2018年电大经济数学基础12考试题与答案
中央电大职业技能实训经济数学基础12形考试题答案.doc
中央电大职业技能实训经济数学基础12形考试题答案1.若数项级数和绝对收敛,则级数必绝对收敛. (正确)2. 反常积分收,则必有。
(错误)3.数项级数收敛当且仅当对每个固定的满足条缺件(错误)4.若连续函数列的极限函数在区间I上不连续,则其函数列在区间I不一致收敛。
(正确)5.若在区间上一致收敛,则在上一致收敛. (正确)6.如果函数在具有任意阶导数,则存在,使得在可以展开成泰勒级数.(错误)7.函数可导必连续,连续必可导。
(错误)8.极值点一定包含在区间内部驻点或导数不存在的点之中。
(正确)9.线性回归得出的估计方程为y=38+2x,此时若已知未来x的值是30,那么我们可以预测y的估计值为( 98 )。
10.下列关系是确定关系的是 ( 正方形的边长和面积 )。
11.样本方差与随机变量数字特征中的方差的定义不同在于 ( 是由各观测值到均值距离的平方和除以样本量减1,而不是直接除以样本 )。
12.主要用于样本含量n≤30以下、未经分组资料平均数的计算的是 ( 直接法 )。
13.( 盒形图 ) 在投资实践中被演变成著名的K线图。
14.设事件A与B同时发生时,事件C必发生,则正确的结论是 ( [B] PC≥PA+PB-1)。
15.统计学以 ( 概率论 ) 为理论基础,根据试验或者观察得到的数据来研究随机现象,对研究对象的客观规律性作出种种合理的估计和判断。
16.已知甲任意一次射击中靶的概率为0,5,甲连续射击3次,中靶两次的概率为 ( 0.375 )17.下面哪一个可以用泊松分布来衡量 ( 一个道路上碰到坑的次数 )。
18.线性回归方法是做出这样一条直线,使得它与坐标系中具有一定线性关系的各点的 ( 垂直距离的平方和 )为最小。
19.当两变量的相关系数接近相关系数的最小取值-1时,表示这两个随机变量之间 ( 近乎完全负相关 )。
20.关于概率,下列说法正确的是 (A.价值余0和1之间;B.是度量某一事件发生的可能的方法;D.概率分布是不正确事件发生的可能性的方法 )。
《经济数学基础12》综合练习及参考答案概要
《经济数学基础12》综合练习及参考答案第一部分 微分学一、单项选择题1.函数()1lg +=x xy 的定义域是( ).A .1->xB .0≠xC .0>xD .1->x 且0≠x2.若函数)(x f 的定义域是[0,1],则函数)2(x f 的定义域是( ).A .1],0[B .)1,(-∞C .]0,(-∞D )0,(-∞ 3.下列各函数对中,()中的两个函数相等.A .2)()(x x f =,x x g =)( B .11)(2--=x x x f ,x x g =)(+ 1C .2ln x y =,x x g ln 2)(=D .x x x f 22cos sin )(+=,1)(=x g4.设11)(+=xx f ,则))((x f f =( ).A .11++x xB .x x +1C .111++xD .x+11 5.下列函数中为奇函数的是( ).A .x x y -=2B .x x y -+=e eC .11ln+-=x x y D .x x y sin = 6.下列函数中,()不是基本初等函数.A .102=y B .xy )21(= C .)1ln(-=x y D .31xy = 7.下列结论中,( )是正确的. A .基本初等函数都是单调函数 B .偶函数的图形关于坐标原点对称 C .奇函数的图形关于坐标原点对称 D .周期函数都是有界函数8. 当x →0时,下列变量中( )是无穷大量.A .001.0x B . x x 21+ C . x D . x-29. 已知1tan )(-=xxx f ,当( )时,)(x f 为无穷小量. A . x →0 B . 1→x C . -∞→x D . +∞→x10.函数sin ,0(),0xx f x x k x ⎧≠⎪=⎨⎪=⎩ 在x = 0处连续,则k = ( ).A .-2B .-1C .1D .211. 函数⎩⎨⎧<-≥=0,10,1)(x x x f 在x = 0处( ).A . 左连续B . 右连续C . 连续D . 左右皆不连续 12.曲线11+=x y 在点(0, 1)处的切线斜率为( ).A .21-B .21C .3)1(21+x D .3)1(21+-x13. 曲线y = sin x 在点(0, 0)处的切线方程为( ). A . y = x B . y = 2x C . y = 21x D . y = -x 14.若函数x xf =)1(,则)(x f '=( ).A .21x B .-21x C .x 1 D .-x 115.若x x x f cos )(=,则='')(x f ( ).A .x x x sin cos +B .x x x sin cos -C .x x x cos sin 2+D .x x x cos sin 2-- 16.下列函数在指定区间(,)-∞+∞上单调增加的是( ).A .sin xB .e xC .x 2D .3 - x 17.下列结论正确的有( ).A .x 0是f (x )的极值点,且f '(x 0)存在,则必有f '(x 0) = 0B .x 0是f (x )的极值点,则x 0必是f (x )的驻点C .若f '(x 0) = 0,则x 0必是f (x )的极值点D .使)(x f '不存在的点x 0,一定是f (x )的极值点18. 设需求量q 对价格p 的函数为p p q 23)(-=,则需求弹性为E p =( ).A .p p32- B .--pp32 C .32-ppD .--32pp二、填空题1.函数⎩⎨⎧<≤-<≤-+=20,105,2)(2x x x x x f 的定义域是. 2.函数x x x f --+=21)5ln()(的定义域是.3.若函数52)1(2-+=+x x x f ,则=)(x f. 4.设函数1)(2-=u u f ,xx u 1)(=,则=))2((u f.5.设21010)(xx x f -+=,则函数的图形关于对称.6.已知生产某种产品的成本函数为C (q ) = 80 + 2q ,则当产量q = 50时,该产品的平均成本为 .7.已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) = .8. =+∞→xxx x sin lim.9.已知xxx f sin 1)(-=,当 时,)(x f 为无穷小量.10. 已知⎪⎩⎪⎨⎧=≠--=1111)(2x a x x x x f ,若f x ()在),(∞+-∞内连续,则=a .11. 函数1()1exf x =-的间断点是 . 12.函数)2)(1(1)(-+=x x x f 的连续区间是 .13.曲线y 在点)1,1(处的切线斜率是.14.