tsec 2tdt 4t dt2csc tdt1)21(2)11 1x 2 x 2dx 112 1 1x 2 x dx 4)dx (1 18【解析】D 1 {(x ,y ∣)x 2 y 2 1,(x 1)2 y 2 1 )x 2 y 2 1,(x 1)2 y 2 1D 2 (x ,y∣D 1D 2d x d y1 1d x d y原式=161310829D 12cos2d 1 1 r r d r 1πd x d y 2 6d 1 r r d r 2其中 19【解析】π2π022259182D 2DD 1D 1d x d y 2cos1 1 1 r 1 r d r1 π d x d yd x d yd x d y d所以4439π原式=.1 x 22f【解析】(1)f (x ) f (0) f (0)x 1 22f 112f a 2,f ( a ) f (0)( a ) a 2,其中 1 a ,0 ,则f (a ) f(0)a2 0,a .12 1 2 f ( a ) f (a )ff a 212 1 2 ff 2f (a )a f ( a ) f , 1, 2 a ,a ,由介值定理可知平均值 即证(2)x 0 0设f (x )在x =x 0处取得极值即x 0 ( a a ),f22x 0( )ff (x ) f x 0 f x x 0 x x 020代入x a ,x a21f f ( a ) f x 0 a x 02(1), 1 a ,x 02n 1f f (a ) f x 0a x 02(2), 2 x 0,a(2)-(1)得222100()()22f f f a f a a x a x222100|()()|22f f f a f a a x a x2200()()22f f a x a x 2200()2f a x a x 220()222f a x220()f a x2()2f a ,12 ()max f f f 其中,,a a 21()|()()|2f f a f a a. 21.【解析】12123311111011x x x xx x2(1)由题可知,A 11.2011 111A (2)|A E | (2 )(2)( 1) 01232,1,2A 中1 A 中对应的线性无关特征向量1(4,3,1).T 2 A 中对应的线性无关特征向量21,0,12T3 A 中对应的线性无关特征向量3(0,1,1)123,,p 1212P AP22.【解析】xf (t )dt ( x )(1)F (x ) txt e 2dte121 1xt d e te1t x1 e 11 1e x(2) 当0y 时22111()(ln )(1)(1)Y X y f y f y y y y y 210(1)()0 Y y y f y其它 (3) 20d (1)EY y y y,2(1)y y 1y ,所以期望不存在.。

