专题1.3三角形的外角-2020-2021学年八年级数学上册尖子生同步培优题典(原卷版)【人教版】

合集下载

2020-2021学年八年级数学上册尖子生同步培优题典 专题1

2020-2021学年八年级数学上册尖子生同步培优题典 专题1

专题1.2一定是直角三角形吗姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020春•海安市期中)下列长度的三条线段能组成直角三角形的是()A.4,6,8B.6,8,9C.7,24,25D.5,11,12【分析】根据勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【解析】A、62+42≠82,不可以组成直角三角形,故此选项不符合题意;B、62+82≠92,不可以组成直角三角形,故此选项不符合题意;C、72+242=252,可以组成直角三角形,故此选项符合题意;D、52+112≠122,不可以组成直角三角形,故此选项不符合题意;故选:C.2.(2020春•江汉区期中)下列条件中,使△ABC不是直角三角形的是()A.AB=3,BC=4,AC=5B.AB2﹣BC2=AC2C.∠A:∠B:∠C=1:2:3D.AB:BC:AC=1:2:3【分析】根据三角形内角和定理、勾股定理的逆定理对各个选项分别进行计算即可.【解析】A、32+42=52,△ABC是直角三角形;B、AB2﹣BC2=AC2,AB2=BC2+AC2,△ABC是直角三角形;C、∠A:∠B:∠C=1:2:3,设∠A、∠B、∠C分别为x、2x、3x,则x+2x+3x=180°,解得x=30°,则∠A、∠B、∠C分别为30°,60°,90°,△ABC是直角三角形;D、12+22≠32,△ABC不是直角三角形.故选:D.3.(2020春•海淀区校级期中)如图,在△ABC 中,D 是BC 上一点,已知AB =15,AD =12,AC =13,CD =5,则BC 的长为( )A .14B .13C .12D .9【分析】在△ADC 中,由三边长,利用勾股定理的逆定理判断出△ADC 为直角三角形,可得出AD 与BC 垂直,在直角三角形ABD 中,由勾股定理求出BD ,再根据线段的和差关系即可求解. 【解析】∵AD =12,AC =13,CD =5, ∴AC 2=169,AD 2+CD 2=144+25=169, 即AD 2+CD 2=AC 2,∴△ADC 为直角三角形,且∠ADC =90°, ∴∠ADB =90°, ∵AB =15,AD =12, ∴BD2=AB 2−AD 2=81,BD =9,∴BC =BD +CD =9+5=14. 故选:A .4.(2020春•香坊区校级期中)以下列线段的长为三边的三角形中,能构成直角三角形的是( ) A .32,42,52 B .13,5,12 C .13,14,15D .312,412,512【分析】欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解析】A 、(32)2+(42)2≠(52)2,故不能构成直角三角形; B 、52+122=132,故能构成直角三角形;C 、(14)2+(15)2≠(13)2,故不能构成直角三角形;D 、(312)2+(412)2≠(512)2,故不能构成直角三角形.故选:B .5.(2020春•太原期中)如图,已知△ABC 中,AB =10,AC =8,BC =6,AB 的垂直平分线分别交AC ,AB于D ,E ,连接BD ,则CD 的长为( )A .1B .54C .74D .254【分析】根据勾股定理的逆定理得出△ABC 是直角三角形,进而利用线段垂直平分线得出AD =DB ,进而利用勾股定理解答即可.【解析】∵△ABC 中,AB =10,AC =8,BC =6, ∴AB 2=AC 2+BC 2, ∴△ABC 是直角三角形,∵AB 的垂直平分线分别交AC ,AB 于D ,E , ∴AD =DB ,设CD 为x ,AD =DB =8﹣x , 在Rt △CDB 中,CD 2+BC 2=DB 2, 即x 2+62=(8﹣x )2, 解得:x =74, 即CD =74, 故选:C .6.(2020春•下陆区校级期中)在△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,下列结论中不正确的是( )A .如果∠A ﹣∠B =∠C ,那么△ABC 是直角三角形B .如果∠A :∠B :∠C =1:2:3,那么△ABC 是直角三角形 C .如果 a 2:b 2:c 2=9:16:25,那么△ABC 是直角三角形D .如果 a 2=b 2﹣c 2,那么△ABC 是直角三角形且∠A =90° 【分析】根据直角三角形的判定和勾股定理的逆定理解答即可.【解析】A 、如果∠A ﹣∠B =∠C ,由∠A +∠B +∠C =180°,可得∠A =90°,那么△ABC 是直角三角形,选项正确;B 、如果∠A :∠B :∠C =1:2:3,由∠A +∠B +∠C =180°,可得∠A =90°,那么△ABC 是直角三角形,选项正确;C、如果a2:b2:c2=9:16:25,满足a2+b2=c2,那么△ABC是直角三角形,选项正确;D、如果a2=b2﹣c2,那么△ABC是直角三角形且∠B=90°,选项错误;故选:D.7.(2019春•北辰区期中)如图,在每个正方形的边长都为1的正方形网格中,点A,B,C,D都在格点上,从这四个点中任取三个点构成三角形,则构成的三角形中,不是直角三角形的是()A.△ABC B.△ABD C.△ACD D.△BCD【分析】先根据勾股定理,结合网格结构分别求出各条线段的平方,再根据勾股定理的逆定理判断即可.【解析】由图可得,BD=5,则BD2=25.根据勾股定理,得AB2=22+12=5,BC2=22+12=5,CD2=32+12=10,DA2=22+42=20,AC2=32+12=10.A、∵AB2+BC2=10=AC2,∴△ABC是直角三角形,故本选项不符合题意;B、∵AB2+AD2=25=BD2,∴△ABD是直角三角形,故本选项不符合题意;C、∵AC2+CD2=20=AD2,∴△ACD是直角三角形,故本选项不符合题意;D、∵CD2+BC2=15≠25=BD2,∴△BCD不是直角三角形,故本选项符合题意;故选:D.8.(2019春•青山区期中)下列说法中不能推出△ABC是直角三角形的是()A.a2﹣b2=c2B.∠A:∠B:∠C=1:2:3C.a:b:c=1:2:3D.∠C=∠A﹣∠B【分析】根据勾股定理的逆定理和三角形的内角和定理逐个判断即可.【解析】A、∵a2﹣b2=c2,∴b2+c2=a2,∴△ABC是直角三角形,故本选项不符合题意;B、∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=36×180°=90°,∴△ABC是直角三角形,故本选项不符合题意;C、∵a:b:c=1:2:3,∴a2+b2≠c2,∴∴△ABC不是直角三角形,故本选项符合题意;D、∵∠C=∠A﹣∠B,∴∠C+∠B=∠A,∵∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,故本选项不符合题意;故选:C.9.