柱下独立基础课程设计最新篇

合集下载

基础工程课程设计柱下独立基础

基础工程课程设计柱下独立基础

标准文档柱下独立基础课程设计姓名:班级:学号:指导老师:罗晓辉目录一、设计任务书....................................... - 3 -二、不考虑地基处理和角边柱影响中柱的沉降验算 ......... - 3 -三、地基处理后边柱J-1基础设计....................... - 5 -四、地基处理后边柱J-2的设计......................... - 8 -五、地基处理后角柱J-3的设计........................ - 11 -六、地基处理后中柱J-4的设计........................ - 13 -七、地基处理后中柱J-5的设计........................ - 15 -八、基础结构布置平面图.............................. - 17 -一、设计任务书采用柱下独立基础方案。

材料采用C25,基底设置C15、厚度100mm 的混凝土垫层;配筋采用Ⅱ级普通圆钢筋。

承受轴心荷载的基础底板一般采用正方形,若偏心荷载则采用矩形底板,其长宽比采用1.2。

设计计算内容:(1)在不考虑地基处理和角、边柱的影响时,中柱按地基承载力确定的基础底面积是否满足沉降要求?(2)若通过地基处理(地基处理深度从基础底面以下5.5m 内),使得地基承载力设计值达到160kPa ,进行如下设计计算:1)根据地基强度确定中柱、角与边柱的(角与边柱需考虑100kN ·m 的力矩荷载。

力矩作用方向根据右手螺旋法则确定,且指向柱网平面惯性轴)柱下基础底面尺寸;2)基础配筋、冲切验算;3)完成有关计算部分的计算简图、基础配筋图等。

二、不考虑地基处理和角边柱影响中柱的沉降验算不考虑地基处理和角、边柱的影响时,中柱按地基承载力确定的基底面积是否满足沉降要求?(1)按承载力确定基础尺寸由勘察报告可知,基础的埋深为2.4m ,持力层为粘土层。

基础工程课程设计--钢筋混凝土柱下独立基础

基础工程课程设计--钢筋混凝土柱下独立基础

《基础工程》课程设计任务书(一)上部结构资料某框架结构柱网图如下,柱截面为400*400mm 2,F1=724kN ,F2=1424kN ,F3=2024kN 。

(二)地质资料经探测,地层岩性及土的物理力学性质如下表。

地下水埋深为5m ,无腐蚀性。

层号土名状态密实度 厚度 密度 含水量 孔隙比 I P I L 压缩系数 标贯击数 压缩模量 mg/cm 3 % Mpa -1 N 63.5 MPa 1 人工填土 可塑 稍密 2 2.022 粉土 可塑 中密3 2.02 21 0.6 7 0.21 0.21 12 8 3 粉质粘土 软塑 中密 5 2.01 23.9 0.75 12 0.82 0.35 6.6 5.64 粉土 可塑 中密 2 2.02 25 0.66 11.4 5粉土可塑密实未揭开2.02250.6120.4F1 F2F2F1F2F3F3F2 F1F2F2 F1钢筋混凝土柱下独立基础1、选择持力层设基础埋深d=2.5m ,这时地基持力层为粉土2、计算地基承载力特征值,并修正根据标贯击数N=12查表得:kPa f ak 156)140180(10151012140=-⨯--+=因为埋深d=2m>0.5m ,故还需对ak f 进行修正设基础底面宽度不大于3m 。