2024 考研数学(三)真题试卷及参考答案

2024 考研数学(三)真题试卷及参考答案

试卷及解2024考研数学(三)真题析一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.设函数21()lim1nn xf x nx →∞+=+,则()f x A.在1x =,1x =-处都连续.B.在1x =处连续,在1x =-处不连续.C.在1x =,1x =-处都不连续.D.在1x =处不连续,在1x =-处连续.1.【答案】D【解析】当21 1lim11nn xx x nx →∞+<=++时,,当211lim01nn xx nx →∞+>=+时,,当21,lim01n x n →∞==+时,当01lim01n x n→∞=-=+时,,故()1,11,0,x x f x +-<<⎧=⎨⎩其他.故在1x =-时,连续;1x =时不连续.选D.2.设sin d a k aI x x π+=⎰,k 为整数,则I 的值A.只与a 有关B.只与k 有关C.与,a k 均有关D.与,a k 均无关2.【答案】B 【解析】π|sin |d a k a I x x+=⎰ππ0|sin |d sin d 2.k x x k x x k ===⎰⎰选B.3.设(,)f x y 是连续函数,则12sin 6d (,)d xx f x y y ππ=⎰⎰A.1arcsin 126d (,)d .yy f x y x π⎰⎰B.121arcsin 2d (,)d .yy f x y x π⎰⎰C.1arcsin 206d (,)d .yy f x y x π⎰⎰D.122arcsin d (,)d .yy f x y x π⎰⎰3.【答案】A【解析】11arcsin 21sin 266d (,)d d (,)d .yxx f x y y y f x y x πππ==⎰⎰⎰⎰选A.4.幂级数nnn a x∞=∑的和函数为ln(2)x +,则20nn na∞==∑A.16-B.13-C.16D.134.【答案】A【解析】()112ln 2ln 1ln 2ln 2(1)2nn n x x x n ∞-=⎛⎫⎪⎛⎫⎝⎭+=++=+- ⎪⎝⎭∑23462222ln 222346x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭=+-+-+ ⎪⎝⎭224680246357320234111 2322242111 2221114182 .138361624nn naa a a a ∞==+++++⎛⎫=-+⋅--+ ⎪⋅⋅⎝⎭⎡⎤=-+++⎢⎥⎣⎦⎡⎤⎢⎥=-=-=-⨯=-⎢⎢⎥-⎣⋅⎦∑ 5.设二次型()T123,,f x x x =x Ax 在正交变换下可化成22212323y y y -+,则二次型f 的矩阵A 的行列式与迹分别为.6,2A --.6,2B -.6,2C -.6,2D 5.【答案】C【解析】()T123,,f x x x =x Ax 正交变换下化为22212323y y y -+⇒A 的特征值为1,2,3-()()()1236,tr 1232⇒=⋅-⋅=-=+-+=A A .6.设A 为3阶矩阵,100010101⎛⎫ ⎪= ⎪ ⎪⎝⎭,P 若T 2200020a c c b c c +⎛⎫⎪= ⎪ ⎪⎝⎭,P AP 则=AA.0000.00c a b ⎛⎫⎪⎪ ⎪⎝⎭ B.0000.00b c a ⎛⎫⎪⎪ ⎪⎝⎭C.0000.00a b c ⎛⎫⎪⎪ ⎪⎝⎭D.0000.00c b a ⎛⎫⎪⎪ ⎪⎝⎭6.【答案】C【解析】()3T 212010000, 010120101a c c b c c +⎛⎫⎛⎫⎪ ⎪==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭且AP B P E P 故()()()11112233T11T (1)(1)----⎡⎤==⎣⎦PA B P E B E 11131313131T3T131(1)(1)(1)(1)(1)(1)---⎡⎤==---⎣⎦E BE E E BE E 0 10120100100010001001000120101101a c c b c c -+⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎪= ⎪⎪⎪⎪ ⎪⎪⎪⎪--⎝⎭⎝⎭⎝⎭⎝⎭ 0001001000000010010002010110100 a b b c c c ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪⎪ ⎪== ⎪⎪⎪ ⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭.7.设矩阵131,2112ij a b b aM +⎛⎫⎪⎪= ⎪ ⎪⎝⎭A 表示A 的行j 列元素的余子式,若1||2=-A .且2122230M M M -+-=.则3.02A a a ==-或3.02B a a ==或1.12C b b ==-或1.12D b b =-=或7.【答案】B【解析】120101322211111222112121bba bbbba a a-+===A 1211(1)122a b +⎛⎫=-⋅- ⎪⎝⎭111(21)22b a ⎛⎫=-⋅--=-⎪⎝⎭11(21)22b a ⎛⎫⇒--=⎪⎝⎭12122b ab a ⇒--+=又2122232122230M M M A A A =-+-=++13131111111101111201a b a b a b a b +++====+-=,1b a ⇒=+代入(1)中,得11(1)2022a a a a ++--+=0a ⇒=或312ab =⇒=或52.8.设随机变量X 的概率密度为()()61,01,0,x x x f x ⎧-<<=⎨⎩其他,则X 的三阶中心矩()3E X EX -=A.132-B.0C.116D.128.【答案】B 【解析】1211116(1)d 6634122EX x x x ⎛⎫=-=⋅-=⨯= ⎪⎝⎭⎰3311321021211116(1)d 6d 022 22 x t E X x x x xt t t t --=⎛⎫⎛⎫⎛⎫⎛⎫-=--+⋅-⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎰⎰令.9.随机变量,X Y 相互独立,且~(0,2),~(1,1)X N Y N -,设{}{}122,21p P X Y p P X Y =>=->,则121A.2p p >>211B.2p p >>121C.2p p <<211D.2p p <<9.【答案】B【解析】(2)2011E X Y EX EY -=-=+=,(2)44219D X Y DX DY -=+=⨯+=,所以2~(1,9)X Y N -;(2)2022E X Y EX EY -=-=+=,(2)4246D X Y DX DY -=+=+=,所以2~(2,6)X Y N -;121011113333X Y p P ΦΦ---⎧⎫⎛⎫⎛⎫=>=--=⎨⎬ ⎪ ⎪⎩⎭⎝⎭⎝⎭21p P ΦΦ⎛⎛=>=--= ⎝⎝,所以2112p p >>,故选B.10.设随机变量,X Y 相互独立,且均服从参数为λ的指数分布,令Z X Y =-,则下列随机变量中与Z 同分布的是A.X Y + B.2X Y+C.2X D.X10.【答案】D【解析】X 与Y 的联合概率密度为2()e ,0,0(,)()()0,x y Y X x y f x y f x f y λλ-+⎧>>=⋅=⎨⎩其他设Z 的分布函数为()Z F z ,则{}{}()Z F z P Z z P X Y z=≤=-≤1当0z <时,()0Z F z =;2当0z ≥时,{}{}()20Z F z P z X Y z P X Y z =-≤-≤=≤-≤02e d e d y z y x yy x λλλλ+∞+--=⎰⎰.()()02202e e e d 2e d 2e e d 1e .y y y z y z y z y y yλλλλλλλλλλ+∞---++∞+∞----=-=-=-⎰⎰⎰所以()1Z E ,从而Z 与X 服从相同的分布,选D.二、填空题:11~16小题,每小题5分,共30分.11.当0x →时,()2221sin d 1cos xt tt t++⎰与k x 是同阶无穷小,则k =.11.【答案】3【解析】当0x →时,()22221sin ~1cos 2x xx x++,则()223201sin d ~1cos xt tt Ax t++⎰.从而3k =.12.4225d 34x x x +∞=+-⎰.12.【答案】1πln 328-【解析】()()42222255d d 3414x x x x x x +∞+∞=+--+⎰⎰222211d d 14x x x x +∞+∞=--+⎰⎰222111d d 114x x x x x +∞+∞⎛⎫=-- ⎪-++⎝⎭⎰⎰222111ln arctan 2122x x x +∞+∞⎛⎫-=- ⎪+⎝⎭111ππ1π0ln ln 32322428⎛⎫⎛⎫=---=- ⎪ ⎪⎝⎭⎝⎭.13.函数()324,2961224f x y x x y x y =--++的极值点是.13.【答案】()1,1【解析】23618120,24240,x y f x x f y ⎧'=-+=⎪⎨'=-+=⎪⎩解得(1,1) ,(2,1).1218xx A f x ''==-,0xy B f ''==,272yy C f y ''==-,代入(1,1)得24320,6AC B A -=>=-,故(1,1)是极大值点,(1,1)23f =.代入(2,1)得24320AC B -=-<,不是极值.14.某产品的价格函数是250.25,20,350.75,20Q Q p Q Q -≤⎧=⎨->⎩(p 为单价,单位:万元;Q 为产量,单位:件),总成本函数为215050.25C Q Q =++(万元),则经营该产品可获得的最大利润为(万元).14.【答案】50【解析】()()()22(250.25)15050.25,20,350.7515050.25,20.Q Q Q Q Q L PQ C Q Q Q Q Q ⎧--++≤⎪=-=⎨--++>⎪⎩整理得:220.5(20)50,20,(15)75,20.Q Q L Q Q ⎧--+≤=⎨--+>⎩所以20Q =时,50L =为最大利润.15.设A 为3阶矩阵,*A 为的A 伴随矩阵,E 为3阶单位矩阵,若(2)1,()2r r -==E A E +A ,则*A =.15.【答案】16【解析】() 132r <-=E A ,() 23r =<E +A ⇒A 有特征值2,1-.又()3222r λ-=-⇒=E A 有 2个线性无关的特征向量2λ⇒=至少有两重根.()311r λ-=⇒=-E +A 有1个线性无关特征向量1λ⇒=-至少有一重根.又A 为3阶⇒A 的特征值为22,1-,,故()*122214,||16n -=⋅⋅-=-===A A A A .16.设随机试验每次成功的概率为p ,现进行3次独立重复试验,在至少成功1次的条件下,3次试验全部成功的概率为413,则p =.16.【答案】23p =【解析】A :全成功,B :至少成功一次.()33()()4()()1(1)13P AB P A p P A B P B P B p ====--,331344(1)p p =--整理得(32)(3602)3p p p p -+=⇒=.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设平面有界区域D 位于第一象限由曲线1,33xy xy ==与直线1,3y x =3y x =围成,计算()1d d Dx y x y +-⎰⎰.17.【解】令yu xy v x==,,(1)x y ⎧=⎪⎨⎪=⎩(2)12x xuv J y y v uv∂∂∂∂==∂∂∂∂故3113331d 1d 2u v v⎛=+⋅ ⎝⎰⎰原式38ln 3=.18.设函数(,)z z x y =由方程2e ln(1)0xz y z +-+=确定,求22(0,0)22z z x y ⎛⎫∂∂+ ⎪∂∂⎝⎭.18.【解】将0y =代入得e xz =-,则22e xz x ∂=-∂,代()220,001z x x∂=⇒=-∂.将0x =代入得()21ln 1z y z+=+,得()222ln 11z yz zz y z y∂∂=++⋅∂+∂.代0,0,1x y z ===-得()0,0ln2zy ∂=∂.又22222122 211z z z y z z z z z y y z y z y y ⎡⎤⎛⎫∂∂⋅⎢⎥ ⎪+∂∂∂∂⎝⎭⎢=⋅+⋅+⋅⎢⎥∂+∂+∂∂⎢⎥⎣⎦,代0,0,1,ln2zx y z y∂===-=∂得()220,02ln2z y ∂=-∂.故原式为12ln2--.19.设0t >,平面有界区域D 由曲线-2e xy x =与直线x t =,2x t =及x 轴围成,D 的面积为()S t ,求()S t 的最大值.19.【解】()22ed txt S t x x -=⎰,()()42424e e e 4e t t t t S t t t t ---=-=-'则,42 4e e 0ln2.t t t ---=⇒=令()() 0ln20;ln20.t S t t S t <<'>><'当时,当时,故ln2t =时,()S t 取最大值,有()ln 4ln 4222ln 2ln 21113 ln2e d e ln2.221664x x x S x x x ---⎛⎫==-+=+ ⎪⎝⎭⎰20.设函数()f x 具有2阶导数,且()()()01, 1.f f f x ''''=≤证明:(1)当()0,1x ∈时,()()()()()1011;2x x f x f x f x ----≤(2)()()()1011d .212f f f x x +-≤⎰20.证明:(1)()12()(0)(0)2f f x f f x x ξ'''=++①()()22()(1)(1)1(1)2f f x f f x x ξ'''=+-+-②()1x x⋅-+⋅①②()()()()()12221()(0)(1)(1)(0)1(1)1(1)22f f f x f x f x f x x f x x x x x x ξξ''''''⇒=-++-+-+--+,21111()(0)(1)(1)(1)(1)(1)(1)(1).222 2f x f x f x x x x x x x x x x x ----+-=-+-=- (2)[]02111(1)1()(0)(1)(1)d ()d (0)(1)22x f x f x f x x f x x f f ----=-⋅-⋅⎰⎰1100(0)(1)(1)1()d d .22 12f f x x f x x x +-=-=⎰⎰ 21.设矩阵11011103,2126--⎛⎫⎪= ⎪⎪⎝⎭A 1012111,2322a a ⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭B 向量023⎛⎫ ⎪= ⎪ ⎪⎝⎭,α10.1⎛⎫ ⎪= ⎪ ⎪-⎝⎭β(1)证明:方程组=Ax α的解均为方程组=Bx β的解;(2)若方程组=Ax α与方程组=Bx β不同解,求a 的值.21.证明:(1)(,)1⎛⎫⇒= ⎪-⎝⎭=0x x A A αα(,)1⎛⎫⇒= ⎪-⎝⎭=0x Bx βB β又11010110101103202042212630328310121011311110000232210121a a a a ----⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪⎛⎫=→⎪⎪ ⎪⎝⎭ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭A αB β1101011010010210102100220001100011000000000000000022000000a a ----⎛⎫⎛⎫⎪⎪⎪ ⎪ ⎪ ⎪→→⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭,故()3r r ⎛⎫== ⎪⎝⎭A αB βA ,α.即(,)1⎛⎫= ⎪-⎝⎭0x A α的解是(,)1⎛⎫= ⎪-⎝⎭0B βx 的解.即=Ax α的解是=Bx β的解(2)=Ax α与方程组=Bx β不同解,即=Ax α与=Bx β不等价又=Ax α的解是=Bx β的解,故=Bx β的解不是=Ax α的解.即(,)3r r ⎛⎫≠=⎪⎝⎭A αB βB β,故1012110121,1110011312322103063a a a a ⎛⎫⎛⎫ ⎪ ⎪→--→---- ⎪ ⎪⎪ ⎪------⎝⎭⎝⎭B β101211012101021010210113100110a a a a ⎛⎫⎛⎫ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭故10a -=即1a =.22.X 服从[]0,θ上的均匀分布,()0θ∈+∞,为未知参数,12,,,n X X X 为总体X 的简单随机样本,记为(){}()12max ,,,,.n c n n X X X X T cX == (1)求c 使得();c E T θ=(2)记()()2,c h c E T θ=-求c 使得()f c 最小.22.【解】(1){}()()12max ,n n n E cX cEX cE X X X θ⎡⎤===⎣⎦ 10()0X x f x θθ⎧<<⎪⎨⎪⎩其他00(),01,X x x F x x x θθθ<⎧⎪⎪=<⎨⎪⎪⎩ {}()120,0max ~(),01,,n n n n X x xX X X F x x x θθθ<⎧⎪⎪=<⎨⎪⎪⎩ ()10()0. X n n n n xx f x θθ-⎧⋅<<⎪=⎨⎪⎩其他{}1110,1max ,d 1n n n n nnx n E X X x x n θθθθθθ-+==⋅+⎰1nn θ=+,所以1n c n+=.(2)()2222()22c c c ch c E T T ET E ET θθθθ=+-=++()()()()222n n E cX E cX θθ=+-()()2222n n c EX c EX θθ=+-因为()221201d 2n n n n n nx n EX x x x n θθθθ-+=⋅=+⎰22nn θ=⋅+()11001d 11n n n n n nxn nEX x x x n n θθθθθ-+=⋅⋅=⋅=++⎰所以22222 ()21221=21n n nc n h c c c c n n n n θθθθθ⎛⎫=+-⋅+-⋅ ⎪++++⎝⎭令2()1221n n f x x x n n =+-++,22()021n n f x x n n '=-=++解得21n x n +=+,即21n c n +=+时,()h c 取最小值.。