函数y = x 2 + 1的单调增加区间为.15.已知x x f 2ln )(=,则])2(['f = . 16.函数y x =-312()的驻点是 . 17.需求量q 对价格p 的函数为2e 100)(p p q -⨯=,则需求弹性为E p =.18.已知需求函数为p q 32320-=,其中p 为价格,则需求弹性E p = .三、计算题1.423lim 222-+-→x x x x 2.231lim 21+--→x x x x 3.0x → 4.2343lim sin(3)x x x x →-+-5.113lim21-+--→x xx x 6.2)1tan(lim 21-+-→x x x x ; 7. ))32)(1()23()21(lim 625--++-∞→x x x x x x 8.20sin e lim()1x x x x x →++ 9.已知y xx x--=1cos 2,求)(x y ' .10.已知)(x f xx x x+-+=11ln sin 2,求)(x f ' .11.已知2cos ln x y =,求)4(πy ';12.已知y =32ln 1x +,求d y . 13.设 y x x x x ln +=,求d y .14.设x x y 22e 2cos -+=,求y d . 15.由方程2e e )1ln(=++xy x y 确定y 是x 的隐函数,求)(x y '.16.由方程0e sin =+yx y 确定y 是x 的隐函数,求)(x y '.17.设函数)(x y y =由方程y x y e 1+=确定,求0d d =x x y.18.由方程x y x y=++e )cos(确定y 是x 的隐函数,求y d .四、应用题1.设生产某种产品x 个单位时的成本函数为:x x x C 625.0100)(2++=(万元), 求:(1)当10=x 时的总成本、平均成本和边际成本; (2)当产量x 为多少时,平均成本最小?2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q p =-100010(q 为需求量,p 为价格).试求:(1)成本函数,收入函数; (2)产量为多少吨时利润最大?3.设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元.又已知需求函数p q 42000-=,其中p 为价格,q 为产量,这种产品在市场上是畅销的,问价格为多少时利润最大?并求最大利润.4.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件),问产量为多少时可使利润达到最大?最大利润是多少.5.某厂每天生产某种产品q 件的成本函数为9800365.0)(2++=q q q C (元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少?6.已知某厂生产q 件产品的成本为C q q q ()=++25020102(万元).问:要使平均成本最少,应生产多少件产品?试题答案一、 单项选择题1.D 2.C 3.D 4.A 5.C 6.C 7.C 8. B 9. A 10. C 11. B 12.A 13. A 14. B 15. D 16. B 17. A 18. B 二、填空题1.[-5,2]2. (-5, 2 )3. 62-x 4.43-5. y 轴6.3.67. 45q – 0.25q 28. 19. 0→x 10. 2 11.0x = 12.)1,(--∞,)2,1(-,),2(∞+ 13.(1)0.5y '= 14.(0, +∞) 15. 0 16.x =1 17.2p - 18. 10-p p三、极限与微分计算题1.解 423lim 222-+-→x x x x =)2)(2()1)(2(lim 2+---→x x x x x = )2(1lim 2+-→x x x = 412.解:231lim21+--→x x x x =)1)(2)(1(1lim1+---→x x x x x =21)1)(2(1lim1-=+-→x x x3.解0l i x →=x →=xxx x x 2sin lim )11(lim 00→→++=2⨯2 = 44.解 2343lim sin(3)x x x x →-+-=3(3)(1)lim sin(3)x x x x →---= 333lim lim(1)sin(3)x x x x x →→-⨯--= 25.解 )13)(1()13)(13(lim 113lim2121x x x x x x x x x x x x ++--++-+--=-+--→→ )13)(1()1(2lim )13)(1())1(3(lim 2121x x x x x x x x x x x ++----=++--+--=→→ )13)(1(2lim 1x x x x ++-+-=→221-=6.解 )1)(2()1tan(lim 2)1tan(lim 121-+-=-+-→→x x x x x x x x1)1tan(lim 21lim 11--⋅+=→→x x x x x 31131=⨯=7.解:))32)(1()23()21(lim 625--++-∞→x x x x x x =))32)(11()213()21(lim 625xx x x x x --++-∞→ =2323)2(65-=⨯-8.解 20s i n e l i m ()1x x x x x →++=000sin e lim limsin lim 1xx x x x x x x →→→++ =0+ 1 = 19.解 y '(x )=)1cos 2('--x x x=2)1(cos )1(sin )1(2ln 2x x x x x ------ =2)1(sin )1(cos 2ln 2x xx x x----10.解 因为)1ln()1ln(sin 2)(x x x x f x +--+= 所以 x x x x x f xx+---+⋅='1111cos 2sin 2ln 2)( 212]cos sin 2[ln 2xx x x --+⋅= 11.解 因为 2222tan 22)sin (cos 1)cos (ln x x x x xx y -=-='=' 所以 )4(πy '=ππππ-=⨯-=-1)4tan(42212.解 因为 )ln 1()ln 1(312322'++='-x x y=x x x ln 2)ln 1(31322-+ =x x x ln )ln 1(32322-+所以 x x x xy d ln )ln 1(32d 322-+=13.解 因为 y x x ln 47+=xx y 14743-='所以 d y = (xx 14743-)d x14.解:因为 xx x y 222e 2)2(2s i n --'-='x x x 22e 22s i n ---=所以 y d x x x xd )e 22s i n (22---=15.