查表得修正系数ηb =0.5,ηd =2.0 则修正后的地基承载力特征值为f a =f ak + ηd γm (d-0.5)=156+2×20.2×(2.5-0.5)=236.8kPa3、计算基础所需底面尺寸基础埋深d=2m ,分析该框架结构柱网布置图可知,柱子受三种不同荷载,把受荷载为724KN 的基础作第一类基础,受荷载为1424KN 的基础为第二类基础,受荷载为2024KN 的基础为第三类基础 (1)、第一类基础,其轴心荷载F1=724KN ,则有:m d f F b G a 69.15.2208.23674.072411=⨯-⨯=-≥γ取1b =1.7m ,因b <3m ,不必进行承载力宽度修正(2)、第二类基础,其轴心荷载为F2=1424KN ,则有:m d f F b G a 38.25.2208.23674.0142422=⨯-⨯=-≥γ取2b =2.4m ,因b <3m ,不必进行承载力宽度修正(3)、第三类基础,其轴心荷载为2024KN ,则有:m d f F b G a 83.25.2208.23674.0202433=⨯-⨯=-≥γ取3b =2.9m ,因b<3m ,不必进行承载力宽度修正4、验算软弱层强度和沉降量(1)持力层承载力验算1)第一类基础kPa f a 8.236=基底处总竖向力:KN G F k k 26.6805.2207.174.07242=⨯⨯+⨯=+基基底平均压力:kPa f kPa A G F P a k k k 8.23638.2357.126.6802=<==+=(可以) 2)、第二类基础kPa f a 8.236=基底处总竖向力:KN G F k k 76.13415.2204.274.014242=⨯⨯+⨯=+基基底平均压力:kPa f kPa A G F P a k k k 8.23694.2324.276.13412=<==+=(可以) 3)、第三类基础kPa f a 8.236=基底处总竖向力:KN G F k k 26.19185.2209.274.020242=⨯⨯+⨯=+基基底平均压力:kPa f kPa A G F P a k k k 8.23609.2289.226.19182=<==+=(可以) (2)软弱下卧层承载力验算1)第一类基础由43.16.5/8/21==s s E E 50.047.17.1/5.2/>==b z 查表得︒=47.21θ393.0tan =θ,下卧层顶面处的附加应力:kPa z b z l P lb cd k 78.39)393.05.227.1()5.22.2038.235(7.1)tan 2)(tan 2()(22z =⨯⨯+⨯-⨯=++-=θθσσ 下卧层顶面处的自重应力:kPa cz 1015.22.205.22.20=⨯+⨯=σ 下卧层承载力特征值:m KN zd czm /2.20=+=σγkPa f az 06.240)5.05(2.204.18.112=-⨯⨯+=验算:az z cz f kPa <=+=+78.14010178.39σσ(可以) 经验算,基础底面尺寸及埋深满足要求2)第二类基础由43.16.5/8/21==s s E E 50.004.14.2/5.2/>==b z 查表得︒=04.21θ385.0tan =θ,下卧层顶面处的附加应力:kPa z b z l P lb cd k 18.56)385.05.224.2()5.22.2094.232(4.2)tan 2)(tan 2()(22z =⨯⨯+⨯-⨯=++-=θθσσ 下卧层顶面处的自重应力:kPa cz 1015.22.205.22.20=⨯+⨯=σ 下卧层承载力特征值:m KN zd czm /2.20=+=σγkPa f az 06.240)5.05(2.204.18.112=-⨯⨯+=验算:az z cz f kPa <=+=+18.15710118.56σσ(可以) 经验算,基础底面尺寸及埋深满足要求 3)第三类基础由43.16.5/8/21==s s E E 50.086.09.2/5.2/>==b z 查表得︒=86.20θ381.0t a n =θ,下卧层顶面处的附加应力: kPa z b z l P lb cd k 69.64)381.05.229.2()5.22.2009.228(9.2)tan 2)(tan 2()(22z =⨯⨯+⨯-⨯=++-=θθσσ 下卧层顶面处的自重应力:kPa cz 1015.22.205.22.20=⨯+⨯=σ 下卧层承载力特征值:m KN zd czm /2.20=+=σγkPa f az 06.240)5.05(2.204.18.112=-⨯⨯+=验算:az z cz f kPa <=+=+69.16510169.64σσ(可以)经验算,基础底面尺寸及埋深满足要求(3)、验算沉降量分析柱网布置图可得,只须验算四个基础的沉降量即可,分别设为a 、b 、c 、d ,如下图所示:ab cdehfg1)、计算基础a 的沉降kN mm l E r a aa/0544.088.07.184.011202=⨯⨯-=-=ωμδkN mm r E ab /00557.06814.34.011202=⨯⨯-=-=πμδkN mm r E ad/00557.06814.34.011202=⨯⨯-=-=πμδ mmF F F s ad ab aa a 25.55142400557.0142400557.07240544.0221=⨯+⨯+⨯=⋅+⋅+⋅=δδδ 2)、计算基础b 的沉降kN mm l E r b bb /0385.088.04.284.011202=⨯⨯-=-=ωμδkN mm r E ba /00557.06814.34.011202=⨯⨯-=-=πμδkN mm r E bc /00557.06814.34.011202=⨯⨯-=-=πμδkN mm r E be /00557.06814.34.011202=⨯⨯-=-=πμδmmF F F F s be bc ab bb b 06.78142400557.020*******.072400557.014240385.02312=⨯+⨯+⨯+⨯=⋅+⋅+⋅+⋅=δδδδ 3)、计算基础c 的沉降kN mm l E r c cc /0319.088.09.284.011202=⨯⨯-=-=ωμδkN mm r E cb /00557.06814.34.011202=⨯⨯-=-=πμδkN mm r E ch /00557.06814.34.011202=⨯⨯-=-=πμδkN mm r E cf /00557.06814.34.011202=⨯⨯-=-=πμδkN mm r E cd /00557.06814.34.011202=⨯⨯-=-=πμδmmF F F F F s cd cf ch cb cc c 55.99142400557.0142400557.020*******.0142400557.020240319.022323=⨯+⨯+⨯+⨯+⨯=⋅+⋅+⋅+⋅+⋅=δδδδδ 4)、计算基础d 的沉降kN mm l E r b dd/0385.088.04.284.011202=⨯⨯-=-=ωμδkN mm r E dg/00557.06814.34.011202=⨯⨯-=-=πμδ kN mm r E dc /00557.06814.34.011202=⨯⨯-=-=πμδkN mm r E da /00557.06814.34.011202=⨯⨯-=-=πμδmmF F F F s da dc dg dd d 23.7472400557.020*******.072400557.014240385.01312=⨯+⨯+⨯+⨯=⋅+⋅+⋅+⋅=δδδδ 5)、a 、b 两基础的沉降差mm s s a b ab 81.2225.5506.78=-=-=∆根据框架结构相邻柱基沉降差允许值可知:[∆]=mm l 12002.0=。

柱下钢筋混凝土独立基础课程设计

柱下钢筋混凝土独立基础课程设计
检核:
锥形基础截面面积
非少筋,符合要求。
基础大样图

(1)、确定基础埋深d
根据设计要求,基础持力层为土层③,故假定d=2500mm
由地勘资料中e=,可塑土:<IL<,查表(3-4),得ηb=,ηd=。仅对深度进行修正:
γm=
(2)、初拟地基尺寸b x l

②令A== m2
拟定底面尺寸b x l=2800mm x3000mm, A=
∵h=600 mm<800 mm,故Βhp=,基础混凝土采用C25,ft= MPa


∴h=600mm时,能够满足抗冲切要求。
⑹基础底板配筋计算
地基样图
基底净反力
平面图
①内力计算
∵偏心距
台阶宽高比为
∴可以按照公式(3-51)以及(3-52)计算弯矩。
②根据《混凝土设计原理》,按照悬臂梁假设,对锥形地基进行配筋。
F(KN)
M(KN•m)
V(KN)
A轴
B轴
C轴
A轴
B轴
C轴
A轴
B轴
C轴
1
1268
2012
1544
183
130
258
60
62
58
2
1342
2100
1627
214
163
288
72
78
67
3
1418
2250
1706
248
195
315
81
86
74
4
1496
2360
1782
274
228
353
93
95

基础工程课程设计--某住宅楼柱下独立基础设计

基础工程课程设计--某住宅楼柱下独立基础设计

基础工程课程设计--某住宅楼柱下独立基础设计
某住宅楼柱下独立基础设计是建筑基础工程的重要组成部分,其中包含的技术要求较高,必须结合实际情况考虑,进行综合把握,以确保设计工程的安全性和可行性。