考研数学三(概率论与数理统计)历年真题试卷汇编16(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编16(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编16(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2007年] 设随机变量(X,Y)服从二维正态分布,且X与Y不相关,fX(x),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下X的条件密度fX|Y(x|y)为( ).A.fX(x)B.fY(y)C.fX(x)fY(y)D.fX(x)/fY(y)正确答案:A解析:解一仅(A)入选.因(X,Y)服从二维正态分布,且X与Y不相关,故X与Y相互独立.设f(X,Y)为(X,Y)的联合概率密度,则f(X,Y)=fX(x)fY(y).因Y服从正态分布,则对任意y有fY(y)>0.故解二设(X,Y)服从二维正态分布N(μ1,μ2;σ12,σ22;ρ),则概率密度为且X~N(μ1,σ12),Y~N(μ2,σ22),即又因X,Y不相关,则ρ=0,于是知识模块:概率论与数理统计2.[2009年] 设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布P(Y=0)=P(Y=1)=1/2.记FZ(z)为随机变量Z=XY的分布函数,则函数FZ(z)的间断点的个数为( ).A.0B.1C.2D.3正确答案:B解析:又X,Y相互独立,故当z<0时,当z≥0时,综上所述,所以FZ(z)只有一个间断点z=0.仅(B)入选.知识模块:概率论与数理统计3.[2012年] 设随机变量X与Y相互独立,且都服从区间(0,1)内的均匀分布,则P{X2+Y2≤1}=( ).A.1/4B.1/2C.π/8D.π/4正确答案:D解析:由题设有因X与Y相互独立,故从而或知识模块:概率论与数理统计4.[2016年] 设随机变量X与Y相互独立,且X~N(1,2),Y~N(1,4),则D(XY)=( ).A.6B.8C.14D.15正确答案:C解析:解一直接利用命题3.4.1.1(1)求之.由X~N(1,2)得到E(X)=1,D(X)=2;由Y~N(1,4)得到E(Y)=1,D(Y)=4.故D(XY)=D(X)D(Y)+[E(X)]2D(Y)+[E(Y)]2D(X)=2×4+12×4+12×2=14.仅(C)入选.解二利用方差和期望的性质求之.D(XY)=E(XY)2-[E(XY)]2=E(X2Y2)=[E(XY)]2因X,Y相互独立,则E(X2Y2)=E(X2)E(Y2),而E(X2)=D(X)+[E(X)]2=3,E(Y2)=D(Y)+[E(Y)]2=1+4=5,即E(X2Y2)=15,又E(XY)=E(X)E(Y)=1×1=1,故D(XY)=E(X2Y2)-[E(XY)]2=15-1=14.仅(C)入选.注:命题3.4.1.1 (1)设随机变量X,Y相互独立,则D(XY)=D(X)D(Y)+[E(X)]2D(Y)+[E(Y)]2D(X)≥D(X)D(Y);知识模块:概率论与数理统计5.[2008年] 设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则( ).A.P(Y=-2X-1)=1B.P(Y=2X-1)=1C.P(Y=-2X+1)=1D.P(Y=2X+1)=1正确答案:D解析:解一因X~N(0,1),Y~N(1,4),故E(X)=0,D(X)=1,E(Y)=1,D(Y)=4.于是有又由ρXY=P(Y=aX+b)=1及命题3.4.2.3(4)得a>0,故a=2.于是a=2,b=1.仅(D)入选.解二设Y=aX+b(a≠0).由ρXY=1得a/|a|=1,因而a>0.排除(A)、(C).又因E(Y)=E(aX+b)=aE(X)+b=a·0+b=b=1.排除(B).仅(D)入选.注:命题3.4.2.3 相关系数的常用性质有(4)当Y 与X有线性关系Y=aX+b(a≠0,b为常数)时,则X和Y的相关系数ρXY=a/|a|.因而当a>0时,ρXY=1;当a<0时,ρXY=-1;知识模块:概率论与数理统计6.[2002年] 设随机变量X和Y都服从标准正态分布,则( ).A.X+Y服从正态分布B.X2+Y2服从χ2分布C.X2和Y2都服从χ2分布D.X2/Y2服从F分布正确答案:C解析:解一因X~N(0,1),Y~N(0,1),故X2~χ2(1),Y2~χ2(1).仅(C)入选.解二由于(X,Y)的联合分布是否为二维正态分布未知,又不知道X与Y是否相互独立,因而不能确定X+Y服从正态分布.(A)不对.因X与Y是否独立未知,故X2+Y2是否相互独立也未知,所以也不能确定X2+Y2服从χ2分布,也不能确定X2/Y2服从F分布.(B)、(D)也不对.仅(C)入选.知识模块:概率论与数理统计填空题7.[2015年]设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY-Y<0)=___________.正确答案:解析:因(X,Y)~N(1,1;0,1;0),ρ=0,由命题(3.3.5.1(4))知,X,Y相互独立,则P{XY-Y<0}=P{(X-1)Y<0} =P{X-1<0,Y>0}+P{X -1>0,Y<0} =P{X<1}P{Y>0}+P{X>1}P{Y<0}.因X~N(1,1),故P{X<1)=P{X>1}=因Y~N(0,1),故所以注:命题3.3.5.1 (4)若X与Y相互独立,则X与Y一定不相关,但反之不成立.只有当X与Y的联合分布为正态分布时,X与Y相互独立与Y不相关ρXY=0.知识模块:概率论与数理统计8.[2005年] 设二维随机变量(X,Y)的概率分布为若随机事件{X=0}与{X+Y=1}相互独立,则a=__________,b=___________.正确答案:a=0.4,b=0.1解析:解一由知,a+b=0.5.又由事件{X=0)与{X+Y=1}相互独立,有P(X=0,X+Y=1)=P(X=0)P(X+Y=1),而P(X=0,X+Y=1)=P(X=0,Y=1)=a,P(X=0)=a+0.4,P(X+Y=1)=P(X=0,Y=1)+P(X=1,Y=0)=a+b,故a=(a+0.4)(a+b)=(a+0.4)×0.5.①所以a=0.4,从而b=0.5-a=0.1.解二由解一知a+b=0.5.又由命题3.3.5.2知,秩于是即ab=0.04=0.1×0.4.解二次方程x2-0.5x+0.1×0.4=0,即解(x-0.1)(x-0.4)=0,得x1=0.1,x2=0.4.因而a=0.1或0.4,b=0.4或0.1.为满足独立性,式①应成立.当a=0.1,b=0.4时,式①不成立;当a=0.4,b=0.1时,式①成立.故所求的常数为a=0.4,b=0.1.注:命题3.3.5.2 X与Y相互独立的充分必要条件是联合概率矩阵的秩等于1,这里联合概率矩阵是指由x与y的联合分布律中的概率元素依次所组成的矩阵.知识模块:概率论与数理统计9.[2013年] 设随机变量X服从标准正态分布N(0,1),则E(Xe2x)=_________.正确答案:2e2解析:解一因X~N(0,1),故则解二对式①作变量代换x-2=t,则知识模块:概率论与数理统计10.[2011年] 设二维随机变量(X,Y)服从N(μ,μ;σ2,σ2;0),则E(XY2)=_____________.正确答案:μ(σ2+μ2)解析:N(X,Y)服从二维正态分布,且其相关系数ρ=0,由命题3.3.5.1(4)知X,Y相互独立.由题设知E(X)=μ,E(Y2)=D(y)+[E(y)]2=σ2+μ2,故E(XY2)=E(X)E(Y2)=μ(σ2+μ2).注:命题3.3.5.1 (4)若X与Y相互独立,则X与Y一定不相关,但反之不成立.只有当X与Y的联合分布为正态分布时,X与Y相互独立与Y不相关ρXY=0.知识模块:概率论与数理统计11.[2002年] 设随机变量X和y的联合概率分布为则X2和Y2的协方差cov(X2,Y2)=___________.正确答案:-0.02解析:解一由cov(X2,Y2)=E(X2Y2)-E(X2)E(Y2)知,需先求出X2,Y2及X2Y2的分布,然后再求其期望值.可用同一表格法一并解决.A则故E(X2)=0.6,E(Y2)=0.5,E(X2Y2)=0.28,因而cov(X2,Y2)=E(X2Y2)-E(X2)E(Y2)=0.28-0.6×0.5=-0.02.解二利用下述公式求之.设X 的分布律为P(X=xi)=pi(i=1,2,…),则X的函数g(X)的期望若(X,Y)的联合分布律为P(X=xi,Y=yj)=pij(i,j=1,2,…),N(X,Y)的函数g(X,Y)的期望由式(3.4.2.1)得到于是不用求出X2Y2的分布,直接由定义求得,即E(X2Y2)=02×(-1)2×0.07+02×02×0.18+02×12×0.15+12×(-1)2×0.08+12×02×0.32+12×12×0.20=0.28.又由联合分布律易求得边缘分布律为由式(3.4.1.1)有E(X2)=02×0.4+12×0.6=0.6,E(Y2)=02×0.5+12×0.5=0.5.故cov(X2,Y2)=E(X2Y2)-E(X2)E(Y2)=0.28-0.6×0.5=-0.02.注:公式知识模块:概率论与数理统计12.[2003年] 设随机变量X和Y的相关系数为0.9,若Z=X-0.4,则Y和Z的相关系数为_________.正确答案:0.9解析:解一由Z=X-0.4得到D(Z)=D(X-0.4)=D(X).解二直接利用公式cov(aX+b,cY+d)=accov(X,Y)(a,b,c,d为常数),得到解三因Z=X-0.4,故D(Z)=D(X-0.4)=D(X),且E(Z)=E(X-0.4)=E(X)-0.4,所以cov(Y,Z)=E(YZ)-E(Y)E(Z)=E[Y(X-0.4)]-E(Y)E(X-0.4) =E(XY)-0.4E(Y)-E(Y)[E(X)-0.4] =E(XY)-0.4E(Y)-E(X)E(Y)+0.4E(Y) =E(XY)-E(X)E(Y)=cov(X,Y).因而知识模块:概率论与数理统计13.[2001年] 设随机变量X和Y的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式P(|X+Y|≥6)≤_________.正确答案:1/12解析:由题设有D(X)=1,D(Y)=4.且ρXY=-0.5,E(X)=2,E(Y)=-2,则注意到E(X+Y)=E(X)+E(Y)=0,由切比雪夫不等式得到P(|X+Y|≥6)=P(|X+Y-0|≥6)=P|X+Y-E(X+Y)|≥6≤D(X+Y)/62,所以P(|X+Y|≥6)≤D(X+Y)/62=3/36=1/12.知识模块:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。