解 在方程等号两边对x 求导,得 )e ()e (])1ln([2'='+'+xyx y 0)(e 1)1ln(='+++++'y x y xyx y xy xy xyy xyy x x e 1]e )1[ln(-+-='++ 故 ]e )1)[ln(1(e )1(xy xyx x x y x y y +++++-='16.解 对方程两边同时求导,得 0e e cos ='++'y x y y yyyyy x y e )e (cos -='+)(x y '=yyx y ecos e +-. 17.解:方程两边对x 求导,得 y x y y y '+='e e yy x y e 1e -='当0=x 时,1=y所以,d d =x xye e01e 11=⨯-=18.解 在方程等号两边对x 求导,得 )()e (])[cos('='+'+x y x y1e ]1)[sin(='+'++-y y y x y )sin(1)]sin(e [y x y y x y ++='+- )sin(e )sin(1y x y x y y +-++='故 x y x y x y yd )sin(e )sin(1d +-++=四、应用题1.解(1)因为总成本、平均成本和边际成本分别为:x x x C 625.0100)(2++=625.0100)(++=x xx C ,65.0)(+='x x C所以,1851061025.0100)10(2=⨯+⨯+=C5.1861025.010100)10(=+⨯+=C , 116105.0)10(=+⨯='C(2)令 025.0100)(2=+-='xx C ,得20=x (20-=x 舍去)因为20=x 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当=x 20时,平均成本最小.2.解 (1)成本函数C q ()= 60q +2000.因为 q p =-100010,即p q =-100110, 所以 收入函数R q ()=p ⨯q =(100110-q )q =1001102q q -. (2)因为利润函数L q ()=R q ()-C q () =1001102q q --(60q +2000) = 40q -1102q -2000 且 'L q ()=(40q -1102q -2000')=40- 0.2q 令'L q ()= 0,即40- 0.2q = 0,得q = 200,它是L q ()在其定义域内的唯一驻点. 所以,q = 200是利润函数L q ()的最大值点,即当产量为200吨时利润最大.3.解 C (p ) = 50000+100q = 50000+100(2000-4p ) =250000-400pR (p ) =pq = p (2000-4p )= 2000p -4p 2 利润函数L (p ) = R (p ) - C (p ) =2400p -4p 2 -250000,且令 )(p L '=2400 – 8p = 0得p =300,该问题确实存在最大值. 所以,当价格为p =300元时,利润最大. 最大利润 1100025000030043002400)300(2=-⨯-⨯=L (元). 4.解 由已知201.014)01.014(q q q q qp R -=-==利润函数22202.0201001.042001.014q q q q q q C R L --=----=-=则q L 04.010-=',令004.010=-='q L ,解出唯一驻点250=q . 因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大, 且最大利润为1230125020250025002.02025010)250(2=--=⨯--⨯=L (元) 5. 解 因为 C q ()=C q q ()=05369800.q q++ (q >0) q ()=(.)05369800q q ++'=0598002.-q令'C q ()=0,即0598002.-q =0,得q 1=140,q 2= -140(舍去). q 1=140是C q ()在其定义域内的唯一驻点,且该问题确实存在最小值.所以q 1=140是平均成本函数C q ()的最小值点,即为使平均成本最低,每天产量应为140件. 此时的平均成本为C ()140=0514*******140.⨯++=176 (元/件)6.解 (1) 因为 C q ()=C q q ()=2502010q q++'C q ()=()2502010q q ++'=-+2501102q 令'C q ()=0,即-+=25011002q ,得q 1=50,q 2=-50(舍去),q 1=50是C q ()在其定义域内的唯一驻点.所以,q 1=50是C q ()的最小值点,即要使平均成本最少,应生产50件产品.。
国开(中央电大)专科《经济数学基础12》网上形考任务及学习活动试题及答案-
国开(中央电大)专科《经济数学基础12》网上形考任务及学习活动试题及答案|国开(中央电大)专科《经济数学基础12》网上形考任务及学习活动试题及答案说明:课程编号:00975;适用专业及层次:电子商务,工商管理(工商企业管理方向),工商管理(市场营销方向),会计学(财务会计方向),会计学(会计统计核算方向),金融(保险方向),金融(货币银行方向)和金融(金融与财务方向)专科学员;考试平台:形考任务1 试题及答案题目1:函数的定义域为(). 答案:题目1:函数的定义域为(). 答案:题目1:函数的定义域为(). 答案:题目2:下列函数在指定区间上单调增加的是(). 答案:题目2:下列函数在指定区间上单调增加的是(). 答案:题目2:下列函数在指定区间上单调减少的是(). 答案:题目3:设,则(). 答案:题目3:设,则(). 答案:题目3:设,则=().答案:题目4:当时,下列变量为无穷小量的是(). 答案:题目4:当时,下列变量为无穷小量的是(). 答案:题目4:当时,下列变量为无穷小量的是(). 答案:题目5:下列极限计算正确的是(). 答案:题目5:下列极限计算正确的是(). 答案:题目5:下列极限计算正确的是(). 答案:题目6:(). 答案:0题目6:(). 答案:-1题目6:(). 答案:1题目7:(). 答案:题目7:(). 答案:().题目7:(). 答案:-1题目8:(). 答案:题目8:(). 答案:题目8:(). 答案:().题目9:(). 答案:4题目9:(). 答案:-4题目9:(). 答案:2题目10:设在处连续,则(). 答案:1题目10:设在处连续,则(). 答案:1题目10:设在处连续,则(). 答案:2题目11:当(),()时,函数在处连续. 答案:题目11:当(),()时,函数在处连续. 