为了解
决针对某住宅楼柱下独立基础设计计划而提出的技术问题,本文将会结合实际情况,从计
算基础、材料条件、施工工艺和运行状况等方面,提出独立基础的设计技术方案。

首先是计算独立基础的基本工程参数。

在某住宅楼柱下设置独立基础时,必须考虑不
同的抗压和抗拔强度和稳定性。

根据实际地质情况,设计基础高度、结构体积、材质类型
等参数,同时也要考虑项目总体费用,以确保基础性能和使用年限。

其次是材料和技术条件,根据不同的基础类型选用合适的材料。

同时,基础必须考虑排水、抗冻、抗裂等技术
设计,以及具体的施工工艺,才能确保基础的整体性能。

最后,在施工过程中,要严格控
制施工条件,保证基础结构和支护体系的完整性,提高建筑施工中的合理性和效率。

上述是某住宅楼柱下独立基础设计的一般设计准则,以确保其安全性和可行性。

设计时,必须按照本文中提出的技术方案进行细致的分析;工程施工,必须严格按照设计要求,按照实际施工工艺的要求,确保施工质量和可靠性。

确保塔楼和楼宇支撑阻力对独立基础
的总体稳定性。

柱下独立基础课程设计

柱下独立基础课程设计

目录1 柱下独立基础课程设计 (3)1.1设计资料 (3)1.1.1地形 (3)1.1.2工程地质条件 (3)1.1.3岩土设计参数 (3)1.1.4水文地质条件 (4)1.1.5上部结构材料 (4)1.1.6材料 (4)1.1.7本人设计资料 (4)1.2独立基础设计 (5)1.2.1选择基础材料 (5)1.2.2选择基础埋置深度 (5)1.2.3求地基承载力特征值a f (5)1.2.4初步选择基底尺寸 (6)1.2.5验算持力层地基承载力 (6)1.2.7基础高度 (7)1.2.8变阶处抗冲剪验算 (8)1.2.9配筋计算 (8)1.2.10基础配筋大样图 (9)1.2.11确定A、C两轴柱子基础底面尺寸 (10)1.2.12 设计图纸 (10)2 桩基础课程设计 (11)2.1设计资料 (11)2.1.1地形 (11)2.1.2工程地质条件 (11)2.1.3岩土设计技术参数 (11)2.1.4水文地质条件 (12)2.1.5场地条件 (12)2.1.6上部结构资料 (12)2.1.7本人设计资料 (12)2.2 预制桩基设计 (13)2.2.1单桩承载力计算 (13)2.2.2桩基竖向承载力验算 (14)2.2.3承台设计 (15)2.2.4桩身结构设计 (19)2.2.5桩身构造设计 (20)2.2.6吊装验算 (20)2.2.7估算A、C轴线柱下桩数 (20)2.2.8设计图纸 (21)3 衡重式挡土墙课程设计.......................................................... 错误!未定义书签。

3.1设计题目......................................................................... 错误!未定义书签。

3.2地层条件及参数............................................................. 错误!未定义书签。

柱下钢筋混凝土独立基础课程设计

柱下钢筋混凝土独立基础课程设计

柱下钢筋混凝土独立基础课程设计
柱下钢筋混凝土独立基础是建立在土壤中,用于支撑楼房柱子的基础
结构。

设计一个合理的柱下钢筋混凝土独立基础课程可以帮助学生掌
握基础设计的理论和实践技能。

以下是一个基础设计课程设计的指导。

一. 介绍
1.1 基础概述
1.2 教学目标
1.3 课程结构
1.4 难点强调
二. 土工实践
2.1 土壤力学基础
2.2 土壤分类与结构
2.3 土壤力学参数测定
三. 基础设计分析
3.1 负载分析
3.2 基础尺寸计算
3.3 基础安全性分析
四. 钢筋混凝土设计
4.1 混凝土本构关系
4.2 钢筋形态与尺寸
4.3 柱下独立基础钢筋配筋
五. 力学实践
5.1 梁设计原理
5.2 基础钢筋配筋实验
5.3 基础模型制作
六. 应用实战
6.1 西安高新技术产业园某项目的基础设计
6.2 基础施工问题的解决
6.3 实战案例分析
七. 总结
7.1 课程回顾
7.2 应用展示
7.3 知识点强调
以上是一个基础设计课程设计的指导。

该课程涵盖了土工实践、基础设计分析以及钢筋混凝土设计等主题。

在该课程中,学生将掌握基础设计的理论和实践技能,并在应用实战中掌握基础施工问题的解决方案。

柱下钢筋混凝土独立基础 课程设计

柱下钢筋混凝土独立基础  课程设计

课程名称:《基础工程》设计题目:柱下钢筋混凝土独立基础院系:土木工程系专业:年级:学号:XXXXX姓名:XXX指导教师:XXX年 4 月 30 日课程设计任务书专业姓名学号开题日期:20XX 年4月 6 日完成日期:20XX年 4 月30日一、设计的目的通过本次设计,让学生初步掌握柱下钢筋混凝土独立基础的设计步骤、方法及具体的计算过程。

培养从事基础工程浅基础的设计能力二、设计的内容每人按照本班学习委员的安排,根据所在组号和题号,完成各自要求的轴线基础设计。

对另外两根轴线的基础,只要求根据所给荷载确定基础底面尺寸。

1、柱下独立基础的设计及设计依据;2、柱下独立基础的计算;3、柱下独立基础的配筋;4、绘制相应的基础平面图、立面图、剖面图;三、设计要求:1、设计柱下独立基础,包括确定基础埋深、基础底面尺寸,对基础进行结构的内力分析、强度计算,确定基础高度、进行配筋计算,并满足构造设计要求,编写设计计算书。

2、绘制基础施工图,包括基础平面布置图、基础大样图,并提出必要的技术说明,提出施工方法的建议。

三、指导教师评语四、成绩指导教师(签章)年月日第一部分课程设计资料(一)设计题目:柱下钢筋混凝土独立基础(二)设计资料:1、地形:拟建建筑场地平整2、工程地质资料:自上而下依次为:②填土:厚约0.5m,含部分建筑垃圾;②粉质粘土:厚1.2m,软塑,潮湿,承载力特征值f ak=130KN/m2;③粘土:厚1.5m,可塑,稍湿,承载力特征值f ak=180KN/m2;④全风化砂质泥岩:厚2.7m,承载力特征值f ak=240KN/m2;⑤强风化砂质泥岩:厚3.0m,承载力特征值f ak=300KN/m2;⑥中风化砂质泥岩:厚4.0m,承载力特征值f ak=620KN/m2;地基岩土物理力学参数表表2.1地层代号土名天然地基土重度(γ)孔隙比(e)凝聚力(c)内摩擦角(Φ)压缩系数(a1-2)压缩模量(Es)抗压强度(frk)承载力特征值(fak)KN/m³KPa度1MPa MPa MPa KPa①杂填土18②粉质粘土20 0.65 34 13 0.20 10.0 130③粘土19.4 0.58 25 23 0.22 8.2 180④全风化砂质泥岩21 22 30 0.8 240⑤强风化砂质泥岩22 20 25 3.0 300⑥中风化砂质泥岩24 15 40 4.0 6203、水文资料为:地下水对混凝土无侵蚀性。