2024考研数学三真题及参考答案

2024考研数学三真题及参考答案

2024年全国硕士研究生入学统一考试数学(三)试题考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)已知函数f (x) = lim ,则( )【答案】D(2)积分+k πsin x dx ( )【答案】Bπ(3)交换积分次序∫π2dx i1n x f (x, y)dy 则( )6【答案】A(4)已知ln(2 + x) = a n x n ,则na2n = ( )(A)−(B)−(C)(D)【答案】A(5)设二次型在正交变换下的标准型为f (x1, x2, x3 ) = y12−2y22+ 3y32,则( )【答案】C(行列式为-6,迹为2)(6)【答案】C(7)【答案】C(a = 0, a = )(8)E[(X −Ex)3 ] = ( )【答案】0(9)【答案】B (p2 > p1> )(10)设随机变量X, Y 相互独立,且均服从参数为λ的指数分布,令Z = X −Y ,则下列随机变量与Z 同分布的是( )(A)X + Y (B)(C)2X (D)X【答案】D二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上.(11)【答案】3(12)=【答案】ln 3 −n→∞1 + nx n(13)函数f (x , y ) = 2x 3 − 9x 2 − 6y 4 +12x + 24y 的极值点是 【答案】 (1,1) (14)【答案】 (15)【答案】 (16)【答案】50162 3三、解答题:17~22 小题,共 70 分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明 过程或演算步骤.(17)(本题满分 10 分)1 1 已知区域D 是第一象限内的有界区域,它由xy = , xy = 3, y = x , y = 3x 围成, 3 3计算(1+ x − y )dxdy D【答案】 ln 3(18)(本题满分 12 分)∂2 z ∂ 2 z 已知z = z (x , y ) 由方程z + e x + y ln(1+ z 2 ) = 0确定,求 ∂ 2x + ∂ 2 y (0,0)【答案】 −1− 2ln 2(19)(本题满分 12 分)已知t > 0 ,曲线 y = xe −2x 与x = t , x = 2t 及x 轴所围的面积为S (t ) ,求S (t ) 的最大值ln 2 3【答案】 + 16 64(20)(本题满分 12 分)设函数f (x ) 有 2 阶导数,f ′(0) = f ′(1) , f ′′(x ) ≤ 1(1)当x ∈ (0,1) 时,f (x ) − f (0)(1− x ) − f (1)x ≤ (2) ∫01f (x )dx − ≤【答案】(1)泰勒公式展开(2)分部积分或泰勒公式(21)(本题满分 12 分)【答案】(1) Ax = α 是Bx = β的解 (2) a = 1(22)(本题满分 12 分)设总体X 服从[0,θ] 上的均匀分布,X 1, X 2, , X n 为总体的简单随机样本,记X(n) = max{X1, X2, , Xn} ,Tc= cX(n)(1)求c ,使得E(Tc) = θ(2)记h(c) = E(Tc−θ)2 = θ,求c ,使得h(c) 最小【答案】(1)c = (2)c =参考答案一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。

考研数学三(线性方程组)历年真题试卷汇编1(题后含答案及解析)

考研数学三(线性方程组)历年真题试卷汇编1(题后含答案及解析)

考研数学三(线性方程组)历年真题试卷汇编1(题后含答案及解析) 题型有:1. 选择题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2002年] 设A是m×n矩阵,B是n×m的矩阵,则线性方程组(AB)X=0( ).A.当n>m时,仅有零解B.当n>m时,必有非零解C.当m>n时,仅有零解D.当m>n时,必有非零解正确答案:D解析:解一显然AB为m阶矩阵,因而(AB)X=0是含m个未知数的齐次方程组,而当m>n时,有秩(AB)≤秩(A)≤n<m.因而(AB)X=0有非零解.仅(D)入选.解二因秩(A)≤min(m,n),秩(B)≤min(m,n),而秩(AB)≤min(秩(A),秩(B)),于是当n>m时,有秩(A)≤m,秩(B)≤m,秩(AB)≤m,而AB为m阶矩阵.由于秩(AB)可能小于等于m,只能说当n>m时,如果秩(AB)=m,则(AB)X=0只有零解,如果秩(AB)<m,(AB)X=0必有非零解,因而(A)、(B)都不对.又当n<m时,秩(AB)≤n<m,而AB为m阶矩阵,因而矩阵AB 的秩小于未知数的个数,齐次方程(AB)X=0必有非零解,于是(C)也不对.仅(D)入选.知识模块:线性方程组2.[2004年] 设n阶矩阵A的伴随矩阵A*≠O.若考ξ1,ξ2,ξ3,ξ4是非齐次线性方程组AX=b的互不相等的解,则对应的齐次线性方程组AX=0的基础解系( ).A.不存在B.仅含一个非零解向量C.含有两个线性无关的解向量D.含有三个线性无关的解向量正确答案:B解析:解一当A*≠O时,秩(A*)≠0.因而秩(A*)=n或秩(A*)=1.于是秩(A)=n或秩(A)=n-1.由题设知AX=b有四个互不相等的解,因而解不唯一,于是秩(A)=n-1.因而其基础解系仅含一个解向量.仅(B)入选.解二因A*≠O,故秩(A*)≥1,则秩(A)≥n-1.又因AX=0有解且不唯一,故秩(A)≤n-1.因而秩(A)=n-1.其基础解系仅含一个解向量.仅(B)入选.解三因A*≠o,故A*中至少有一个元素Aij=(-1)i+jMij≠0,即A的元素aij的余子式Mij≠0,而Mij为A的n一1阶子行列式,故秩(A)≥n一1.又由AX=b有解且不唯一,有秩(A)≤n-1<n,故秩(A)=n-1,于是AX=0的一个基础解系所含解向量的个数为n-秩(A)=n-(n-1)=1.仅(B)入选.知识模块:线性方程组3.[2000年] 设α1,α2,α3是四元非齐次线性方程组AX=b的3个解向量,且秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,c表示任意常数,则线性方程组AX=b的通解X=( ).A.[1,2,3,4]T+c[1,1,1,1]TB.[1,2,3,4]T+c[0,1,2,3]TC.[1,2,3,4]T+c[2,3,4,5]TD.[1,2,3,4]T+c[3,4,5,6]T正确答案:C解析:解一仅(C)入选.AX=b为四元非齐次方程组,秩(A)=3,AX=0的一个基础解系只含n-秩(A)=4-3=1个解向量.将特解的线性组合2α1,α2+α3写成特解之差的线性组合,即2α1-(α2+α3)=(α1-α2)+(α1-α3).因2一(1+1)=0,由命题2.4.4.1知,2α1-(α2+α3)=[2,3,4,5]T≠0仍为AX=0的一个解向量,且为其一个基础解系,故AX=b的通解为X=α1+k[2α1-(α2+α3)]=[1,2,3,4]T+k[2,3,4,5]T.解二仅(C)入选.因秩(A)=3,故四元齐次方程组AX=0的基础解系所含向量的个数为4一秩(A)=1,所以AX=0的任一个非零解都是它的基础解系.由于α1及(α2+α3)/2都是AX=b的解(因1/2+1/2=1),故α1-(α2+α3)=[2α1-(α2+α3)]=[2,3,4,5]T是AX=0的一个解,从而2×[2,3,4,5]T=[2,3,4,5]T=η也是AX=0的一个解,且因η≠0,故η为Ax=0的一个基础解系,所以AX=b的通解为X=α1+cη=[1,2,3,4]T+c[2,3,4,5]T,c为任意常数.知识模块:线性方程组4.[2011年] 设A为4×3矩阵,η1,η2,η3是非齐次线性方程组AX=β的3个线性无关的解,k1,k2为任意常数,则AX=β的通解为( ).A.(η2+η3)/2+k1(η2-η1)B.(η2-η3)/2+k1(η2-η1)C.(η2+η3)/2+k1(η2-η1)+k2(η3-η1)D.(η2-η3)/2+k1(η2-η1)+k2(η3-η1)正确答案:C解析:解一仅(C)入选.因n元非齐次线性方程组AX=b的线性无关的解向量最多的个数为n-秩(A)+1,故3-秩(A)+1≥3,即秩(A)≤1.又秩(A)≥1(如秩(A)=0,则A=0与AX=β≠0矛盾),故秩(A)=1,所以AX=0的一个基础解系含n-秩(A)=3=1-2个解向量,而η3-η1,η2-η1均为AX=0的非零解,因而它们为AX=0的基础解系.又(η2+η3)/2中的系数1/2+1/2=1.由命题2.4.4.1知,(η2+η3)/1为AX=β的一特解.于是AX=β的通解为(η2+η3)/2+k1(η2-η1)+k2(η3-η1).解二由非齐次线性方程组AX=B 通解的结构(该方程组的一特解加上对应齐次线性方程组AX=0的基础解系)可分别排除选项(A)、(B)、(D).事实上,(B)、(D)中的为AX=0的解,不是AX=B的特解,可排除(B)、(D).又因AX=0的解η2-η1,η3-η1线性无关,故AX=0的基础解系至少包含2个解向量,从而排除(A).仅(C)入选.知识模块:线性方程组解答题解答应写出文字说明、证明过程或演算步骤。