(2019秋•江苏省镇江期中)已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.a:b:c=7:24:25C.a2=b2﹣c2D.∠A=∠C﹣∠B【分析】根据三角形内角和定理可得A、D是否是直角三角形;根据勾股定理逆定理可判断出B、C是否是直角三角形.【解析】A、∵∠A:∠B:∠C=3:4:5,∴∠C=53+4+5×180°=75°,故不能判定△ABC是直角三角形;B、∵72+242=252,∴△ABC为直角三角形;C、∵a2=b2﹣c2,∴b2=c2+a2,故△ABC为直角三角形;D、∵∠A=∠C﹣∠B,且∠A+∠B+∠C=180°,∴∠C=90°,故△ABC为直角三角形.故选:A.10.(2019秋•江苏省泰兴市期中)a、b、c为△ABC三边,下列条件不能判断它是直角三角形的是()A.a2=c2﹣b2B.∠A:∠B:∠C=3:4:5C.a=3,b=4,c=5D.a=5k,b=12k,c=13k(k为正整数)【分析】如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形. 【解析】A .若a 2=c 2﹣b 2,则△ABC 为直角三角形,故本选项不合题意;B .若∠A :∠B :∠C =3:4:5,则最大角∠C <90°,△ABC 不是直角三角形,故本选项符合题意; C .若a =3,b =4,c =5,则△ABC 为直角三角形,故本选项不合题意;D .若a =5k ,b =12k ,c =13k (k 为正整数),则a 2+b 2=c 2,那么这个三角形就是直角三角形,故本选项不合题意. 故选:B .二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020春•海淀区校级期中)如图所示的网格是正方形网格,则∠ACB ﹣∠DCE = 45 °(点A 、B 、C 、D 、E 是网格线交点).【分析】如图,连接CG 、AG ,根据勾股定理的逆定理可得∠CGA =90°,从而知△CGA 是等腰直角三角形,根据平行线的性质和三角形全等,可知:∠ACB ﹣∠DCE =∠CAG ,即可得解. 【解析】如图,连接CG 、AG ,由勾股定理得:AG 2=CG 2=12+22=5,AC 2=12+32=10, ∴AG 2+CG 2=AC 2, ∴∠CGA =90°,∴△CAG 是等腰直角三角形, ∴∠CAG =45°, ∵AF ∥BC , ∴∠CAF =∠BCA , 在△AFG 和△CDE 中, {AF =CD∠AFG =∠CDE =90°FG =DE, ∴△AFG ≌△CDE (SAS ),∴∠F AG =∠DCE ,∴∠ACB ﹣∠DCE =∠CAF ﹣∠F AG =∠CAG =45°. 故答案为:45.12.(2020春•西城区校级期中)下列四组数:①0.6,0.8,1;②5,12,13; ③8,15,17;④4,5,6.其中是勾股数的组数为 2 .【分析】满足a 2+b 2=c 2 的三个正整数,称为勾股数,依此即可求解. 【解析】①0.62+0.82=12,不是整数,不是勾股数; ②52+122=132,是勾股数; ③82+152=172,是勾股数; ④42+52≠62,不是勾股数; 其中是勾股数的组为2. 故答案为:2.13.(2019春•即墨区期中)已知△ABC 的三边长分别是5cm ,12cm ,13cm ,则△ABC 的面积是 30cm 2 . 【分析】先根据勾股定理的逆定理得出△ABC 是直角三角形,再根据三角形的面积公式求出即可. 【解析】∵△ABC 的三边长分别是5cm ,12cm ,13cm , ∴52+122=132,∴△ABC 是直角三角形,直角边为5cm 和12cm , ∴△ABC 的面积为12×5cm ×12cm =30cm 2,故答案为:30cm 2.14.(2019秋•高州市期中)若a 、b 、c 满足a 2+b 2=c 2,则以a ,b ,c 为边的三角形是 直角 三角形. 【分析】根据勾股定理的逆定理得出即可. 【解析】∵a 、b 、c 满足a 2+b 2=c 2, ∴以a ,b ,c 为边的三角形是直角三角形, 故答案为:直角.15.(2019秋•岱岳区期中)如图,已知∠ADC=90°,AD=8m,CD=6m,BC=24m,AB=26m,则图中阴影部分的面积为96m2.【分析】先根据勾股定理求出AC的长,再根据勾股定理的逆定理判断出△ACB为直角三角形,再根据S阴影=12AC×BC−12AD×CD即可得出结论.【解析】在Rt△ADC中,∵CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m,∴AC2=AD2+CD2=82+62=100,∴AC=10m,(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676.∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°.∴S阴影=12AC×BC−12AD×CD=12×10×24−12×8×6=96(m2).故答案是:96m216.(2019春•闽侯县期中)勾股定理a2+b2=c2本身就是一个关于a,b,c的方程,显然这个方程有无数解,满足该方程的正整数(a,b,c)通常叫做勾股数.如果三角形最长边c=2n2+2n+1,其中一短边a=2n+1,另一短边为b,如果a,b,c是勾股数,则b=2n2+2n(用含n的代数式表示,其中n为正整数)【分析】根据勾股定理解答即可.【解析】c=2n2+2n+1,a=2n+1∴b=2n2+2n,故答案为:2n2+2n17.(2019春•洛阳期中)探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…可发现,4=32−12,12=52−12,24=72−12⋯请写出第5个数组:11,60,61.【分析】先找出每组勾股数与其组数的关系,找出规律,再根据此规律进行解答.【解析】∵①3=2×1+1,4=2×12+2×1,5=2×12+2×1+1; ②5=2×2+1,12=2×22+2×2,13=2×22+2×2+1; ③7=2×3+1,24=2×32+2×3,25=2×32+2×3+1; ④9=2×4+1,40=2×42+2×4,41=2×42+2×4+1; ⑤11=2×5+1,60=2×52+2×5,61=2×52+2×5+1, 故答案为:11,60,61.18.(2019秋•连云港期中)如图,△ABC 是边长为6cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别在AB ,BC 边上匀速移动,它们的速度分别为2cm /s 和1cm /s ,当点P 到达点B 时,P ,Q 两点停止运动,设点P 的运动时间为ts ,则当t =32或125s 时,△PBQ 为直角三角形.【分析】先分别表示出BP ,BQ 的值,当∠BQP 和∠BPQ 分别为直角时,由等边三角形的性质就可以求出结论.【解析】∵△ABC 是等边三角形, ∴AB =BC =6cm ,∠A =∠B =∠C =60°, 当∠PQB =90°时,∠BPQ =30°, ∴BP =2BQ .∵BP =6﹣2x ,BQ =x , ∴6﹣2x =2x , 解得x =32;当∠QPB =90°时,∠PQB =30°, ∴BQ =2PB , ∴x =2(6﹣2x ), 解得x =125. 