基础工程柱下独立基础课程设计

基础工程柱下独立基础课程设计

一、课程设计的目的基础工程课程设计是土木工程专业教育的一个重要教学环节,是全面检验和巩固基础工程课程学习效果的一个有效方式。

通过本次课程设计使学生能够运用已学过基础工程设计理论和方法进行一般形式的基础的设计,进一步理解基础工程设计的基本原理。

设置课程设计的目的是加强学生对本课程及相关课程知识的理解,培养学生综合分析问题的能力和运用基础理论知识解决实际工程问题的能力,为毕业设计打下坚实的基础,也有助于学生毕业后能尽早进入“工程角色”。

多年来的教学实践反映了课程设计这一教学环节对学生能力的培养起到了一定的作用。

二、课程设计的内容1、设计资料1、地形拟建建筑场地平整2、工程地质条件自上而下土层依次如下:号土层:杂填土,层厚约0.5m,含部分建筑垃圾号土层:粉质黏土,层厚1.2m,软塑,潮湿,承载力特征值f ak=130kPa。

●号土层:黏土,层厚1.5m,可塑,稍湿,承载力特征值f ak=180kPa。

❍号土层:细砂,层厚2.7m,中密,承载力特征值f ak=240kPa。

⏹号土层:强风化砂质泥岩,厚度未揭露,承载力特征值f ak=300kPa。

3、岩土设计技术参数地基岩土物理力学参数如表1.1所示。

表1.1 地基岩土物理力学参数土层编土的名称重度(kN/m3)孔隙比e液性指数I L黏聚力c(kPa)内摩擦角(°)压缩模量Es(MPa)标准贯入锤击数N承载力特征值f ak(kPa)号杂填土18粉质黏土20 0.65 0.84 34 13 7.5 6 130 ●黏土19.4 0.58 0.78 25 23 8.2 11 180 ❍细砂21 0.62 30 11.6 16 240⏹强风化砂质泥岩22 18 22 300(1)拟建场区地下水对混凝土结构无腐蚀性。