-历年考研数学三真题及答案解析

-历年考研数学三真题及答案解析

是c+等价无穷小,则(C) R = 3,c = 4已知 f(x)在 X = O 处可导,且 /(0) = 0,则 Iim x ~f M~2 / CV)Λ→0设{冷}是数列,则下列命题正确的是OOX若£心收敛’则∑(∕G H -I +U 2π)收敛/1-1n-1X OC若£(%如)收敛,则收敛“■]/1-1OO X若X ©收敛,则X(∕Y 2^1 T6)收敛 ∕ι≡lπ-! 若X("2-1 Tf 2』收敛‘则X ©收敛π-l ∕ι≡lπ JT π设/ =JJIn(Sin x)dx , J = JJ In(COt x)dx, K = U In(COS x)dx 贝IJ 八 J , K的大 小关系是解,k lt k 2为任意常数.则Ax = β的通解为(A) k = l,c = 4(B) IC = ^C =-4⑷-2/(0)(B) -/'(O) (C) /(O) (D) 0(C) (D)(A) I<J<K (B) I<K<J (C) J <I<K (D) K<J<I⑸ 设A 为3阶矩阵・将A 的第2列加到第1列得矩阵3.再交换B 的第2行与第31 O OU O 0,行得单位矩阵记为片=1 1 O,£ = O O 1,0 0 1’O 1 O 丿(C) P 2P 1 (D) P['P ∖(6)设人为4x3矩阵,7,J Il > “3 是非齐次线性方程组AX = 0的3个线性无关的(B) P^P I (A)砒 ,则4 =(B)t h∑211 + k2{η2-η^(C)T h;+ & (% - 帀)+ £(“2 - 7)(D)+ «2(〃2 一〃1)+ 鸟3(〃3一帀)(7)设F i(x), F2(X)为两个分布函数,其相应的概率密度f l(x), /I(X)是连续函数, 则必为概率密度的是(A)∕1U)Λ(x)(B) If2(X)FM(C) ∕1(X)F2(X)(D) f l(x)F2(x) + f2(x)F i(x)(8)设总体X服从参数2(Λ>0)的泊松分布,X P X l,..∙X,1(∕z≥2)为来自总体的简1" IilZil单随即样本,贝IJ对应的统iiS7;=-yx(., T l =——Vx1-+-X,,刃台^ H-I ⅛r IJ '(A) ET i > ET2i DT l > DT2(B) ETl > ET^DT i < DT2(C) ET x < ET2.DT x > DT1(D) ET x < ET1,DT x < DT1二、填空题:旷14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.X(9)设/(x) = IimX(I+ 3r)7,则 / (X) = __ ・∕→0X(10)设函数2 = (1 +丄)匚则^I(II= _______ ・y(11)曲线tan(x + y + -)="在点(0,0)处的切线方程为_______ ・4(12)曲线y = 直线X = I及X轴所囤成的平面图形绕X轴旋转所成的旋转体的体积 _____ .(13)设二次型/(X P X2,X3)= XΓAΛ-的秩为1, A中行元素之和为3,则/在正交变换下X = Qy的标准型为 ____ •(14)设二维随机变⅛(X,K)服从N(“,“;bSb?;。

考研数学三(线性代数)历年真题试卷汇编13(题后含答案及解析)

考研数学三(线性代数)历年真题试卷汇编13(题后含答案及解析)