答:32或125秒时,△BPQ 是直角三角形.故答案为32或125.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020春•蕲春县期中)一块木板如图所示,已知AB =4,BC =3,DC =12,AD =13,∠B =90°,求此木板的面积.【分析】连接AC ,利用勾股定理解出直角三角形ABC 的斜边,通过三角形ACD 的三边关系可确定它为直角三角形,木板面积为这两三角形面积之差.【解析】连接AC ,∵在△ABC 中,AB =4,BC =3,∠B =90°, ∴AC =5,∵在△ACD 中,AC =5,DC =12,AD =13, ∴DC 2+AC 2=122+52=169,AD 2=132=169, ∴DC 2+AC 2=AD 2,∴△ACD 为直角三角形,AD 为斜边,∴木板的面积为:S △ACD ﹣S △ABC =12×5×12−12×3×4=24. 答:此木板的面积为24.20.(2020春•大悟县期中)如图,四边形ABCD 中,AB ⊥AD ,已知AD =3cm ,AB =4cm ,CD =13cm ,BC =12cm ,求四边形ABCD 的面积.【分析】连接BD,利用勾股定理求出BD的长,在△BDC中,判断它的形状,并求出它的面积,最后求出四边形ABCD的面积.【解析】连接BD,∵AD=4cm,AB=3cm,AB⊥AD,∴BD2=AD2+AB2=25,BD=5(cm)∴S△ABD=12AB•AD=6(cm2).在△BDC中,∵52+122=132,即BD2+BC2=CD2,∴△BDC为直角三角形,即∠DBC=90°,∴S△DBC=12BD•BC=30(cm2).∴S四边形ABCD=S△BDC﹣S△ABD=30﹣6=24(cm2).答:四边形ABCD的面积为24cm2.21.(2020春•水磨沟区校级期中)如图,已知在四边形ABCD中,AB=20cm,BC=15cm,CD=7cm,AD =24cm,∠ABC=90°.猜想∠A与∠C关系并加以证明.【分析】连接AC,然后根据勾股定理求出AC的值,然后根据勾股定理的逆定理判断△ADC为Rt△,然后根据四边形的内角和定理即可得到∠A与∠C关系.【解答】证明:猜想∠A与∠C关系为:∠A+∠C=180°.连结AC,∵∠ABC =90°,∴在Rt △ABC 中,由勾股定理得:AC ²=AB 2+BC 2=625,AC=25cm ,∵AD 2+DC 2=625=252=AC 2,∴△ADC 是直角三角形,且∠D =90°,∵∠DAB +∠B +∠BCD +∠D =180°,∴∠DAB +∠BCD =180°,即∠A +∠C =180°.22.(2019秋•沭阳县期中)△ABC 的三边长分别是a 、b 、c ,且a =n 2﹣1,b =2n ,c =n 2+1.(1)判断三角形的形状;(2)若以边b 为直径的半圆面积为2π,求△ABC 的面积;(3)若以边a 、b 为直径的半圆面积分别为p 、q ,求以边c 为直径的半圆面积.(用p 、q 表示)【分析】(1)先求出a 2+b 2及c 2的值,再根据勾股定理的逆定理进行解答即可;(2)先求出b =4,得出n =2,a =3,即可得出答案;(3)由圆面积公式得出p =πa 28,q =πb 28,由勾股定理和圆面积公式是即可得出答案. 【解析】(1)△ABC 是直角三角形,理由如下:∵在△ABC 中,三条边长分别是a 、b 、c ,且a =n 2﹣1,b =2n ,c =n 2+1(n >1),∴a 2+b 2=(n 2﹣1)2+(2n )2=n 4﹣2n 2+1+4n 2=(n 2+1)2,c 2=(n 2+1)2,∴a 2+b 2=c 2,∴∠C =90°,△ABC 是直角三角形.(2)∵以边b 为直径的半圆的半径为r ,则12π(b2)2=2π, 解得:b =4,∴2n =4,∴n =2,∴a=3,∴△ABC的面积=12ab=12×3×4=6;(3)∵以边a、b为直径的半圆面积分别为p、q,∴p=12π(a2)2=πa28,q=12π(b2)2=πb28,∵△ABC是直角三角形,∴a2+b2=c2,∴以边c为直径的半圆面积=12π(c2)2=πc28=π8(a2+b2)=πa28+πb28=p+q.23.(2019秋•江苏省阜宁县期中)在四边形ABCD中,AC⊥DC,AD=13cm,DC=12cm,AB=3cm,BC =4cm,求四边形ABCD的面积.【分析】利用勾股定理求出AC的长度,在△ABC中根据勾股定理逆定理可以得出是直角三角形,根据直角三角形的面积等于两直角边乘积的一半计算即可求解.【解析】在Rt△ACD中,AC=√AD2−CD2=√132−122=5cm,在△ABC中,∵AB2+BC2=9+16=25,AC2=52=25,∴AB2+BC2=AC2,∴△ABC是直角三角形,∴四边形ABCD的面积=12AB•BC+12AC•CD=12×3×4+12×5×12=36cm2.24.(2019秋•江苏省兴化市期中)【知识背景】我国古代把直角三角形较短的直角边称为“勾”,较长的的直角边称为“股”,斜边称为“弦”.据《周髀算经》记载,公元前1000多年就发现了“勾三股四弦五”的结论.像3、4、5这样为三边长能构成直角三角形的3个正整数,称为勾股数.【应用举例】观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,当勾为3时,股4=12(9−1),弦5=12(9+1);当勾为5时,股12=12(25−1),弦13=12(25+1);当勾为7时,股24=12(49−1),弦25=12(49+1).请仿照上面三组样例,用发现的规律填空:(1)如果勾用n (n ≥3,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= 12(n 2﹣1) ,弦= 12(n 2+1) .【问题解决】(2)古希腊的哲学家柏拉图也提出了构造勾股数组的公式.具体表述如下:如果a =2m ,b =m 2﹣1,c =m 2+1(m 为大于1的整数),则a 、b 、c 为勾股数.请你证明柏拉图公式的正确性;(3)毕达哥拉斯在他找到的勾股数的表达式中发现弦与股的差为1,若用2a 2+2a +1(a 为任意正整数)表示勾股数中最大的一个数,请你找出另外两个数的表达式分别是多少?【分析】(1)如果勾用n (n ≥3,且n 为奇数)表示时,则股=12(n 2﹣1),弦=12(n 2+1);(2)根据勾股数的定义直接进行解答即可得出答案;(3)根据弦与股的差为1和勾股数的定义即可得出答案.【解析】(1)如果勾用n (n ≥3,且n 为奇数)表示时,则股=12(n 2﹣1),弦=12(n 2+1);故答案为:12(n 2﹣1),12(n 2+1); (2)∵a =2m ,b =m 2﹣1,c =m 2+1(m 表示大于1的整数)∴a 2+b 2=(2m )2+(m 2﹣1)2=4m 2+m 4﹣2m 2+1=m 4+2m 2+1=(m 2+1)2=(m 2+1)2=c 2,∴a 2+b 2=c 2∴a 、b 、c 为勾股数;(3)∵弦与股的差为1,2a 2+2a +1(a 为任意正整数)表示勾股数中最大的一个数,∴另外两个数的表达式分别是2a 2+2a ; 2a +1.。