(2)地下水位深度:位于地表下1.5m5、上部结构资料拟建建筑物为多层全现浇框架结构,框架柱截面尺寸为500mm×500mm。

室外地坪标高同自然地面,室内外高差450mm。

柱下独立基础课程设计

柱下独立基础课程设计

柱下独立基础课程设计1000字为了设计一门高质量、高效益的柱下独立基础课程,我们需要深入了解该课程的背景和目的。

柱下独立基础是土木工程中的一个重要概念,它是指一种独立于整体结构的基础形式,通常用于支撑单独的柱子或支柱。

设计合理的柱下独立基础能够确保整个建筑结构的稳定和安全。

一、总体目标和学习目标总体目标是通过本课程学习,学生将能够:1.了解和掌握柱下独立基础的概念和原理。

2.熟悉柱下独立基础的设计流程和相关设计规范。

3.能够进行柱下独立基础的施工、验收和后续维护管理。

学习目标分为以下几个方面:1.了解土工材料及其物理特性。

2.熟悉基础设计的主要原则。

3.掌握计算柱下独立基础的荷载和荷载组合。

4.了解柱下独立基础设计中的常见问题及其解决方法。

5.知晓柱下独立基础施工过程中需要注意的事项。

二、教学内容本课程的教学内容包括以下几个方面:1.柱下独立基础的概述和基本概念。

2.土工材料及其物理特性。

3.基础设计的主要原则,包括确定荷载、荷载组合和地基承载力等。

4.柱下独立基础的设计方法,包括承载力计算、地基基础的合理选型。

5.柱下独立基础的施工过程,包括土方开挖、灌注、固结等。

6.柱下独立基础验收标准及验收过程的相关知识。

7.柱下独立基础后续维护管理的相关知识。

三、教学方法和手段为了达到本课程的学习目标,我们将采用以下教学方法和手段:1.理论授课:通过讲解基础知识、设计原则、计算方法等,提高学生的理论水平和理解能力。

2.案例研讨:通过课程案例,让学生深入了解柱下独立基础的设计和实际应用。

3.实验教学:通过模拟实验,让学生实际操作,增强实践能力。

4.自主学习:通过自主学习,在教师指导下,学生可以深入掌握柱下独立基础的设计、施工及验收标准等相关知识。

5.网络教学:通过网络教学平台,提供课程资料下载、网络学习、在线答疑等服务,增加互动性。

四、评价方式课程的评价方式应该与学习目标相匹配,评价方式应包含以下几个方面:1.理论考试:考查学生对柱下独立基础设计理论知识的掌握情况。

独立柱下基础课程设计

独立柱下基础课程设计

独立柱下基础课程设计一、课程目标知识目标:1. 学生能理解独立柱下基础的定义、分类及作用。

2. 学生能掌握独立柱下基础的构造原理及设计要点。

3. 学生能了解独立柱下基础在实际工程中的应用。

技能目标:1. 学生能运用所学知识,分析并解决独立柱下基础的设计问题。

2. 学生能根据实际工程需求,选择合适的独立柱下基础类型。

3. 学生能运用相关软件或工具,进行独立柱下基础的初步设计。

情感态度价值观目标:1. 学生养成对工程问题严谨、科学的态度,注重实际问题的解决。

2. 学生培养团队协作精神,学会在工程设计中与他人沟通与交流。

3. 学生提高对建筑行业的认识,增强对工程建设的责任感。

课程性质:本课程为土木工程专业核心课程,以实际工程案例为背景,注重理论知识与实践操作的结合。

学生特点:学生已具备一定的力学基础和结构设计知识,具有较强的逻辑思维能力和动手能力。

教学要求:结合课程性质、学生特点,本课程要求教师以案例教学为主,引导学生主动探究,提高学生的设计能力和创新能力。

通过本课程的学习,使学生能够达到上述课程目标,并为后续相关课程打下坚实基础。

二、教学内容1. 独立柱下基础的定义与分类:介绍独立柱下基础的概念、功能及不同类型的独立柱下基础,如扩展基础、条形基础等。

教材章节:第二章第一节2. 独立柱下基础的构造原理:讲解独立柱下基础的受力特点、构造要求及设计原则。

教材章节:第二章第二节3. 独立柱下基础设计要点:分析独立柱下基础设计中应考虑的因素,如土壤性质、荷载大小、基础尺寸等。

教材章节:第二章第三节4. 独立柱下基础在实际工程中的应用:通过案例分析,使学生了解独立柱下基础在实际工程中的运用。

教材章节:第二章第四节5. 独立柱下基础设计方法及软件应用:介绍独立柱下基础设计的方法及常用软件,如AutoCAD、理正基础设计软件等。

教材章节:第二章第五节6. 独立柱下基础设计实践:结合实际工程案例,指导学生进行独立柱下基础的初步设计。

柱下独立基础课程设计报告

柱下独立基础课程设计报告

柱下独立根底课程设计班级:建工1班姓名:学号:指导教师:目录一、设计资料二、独立根底设计1、选择根底材料2、选择根底埋置深度3、求地基承载力特征值4、初步选择基底尺寸5、验算持力层的地基承载力6、计算基底净反力7、根底高度〔采用阶梯形根底〕8、变阶处抗冲切验算9、配筋计算10、确定A、C两轴柱子根底底面尺寸11、根底沉降一、本组设计资料:6#题B轴柱底荷载柱底荷载效应标准组合值F K=1883KN M K=218KN.M V K=90KN柱底荷载效应根本组合值F=2448KN M=284KN.M V=117KN持力层为③土层承载力特征值f ak=180kg地下水位深度位于地表下1.5m框架柱截面尺寸500mm*500mm室外地坪标高同自然地面,室外高差450mm二.根底设计:1选择根底材料根底采用C25混凝土,HPB235级钢筋,预估根底高度0.8m2.选择根底埋置深度根据任务书要求和工程地质资料①号土层:杂填土,层厚约0.5m,含局部建筑垃圾。

②号土层:粉质粘土,层厚1.2m,软塑,潮湿,承载力特征值f ak=130kPa。

③号土层:粘土,层厚1.5m,稍湿,承载力特征值f ak=180kPa。

④号土层:全风化砂质泥岩,层厚2.7m,中密,承载力特征值f ak=240kPa。

地下水对混凝土无侵蚀性,地下水位于地表下1.5m取根底底面高时最好取至持力层下0.5m,本设计取③土层为持力层,所以考虑取室外地坪到根底底面为0.5+1.2+0.5=2.2m,根底剖向示意图如下:3.求地基承载力特征值f a根据③土层为粘土层e=0.58 I L =0.78得b =0.3 d =1.6基地以上土的加权平均重度:3/23.162.25.0)104.19(2.0)1020(1205.018m KN r m =⨯-+⨯-+⨯+⨯= 持力层承载力特征值f a 为〔未考虑宽度修正〕KPa d r f f m d ak a 15.224)5.02.2(23.166.1180)5.0(=-⨯⨯+=-+=η〔上式d 按室外地面算起〕4.初步选择基底尺寸取柱底荷载标准值F K =1883KN ,M K =218KN ·m ,V K =90KN计算根底和回填土重k G 时的根底埋深:m d 425.2)65.22.2(21=+= 根底底面积为:=0A 23.1020725.1107.015.2241883m d f F G a k =⨯-⨯-=-γ 考虑偏心荷载的影响,根底面积加大围为〔10%-40%〕此处按20%增大面积A=1.2A 0=1.2×10.3=12.36m 2初步选定根底底面面积A=l ×b=4.2×3=12.6m 2,且b=3m 不需要再对a f 进展修正。

基础工程课程设计柱下独立基础

基础工程课程设计柱下独立基础

. .基础工程课程设计(1) 柱下独立基础设计教育资料word. .姓名:学号:班级:指导教师:设计条件:1、某框架结构建筑物设计安全等级为乙级,柱网尺寸为6.5m×6.5m,柱截面尺寸为400mm×400mm。

经过上部结构验算,作用于基础顶面的荷载效应准永久组合及标准组合分别为F=2520kN;F=2800kN,M=80kN.m(逆时针),H=50kN(←),荷载效应基本组合由永久荷载控kkk制。

2、天然土层分布?3=17kN/m,填土,~0.8m①0;?3=18kN/m2.0m,粉质粘土,②0.8~,I=0.82,Es=3.3MPa,f=185kPa;akL?3=19kN/m8%),,粉土(粘粒含量为③2.0~6.0m, Es=5.5MPa,f=300kPa;ak地下水位在地面下6.0m处。

?eI3 =280kPa; Es=6.0MPa=0.81,6.0④~10.0m,粘土,,=19kN/m=0.83,f,?E3=1.5MPa。

饱和容重=17.4kN/m ⑤10.0~12.0m为淤泥质粘土,压缩模量,,aksat L0f=146kPa ak ssat?e I3 =430kPaf。

Es=30MPa⑥12.0m以下为密实粘性土,=20kN/m=0.65,=0.5,,,aksat L0要求:设计该柱下基础(提示:按照讲述的基础设计步骤进行,注意需要验算地基变形!)教育资料word. .一.选择基础类型及材料选择柱下独立基础,基础采用C20混凝土,HPB235级钢筋,预估基础高度0.95m。

二.选择持力层(确定基础埋深)选择③号土层为持力层,基础进入持力层0.5m。

基础埋深为2+0.5=2.5m。

三.确定地基承载力特征值,查表2-15得, 。

c基底以上土的加权平均重度为:持力层承载力特征值为:四.确定基础底面尺寸取柱底荷载标准值:F=2800kN,M=80kN.m,H=50kN。

柱下独立基础课程设计指导书 (2)精选全文

柱下独立基础课程设计指导书 (2)精选全文

可编辑修改精选全文完整版柱下独立基础课程设计指导书地基基础设计是土木工程结构设计的重要组成部分,必须根据上部结构条件(建筑物的用途和安全等级、建筑布置、上部结构类型等)和工程地质条件(建筑场地、地基岩土和气候条件等),结合考虑其他方面的要求(工期、施工条件、造价和节约资源等),合理选择地基基础方案,因地制宜,精心设计,以确保建筑物和构筑物的安全和正常使用。

一、独立基础的设计内容与步骤(1)初步设计基础的结构型式、材料与平面布置; (2)确定基础的埋置深度d ;(3)计算地基承载力特征值ak f ,并经深度和宽度修正,确定修正后的地基承载力特征值a f ; (4)根据作用在基础顶面荷载 F 和深宽修正后的地基承载力特征值,计算基础的底面积; (5)计算基础高度并确定剖面形状;(6)若地基持力层下部存在软弱土层时,则需验算软弱下卧层的承载力;(7)地基基础设计等级为甲、乙级建筑物和部分丙级建筑物应计算地基的变形; (8)验算建筑物或构筑物的稳定性(如有必要时); (9)基础细部结构和构造设计; (10)绘制基础施工图。