考研数学三(线性代数)历年真题试卷汇编13(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设矩阵A=(aij)3×3满足A*=AT,其中A*为A的伴随矩阵,AT为A 的转置矩阵.若a11,a12,a13为三个相等的正数,则a11为( ) A.B.C.D.正确答案:A解析:由题设条件A*=AT,即其中Aij为|A|中元素aij的代数余子式(i,j=1,2,3),得aij=Aij(i,j=1,2,3),故有|A|=a1jA1j=a1j2=a112=3a112>0再从AT=A*两端取行列式,得|A|=|AT|=|A*|=|A|2,即|A|(1-|A|)=0由此得|A|=1.所以,有a112=1/3|A|=1/3,本题主要考查伴随矩阵的概念及行列式按行(列)展开法则.条件AT=A*与条件aij=Aij(对所有的i,j)是等价的.本题还用到伴随矩阵的一个结果:对任何n(n≥2)阶方阵A,成立|A*|=|A|-1.知识模块:线性代数2.设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的-1倍加到第2列得C,记P=,则( )A.C=P-1AP.B.C=PAP-1.C.C=PTAP.D.C=PAPT.正确答案:B解析:将单位矩阵E的第2行加到第1行即得初等矩阵P,由初等变换与初等矩阵的关系,有B=PA.令矩阵则将E的第1列的-1倍加到第2列即得矩阵Q,于是有C=BQ,从而有C=PAQ.由于所以,C=PAQ=PAP-1,只有选项B 正确.知识模块:线性代数3.设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则( )A.E-A不可逆,E+A不可逆.B.E-A不可逆,E+A可逆.C.E-A可逆,E+A可逆.D.E-A可逆,E+A不可逆.正确答案:C解析:由于(E-A)(E+A+A2)=E-A3=E,(E+A)(E-A+A2)=E+A3=E,故由可逆矩阵的定义知:E-A和E+A均是可逆的.本题主要考查逆矩阵的定义,其中的方阵多项式分解因式可以类比通常多项式的公式:1-x3=(1-x)(1+x+x2),1+x3=(1+x)(1-x+x2).知识模块:线性代数4.设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵.若|A|=2,|B|=3,则分块矩阵的伴随矩阵为( )A.B.C.D.正确答案:B解析:1 记矩阵C=,则C的行列式|C|=(-1)4=|A||B|=6≠0,因此C为可逆矩阵,由公式CC*=|C|E,得C*=|C|C-1故只有选项B正确.2 记矩阵并记|C|的(i,j)元素的代数余子式为Aij(i,j=1,2,3,4),则计算可得:A11=0,A21=0,A31=|A|h,A41=-|A|f,A12=0,A22=0,A32=-|A|g,A42=|A|e,A13=|B|d,A23=-|B|b,A33=0,A43=0,A14=-|B|c,A24=|B|a,A34=0,A44=0.于是由伴随矩阵的定义(C*的(i,j)元为Aji),得因此选B.知识模块:线性代数5.设A,P均为3阶矩阵,PT为P的转置矩阵,且PTAP若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则QTAQ为( )A.B.C.D.正确答案:A解析:由于Q=[α1+α2,α2,α3]所以QTAQ故只有选项A正确.知识模块:线性代数6.设A为3阶矩阵,将A的第2列加到第1列得矩阵B,再交换B的第2行与第3行得单位矩阵.记P1=,则A=( )A.P1P2.B.P1-1P2.C.P2P1.D.P2P1-1.正确答案:D解析:由题设条件有P2AP1=I,两端左乘P2-1,两端右乘P1-1,得A=P2-1P1-1,因P2-1=P2,而P1-1≠P1,故只有D正确.知识模块:线性代数7.设A为3阶矩阵,P为3阶可逆矩阵,且P-1AP=.若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=( )A.B.C.D.正确答案:B解析:1 Q(α1+a2,α2,α3)=(α1,α2,α3)=PM其中,矩阵于是,Q-1AQ=(PM)-1A(PM)=M-1(P-1AP)M因此选B.2 已知A(α1,α2,α3)=(α1,α2,α3)(Aα1,Aα2,Aα3)=(α1,α2,2α3)Aα1=α1,Aα2=α2,Aα3=2α3A(α1+α2)=Aα1+Aα2=α1+α2AQ=A(α1+α2,α2,α3)=(A(α1+α1),Aα2,Aα3)=(α1+α2,α2,2α3)=(α1+α2,α2,α3)两端左乘Q-1,得Q-1AQ=,故选B.3 由已知A相似于对角矩阵diag(1,1,2),知α1,α2,α3是A的3个线性无关特征向量,且依次属于特征值1,1,2.α1+α2≠0(否则α1,α2线性相关,与α1,α2,α3线性无关矛盾),且A(α1+α2)=Aα1+α2=α1+α2,因此α1+α2是A的属于特征值1的一个特征向量.从而知α1+α2,α2,α3是A的3个线性无关特征向量,且依次属于特征值1,1,2,因此利用矩阵相似对角化可写出(α1+α2,α2,α3)-1A(α1+α2,α2,α3)=diag(1,1,2),即Q-1AQ=diag(1,1,2).因此选B.知识模块:线性代数8.设α为n维单位列向量,E为n阶单位矩阵,则( )A.E-ααT不可逆.B.E+ααT不可逆.C.E+2ααT不可逆.D.E-2ααT不可逆.正确答案:A解析:1 如果取2维单位向量α=,则题中4个选项中的矩阵依次为其中只有选项A中的矩阵是不可逆的,其余均可逆,故选A.2 对于任意的n维单位列向量α,可以证明选项A中的矩阵的行列式必等于零,为简明起见,以n=3为例来证明(一般情形的证明类似).设α=(α1,α2,α3)T是任意的3维单位列向量,则a12+a22+a32=1,选项A中的矩阵的行列式为(不妨设a1≠0)det(E-ααT)分别将第2行的a2倍、第3行的a3倍加到第1行上去,并利用a12+a22+a32=1,得行列式的第1行为零行,故该行列式等于零,从而知选项A 中的矩阵是不可逆的,故选A.3 对于单位列向量α,有αTα=1,由于(E-ααT)α=α-α(αTα)=α-α=0,故齐次线性方程组(E-ααT)x=0存在非零解α,因此矩阵E-ααT不可逆,故选A.4 对于单位列向量α,有αTα=1,于是有(E+ααT)(E-α(αTα)αT=E,(E+ααT)-1=E-ααT;(E+2ααT)(E -α(αTα)αT=E,(E+2ααT)-1=E-ααT;(E-2ααT)(E-2ααT)=E-2ααT-2αTα+4α(αTα)αT=E,(E-2ααT)-1=E-2ααT 知识模块:线性代数9.设A,B为n阶矩阵,记r(X)为矩阵X的秩,(XY)表示分块矩阵,则( ) A.r(A AB)=r(A).B.r(A BA)=r(A).C.r(A B)=max{r(A),r(B)}.D.r(A B)≤r(AT BT)..正确答案:A解析:1 由于矩阵AB的列向量可以由矩阵A的列向量组线性表出,所以A 的列向量组的最大线性无关组是矩阵(A AB)的列向量组的最大线性无关组,而矩阵的秩也等于它的最大线性无关列向量组所含向量的个数,因此有r(A AB)=r(A),故选项A是正确的.2 如果取2阶矩阵则r(A BA)=2,r(A)=1,故选项B不对;如果取2阶矩阵则r(A B)=2,max{r(A),r(B)}=1,故选项C不对;如果取2阶矩阵则r(A B)=1,r(AT BT)=2,故选项D不对;于是只有选项A是正确的.知识模块:线性代数10.设n阶方阵A的秩r(A)=r<n,那么在A的n个行向量中( )A.必有r个行向量线性无关.B.任意r个行向量都线性无关.C.任意r个行向量都构成极大线性无关向量组.D.任意一个行向量都可以由其它r个行向量线性表出.正确答案:A 涉及知识点:线性代数11.设A为n阶方阵且|A|=0,则( )A.A中必有两行(列)的元素对应成比例.B.A中任意一行(列)向量是其余各行(列)向量的线性组合.C.A中必有一行(列)向量是其余各行(列)向量的线性组合.D.A中至少有一行(列)的元素全为0.正确答案:C 涉及知识点:线性代数12.向量组α1,α2,…,αs线性无关的充分条件是( )A.α1,α2,…,αs均不为零向量.B.α1,α2,…,αs中任意两个向量的分量不成比例.C.α1,α2,…,αs中任意一个向量均不能由其余s-1个向量线性表示.D.α1,α2,…,αs中有一部分向量线性无关.正确答案:C解析:因为,α1,α2,…,αs线性相关该向量组中至少存在一个向量,它可以由该组中其余s-1个向量线性表示.而“存在一个向量…”的反面是“任意一个向量都不…”,故有:α1,α2,…,αs线性无关该组中任意一个向量都不能由其余s-1个向量线性表示,即知C正确.注意备选项A、B及D都是向量组α1,α2,…,αs线性无关的必要条件而非充分条件.例如,向量组α1=(1,1),α2=(2,2)中不含零向量,但却线性相关,故A不对;向量组α1=(1,2,3),α2=(4,5,6),α3=(3,3,3)中任意两个向量的分量不成比例,而且有一部分向量α1与α2线性无关,但α1,α2,α3线性相关,这说明B、D都不对.知识模块:线性代数13.设有任意两个n维向量组α1,…,αm和β1,…,βm,若存在两组不全为零的数λ1,…,λm和k1,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则( )A.α1,…,αm和β1,…,βm都线性相关.B.α1,…,αm和β1,…,βm都线性无关.C.α1+β1,…,αm+βm,α1-β1,…,αm-βm线性无关.D.α1+β1,…,αm+βm,α1-β1,…,αm-βm线性相关.正确答案:D解析:由题设等式,得λ1(α1+β1)+…+λm(αm+βm)+k1(α1-β1)+km(αm-βm)=0且λ1,…,λm,k1,…,km不全为零,故向量组α1+β1,…,αm+βm,α1-β1,…,αm-βm线性相关.知识模块:线性代数填空题14.设矩阵A=,E为2阶单位矩阵,矩阵B满足BA=B+2E,则|B|=_______.正确答案:2.解析:由给定矩阵方程得BA-B=2EB(A-E)=2E两端取行列式,得|B||A-E|=|2E|因|A-E|==2,|2E|=22|E|=4所以有2|B|=4,从而得|B|=2.知识模块:线性代数15.设矩阵A=,则A3的秩为_______.正确答案:1.解析:利用矩阵乘法,容易计算得由于A3中非零子式的最高阶数为1,故由矩阵的秩的定义,即知r(A3)=1.知识模块:线性代数16.设A,B为3阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=_______.正确答案:3.解析:由于A+B-1=(AB+E)B-1=A(B+A-1)B-1=A(A-1+B)B-1,两端取行列式,并利用|ABC|=|A||B||C|及|B-1|=|B|-1,得|A+B-1|=|A|.A-1+B|.|B -1|=3×2×=3.知识模块:线性代数17.设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=_______.正确答案:27.解析:1 由于互换行列式的两行,则行列式仅变号,于是知|B|=-3.再利用|A*|=|A|-1=|A|2=9,得|BA*|=|B||A*|=-27.2 记交换3阶单位矩阵的第1行与第2行所得初等矩阵为E12,则B=E12A,由于AA*=|A|E=3E,得BA*=E12AA*=E12(3E)=3E12,注意|E12|=-1,所以|BA*|=|3E12|=33|E|12=-27.知识模块:线性代数18.设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=_______.正确答案:-1.解析:由A≠O,不妨设a11≠0,由已知的Aij=-aij(i,j=1,2,3),得及A=-(A*)T,其中A*为A的伴随矩阵.以下有两种方法:方法1:用AT右乘A=-(A*)T的两端,得AAT=-(A*)AT=-(AA*)T=-(|A|I)T,其中I为3阶单位矩阵,上式两端取行列式,得|A|2=(-1)3|A|3,或|A|2(1+|A|)=0,因|A|≠0,所以|A|=-1.方法2:从A=-(A*)T两端取行列式,并利用|A*|=|A|2,得|A|=(-1)3|A*|=-|A|2,或|A|(1+|A|)=0,因|A|≠0,所以|A|=-1.知识模块:线性代数19.设A为3阶矩阵,α1,α2,α3是线性无关的向量组.若Aα1=α1+α2,Aα2=α2+α3,Aα3=α1+α3,则|A|=_______.正确答案:2.解析:将题给的关系式写成矩阵形式:A[α1 α2 α3]=[α1 α2 α3]记矩阵P=[α1 α2 α3],则因α1,α2,α3线性无关,知矩阵P可逆,从而有P -1AP两端取行列式,得|A|=|B|=2.知识模块:线性代数解答题解答应写出文字说明、证明过程或演算步骤。

考研数学三(概率论与数理统计)历年真题试卷汇编8(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编8(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编8(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(2016年)设随机变量X与Y相互独立,且X~N(1,2),Y~N(1,4),则D(XY)=( )A.6。

B.8。

C.14。

D.15。

正确答案:C解析:利用方差和期望的关系公式计算,即D(X)=E(X2)-[E(X)]2。

根据方差和期望之间的关系D(XY)=E(X2Y2)-[E(XY)]2,E(XY)=E(X)E(Y)=1,E(X2Y2)=E(X2)E(Y2)=3×5=15,则D(XY)=14。

故选C。

2.(2001年)将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于( )A.-1。

B.0。

C.D.1。

正确答案:A解析:掷硬币结果不是正面向上就是反面向上,所以X+Y=n,从而Y=n-X。

由方差的定义:D(X)=E(X2)-[E(X)]2,所以D(Y)=D(n-X)=E(n-X)2-[E(n-X)]2=E(n2-2nX+X2)-(n-E(X))2=n2-2nE(X)+E(X2)-n2 +2nE(X)-[E(X)]2=E(X2)-[E(X)]2=D(X)。

由协方差的性质:Cov(X,c)=0(c为常数);Cov(aX,bY)=abCov(X,Y);Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y),所以Cov(X,Y)=Cov(X,n-X)=Cov(X,n)-Cov(X,X)=0-D(X)=-D(X),由相关系数的定义,得3.(2008年)设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则( )A.P{Y=-2X-1}=1。