答案:题目11:当(),()时,函数在处连续. 答案:题目12:曲线在点的切线方程是(). 答案:题目12:曲线在点的切线方程是(). 答案:题目12:曲线在点的切线方程是(). 答案:题目13:若函数在点处可导,则()是错误的.答案:,但题目13:若函数在点处可微,则()是错误的.答案:,但题目13:若函数在点处连续,则()是正确的.答案:函数在点处有定义题目14:若,则(). 答案:题目14:若,则(). 答案:1题目14:若,则(). 答案:题目15:设,则().答案:题目15:设,则().答案:题目15:设,则().答案:题目16:设函数,则(). 答案:题目16:设函数,则(). 答案:题目16:设函数,则(). 答案:题目17:设,则(). 答案:题目17:设,则(). 答案:题目17:设,则(). 答案:题目18:设,则(). 答案:题目18:设,则(). 答案:题目18:设,则(). 答案:题目19:设,则(). 答案:题目19:设,则(). 答案:题目19:设,则(). 答案:题目20:设,则(). 答案:题目20:设,则(). 答案:题目20:设,则(). 答案:题目21:设,则(). 答案:题目21:设,则(). 答案:题目21:设,则(). 答案:题目22:设,方程两边对求导,可得().答案:题目22:设,方程两边对求导,可得(). 答案:题目22:设,方程两边对求导,可得(). 答案:题目23:设,则(). 答案:题目23:设,则(). 答案:题目23:设,则(). 答案:-2题目24:函数的驻点是(). 答案:题目24:函数的驻点是(). 答案:题目24:函数的驻点是(). 答案:题目25:设某商品的需求函数为,则需求弹性(). 答案:题目25:设某商品的需求函数为,则需求弹性(). 答案:题目25:设某商品的需求函数为,则需求弹性(). 答案:形考任务2 试题及答案题目1:下列函数中,()是的一个原函数.答案:题目1:下列函数中,()是的一个原函数.答案:题目1:下列函数中,()是的一个原函数.答案:题目2:若,则(). 答案:题目2:若,则().答案:题目2:若,则(). 答案:题目3:(). 答案:题目3:().答案:题目3:(). 答案:题目4:().答案:题目4:().答案:题目4:().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目6:若,则(). 答案:题目6:若,则().答案:题目6:若,则(). 答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目10:(). 答案:0题目10:().答案:0题目10:(). 答案:题目11:设,则(). 答案:题目11:设,则().答案:题目11:设,则(). 答案:题目12:下列定积分计算正确的是().答案:题目12:下列定积分计算正确的是().答案:题目12:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目14:计算定积分,则下列步骤中正确的是().答案:题目14:().答案:题目14:().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目17:下列无穷积分中收敛的是().答案:题目17:下列无穷积分中收敛的是().答案:题目17:下列无穷积分中收敛的是().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:形考任务3 试题及答案题目1:设矩阵,则的元素().答案:3题目1:设矩阵,则的元素a32=().答案:1题目1:设矩阵,则的元素a24=().答案:2题目2:设,,则().答案:题目2:设,,则(). 答案:题目2:设,,则BA =().答案:题目3:设A为矩阵,B为矩阵,且乘积矩阵有意义,则为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C 为()矩阵.答案:题目4:设,为单位矩阵,则(). 答案:题目4:设,为单位矩阵,则(A - I )T =().答案:题目4:,为单位矩阵,则AT–I =().().答案:题目5:设均为阶矩阵,则等式成立的充分必要条是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条是().答案:题目6:下列关于矩阵的结论正确的是().答案:对角矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:数量矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:若为可逆矩阵,且,则题目7:设,,则().答案:0题目7:设,,则().答案:0题目7:设,,则().答案:-2, 4题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目10:设矩阵,则().答案:题目10:设矩阵,则().答案:题目10:设矩阵,则().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目12:矩阵的秩是().答案:2题目12:矩阵的秩是().答案:3题目12:矩阵的秩是().答案:3题目13:设矩阵,则当()时,最小.答案:2题目13:设矩阵,则当()时,最小.答案:-2题目13:设矩阵,则当()时,最小.答案:-12题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量. 答案:题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.答案:题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.选择一项:A. B. C. D. 答案:题目15:设线性方程组有非0解,则().答案:-1题目15:设线性方程组有非0解,则().答案:1题目15:设线性方程组有非0解,则().答案:-1题目16:设线性方程组,且,则当且仅当()时,方程组有唯一解.答案:题目16:设线性方程组,且,则当()时,方程组没有唯一解.答案:题目16:设线性方程组,且,则当()时,方程组有无穷多解.答案:题目17:线性方程组有无穷多解的充分必要条是().答案:题目17线性方程组有唯一解的充分必要条是().答案:题目17:线性方程组无解,则().答案:题目18:设线性方程组,则方程组有解的充分必要条是().答案:题目18:设线性方程组,则方程组有解的充分必要条是().答案:题目18:设线性方程组,则方程组有解的充分必要条是()答案:题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组无解.答案:且题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组有无穷多解.答案:且题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组有唯一解.答案:题目20:若线性方程组只有零解,则线性方程组(). 答案:解不能确定题目20:若线性方程组有唯一解,则线性方程组().答案:只有零解题目20:若线性方程组有无穷多解,则线性方程组().答案:有无穷多解形考任务4 答案一、计算题(每题6分,共60分)1.解:综上所述, 2.解:方程两边关于求导:, 3.解:原式=。