2020年八年级数学上册 与三角形有关的角 培优卷(含答案)

2020年八年级数学上册 与三角形有关的角 培优卷(含答案)
21.如图,在△ABC 中,AD 平分∠BAC,P 为 线段 AD 上的一个动点,PE⊥AD 交直线 BC 于点 E. (1)若∠B=35°,∠ACB=85°,求∠E 的度数; (2)当 P 点在线段 AD 上运动时,猜想∠E 与∠B、∠ACB 的数量关系,并证明你的结论.
22.△ABC中,三个内角的平分线交于点O,过点O作OD⊥OB,交边BC于点D.
18.如图,将△ABC 三个角分别沿 DE、HG、EF 翻折,三个顶点均落在点 O 处,则∠1+∠2 的度 数为 °.
三、解答题 19.已知在△ABC 中,∠A:∠B:∠C=2:3:4,CD 是∠ACB 平分线,求∠A 和∠CDB 的度数.
20.如图,∠ABC=38°,∠ACB=100°,AD平分∠BAC,AE是BC边上的高,求∠DAE度数.
研究(3):若折成图 3 的形状,猜想∠BDA′、∠CEA′和∠A的关系,并说明理由.
参考答案 1.B 2.B. 3.C. 4.A. 5.D 6.D 7.C 8.C 9.C 10.D 11.答案为:B. 12.B 13.答案为:20. 14.答案为:25° 15.答案为:6,与它不相邻的两个内角,3600 16.答案为:130 17.答案为:10°. 18.答案为:180°. 19.解:∵在△ABC 中,∠A:∠B:∠C=2:3:4,∠A+∠ACB+∠B=180°,
C.一定是直角三角形
D.一定是钝角三角形
5.如图所示,∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F 等于( ).
A.360°-∠A B.270°-∠α
C.180°+∠α D.2∠α
6.如图,Rt△ABC 中,∠ACB=90°,∠A= 50°,将其折叠,使点 A 落在边 CB 上 A′处,折痕为