如果步骤(1)~(7)中有不满足要求的情况时,可对基础设计进行调整,如采取加大基础埋置深度d 或加大基础宽度b 等措施,直到全部满足要求为止。

二、地基基础设计基本规定1.地基基础设计等级根据地基复杂程度、建筑物规模和功能特征以及由于地基问题可能造成建筑物破坏或影响正常使用的程度,将地基基础设计分为三个设计等级,设计时应根据具体情况,按表1选用。

表1 地基基础设计等级2.地基计算的规定根据建筑物地基基础设计等级及长期荷载作用下地基变形对上部结构的影响程度,地基基础设计应符合下列规定:(1)所有建筑物的地基计算均应满足承载力计算的有关规定。

(2)设计等级为甲级、乙级的建筑物,均应按地基变形设计。

(3)表2所列范围内设计等级为丙级的建筑物可不作变形验算,如有下列情况之一时,仍应作变形验算:① 地基承载力特征值小于 l30 kPa ,且体型复杂的建筑: ② 在地基基础上及其附近有地面堆载或相邻基础荷载差异较大,可能引起地基产生过大的不均匀沉降时;③ 软弱地基上的建筑物存在偏心荷载时; ④ 相邻建筑距离过近,可能发生倾斜时;⑤ 地基内有厚度较大或厚薄不均的填土,其自重固结未完成时。

柱下独立基础设计

柱下独立基础设计

柱下独立基础设计姓名:**学号:**班级:**指导教师:**一、设计任务书(一)、设计资料1、建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为5层,物理力学指标见下表。

勘查期间测得地下水混合水位深为2.1m,本场地下水无腐蚀性。

建筑安全等级为2级,已知上部框架结构由柱子传来的荷载。

承台底面埋深:D = 2.1m。

(二)、设计要求:1、单桩竖向承载力标准值和设计值的计算;2、确定桩数和桩的平面布置图;3、群桩中基桩的受力验算4、承台结构设计及验算;5、桩及承台的施工图设计:包括桩的平面布置图,桩身配筋图,承台配筋和必要的施工说明;6、需要提交的报告:计算说明书和桩基础施工图。

二、桩基持力层,桩型,桩长的确定根据设计任务书所提供的资料,分析表明,在柱下荷载作用下,天然地基基础难以满足设计要求,故考虑选用桩基础。

由地基勘查资料,确定选用第四土层黄褐色粉质粘土为桩端持力层。

根据工程请况承台埋深2.1m,预选钢筋混凝土预制桩断面尺寸为450㎜×450㎜。

桩长21.1m。

三、单桩承载力确定(一)、单桩竖向承载力的确定:1、根据地质条件选择持力层,确定桩的断面尺寸和长度。

根据地质条件以第四层黄褐色粉土夹粉质粘土为持力层,采用截面为450×450mm的预置钢筋混凝土方桩,桩尖进入持力层1.0m;镶入承台0.1m,桩长21.1 m。

承台底部埋深2.1 m。

2、确定单桩竖向承载力标准值Quk可根据经验公式估算:Quk= Qsk+ Qpk=µ∑qsikli+qpkAp桩周长:µ=450×4=1800mm=1.8m桩横截面积:Ap=0.45²=0.2025㎡桩侧土极限摩擦力标准值qsik:查表得:用经验参数法:粉质粘土层:=0.95,取qsk=35kPa淤泥质粉质粘土:qsk=29kPa粉质粘土:=0.70,取qsk=55kPa桩端土极限承载力标准值qpk,查表得:qpk=2200 kPa用经验参数法求得Quk1=1.8×(35×8.0+29×12.0+1.0×55) +2200×0.2025=1674.9KN用静力触探法求得Quk2=1.8×(36×8.0+43×12.0+1.0×111) +1784.5×0.2025=2008.4KN3、确定单桩竖向承载力设计值R,并且确定桩数n和桩的布置先不考虑群桩效应,估算单桩竖向承载力设计值R为:R=Qsk/rs+Qpk/rp用经验参数法时:查表rs=rp=1.65R1=Qsk/rs+Qpk/rp=1229.4/1.65+445.5/1.65=1015.09KN用静力触探法时:查表rs=rp=1.60R2=Qsk/rs+Qpk/rp=1647/1.60+361.4/1.60=1255.25KNRz=min(R1,R2)= 1015.09 KN四、桩数布置及承台设计根据设计资料,以轴线⑦为例。

柱下独立基础课程设计

柱下独立基础课程设计

柱下独立基础课程设计一、设计资料1.选择基础材料基础采用C25混凝土,HRB335级钢筋,预估基础高度0.8m。

2.选择基础埋置深度根据柱下独立基础课程设计任务书要求和工程地质资料选取。

○1号土层:杂填土,层厚约0.5m,含部分建筑垃圾。

○2号土层:粉质粘土,层厚1.2m,软塑,潮湿,承载力特征值f ak=130kPa。

○3号土层:粘土,层厚1.5m,稍湿,承载力特征值f ak=180kPa。

○4号土层:全风化砂质泥岩,层厚2.7m,承载力特征值f ak=240kPa。

○5号土层:强风化砂质泥岩,厚3.0m,承载力特征值f ak=300kPa。

○6号土层:中风化砂质泥岩,厚4.0m, 承载力特征值f ak=620kPa。

二、独立基础设计首先计算○B----2轴柱底荷载:选2题柱底荷载效应标准组合值:F K=1615KN,M K=125KN·m,V K=60KN。

柱底荷载效应基本组合值:F=2100KN,M=163KN·m,V=78KN。

1.选择持力层。

持力层选用○4号土层,承载力特征值f ak=240kPa,框架柱截面尺寸为500mm×500mm,室外地面标高同自然地面,室内外高差450mm。

2.初定基础埋深。

拟建场区地下水对混凝土结构无腐蚀性,地下水位深度:位于地表下1.5m。

取基础地面高至持力层下0.3m,本设计取○4号土层为持力层,所以考虑取室外地面到基础地面为0.5+1.2+1.5+0.3=3.5m。

由此得到基础剖面示意图如下图所示。

3.求地基承载力特征值fa 查表2-15取b η=2.0,d η=3.0。

基地以上土的加权平均重度为180.520120-100.29.4 1.5110.33.5m γ⨯+⨯+⨯+⨯+⨯=()=1833m KN预估基础底面宽度小于3米,可不考虑对宽度进行修正。