电大经济数学基础12全套试题及答案汇总(供参考)
电大经济数学基础12全套试题及答案一、填空题(每题3分,共15分)6.函数()f x =的定义域是 (,2](2,)-∞-+∞U .7.函数1()1xf x e=-的间断点是 0x = .8.若()()f x dx F x C =+⎰,则()xx ef e dx --=⎰()x F e c --+.9.设10203231A a ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,当a = 0 时,A 是对称矩阵。
10.若线性方程组12120x x x x λ-=⎧⎨+=⎩有非零解,则λ= -1 。
6.函数()2x xe ef x --=的图形关于 原点 对称.7.已知sin ()1xf x x=-,当x → 0时,()f x 为无穷小量。
8.若()()f x dx F x C =+⎰,则(23)f x dx -=⎰1(23)2F x c -+ .9.设矩阵A 可逆,B 是A 的逆矩阵,则当1()T A -= TB 。
10.若n 元线性方程组0AX =满足()r A n <,则该线性方程组 有非零解 。
6.函数1()ln(5)2f x x x =++-的定义域是 (5,2)(2,)-+∞U . 7.函数1()1xf x e=-的间断点是 0x = 。
8.若2()22x f x dx x c =++⎰,则()f x =2ln 24x x +.9.设111222333A ⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦,则()r A = 1 。
10.设齐次线性方程组35A X O ⨯=满,且()2r A =,则方程组一般解中自由未知量的个数为 3 。
6.设2(1)25f x x x -=-+,则()f x =x2+4 .7.若函数1sin 2,0(),0x x f x xk x ⎧+≠⎪=⎨⎪=⎩在0x =处连续,则k= 2 。
8.若()()f x dx F x c =+⎰,则(23)f x dx -=⎰1/2F(2x-3)+c.9.若A 为n 阶可逆矩阵,则()r A = n 。
电大经济数学基础 期末考试试题及答案
2018年电大经济数学基础12期末考试试题及答案一、单项选择题(每题3分,本题共15分)1.下列函数中为奇函数的是 (CABD 2D)。
ABD 3.下列无穷积分收敛的是A .D 4A B5D .无解).A .有唯一解B .只有0解C .有无穷多解D .无解1 (D ).AB D2 B)。
A BD 3.下列定积分中积分值为A .4 C)。
A B ..5 A )时线性方程组无解.AB.0 C.1 D.21.下列函数中为偶函数的是(C).ABD2D)。
AB3.下列无穷积分中收敛的是.A.BD4为52⨯矩阵,( B.24⨯) 矩阵。
A B.24⨯ C D5 A.无解).A.无解D.有无穷多解1ABD2A)。
AB D3.下列函数中(BA.B D4. 2 ) 。
A. 0B. 1C. 2D. 35 D.有唯一解).A.无解B.有无穷多解 C.只有0解D.有唯一解1..下列画数中为奇函数是(C).AB D2)为无穷小量。
A B D3.1 ).A D43,5)点的曲线方程是( A. 24y x=-)A B. D.5).A D1..下列各函数对中,( D)中的两个函数相等.ABCD2 AA3ACD4.下列函数中,(D.A B. D.5).A.0D二、填空题(每题36789 时,101 。
6的图形关于 原点 对称.70 时,89B 是A 10.若n 元线性方程组0AX =,则该线性方程组 有非零解 。
67891 。
10.设齐次线性方程方程组一般解中自由未知量的个数为3 。
6= x2+4 .7.若函数1sin 2,0(),0xx f x x k x ⎧+≠⎪=⎨⎪=⎩k= 2 。
89.若A为n10一般解中自由未知量的个数为 2 。
2C.1)。
3.下列定积分中积分值为0的是( A ).4.设120300132413A-⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦. 2 ) 。
5.若线性方程组的增广矩阵为120124Aλλ⎡⎤=⎢⎥--⎣⎦( A.1/2 )时该线性方程组无解。
国家开放大学电大专科《经济数学基础12》形考网络课学习活动试题及答案-
国家开放大学电大专科《经济数学基础12》形考网络课学习活动试题及答案:国家开放大学电大专科《经济数学基础12》形考课学习活动试题及答案学习活动(总40分)活动一:问卷答题(占形考总分的10% 题目1 形考任务中共有()次学习活动。
选择一项: A. 4 B. 8 C. 2 D. 12 题目 2 形考任务中的作业四有()次答题机会。
选择一项: A. 2 B. 3 C. 1 D. 无限题目3 考核说明中规定形成性考核占课程综合成绩的()。
选择一项: A. 70% B. 50% C. 30% D. 100% 题目4 微分学第3章任务三的名称是()。
选择一项: A. 微分方程的基本概念 B. 两个重要极限 C. 函数的单调性 D. 函数最值题目5 每个学习任务一般由知识讲解、典型例题、()和测试四个环节构成。
选择一项: A. 小结 B. 导学 C. 学习目标 D. 跟我练习题目6 积分学第2章任务四的典型例题共有()道题。
选择一项: A. 4 B. 3 C. 1 D. 2 题目7 线性代数第2章任务五的知识讲解中,目标二的题目是()。
选择一项: A. 逆矩阵的概念 B. 特殊矩阵 C. 伴随矩阵 D. 可逆矩阵的性质题目8 “模拟练习”在“考试复习”栏目的()部分。
选择一项: A. 各章练习汇总及模拟 B. 考试常见问题 C. 复习指导 D. 教学活动题目9 “基尼系数”是案例库中()的案例。
选择一项: A. 第一篇第二章 B. 第二篇第一章 C. 第一篇第一章 D. 第二篇第二章题目10 “知识拓展”栏目中“学科进展”里的第5个专题是().选择一项: A. 什么是数学模型 B. 数学三大难题 C. 1名数学家=10个师的由来 D. 2007年诺贝尔经济学奖活动二:单调性—函数属性研究的实际意义(占形考总分的10%)讨论区 1.怎样描述函数的单调性? 2.在实际生活中,你都遇到过哪些单调性的例子? 3.在你遇到的实际单调性例子中,你会采取什么相应的措施?答案如下: 1. 函数的单调性也可以叫做函数的增减性。