人教版八年级上册数学 三角形解答题单元培优测试卷

人教版八年级上册数学 三角形解答题单元培优测试卷

人教版八年级上册数学 三角形解答题单元培优测试卷一、八年级数学三角形解答题压轴题(难)1.直线MN 与直线PQ 垂直相交于O ,点A 在直线PQ 上运动,点B 在直线MN 上运动. (1)如图1,已知AE 、BE 分别是∠BAO 和∠ABO 角的平分线,点A 、B 在运动的过程中,∠AEB 的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB 的大小. (2)如图2,已知AB 不平行CD ,AD 、BC 分别是∠BAP 和∠ABM 的角平分线,又DE 、CE 分别是∠ADC 和∠BCD 的角平分线,点A 、B 在运动的过程中,∠CED 的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及延长线相交于E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,试求∠ABO 的度数.【答案】(1)135°;(2)67.5°;(3)60°, 45°【解析】【分析】(1)根据直线MN 与直线PQ 垂直相交于O 可知∠AOB=90°,再由AE 、BE 分别是∠BAO 和∠ABO 的角平分线得出1BAE OAB 2∠=∠,1ABE ABO 2∠=∠,由三角形内角和定理即可得出结论;(2)延长AD 、BC 交于点F ,根据直线MN 与直线PQ 垂直相交于O 可得出∠AOB=90°,进而得出OAB OBA 90∠+∠=︒ ,故PAB MBA 270∠+∠=︒,再由AD 、BC 分别是∠BAP 和∠ABM 的角平分线,可知1BAD BAP 2∠=∠,1ABC ABM 2∠=∠,由三角形内角和定理可知∠F=45°,再根据DE 、CE 分别是∠ADC 和∠BCD 的角平分线可知CDE DCE 112.5∠+∠=︒,进而得出结论;(3))由∠BAO 与∠BOQ 的角平分线相交于E 可知1EAO BAO 2∠=∠,1EOQ BOQ 2∠=∠ ,进而得出∠E 的度数,由AE 、AF 分别是∠BAO 和∠OAG 的角平分线可知∠EAF=90°,在△AEF 中,由一个角是另一个角的3倍分四种情况进行分类讨论.【详解】(1)∠AEB 的大小不变,∵直线MN 与直线PQ 垂直相交于O ,∴∠AOB=90°, ∴OAB OBA 90∠+∠=︒,∵AE 、BE 分别是∠BAO 和∠ABO 角的平分线,∴1BAE OAB 2∠=∠,1ABE ABO 2∠=∠, ∴()1BAE ABE OAB ABO 452∠+∠=∠+∠=°, ∴∠AEB=135°;(2)∠CED 的大小不变.如图2,延长AD 、BC 交于点F .∵直线MN 与直线PQ 垂直相交于O ,∴90∠=AOB °,∴OAB OBA 90∠+∠=°,∴PAB MBA 270∠+∠=°,∵AD 、BC 分别是∠BAP 和∠ABM 的角平分线,∴1BAD BAP 2∠=∠,1ABC ABM 2∠=∠, ∴()1BAD ABC PAB ABM 1352∠+∠=∠+∠=°,F 45∠=°, ∴FDC FCD 135∠+∠=°,∴CDA DCB 225∠+∠=°,∵DE 、CE 分别是∠ADC 和∠BCD 的角平分线,∴CDE DCB 112.5∠+∠=°,∴E 67.5∠=°;(3)∵∠BAO 与∠BOQ 的角平分线相交于E ,∴1EAO BAO 2∠=∠,1EOQ BOQ 2∠=∠ , ∴()11E EOQ EAO BOQ BAQ ABO 22∠=∠-∠=∠-∠=∠, ∵AE 、AF 分别是∠BAO 和∠OAG 的角平分线,∴EAF 90∠=°.在△AEF 中,∵有一个角是另一个角的3倍,故有:①EAF 3E ∠=∠,E 30∠=°,ABO 60∠=°;②EAF 3F ∠=∠,E 60∠=°,ABO 120∠=°;③EAF 3E ∠=∠,E 22.5∠=°,ABO 45∠=°;④EAF 3F ∠=∠,E 67.5∠=°,ABO 135∠=°.∴∠ABO 为60°或45°.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.2.在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”.如,三个内角分别为120°,40°,20°的三角形是“灵动三角形”.如图,∠MON =60°,在射线OM 上找一点A ,过点A 作AB ⊥OM 交ON 于点B ,以A 为端点作射线AD ,交线段OB 于点C (规定0°< ∠OAC < 90°).(1)∠ABO 的度数为 °,△AOB (填“是”或“不是”灵动三角形); (2)若∠BAC =60°,求证:△AOC 为“灵动三角形”;(3)当△ABC 为“灵动三角形”时,求∠OAC 的度数.【答案】(1)30°;(2)详见解析;(3)∠OAC=80°或52.5°或30°.【解析】【分析】(1)根据垂直的定义、三角形内角和定理求出∠ABO 的度数,根据“智慧三角形”的概念判断;(2)根据“智慧三角形”的概念证明即可;(3)分点C 在线段OB 和线段OB 的延长线上两种情况,根据“智慧三角形”的定义计算.【详解】(1)答案为:30°;是;(2)∵AB ⊥OM∴∠B AO =90°∵∠BAC =60°∴∠OAC =∠B AO-∠BAC=30°∵∠MON =60°∴∠ACO =180°-∠OAC-∠MON =90°∴∠ACO =3∠OAC ,∴△AOC 为“灵动三角形”;(3)设∠OAC= x°则∠BAC=90-x, ∠ACB=60+x , ∠ABC =30°∵△ABC 为“智慧三角形”,Ⅰ、当∠ABC =3∠BAC 时,°,∴30=3(90-x ), ∴x=80Ⅱ、当∠ABC =3∠ACB 时,∴30=3(60+x ) ∴x= -50 (舍去)∴此种情况不存在,Ⅲ、当∠BCA =3∠BAC 时,∴60+x =3(90-x ),∴x =52.5°,Ⅳ、当∠BCA =3∠ABC 时,∴60+x =90°,∴x =30°,Ⅴ、当∠BAC =3∠ABC 时,∴90-x =90°,∴x =0°(舍去)Ⅵ、当∠BAC =3∠ACB 时,∴90-x =3(60+x ),∴x= -22.5(舍去),∴此种情况不存在,∴综上所述:∠OAC=80°或52.5°或30°。