故持力层承载力特征值f a 为ak a f f =+m d γη(d-0.5)=240+13.83×3.0×(3.5-0.5)=364.47KPa 说明:上式d 按室外地面算起4.初步选择基础尺寸取柱底荷载标准值:F K =1615KN ,M K =125KN·m ,V K =60KN 。

(完整版)基础工程课程设计(柱下独立基础)

(完整版)基础工程课程设计(柱下独立基础)

基础工程课程设计(1) 柱下独立基础设计姓名:学号:班级:指导教师:设计条件:1、某框架结构建筑物设计安全等级为乙级,柱网尺寸为6.5m ×6.5m ,柱截面尺寸为400mm ×400mm 。

经过上部结构验算,作用于基础顶面的荷载效应准永久组合及标准组合分别为F=2520kN ;F k =2800kN ,M k =80kN.m(逆时针),H k =50kN(←),荷载效应基本组合由永久荷载控制。

2、天然土层分布①0~0.8m ,填土,γ=17kN/m 3;②0.8~2.0m ,粉质粘土,γ=18kN/m 3,I L =0.82,Es=3.3MPa ,f ak =185kPa ;③2.0~6.0m ,粉土(粘粒含量为8%),γ=19kN/m 3, Es=5.5MPa ,f ak =300kPa ; 地下水位在地面下6.0m 处。

④6.0~10.0m ,粘土,γsat =19kN/m 3,0e =0.83,L I =0.81, Es=6.0MPa ,f ak =280kPa ; ⑤10.0~12.0m 为淤泥质粘土,饱和容重sat γ=17.4kN/m 3, f ak =146kPa ,压缩模量s E =1.5MPa 。

⑥12.0m 以下为密实粘性土,γsat =20kN/m 3,0e =0.65,L I =0.5, Es=30MPa ,f ak =430kPa 。

要求:设计该柱下基础(提示:按照讲述的基础设计步骤进行,注意需要验算地基变形!)一.选择基础类型及材料选择柱下独立基础,基础采用C20混凝土,HPB235级钢筋,预估基础高度0.95m。

二.选择持力层(确定基础埋深)选择③号土层为持力层,基础进入持力层0.5m。

基础埋深为2+0.5=2.5m。

三.确定地基承载力特征值f a’ρc=8%,查表2-15得,ηb=0.5,ηd=2.0。

基底以上土的加权平均重度为:γm=17×0.8+18×1.2+19×0.52.5=17.88kN/m3持力层承载力特征值为:f a’=f ak+ηd γm(d−0.5)=300+2×17.88×(2.5−0.5)=371.52kPa四.确定基础底面尺寸取柱底荷载标准值:F k=2800kN,M k=80kN.m,H k=50kN。

柱下钢筋混凝土独立基础_课程设计

柱下钢筋混凝土独立基础_课程设计

柱下钢筋混凝土独立基础_课程设计一、研究背景混凝土独立基础是一种在柱下结合钢筋混凝土技术与传统基础技术相结合的新型技术,它通过在柱下安装层叠合金管构成钢筋混凝土基础,保证柱下基础具有紧凑、质量稳定以及不容易损坏等优点,早已被广泛应用于地面建筑和铁路重要建筑工程中,且混凝土独立基础的应用日渐增多,其中的柱架耐风、结构安全等功能也逐步完善。

由于混凝土独立基础有自己的特性,其选材、施工过程、检测手段等均有特殊的要求,研究其合理的设计、施工与维护,能有效减少质量缺陷、保证柱架安全稳固,是近年来广大专业人士所关注并努力推进的目标。

二、研究目的结合当前施工实践及相关设计理论,深入探讨柱下混凝土独立基础的材料选择、仿真分析、施工方案、检测方式等方面,以提高施工效率、提升施工质量,实现柱架、结构安全及长久使用。

三、研究内容(1)材料及结构设计。

研究材料的选择,能够考虑基础的结构和材料的力学性能,以及混凝土和钢筋之间的相容性。

同时通过分析,判断所选钢筋混凝土,其结构承载力是否足够,避免出现材料承载力受损所导致的破坏性后果。

(2)施工过程及质量检测。

重点关注混凝土独立基础的施工工艺,搭建模拟柱架的施工,通过实测和仿真计算,进行质量检测;重点监督、检查混凝土层叠合金管的安装情况,以及钢柱的安装情况,以保证其普遍的质量稳定。

(3)使用寿命和维护研究。

研究其抗力水平、承载能力,以及风压、抗震、隔震等情况,进行及时考察评估,确保混凝土独立基础在不同阶段的使用寿命和维护状况。

四、研究结果及展望通过在柱下结合钢筋混凝土技术与传统基础技术相结合的新型技术,可以有效保证柱架的安全稳固,并取得更好的使用效果,以及借助施工过程中特殊质量检测技术,有效提高柱架各项功能和安全性,可以达到更高质量效益。

未来,还可以着重研究节能环保技术用于柱下混凝土独立基础设计,以保证节约能源,减少对自然环境的影响,实现可持续发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

柱下独立基础课程设计
一、设计资料
1、地形
拟建建筑场地平整
2、工程地质条件
自上而下土层依次如下:
①号土层:染填土,层厚约0.5m,含部分建筑垃圾
②号土层:粉质黏土,层厚1.2m软塑,潮湿,承载力特征值f ak=130KPa。

③号土层:黏土,层厚1.5m,可塑,稍湿,承载力特征值f ak=180KPa。

④号土层:细砂,层厚2.7m,中密,承载力特征值f ak=240KPa。

⑤号土层:强风化砂纸泥岩,厚度为揭露,承载力特征值f ak=300KPa。

3、岩土设计技术参数
地基岩土物理力学参数如表1.1所示。

4、水文地质条件
(1)拟建场区地下水对混凝土结构无腐蚀性。

(2)地下水位深度:位于地表下1.5m。

5、上部结构材料
拟建建筑物为多层全现浇框架结构,框架柱截面尺寸为500mm×500mm。

室外地坪标高同自然地面,室内外高差450mm。

柱网布置如图所示。

6、上部结构作用
上部结构作用在柱底的荷载效应标准组合值如表1.2所示,上部结构作用在柱底的荷载效应基本组合值如表1.3所示。

表1.3柱底荷载效应基本组合值
7、材料
混凝土强度等级为C25~C30,钢筋采用HPB235、HRB335级。

二、基础埋置深度,基础底面尺寸的确定
1、确定基础的埋置深度
基础的最小埋深d min =Z d -h max ,Z d =Z 0ΨZs ΨZw ΨZe 。

查表2-11,表2-12及表2-13得d min =Z d -h max <0。

故基础的埋置深度不受地基冻结条件所控制而有其他因素确定。

基础埋深不易浅于0.5m ,因为表土一般都松软,易受雨水及外界影响,不宜作为基础的持力层。

另外,基础顶面应低于设计地面100mm 以上,避免基础外露,遭受外界的破坏。

持力层为③层。

2、确定基础底面的尺寸
根据粘土e=0.58,l I =0.78,查表2-15,深度修正系数ηd =1.6、ηb =0.3,按式(2-35),预计基础宽度不大于3.0,可以不做宽度修正,取基础埋深为2m 。