B.P{Y=2X-1}=1。

C.P{Y=-2X+1}=1。

D.P{Y=2X+1}=1。

正确答案:D解析:由ρXY=1可知,存在实数a(a>0),b,使得Y=aX+b,则可排除A、C。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

是k cx 等价无穷小,则(A) 1,4k c == (B) 1,4k c ==- (C) 3,4k c == (D) 3,4k c ==-(2) 已知()f x 在0x =处可导,且(0)0f =,则2330()2()lim x x f x f x x→-= (A) '2(0)f - (B) '(0)f - (C) '(0)f (D) 0 (3) 设{}n u 是数列,则下列命题正确的是(A) 若1nn u∞=∑收敛,则2121()n n n uu ∞-=+∑收敛(B) 若2121()n n n uu ∞-=+∑收敛,则1n n u ∞=∑收敛(C) 若1nn u∞=∑收敛,则2121()n n n uu ∞-=-∑收敛(D) 若2121()n n n uu ∞-=-∑收敛,则1n n u ∞=∑收敛(4) 设4ln(sin )I x dx π=⎰,40ln(cot )J x dx π=⎰,40ln(cos )K x dx π=⎰ 则I ,J ,K 的大小关系是(A) I J K << (B) I K J << (C) J I K << (D) K J I << (5) 设A 为3阶矩阵,将A 的第2列加到第1列得矩阵B ,再交换B 的第2行与第3行得单位矩阵记为1100110001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2100001010P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A = (A)12P P (B)112P P - (C)21P P (D) 121PP - (6) 设A 为43⨯矩阵,1η, 2η , 3η 是非齐次线性方程组Ax β=的3个线性无关的解,1k ,2k 为任意常数,则Ax β=的通解为(A)23121()2k ηηηη++-(B)23221()2k ηηηη-+- (C) 23131221()()2k k ηηηηηη++-+-(D) 23221331()()2k k ηηηηηη-+-+-(7) 设1()F x ,2()F x 为两个分布函数,其相应的概率密度1()f x , 1()f x 是连续函数,则必为概率密度的是(A) 12()()f x f x (B)212()()f x F x(C) 12()()f x F x (D) 1221()()()()f x F x f x F x + (8) 设总体X 服从参数λ(0)λ>的泊松分布,11,,(2)n X X X n ≥为来自总体的简单随即样本,则对应的统计量111ni i T X n ==∑,121111n i n i T X X n n -==+-∑(A)1212,ET ET DT DT >> (B)1212,ET ET DT DT >< (C)1212,ET ET DT DT <> (D) 1212,ET ET DT DT <<二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) 设0()lim (13)xtt f x x t →=+,则'()f x =______.(10) 设函数(1)xy xz y=+,则(1,1)|dz =______.(11) 曲线tan()4y x y e π++=在点(0,0)处的切线方程为______.(12)曲线y 2x =及x 轴所围成的平面图形绕x 轴旋转所成的旋转体的体积______.(13) 设二次型123(,,)Tf X X X x Ax =的秩为1,A 中行元素之和为3,则f 在正交变换下x Qy =的标准型为______.(14) 设二维随机变量(,)X Y 服从22(,;,;0)N μμσσ,则2()E XY =______. 三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分10分)求极限0x →.(16) (本题满分10分)已知函数(,)f u v 具有连续的二阶偏导数,(1,1)2f =是(,)f u v 的极值,[](),(,)z f x y f x y =+。

求2(1,1)|zx y∂∂∂.(17) (本题满分10分)求(18) (本题满分10分)证明44arctan 03x x π-+=恰有2实根。

(19) (本题满分10分)()f x 在[]0,1有连续的导数,(0)1f =,且'()()ttD D f x y dxdy f t dxdy +=⎰⎰⎰⎰,{(,)|0,0,0}(01)t D x y x t y t x y t t =≤≤≤≤≤+≤<≤,求()f x 的表达式。

(20) (本题满分11分)设3维向量组11,0,1T α=(),20,1,1T α=(),31,3,5T α=()不能由11,,1Ta β=(),21,2,3T β=(),31,3,5Tβ=()线性标出。

求:(Ⅰ)求a ;(Ⅱ)将1β,2β,3β由1α,2α,3α线性表出. (21) (本题满分11分)已知A 为三阶实矩阵,()2R A =,且111100001111A -⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,求:(Ⅰ) 求A 的特征值与特征向量;(Ⅱ) 求A (22) (本题满分11分) 已知X ,Y 的概率分布如下:且22P()1X Y ==,求:(Ⅰ)()X Y ,的分布;(Ⅱ)Z XY =的分布; (Ⅲ)XY ρ. (23) (本题满分11分)设(,)X Y 在G 上服从均匀分布,G 由0x y -=,2x y +=与0y =围成。

求:(Ⅰ)边缘密度()X f x ;(Ⅱ)|(|)X Y f x y 。

2010年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一个选项是符合题目要求的,请把所选项前的字母填在答题纸指定位置上.(1) 若011lim ()1x x a e x x→⎡⎤--=⎢⎥⎣⎦,则a 等于(A )0 (B )1 (C )2 (D )3(2) 设1y ,2y 是一阶线性非齐次微分方程'()()y p x y q x x +=的两个特解,若常数λ,u 使12y uy λ+是该方程的解,12y uy λ-是该方程对应的齐次方程的解,则()(A )1122λμ==, (B )1122λμ=-=-, (C )2133λμ==, (D )2233λμ==,(3) 设函数()f x ,()g x 具有二阶导数,且"()0g x <。

若0()=g x a 是()g x 的极值,则[]()f g x 在0x 取极大值的一个充分条件是()(A )'()0f a < (B )'()0f a > (C )"()0f a < (D )"()0f a >(4) 设10()ln f x x =,()g x x =,10()xh x e =,则当x 充分大时有() (A )()()()g x h x f x << (B )()()()h x g x f x << (C )()()()f x g x h x << (D )()()()g x f x h x <<(5) 设向量组Ⅰ:12r ααα,,可由向量组Ⅱ:12s βββ,,线性表示,下列命题正确的是(A )若向量组Ⅰ线性无关,则r s ≤ (B )若向量组Ⅰ线性相关,则r s > (C )若向量组Ⅱ线性无关,则r s ≤ (D )若向量组Ⅱ线性相关,则r s > (6) 设A 为4阶实对称矩阵,且20A A +=,若A 的秩为3,则A 相似于(A )1110⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ (B )1110⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦(C )1110⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥⎣⎦ (D )1110-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥⎣⎦ (7) 设随机变量的分布函数01()01211x x F x x ex -<⎧⎪⎪=≤<⎨⎪-≥⎪⎩,则{}1P X == (A )0 (B )12(C )112e -- (D )11e --(8) 设1()f x 为标准正态分布的概率密度,2()f x 为[]1,3-上的均匀分布的概率密度,若12()0()(0,0)()0af x x f x a b bf x x ≤⎧=>>⎨>⎩为概率密度,则,a b 应满足(A )234a b += (B )324a b += (C )1a b += (D )2a b +=二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) 设可导函数()y y x =由方程220sin x yxt e dt x t dt +-=⎰⎰确定,则x dydx ==______. (10)设位于曲线)y e x =≤<+∞下方,x 轴上方的无界区域为G ,则G 绕x 轴旋转一周所得空间区域的体积是______.(11) 设某商品的收益函数为()R p ,收益弹性为31p +,其中p 为价格,且(1)1R =,则()R p =______.(12) 若曲线321y x ax bx =+++有拐点(1,0)-,则b =______.(13) 设A ,B 为3阶矩阵,且3A =,2B =,12A B -+=,则1A B -+=______. (14) 设1x ,2x ,n x 为来自整体2(,)(0)N μσσ>的简单随机样本,记统计量211n i i T X n ==∑,则ET =______.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分10分) 求极限11ln lim (1)xxx x →+∞-(16) (本题满分10分) 计算二重积分3()Dx y dxdy +⎰⎰,其中D由曲线x =与直线0x +=及0x -=围成。