2020-2021学年八年级数学上册尖子生同步培优题典 专题1

2020-2021学年八年级数学上册尖子生同步培优题典 专题1

专题1.3 勾股定理的应用姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020春•西城区校级期中)为了迎接新年的到来,同学们做了许多拉花布置教室,准备举办新年晚会,大林搬来一架高为2.5米的木梯,准备把拉花挂到2.4米的墙上,开始梯脚与墙角的距离为1.5米,但高度不够.要想正好挂好拉花,梯脚应向前移动(人的高度忽略不计)()A.0.7米B.0.8米C.0.9米D.1.0米【分析】仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【解析】梯脚与墙角距离:√2.52−2.42=0.7(米),∵开始梯脚与墙角的距离为1.5米,∴要想正好挂好拉花,梯脚应向前移动:1.5﹣0.7=0.8(米).故选:B.2.(2020春•硚口区期中)如图,一个梯子AB斜靠在一竖直的墙AO上,测得AO=8米.若梯子的顶端沿墙面向下滑动2米,这时梯子的底端在水平的地面也恰好向外移动2米,则梯子AB的长度为()A.10米B.6米C.7米D.8米【分析】首先设BO=x米,则DO=(x+2)米,利用勾股定理可列出方程,再解可得BO长,然后再利用勾股定理计算出AB长.【解析】由题意得:AC=BD=2米,∵AO=8米,∴CO=6米,设BO=x米,则DO=(x+2)米,由题意得:62+(x+2)2=82+x2,解得:x=6,AB=√82+62=10(米),故选:A.3.(2020春•西城区校级期中)小明和小亮周末相约去电影院看电影,下面是他们的一段对话:小明:小亮,你下了300路公交车后,先向前走300米,再向左转走200米,就到电影院了,我现在在电影院门口等你呢!小亮:我按你说的路线走到了W超市,不是电影院啊?小明:你走到W超市是因为你下车后先向西走了,如果你先向北走就能到电影院了.根据上面两个人的对话记录,小亮现在从W超市去电影院的路线是()A.向南直走500米,再向西直走100米B.向北直走500米,再向西直走100米C.向南直走100米,再向东直走500米D.向北直走500米,再向东直走100米【分析】根据对话画出图形,进而得出从W超市去电影院的路线.【解析】如图所示:从W超市去电影院的路线:向北直走200+300=500米,再向东直走300﹣200=100米.故选:D.4.(2020春•江岸区期中)如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A .10B .12C .13D .14【分析】找到题中的直角三角形,设水深为x 尺,根据勾股定理解答.【解析】设水深为x 尺,则芦苇长为(x +1)尺,根据勾股定理得:x 2+(102)2=(x +1)2,解得:x =12,芦苇的长度=x +1=12+1=13(尺),答:芦苇长13尺.故选:C .5.(2020春•东西湖区期中)如图,一竖直的木杆在离地面4米处折断,木頂端落在地面离木杆底端3米处,木杆折断之前的高度为( )A .7米B .8米C .9米D .12米【分析】由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出这棵树折断之前的高度.【解析】∵一竖直的木杆在离地面4米处折断,頂端落在地面离木杆底端3米处,∴折断的部分长为√42+32=5(米),∴折断前高度为5+4=9(米).故选:C .6.(2020春•桦南县期中)校园内有两棵树,相距12米,一棵树高为13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞( )A .10米B .11米C .12米D .13米【分析】如图所示,AB ,CD 为树,且AB =13,CD =8,BD 为两树距离12米,过C 作CE ⊥AB 于E ,则CE =BD =12,AE =AB ﹣CD =5,在直角三角形AEC 中利用勾股定理即可求出AC .【解析】如图所示,AB,CD为树,且AB=13,CD=8,BD为两树距离12米,过C作CE⊥AB于E,则CE=BD=12,AE=AB﹣CD=5,在直角三角形AEC中,AC=√AE2+EC2=√122+52=13.故选:D.7.(2020春•单县校级期中)丽丽想知道学校旗杆的高,她发现旗杆顶端上的绳子垂直到地面还多2米,当她把绳子的下端拉开离旗杆6米后,发现下端刚好接触地面,则旗杆的高为()A.4米B.8米C.10米D.12米【分析】据题意设旗杆的高为xm,则绳子的长为(x+2)m,再利用勾股定理即可求得绳子的长,即旗杆的高.【解析】设旗杆的高为xm,则绳子的长为(x+2)m.根据题意得:x2+62=(x+2)2,解得x=8.故旗杆的高为8米.故选:B.8.(2019春•九龙坡区校级期中)如图,一圆柱体的底面周长为10cm,高AB为12cm,BC是直径,一只蚂蚁从点A出发沿着圆柱的表面爬行到点C的最短路程为()A.17cm B.13cm C.12cm D.14cm【分析】将圆柱的侧面展开,得到一个长方体,再然后利用两点之间线段最短解答.【解析】如图所示:由于圆柱体的底面周长为10cm,则AD=10×12=5(cm).又因为CD=AB=12cm,所以AC=√122+52=13(cm).故蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短路程是13cm.故选:B.9.(2019春•潍城区期中)在水平地面上有一棵高9米的大树,和一棵高4米的小树,两树之间的水平距离是12米,一只小鸟从小树的顶端飞到大树的顶端,则小鸟至少飞行()A.12米B.13米C.9米D.17米【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解析】如图,设大树高为AB=9m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=12m,AE=AB﹣EB=9﹣4=5m,在Rt△AEC中,AC=√AE2+EC2=√52+122=13(m).故小鸟至少飞行13m,故选:B.10.(2019秋•拱墅区校级期中)如图,若要将一块不能弯曲的正方形(不考虑厚度)搬进室内,需要通过一扇高为2m,宽为1m的门,以下边长的木块中哪块可以通过此门?()A.2.8m B.2.5mC.2.2m D.以上答案都不对【分析】利用勾股定理求出门框对角线的长度,由此即可得出结论.【解析】如图,连接AB,由勾股定理得:AB2=22+12=5,∵2.82=7.84,2.52=6.25,2.22=4.84<5,故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020春•蕲春县期中)如图一根竹子长为16米,折断后竹子顶端落在离竹子底端8米处,折断处离地面高度是6米.【分析】子折断后刚好构成一直角三角形,设竹子折断处离地面x米,则斜边为(16﹣x)米.利用勾股定理解题即可.【解析】设竹子折断处离地面x米,则斜边为(16﹣x)米,根据勾股定理得:x2+82=(16﹣x)2解得:x=6.∴折断处离地面高度是6米,故答案为:6.12.(2020春•铁东区期中)已知,如图,一小船以20海里/时的速度从港口A出发向东北方向航行,另一小船以15海里/时的速度同时从港口A出发向东南方向航行,离开港口1小时后,则两船相距25海里.【分析】求出两船的行驶路程,利用勾股定理计算即可.【解析】由题意得:两船的行驶方向为直角,向东北方向航行的小船行驶路程为:20×1=20(海里),向东南方向航行的小船行驶路程为:15×1=15(海里),两船的距离:√202+152=25(海里),故答案为:25海里.13.(2020春•明水县校级期中)如图,一架长为4m的梯子,一端放在离墙脚3m处,另一端靠墙,则梯子顶端离墙脚√7m.【分析】根据题意直接利用勾股定理得出梯子顶端离墙角的距离.