基底以上土的加权平均重度为:
r m =[18×0.5+20×1+(20-9.8)×0.2+(19.4-9.8) ×0.3]/2=16.96 KN/m 3
修正后地基承载力特征值为
F a =f ak +ηd r m (d-0.5)=180+1.6×16.96×(2.0-0.5)=220.70Kpa 计算基础和回填土重K
G 时的基础埋置深度为
d=(2+2.45)/2=2.225m
按中心荷载初估基础底面积 A 轴: 2119.62.225
20.72201090
m d
r f F A a =⨯-=
-=
-
考虑偏心荷载作用,将基底面积扩大1.3倍,即:A=1.3×A 1=8.047m 2,采用3m ×3m 基础
基础及回填土重KN dA r G .54003325.2220=⨯⨯⨯==-
基础的总垂直荷载F+G=1090+400.5=1490.5KN 基底的总力矩M=190+62×2.225=327.95KN.M
总荷载的偏心5.06
22.01490.5327.95=<==
a
e
2
max 3
36
95.327335.1490⨯⨯+⨯=++=
W M A G F p =165.61+72.88=238.49KN/m 2
<1.2f a =264.84KN/m 2
基地平均应力 p=165.61 KN/m 2
<220.7 KN/m 2
满足地基承载力要求。

B 轴:
.82.925
.2220.72201730
21m d
r f F A a =⨯-=
-=
-
考虑偏心荷载作用,将基底面积扩大1.3倍,即:A=1.3×A 1=12.8m 2,采用3m ×5m 基础
基础及回填土重KN dA r G 5.6765325.2220=⨯⨯⨯==-
基础的总垂直荷载F+G=1730+667.5=2397.5KN 基底的总力矩M=150+66×2.225=296.85KN.M
总荷载的偏心83.06
124.05.2397296.85=<==
a
e
按式(2-41)计算基底边缘最大应力: 3
56
85.296535.23972max ⨯⨯+
⨯=++=
W M A G F p =159.83+23.75=183.58KN/m 2
<1.2f a =264.84KN/m 2
基地平均应力 p=159.83 KN/m 2<220.7 KN/m 2
满足地基承载力要求。

C 轴:
2145.725
.2220.72201312
m d
r f F A a =⨯-=
-=
-
考虑偏心荷载作用,将基底面积扩大1.3倍,即:A=1.3×A 1=9.685m 2,采用3m ×4m 基础
基础及回填土重KN dA r G 5344325.2220=⨯⨯⨯==-
基础的总垂直荷载F+G=1312+534=1846KN 基底的总力矩M=242+57×2.225=368.8KN.M
总荷载的偏心67.06
2.01846
3.368=<==
a
e
3
46
8.3684318462
max ⨯⨯+⨯=++=
W M A G F p =153.83+46.1=199.93KN/m 2<1.2f a =264.84KN/m 2
基地平均应力 p=153.83 KN/m 2<220.7 KN/m 2 满足地基承载力要求。

三、结构内力分析及强度计算
1、对基础进行抗冲切承载力验算
C 轴 67.06
28.0170625.2274315=<=⨯+==a
F M e
基底净反力
预计基础高度取为800 mm 。

C 面积上地基反力F L 计算
2
002222⎪⎭
⎫ ⎝⎛---⎪⎭⎫ ⎝⎛--=h b b b h a a A c c F
h 0=600-50=550mm=0.55m
2
55.025.023355.025.024⎪⎭

⎝⎛---⨯⎪⎭⎫ ⎝⎛--=F A
=2.75m 2
按C 面积上作用着P emax 计,则
F L =P emax ×A F =202.13×2.75=555.86KN
[]()000.7h t c V f b h h β=+
因为h 0=550mm<800mm ,故βh =1.0。

基础用C30混凝土,其轴心抗拉强度
设计值为f t =1.43KN/mm 2=1430N/m 2。

故[V]=0.7×1.0×1430×(0.5+0.55) ×0.55=578.08KN
满足F L <[V]要求,基础不会发生冲切破坏。

四、确定基础高度,配筋计算并满足构造要求
1、基础高度的确定
初步选择基础高度h=800mm,基础从下到上为一个台阶,h 0=750mm(有垫层)。

C 轴 b c +2h 0=0.5+2×0.75=2<b=3m 有前面算得基础的抗冲切承载力满足要求。

2、配筋计算
KN/m296.5917.1423
4665.47943170613.20221.822
max min =±=⨯⨯±⨯=±=W M A F p e e
基础选用HPB235钢筋,f y =210N/mm 2 2.1、基础长边方向 Ⅰ-Ⅰ柱边净反力 C 轴:
()()K N /m 267.14921.8213.2024
25.0421.822min max min 1.=-⨯++=+++
=e e c
e e P P a a a P P C 弯矩:
()()()()m KN b b a a P P M c c e e ⋅=+⨯⨯-⨯⨯=
+-⎪⎭
⎫ ⎝⎛+=
58.5835.0325.049.17524
1222412
2
1max 1
C 配筋面积26
01141177502109.01058.5839.0mm h f M A y s =⨯⨯⨯==
C 实际配筋A s =4578.12mm 2即18φ18@240。

2.2基础短边方向
因该基础受单向偏心荷载,所以在基础短边方向的基础反力可按平均分布计算,取
C:P n =(P emax +P emin )/2=(202.13+82.21)/2=142.17kpa Ⅱ-Ⅱ截面(柱边)的计算 C :弯矩
()()()()m KN a l b b P M c c n
⋅=+⨯⨯-⨯=+-=
7.3145.0425.0324
17.14222422 C:配筋面积:
260.12220750
2109.0107.3149.0mm h f M A y s =⨯⨯⨯==
C 实际配筋A s =2418mm 2即12φ16@270。

五、绘制施工图
基础平面布置图和基础施工图见2#CAD 图。

相关文档
最新文档