经济数学基础12-国家开放大学电大易考通考试题目答案
经济数学基础12【填空题】若,则=1/3&三分之一。
【知识点】凑微分【填空题】若,则=1/2&二分之一。
【知识点】凑微分【填空题】若,则=-1。
【知识点】凑微分【填空题】若,则=-1/2&负二分之一。
【知识点】凑微分【单选题】若,则f(x)=。
A.B.C.D.【答案】C【单选题】下列给出了四个等式中,正确的是。
A.B.C.D.【答案】A【单选题】若=。
A.4sin2xB.-4sin2xC.2cos2xD.-2cos2x【答案】B【单选题】若f(x)是可导函数,则下列等式中不正确的是。
A.B.C.D.【答案】D【单选题】微分=。
A.B.C.D.【答案】B【单选题】若f(x)可微,则=。
A.f(x)B.C.D.f(x)+c【答案】B【单选题】若,则f(x)=。
A.B.C.D.【答案】C【单选题】以下结论正确的是。
A.方程的个数小于未知量的个数的线性方程组一定有无穷多解B.方程的个数等于未知量的个数的线性方程组一定有唯一解C.方程的个数大于未知量的个数的线性方程组一定有无解D.A,B,C都不对【答案】D【单选题】若线性方程组AX=O只有零解,则线性方程组AX=b。
A.有唯一解B.有无穷多解C.无解D.解不能确定【答案】D【单选题】齐次线性方程组。
A.有非零解B.只有零解C.无解D.可能有解也可能无解【答案】A【单选题】线性方程组一定。
A.有无穷多解B.有唯一解C.只有零解D.无解【答案】B【单选题】线性方程组一定。
A.有唯一解B.有无穷多解C.无解D.有是一个解【答案】C【单选题】线性方程组的解的情况是。
A.无解B.只有零解C.有唯一解D.有无穷多解【答案】A【单选题】线性方程组解的情况是。
A.有无穷多解B.只有零解C.有唯一解D.无解【答案】D【单选题】线性方程组解的情况是。
A.有唯一解B.只有零解C.有无穷多解D.无解【答案】C【单选题】设线性方程组AX=b有唯一解,则相应的齐次方程组AX=O解的情况是。
国开电大经济数学基础12形考任务2
国开电大经济数学基础12 形考任务2 2018.12 注:国开电大经济数学基础12 形考任务 2 共20 道题,每到题目从题库中三选一抽取,具体答案如下:题目1:下列函数中,()是的一个原函数.答案:题目1:下列函数中,()是的一个原函数.答案:题目1:下列函数中,()是的一个原函数.答案:题目2:若,则(). 答案:题目2:若,则().答案:题目2:若,则(). 答案:题目3:(). 答案:题目3:().答案:题目3:(). 答案:题目4:().答案:题目4:().答案:题目4:().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目6:若,则().答案:题目6:若,则().答案:题目6:若,则().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目10:().答案:0题目10:().答案:0题目10:().答案:题目11:设,则().答案:题目11:设,则().答案:题目11:设,则().答案:题目12:下列定积分计算正确的是().答案:题目12:下列定积分计算正确的是().答案:题目12:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目14:计算定积分,则下列步骤中正确的是().答案:题目14:().答案:题目14:().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目17:下列无穷积分中收敛的是().答案:题目17:下列无穷积分中收敛的是().答案:题目17:下列无穷积分中收敛的是().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:。
2018电大经济数学基础12期末考试试题及答案复习资料
电大经济数学基础12全套试题及答案一、填空题(每题3分,共15分)6.函数()f x =的定义域是 (,2](2,)-∞-+∞ .7.函数1()1xf x e =-的间断点是 0x =.8.若()()f x dx F x C =+⎰,则()xx ef e dx --=⎰ ()x F e c --+.9.设10203231A a ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,当a = 0 时,A 是对称矩阵。
10.若线性方程组12120x x x x λ-=⎧⎨+=⎩有非零解,则λ= -1 。
6.函数()2x xe ef x --=的图形关于 原点 对称.7.已知sin ()1xf x x=-,当x → 0时,()f x 为无穷小量。
8.若()()f x dx F x C =+⎰,则(23)f x dx -=⎰1(23)2F x c -+ .9.设矩阵A 可逆,B 是A 的逆矩阵,则当1()T A -= TB 。
10.若n 元线性方程组0AX =满足()r A n <,则该线性方程组 有非零解 。
6.函数1()ln(5)2f x x x =++-的定义域是 (5,2)(2,-+∞ . 7.函数1()1xf x e=-的间断点是 0x = 。
8.若2()22xf x dx x c =++⎰,则()f x = 2ln 24x x +.9.设111222333A ⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦,则()r A = 1 。
10.设齐次线性方程组35A X O ⨯=满,且()2r A =,则方程组一般解中自由未知量的个数为 3 。
6.设2(1)25f x x x -=-+,则()f x =x2+4 .7.若函数1sin 2,0(),0x x f x xk x ⎧+≠⎪=⎨⎪=⎩在0x =处连续,则k= 2 。
8.若()()f x dx F x c =+⎰,则(23)f x dx -=⎰1/2F(2x-3)+c.9.若A 为n 阶可逆矩阵,则()r A = n 。
2018年电大经济数学基础12期末考试试题及答案
2018年电大经济数学基础12期末考试试题及答案2018年电大经济数学基础12期末考试试题及答案一、单项选择题(每题3分,本题共15分)1.下列函数中为奇函数的是(C.y=ln|x+1|)。
2.设需求量q对价格p的函数为q(p)=3-2p,则需求弹性为Ep=-p/(3-2p)。
3.下列无穷积分收敛的是(B.∫(1/x^2)dx)。