(17) (本题满分10分)求函数2u xy yz =+在约束条件22210x y z ++=下的最大值和最小值 (18) (本题满分10分) (Ⅰ)比较[]1ln ln(1)nt t dt +⎰与10ln nt t dt ⎰(1,2,)n =的大小,说明理由(Ⅱ)设[]1ln ln(1)nn u t t dt =+⎰(1,2,)n =,求极限lim n n u →∞(19) (本题满分10分) 设函数()f x 在[]0,3上连续,在(0,3)内存在二阶导数,且22(0)()(2)+(3)f f x dx f f ==⎰,(Ⅰ)证明:存在(0,2)η∈,使()(0)f f η= (Ⅱ)证明:存在(0,3)ξ∈,使"()0f ξ= (20) (本题满分11分)设1101011A λλλ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,11a b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦已知线性方程组Ax b =存在2个不同的解 (Ⅰ)求λ,a(Ⅱ)求方程组Ax b =的通解 (21) (本题满分11分)设0141340A aa-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,正交矩阵Q使得TQ AQ为对角矩阵,若Q的第1列为2,1)T,求a,Q(22) (本题满分11分)设二维随机变量()X Y,的概率密度为2222()x xy yf x y Ae-+-=,,x-∞<<+∞,y-∞<<+∞,求常数A及条件概率密度()Y Xf y x(23) (本题满分11分)箱内有6个球,其中红,白,黑球的个数分别为1,2,3,现在从箱中随机的取出2个球,设X为取出的红球个数,Y为取出的白球个数,(Ⅰ)求随机变量()X Y,的概率分布(Ⅱ)求()Cov X Y,2009年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一个选项是符合题目要求的,请把所选项前的字母填在答题纸指定位置上.(1)函数3()sin x x f x xπ-=的可去间断点的个数为(A)1. (B)2.(C)3.(D)无穷多个.(2)当0x →时,()sin f x x ax =-与2()ln(1)g x x bx =-是等价无穷小,则(A)1a =,16b =-. (B )1a =,16b =. (C)1a =-,16b =-. (D )1a =-,16b =.(3)使不等式1sin ln x tdt x t>⎰成立的x 的范围是(A)(0,1).(B)(1,)2π. (C)(,)2ππ.(D)(,)π+∞.(4)设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为(A)(B)(C)(D)(5)设,A B 均为2阶矩阵,*,A B *分别为,A B 的伴随矩阵,若||2,||3A B ==,则分块矩阵O A B O ⎛⎫ ⎪⎝⎭的伴随矩阵为(A)**32O B A O ⎛⎫ ⎪⎝⎭.(B)**23OB AO ⎛⎫⎪⎝⎭. (C)**32O A B O ⎛⎫⎪⎝⎭.(D)**23OA BO ⎛⎫⎪⎝⎭. (6)设,A P 均为3阶矩阵,T P 为P 的转置矩阵,且100010002TP AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若1231223(,,),(,,)P Q ααααααα==+,则TQ AQ 为(A)210110002⎛⎫⎪ ⎪ ⎪⎝⎭.(B)110120002⎛⎫⎪⎪ ⎪⎝⎭.(C)200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭.(D)100020002⎛⎫ ⎪⎪ ⎪⎝⎭.(7)设事件A 与事件B 互不相容,则 (A)()0P AB =.(B)()()()P AB P A P B =.(C)()1()P A P B =-.(D)()1P A B ⋃=.(8)设随机变量X 与Y 相互独立,且X 服从标准正态分布(0,1)N ,Y 的概率分布为1{0}{1}2P Y P Y ====,记()z F Z 为随机变量Z XY =的分布函数,则函数()Z F z 的间断点个数为(A) 0.(B)1. (C)2. (D)3.二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9)cos x x →= .(10)设()y xz x e =+,则(1,0)zx ∂=∂ . (11)幂级数21(1)n n nn e x n ∞=--∑的收敛半径为 . (12)设某产品的需求函数为()Q Q P =,其对应价格P 的弹性0.2p ξ=,则当需求量为10000件时,价格增加1元会使产品收益增加 元.(13)设(1,1,1)T α=,(1,0,)Tk β=,若矩阵T αβ相似于300000000⎛⎫⎪ ⎪ ⎪⎝⎭,则k = .(14) 设1X ,2X ,…,m X 为来自二项分布总体(,)B n p 的简单随机样本,X 和2S 分别为样本均值和样本方差,记统计量2T X S =-,则ET = .三、解答题:15~23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求二元函数()22(,)2ln f x y x y y y =++的极值. (16)(本题满分10 分)计算不定积分ln(1dx +⎰(0)x >. (17)(本题满分10 分) 计算二重积分()Dx y dxdy -⎰⎰,其中22{(,)(1)(1)2,}D x y x y y x =-+-≤≥.(18)(本题满分11 分)(Ⅰ)证明拉格朗日中值定理,若函数()f x 在[],a b 上连续,在(),a b 上可导,则(),a b ξ∈,得证()'()()()f b f a f b a ξ-=-.(Ⅱ)证明:若函数()f x 在0x =处连续,在()0,,(0)σσ>内可导,且'0lim ()x f x A +→=,则'(0)f +存在,且'(0)f A +=. (19)(本题满分10 分)设曲线()y f x =,其中()f x 是可导函数,且()0f x >.已知曲线()y f x =与直线0,1y x ==及(1)x t t =>所围成的曲边梯形绕x 轴旋转一周所得的立体体积值是该曲边梯形面积值的t π倍,求该曲线的方程.(20)(本题满分11 分) 设111A=111042--⎛⎫ ⎪- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫⎪= ⎪ ⎪-⎝⎭.(Ⅰ)求满足21A ξξ=,231A ξξ=的所有向量2ξ,3ξ.(Ⅱ)对(Ⅰ)中的任意向量2ξ,3ξ,证明1ξ,2ξ,3ξ线性无关. (21)(本题满分11 分) 设二次型2221231231323(,,)(1)22f x x x ax ax a x x x x x =++-+-.(Ⅰ)求二次型f 的矩阵的所有特征值.(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值.(22)(本题满分11 分)设二维随机变量(,)X Y 的概率密度为0(,)0xe y xf x y -⎧<<=⎨⎩其他(Ⅰ)求条件概率密度()Y X f y x ; (Ⅱ)求条件概率{}11P X Y ≤≤. (23)(本题满分11分)袋中有一个红球,两个黑球,三个白球,现在放回的从袋中取两次,每次取一个,求以X 、Y 、Z 分别表示两次取球所取得的红、黑与白球的个数.(Ⅰ)求{}10P X Z ==;(Ⅱ)求二维随机变量(,)X Y 的概率分布.2008年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设函数()f x 在区间[1,1]-上连续,则0x =是函数0()()xf t dtg x x=⎰的( )(A )跳跃间断点. (B )可去间断点.(C )无穷间断点.(D )振荡间断点.(2)如图,曲线段方程为()y f x =,函数()f x 在区间[0,]a 上有连续的导数,则定积分()at xf x dx ⎰等于( )(A )曲边梯形ABOD 面积.(B ) 梯形ABOD 面积.(C )曲边三角形ACD 面积.(D )三角形ACD 面积.(3)已知24(,)x y f x y e +=,则(A )(0,0)x f ',(0,0)y f '都存在 (B )(0,0)x f '不存在,(0,0)y f '存在 (C )(0,0)x f '存在,(0,0)y f '不存在 (D )(0,0)x f ',(0,0)y f '都不存在(4)设函数f 连续,若2222(,)uvD F u v x y =+,其中uv D 为图中阴影部分,则Fu∂=∂( )(A )2()vf u (B )2()v f u u (C )()vf u (D )()vf u u(5)设A 为阶非0矩阵,E 为n 阶单位矩阵,若30A =,则( )(A )E A -不可逆,E A +不可逆.(B )E A -不可逆,E A +可逆. (C )E A -可逆,E A +可逆.(D )E A -可逆,E A +不可逆.(6)设1221A ⎛⎫= ⎪⎝⎭则在实数域上域与A 合同的矩阵为( )(A )2112-⎛⎫⎪-⎝⎭.(B )2112-⎛⎫⎪-⎝⎭.(C )2112⎛⎫⎪⎝⎭.(D )1221-⎛⎫⎪-⎝⎭.(7)随机变量,X Y 独立同分布,且X 分布函数为()F x ,则{}max ,Z X Y =分布函数为( )(A )()2Fx .(B )()()F x F y .(C )()211F x --⎡⎤⎣⎦.(D )()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦.(8)随机变量()~0,1X N ,()~1,4Y N 且相关系数1XY ρ=,则( )(A ){}211P Y X =--=.(B ){}211P Y X =-=.(C ){}211P Y X =-+=.(D ){}211P Y X =+=.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数21,()2,x x c f x x c x ⎧+≤⎪=⎨>⎪⎩在(,)-∞+∞内连续,则c = .(10)设341()1x x f x x x ++=+,则2()______f x dx =⎰.(11)设22{(,)1}D x y x y =+≤,则2()Dx y dxdy -=⎰⎰ . (12)微分方程0xy y '+=满足条件(1)1y =的解是y = .(13)设3阶矩阵A 的特征值为1,2,2,E 为3阶单位矩阵,则14_____A E --=. (14)设随机变量X 服从参数为1的泊松分布,则{}2P X EX == . 三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分10分) 求极限201sin limlnx xx x→. (16) (本题满分10分)设(,)z z x y =是由方程()22x y z x y z ϕ+-=++所确定的函数,其中ϕ具有2阶导数且1ϕ'≠-时.(Ⅰ)求dz (Ⅱ)记()1,z z u x y x y x y ⎛⎫∂∂=- ⎪-∂∂⎝⎭,求ux ∂∂. (17) (本题满分11分) 计算max(,1),Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤.(18) (本题满分10分) 设()f x 是周期为2的连续函数, (Ⅰ)证明对任意的实数t ,有()()22t tf x dx f x dx +=⎰⎰;(Ⅱ)证明()()()202xt t G x f t f s ds dt +⎡⎤=-⎢⎥⎣⎦⎰⎰是周期为2的周期函数.(19) (本题满分10分)设银行存款的年利率为0.05r =,并依年复利计算,某基金会希望通过存款A 万元,实现第一年提取19万元,第二年提取28万元,…,第n 年提取(10+9n )万元,并能按此规律一直提取下去,问A 至少应为多少万元(20) (本题满分12分) 设n 元线性方程组Ax b =,其中2221212n n a a a A a a ⨯⎛⎫⎪⎪= ⎪⎪⎝⎭,12n x x x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,100b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ (Ⅰ)求证行列式()1nA n a =+;(Ⅱ)a 为何值时,该方程组有唯一解,并求1x ; (Ⅲ)a 为何值时,方程组有无穷多解,并求通解。

相关文档
最新文档