【解析】由题意可得:梯子顶端离墙角有√42−32=√7(m).故答案为:√7m.14.(2020春•武昌区期中)如图,已知点B在点A的北偏东32°,点C在点B的北偏西58°,CB=12,AB=9,AC=15,则△ABC的面积为54.【分析】根据勾股定理的逆定理得出△ABC是直角三角形,进而解答即可.【解析】∵CB=12,AB=9,AC=15,∴AC2=CB2+AB2,∴△ABC是直角三角形,∴△ABC的面积=12×9×12=54,故答案为:5415.(2020春•西城区校级期中)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.在《九章算术》中的勾股卷中有这样一道题:今有竹高一丈,末折抵底,去本三尺.折者高几何?意思为:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹稍恰好抵地,抵地处离远处竹子三尺远,则原处还有9120尺竹子.(请直接写出答案,注:1丈=10尺).【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x)尺.利用勾股定理解题即可. 【解析】设竹子折断处离地面x 尺,则斜边为(10﹣x )尺,根据勾股定理得:x 2+32=(10﹣x )2,解得:x =9120.故答案为:9120.16.(2020春•青山区校级期中)如图,一场大风后,一棵大树在高于地面1米处折断,大树顶部落在距离大树底部3米处的地面上,那么树高是 (√10+1)米 .【分析】首先根据勾股定理求得折断的树高,继而即可求出折断前的树高.【解析】根据勾股定理可知:折断的树高=√12+32=√10米,则这棵大树折断前的树高=(1+√10)米.故答案为(√10+1)米17.(2019春•黄浦区期中)将一根长56厘米的铁丝弯折成一个直角三角形,使它的一条直角边长为7厘米,则另一条直角边长是 24 厘米.【分析】只需运用勾股定理就可解决问题.【解析】设另一条直角边长为x ,由题可得,该直角三角形的斜边为(56﹣7﹣x )cm ,即(49﹣x )cm , 根据勾股定理可得,72+x 2=(49﹣x )2,解得:x =24,∴49﹣x =25,∴这个直角三角形另一条直角边长的长为24,故答案为:2418.(2019春•天津期中)如图,要从电线杆离地面12m 处向地面拉一条钢缆,要求地面钢缆固定点A 与电线杆底部B 的距离是5m ,则钢缆的长度为(不计接头) 13米 .【分析】根据勾股定理即可得到结论.【解析】在Rt△ABC中,∵∠ABC=90°,∴AC=√AB2+BC2=√52+122=13,答:钢缆的长度为13米,故答案为:13米.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020春•云梦县期中)如图,某电信公司计划在A,B两乡镇间的E处修建一座5G信号塔,且使C,D两个村庄到E的距离相等.已知AD⊥AB于点A,BC⊥AB于点B,AB=80km,AD=50km,BC=30km,求5G信号塔E应该建在离A乡镇多少千米的地方?【分析】可以设AE=xkm,则BE=(80﹣x)km,在直角△ADE中根据勾股定理可以求得DE2,在直角△BCE中根据勾股定理可以求得CE2,根据DE=CE可以求得x的值,即可求得AE的值.【解析】设AE=xkm,则BE=(80﹣x)km,∵AD⊥AB,BC⊥AB,∴△ADE和△BCE都是直角三角形,∴DE2=AD2+AE2,CE2=BE2+BC2,又∵AD=50,BC=30,DE=CE,∴502+x2=(80﹣x)2+302,解得x=30.答:5G信号塔E应该建在离A乡镇30千米的地方.20.(2020春•硚口区期中)如图,一根直立于水中的芦苇BD高出水面AC1米,一阵风吹来,芦苇的顶端D恰好到达水面的C处,且C到BD的距离AC=3米,求芦苇BD的长度为多少米?【分析】设芦苇BD的长度为x米,则水深(x﹣1)米,利用勾股定理列出方程,再解即可.【解析】设芦苇BD的长度为x米,则水深(x﹣1)米,由题意得:x2﹣32=(x﹣1)2,解得:x=5,答:芦苇BD的长度为5米.21.(2020春•铁东区期中)在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=BC,由于某种原因,由C到B的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点D (A、D、B在同一条直线上),并新修一条路CD,测得CA=6.5千米,CD=6千米,AD=2.5千米.(1)问CD是否为从村庄C到河边最近的路?请通过计算加以说明;(2)求原来的路线BC的长.【分析】(1)利用勾股定理逆定理证明CD⊥AB,根据垂线段最短可得答案;(2)设BC=x千米,则BD=(x﹣2.5)千米,利用勾股定理列出方程,再解即可.【解析】(1)是,理由:∵62+2.52=6.52,∴CD2+AD2=AC2,∴△ADC为直角三角形,∴CD⊥AB,∴CD是从村庄C到河边最近的路;(2)设BC=x千米,则BD=(x﹣2.5)千米,∵CD⊥AB,∴62+(x﹣2.5)2=x2,解得:x=8.45,答:路线BC的长为8.45千米.22.(2020春•武汉期中)如图,在笔直的铁路上A,B两点相距20km,C,D为两村庄,DA=8km,CB=14km,DA⊥AB于A,CB⊥AB于B.现要在AB上建一个中转站E,使得C,D两村到E站的距离相等,求AE的长.【分析】根据题意设出E点坐标,再由勾股定理列出方程求解即可.【解析】设AE=x,则BE=20﹣x,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=82+x2,在Rt△BCE中,CE2=BC2+BE2=142+(20﹣x)2,由题意可知:DE=CE,所以:82+x2=142+(20﹣x)2,解得:x=13.3所以,E应建在距A点13.3km.23.(2020春•涿鹿县期中)如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.(1)△ACD是直角三角形吗?为什么?(2)小区为美化环境,欲在空地上铺草坪,已知草坪每平方米80元,试问铺满这块空地共需花费多少元?【分析】(1)先在Rt△ABC中,利用勾股定理可求AC,在△ACD中,易求AC2+CD2=AD2,再利用勾股定理的逆定理可知△ACD是直角三角形,且∠ACD=90°;(2)分别利用三角形的面积公式求出△ABC、△ACD的面积,两者相加即是四边形ABCD的面积,再乘以80,即可求总花费.【解析】(1)如图,连接AC,在Rt△ABC中,∵AB=3m,BC=4m,∠B=90°,AB2+CB2=AC2∴AC=5cm,在△ACD中,AC=5cmCD=12m,DA=13m,∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°;(2)∵S△ABC=12×3×4=6,S△ACD=12×5×12=30,∴S四边形ABCD=6+30=36,费用=36×80=2880(元).答:铺满这块空地共需花费2880元.24.(2019春•罗庄区期中)某小区内有一块如图所示的三角形空地ABC,计划将这块空地建成一个花园,以美化小区环境,预计花园每平方米造价为25元,小区修建这个花园需要投资多少元?【分析】过点A作AD⊥BC于点D,设BD=x,则CD=14﹣x,再根据勾股定理求出x的值,进而可得出AD的长,由三角形的面积公式即可得出结论.【解析】过点A作AD⊥BC于点D,设BD=x,则CD=14﹣x,在Rt△ABD与Rt△ACD中,∵AD2=AB2﹣BD2,AD2=AC2﹣CD2.∴AB2﹣BD2=AC2﹣CD2,即132﹣x2=152﹣(14﹣x)2,解得x=5,∴AD2=AB2﹣BD2=132﹣52=144.∴AD=12(米),∴学校修建这个花园的费用=25×12×14×12=2100(元).答:学校修建这个花园需要投资2100元.。