4.设A为3x2矩阵,B为2x3矩阵,则下列运算中(A.AB)可以进行。
5.线性方程组{x1+x2=1,x1+x2=2}的解的情况是(D.无解)。
2018年电大经济数学基础12期末考试试题及答案一、单项选择题(每题3分,本题共15分)1.下列函数中为偶函数的是(C.y=ex+e-x)。
2.设需求量q对价格p的函数为q(p)=3-2p,则需求弹性为Ep=-p/(3-2p)。
3.下列定积分中积分值为1的是(A.∫(ex-e-x)/(e+eπ)dx)。
4.设A为3x2矩阵,B为2x3矩阵,则下列运算中(A.AB)可以进行。
5.线性方程组{x1+x2=1,x1+x2=2}的解的情况是(D.无解)。
3.下列无穷积分中收敛的是(A.$\int_{0}^{+\infty} e^xdx$).B.$\int_{1}^{+\infty} \frac{1}{x^2+3x+1} dx$C.$\int_{0}^{+\infty} \frac{2x+3}{x^2+3x+1} dx$D.$\int_{0}^{+\infty} \sin x dx$改写:下列无穷积分中,只有$\int_{0}^{+\infty} e^xdx$收敛。
4.设$A$为$3\times 4$矩阵,$B$为$5\times 2$矩阵,且乘积矩阵$ACB$有意义,则$C$为$(B.2\times 4)$矩阵。
$A.4\times 2$ $B.2\times 4$ $C.3\times 5$ $D.5\times 3$改写:设$A$为$3\times 4$矩阵,$B$为$5\times 2$矩阵,且乘积矩阵$ACB$有意义,则$C$为$2\times 4$矩阵。
电大经济数学基础12)
单项选择题(每题4分,共100分)题目1正确获得4.00分中的4.00分标记题目题干函数的定义域为().选择一项:A.B.C.D.反馈你的回答正确题目2正确获得4.00分中的4.00分标记题目题干下列函数在指定区间上单调减少的是().选择一项:A.B.C.D.反馈你的回答正确题目3正确获得4.00分中的4.00分标记题目题干设,则().选择一项:A.B.C.D.反馈你的回答正确题目4获得4.00分中的4.00分标记题目题干当时,下列变量为无穷小量的是().选择一项:A.B.C.D.反馈你的回答正确题目5正确获得4.00分中的4.00分标记题目题干下列极限计算正确的是().选择一项:A.B.C.D.反馈你的回答正确题目6正确获得4.00分中的4.00分标记题目题干().选择一项:A. 2B. -1C. 0D. 1反馈你的回答正确题目7正确获得4.00分中的4.00分标记题目题干().选择一项:A.B. -2C. 2D.反馈你的回答正确题目8标记题目题干().选择一项:A.B.C.D.反馈你的回答正确题目9正确获得4.00分中的4.00分标记题目题干().选择一项:A. -4B. 1C. 0D. 4反馈你的回答正确题目10正确获得4.00分中的4.00分标记题目题干设在处连续,则().选择一项:A. -1B. 1C.D. 0反馈你的回答正确题目11正确获得4.00分中的4.00分标记题目题干当(),()时,函数在处连续.选择一项:A.B.C.D.反馈你的回答正确题目12获得4.00分中的4.00分标记题目题干曲线在点的切线方程是().选择一项:A.B.C.D.反馈你的回答正确题目13正确获得4.00分中的4.00分标记题目题干若函数在点处可微,则()是错误的.选择一项:A. ,但B. 函数在点处有定义C. 函数在点处连续D. 函数在点处可导反馈你的回答正确题目14正确获得4.00分中的4.00分标记题目题干若,则().选择一项:A.B.C.D.反馈你的回答正确题目15正确获得4.00分中的4.00分标记题目题干设,则().选择一项:A.B.C.D.反馈你的回答正确题目16标记题目题干设函数,则().选择一项:A.B.C.D.反馈你的回答正确题目17正确获得4.00分中的4.00分标记题目题干设,则().选择一项:A.B.C.D.反馈你的回答正确题目18正确获得4.00分中的4.00分标记题目题干设,则().选择一项:A.B.C.D.反馈你的回答正确题目19正确获得4.00分中的4.00分标记题目题干设,则().选择一项:A.B.C.D.反馈你的回答正确题目20正确获得4.00分中的4.00分标记题目题干设,则().选择一项:A.B.C.D.反馈你的回答正确题目21获得4.00分中的4.00分标记题目题干设,则().选择一项:A.B.C.D.反馈你的回答正确题目22正确获得4.00分中的4.00分标记题目题干设,方程两边对求导,可得().选择一项:A.B.C.D.反馈你的回答正确题目23正确获得4.00分中的4.00分标记题目题干设,则().选择一项:A.B.C.D.反馈你的回答正确题目24正确获得4.00分中的4.00分标记题目题干函数的驻点是().选择一项:A.B.C.D.反馈你的回答正确题目25正确获得4.00分中的4.00分标记题目题干设某商品的需求函数为,则需求弹性().选择一项:A.B.C.D.反馈你的回答正确结束回顾跳过<span id="mod_quiz_navblock_title">测验导航</span>测验导航信息信息此页题目1此页题目2此页题目3此页题目4此页题目5此页题目6此页题目7此页题目8此页题目9此页题目10此页题目11此页题目12此页题目13此页题目14此页题目15此页题目16此页题目17此页题目18此页题目19此页题目20此页题目21此页题目22此页题目23此页题目24此页题目25此页结束回顾版权所有国家开放大学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经济数学基础形成性考核册及参考答案作业(一)(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( )答案:D A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =lg2,则d y =( ).答案:B A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x(3)2111lim0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim22=--→x x x 2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
