小型风光互补发电系统与应用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小型风光互补发电系统的研究与应用【摘要】小型风光互补发电系统作为独立电源系统和清洁的供电系统,在资源利用以及系统配置有它的合理性,因此有着广泛的应用前景。本文分析了风光互补发电系统,包括相关工作原理、合理配置和系统的优化设计等,概括叙述了以及该系统在国内的应用前景。

【关键词】风能;太阳能;风光互补;发电系统;研究与应用能源是国民经济发展和人民生活必须的物质基础,在过去的200多年里,建立在煤炭、石油、天然气等化石燃料基础上的能源体系极大的推动了人类社会的发展。但是人类在使用化石燃料的同时,带来了严重的环境污染和生态系统破坏。近年来,世界各国逐渐认识到能源对人类的重要性,更认识到常规能源利用过程中对环境和生态系统的破坏,各国纷纷开始根据国情,治理和缓解已经恶化的环境,并把可再生、无污染的新能源的开发利用作为可持续发展的重要内容。风光互补发电系统是利用风能和太阳能资源的互补性,具有较高性价比的一种新型能源发电系统,具有很好的应用前景。

1.小型风光互补发电系统工作原理

小型风光互补发电系统,它由风力发电机组、太阳能光伏方阵、控制器、蓄电池、逆变器等组成。

当风力达到一定的风速时,风力发电机组将风能转换为交流形式的电能,但由于所产生的交流电压不是很稳定,所以必须通过整流器整流,给蓄电池充电。光伏方阵则是由若干太阳电池板串联和

并联构成,其作用是将太阳能直接转换成直流形式的电能,并向蓄电池充电,蓄电池起着储存和调节电能的作用,当日照充足或者风力很大导致产生的电能过剩时,蓄电池将多余的电能储存起来;当系统发电量不足或者负荷用电量增加时,则由蓄电池向负荷补充电能,并保持供电电压的稳定。因此需要设计专门的控制装置,该装置可根据日照的强弱、风力的大小以及负荷的变化,不断对蓄电池的工作状态进行切换和调节,使其在充电、放电或浮充电等多种工况下交替运行,以保证风力、光伏及互补发电系统工作的连续性和稳定性。而对于直流负荷或者交流负荷,还可以实现两者之间的相互转换。

2. 小型风光互补发电系统的合理性

2.1资源利用的合理性

太阳能和风能是大自然中存在的最普遍的自然资源,也是取之不尽的可再生能源。太阳能是由于太阳内部连续不断的核聚变反应过程产生的能量,而风能则是太阳能在地球表面的一种表现形式,由于地球表面的不同形态对太阳光照的吸收能力不同,所以在地球表面形成温度差,从而形成空气对流而产生风能。太阳能和风能在时间分布上有很强的互补性。在白天,太阳光最强而风很小,在晚上,光照很弱而风能有所加强;在夏季,太阳光强度大而风小,在冬季,太阳光强度弱而风大。太阳能和风能在时间上的互补性使得风光互补发电系统在资源利用上具有很好的匹配性。

2.2 系统配置的合理性

风光互补发电系统是由风电系统与光电系统组成的联合供电系统。风光互补发电系统由太阳能光电板、小型风力发电机组、系统控制器、蓄电池组和逆变器等几部分组成,而发电系统各部分容量的合理配置则对保证发电系统的可靠性非常重要。

一般来说来,系统配置应考虑以下几个方面的因素:(1)太阳能和风能的资源状况,以及项目实施地的太阳能和风能的资源状况则是系统光电板和风机容量选择的另一个依据。一般根据资源状况来确定光电板和风机的容量系数,再按用户的日用电量确定容量的前提下再考虑容量系数,最后光电板和风机的容量。(2)用电负荷的特征,发电系统则是为满足用户的用电要求而设计的,要为用户提供可靠的电力,就必须认真分析用户的用电负荷特征。主要是了解用户的最大用电负荷和平均日用电量。最大用电负荷是选择系统逆变器容量的依据,而平均日发电量,则是选择风机及光电板容量和蓄电池组容量的依据。

简而言之,风光互补发电系统是最合理的独立电源系统,这种合理性表现在资源配置最合理,技术方案最合理,性能价格最合理。

3.小型风光互补系统的优化设计思路

衡量风光互补发电系统优劣的主要指标是其可靠性和经济性,因此必须通过科学分析,使系统既能长期满足用户的负载需要,又能使系统配置的容量最小,具有最佳的经济性。对于全年负载平均的固定光伏方阵,设计时不能以固定值作为太阳电池方阵的最佳倾角,而应当参考当地的太阳能资源、风力资源的全年分布情况,以

及负载供电要求的实际全年分布情况确定。根据不同的倾角、蓄电池维持天数、用户负载、最小化投资等参数,通过编制的计算机软件进行循环计算,得出系统最优配置,使设备初期总投资达到最低。设备初期总投资主要是风力发电机组、太阳能电池、蓄电池,以及其他一些设备的总成本。可由式(1)表示:

(1)

式中:—太阳能电池组件的单价;—太阳能电池组件的个数;—蓄电池个数;—风力发电机的单价;—风力发电机的个数;—其他附件,如控制逆变器、显示器、工控机、机械结构、连接电缆等。

4. 小型风光互补发电系统的应用

在我国小型风光互补发电系统主要应用在农村的生活和生产用电、半导体室外照明中的应用、航标上的应用、道路监控摄像机电源中、通信基等中的应用。

(1)无电农村的生活、生产用电

中国现有9亿人口生活在农村,其中5%左右目前还未能用上电。而在中国无电乡村往往位于风能和太阳能蕴藏量丰富的地区,因此利用风光互补发电系统解决用电问题的潜力十分很大。此外,利用风光互补系统开发储量丰富的可再生能源,可以为广大边远地区的农村人口提供最适宜,同时也最便宜的电力服务,从而促进贫困地区的可持续发展。

(2)半导体室外照明中的应用

在目前世界上,室外照明工程的耗电量占全球发电量的12%左

右,而在全球日趋紧张的能源和环保背景下,它的节能工作日益引起全世界的关注。室外道路照明工程主要包括:车行道路照明工程、小区道路照明工程等。

(3)通信基站中的应用

目前我国许多海岛、山区等地远离电网,但由于当地渔业、旅游、航海等行业有通信需要,需要建立通信基站。这些基站用电负荷都不会很大,假若采用市电供电,架杆铺线代价很大;假若采用柴油机供电,存在柴油储运成本高、可靠性不高以及系统维护困难的问题。而太阳能和风能在时间上和地域上都有很强的互补性,海岛风光互补发电系统是可靠性、经济性较好的独立电源系统,适合用于通信基站供电。

(4)监控摄像机电源中的应用

应用风光互补发电系统为道路监控摄像机提供电源,不仅节能,而且不需要铺设线缆,减少了线缆被盗了可能;同时有效防止输电线路盗窃事件的发生,从而使高速公路经营单位的运营成本大大降低。

5.经验总结

目前,随着我国风光互补发电系统各方面技术的不断提高,以及相关产品质量和效率的不断提高,风光互补发电系统的市场竞争能力也会不断增强,将逐渐从偏远地区向城市过渡,由补充能源向替代能源发展。到21世纪中叶,该分布式发电形式将在能源的消费结构中占有相当大的份额,具有十分广阔的发展前景。

相关文档
最新文档