3.计算下列函数的导数或微分: (1)2222log 2-++=x x y x,求y ' 答案:2ln 12ln 22x x y x++=' (2)dcx bax y ++=,求y '答案:2)(d cx cbad y +-=' (3)531-=x y ,求y '答案:3)53(23--='x y(4)x x x y e -=,求y '答案:x x xy e )1(21+-='(5)bx y axsin e =,求y d答案:dx bx b bx a dy ax)cos sin (e +=(6)x x y x+=1e ,求y d答案:y d x xx x d )e 121(12-= (7)2e cos x x y --=,求y d 答案:y d x xx x x d )2sin e 2(2-=-(8)nx x y nsin sin +=,求y ' 答案:)cos cos (sin1nx x x n y n +='-(9))1ln(2x x y ++=,求y ' 答案:211xy +='(10)xxx y x212321cot -++=,求y '答案:652321cot61211sin2ln 2--+-='x x xx y x4.下列各方程中y 是x 的隐函数,试求y '或y d (1)1322=+-+x xy y x ,求y d 答案:x xy xy y d 223d ---=(2)x e y x xy4)sin(=++,求y '答案:)cos(e )cos(e 4y x x y x y y xyxy +++--=' 5.求下列函数的二阶导数: (1))1ln(2x y +=,求y ''答案:222)1(22x x y +-=''(2)xx y -=1,求y ''及)1(y ''答案:23254143--+=''x x y ,1)1(=''y作业(二)(一)填空题 1.若c x x x f x ++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x2. ⎰='x x d )sin (________.答案:c x +sin3. 若c x F x x f +=⎰)(d )(,则⎰=-x x xf d )1(2 .答案:c x F +--)1(212 4.设函数___________d )1ln(d d e12=+⎰x x x .答案:0 5. 若t tx P xd 11)(02⎰+=,则__________)(='x P .答案:211x+-(二)单项选择题1. 下列函数中,( )是x sin x 2的原函数. A .21cos x 2 B .2cos x 2 C .-2cos x 2 D .-21cos x 2答案:D2. 下列等式成立的是( ).A .)d(cos d sin x x x =B .)1d(d ln xx x =C .)d(22ln 1d 2x xx =D .x x xd d 1= 答案:C3. 下列不定积分中,常用分部积分法计算的是( ). A .⎰+x x c 1)d os(2, B .⎰-x x x d 12C .⎰x x x d 2sin D .⎰+x x xd 12答案:C4. 下列定积分计算正确的是( ). A .2d 211=⎰-x x B .15d 161=⎰-xC .0)d (32=+⎰-x x xππ D .0d sin =⎰-x x ππ答案:D5. 下列无穷积分中收敛的是( ).A .⎰∞+1d 1x x B .⎰∞+12d 1x x C .⎰∞+0de x xD .⎰∞+1d sin x x答案:B(三)解答题1.计算下列不定积分(1)⎰x x xd e3答案:c x x +e3ln e 3 (2)⎰+x xx d )1(2答案:c x x x +++252352342(3)⎰+-x x x d 242 答案:c x x +-2212(4)⎰-x x d 211答案:c x +--21ln 21(5)⎰+x x x d 22答案:c x ++232)2(31(6)⎰x xx d sin答案:c x +-cos 2(7)⎰x x x d 2sin答案:c xx x ++-2sin 42cos 2(8)⎰+x x 1)d ln(答案:c x x x +-++)1ln()1( 2.计算下列定积分(1)x x d 121⎰--答案:25 (2)x x xd e2121⎰答案:e e - (3)x xx d ln 113e 1⎰+答案:2(4)x x x d 2cos 20⎰π答案:21- (5)x x x d ln e1⎰答案:)1e (412+ (6)x x x d )e 1(40⎰-+答案:4e 55-+ 作业三(一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:3 2.设B A ,均为3阶矩阵,且3-==B A ,则T AB 2-=________. 答案:72-3. 设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是 .答案:BA AB =4. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵X BX A =+的解______________=X . 答案:A B I 1)(--5. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题1. 以下结论或等式正确的是( ).A .若B A ,均为零矩阵,则有B A =B .若AC AB =,且O A ≠,则C B =C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠答案C2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则TC 为( )矩阵. A .42⨯ B .24⨯C .53⨯D .35⨯ 答案A3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ). ` A .111)(---+=+B A B A , B .111)(---⋅=⋅B A B AC .BA AB =D .BA AB = 答案C 4. 下列矩阵可逆的是( ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101 C .⎥⎦⎤⎢⎣⎡0011 D .⎥⎦⎤⎢⎣⎡2211 答案A5. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( ). A .0 B .1 C .2 D .3 答案B三、解答题 1.计算 (1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321(2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000 (3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321 解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。