八年级数学上册三角形的外角精选练习题

八年级数学上册三角形的外角精选练习题

八年级数学上册三角形的外角精选练习题为即将学完的八年级数学上册三角形的外角的知识点,同学们要准备哪些精选练习题来巩固所学的知识点呢?下面是店铺为大家带来的关于八年级数学上册三角形的外角精选的练习题,希望会给大家带来帮助。

八年级数学上册三角形的外角精选练习题目一、选择题:1.CD∥AB,∠1=120°,∠2=80°,则∠E的度数是( )A. 40°B. 60°C. 80°D. 120°2.将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为( )A. 80B.] 50C. 30D. 203.已知AB∥CD,∠EBA=45°,∠E+∠D的度数为( )A. 30°B. 60°C. 90°D. 45°4.如中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确( )A. ∠2=∠4+∠7B. ∠3=∠1+∠6C. ∠1+∠4+∠6=180°D. ∠2+∠3+∠5=360°5.一副三角板有两个直角三角形,如叠放在一起,则∠α的度数是( )A. 165°B. 120°C. 150°D. 135°6.直线AB∥CD,∠A=70°,∠C=40°,则∠E等于( )A. 30°B. 40°C. 60°D. 70°7.下面四个形中,∠1=∠2一定成立的是( )A. B. C. D.8.∠A,∠1,∠2的大小关系是( )A. ∠A>∠1>∠2B. ∠2>∠1>∠AC. ∠A>∠2>∠1D. ∠2>∠A>∠1二、填空题9.将一副常规的三角尺按如方式放置,则中∠AOB的度数为________10.l∥m,等腰直角三角形ABC的直角顶点C在直线m上,若∠β=20°,则∠α的度数为________11.若三角形的外角中有一个是锐角,则这个三角形是________三角形.12.△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、“直角”或“钝角”).13.x=______.14.在△ABC中,∠A=45°,∠B=60°,则外角∠ACD=_________ 度.15.已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=_________ 度.16.将一副直角三角板如放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则α=________.EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=_____ .18.AB∥CD,BC与AD相交于点M,N是射线CD上的一点.若∠B=65°,∠MDN=135°,则∠AMB=____ .三、解答题:19.已知:∠2是△AB C的一个外角.求证:∠2=∠A+∠B证明:∵∠A+∠B+∠1=180° ( )∠1+∠2=180° ( )∴∠2=∠A+∠B ( )20. 直线a∥b,∠1=130°,∠2=70°,求则∠3的度数.21.已知:在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC.22.在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,求∠AEC的度数。

2020-2021学年度人教版八年级数学上册11.2.2三角形的外角课时练习(含答案解析)

2020-2021学年度人教版八年级数学上册11.2.2三角形的外角课时练习(含答案解析)

2020-2021学年度人教版八年级数学上册11.2.2三角形的外角课时练习一、选择题1.如图,直线//a b ,则A ∠=( )A .28︒B .35︒C .40︒D .45︒ 2.如图所示,长方形ABCD 中,点E 在CD 边上,AE ,BE 与直线L 相交α∠,β∠,构成则1∠,2∠,α∠,β∠之间的关系是( )A .12180αβ∠+∠+︒=∠+∠B .21αβ∠+∠=∠+∠C .()212αβ∠+∠=∠+∠D .12αβ∠+∠=∠-∠3.如图,A ABC CB =∠∠,AD 、BD 、CD 分别平分ABC 的外角EAC ∠、 内角ABC ∠、外角ACF ∠.以下结论:①//AD BC ;②2ACB ADB ∠=∠;③90ADC ABD ∠=︒-∠;④12BDC BAC ∠=∠.其中正确的结论有( ).A .1个B .2个C .3个D .4个4.如图,在ABC 中,点D 是BC 延长线上一点,70A ∠=︒,120ACD ∠=︒,则B 等于( ).A .60°B .80°C .70°D .50°5.如图,ABC ∆中,40A ∠=︒,20ABO ∠=︒,30ACO ∠=︒,则BOC ∠等于( )A .80︒B .90︒C .100︒D .110︒ 6.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒ 7.如图,把ABC ∆绕点C 顺时针旋转某个角度α得到'',30,150A BC A ︒︒∆∠=∠=,则旋转角'BCB ∠等于( )A .30︒B .25︒C .15︒D .20︒ 8.一幅三角板,如图所示叠放在一起,则图中∠α的度数是( )A .75°B .60°C .65°D .55° 9.如图,直线AB ∥CD ,∠A =70°,∠C =40°,则∠E 等于()A .30°B .40°C .60°D .70°10.如图,在ABC ∆中,45B ∠=︒,30C ∠=︒,延长线段BA 至点E ,则EAC ∠的度数为( )A .105︒B .75︒C .70︒D .60︒二、填空题 11.一个等边三角形,一个直角三角形以及一个等腰三角形如图放置,已知等腰三角形的底角∠3=72°,则∠1+∠2=______12.如图所示,直线12//l l ,若140∠=︒,275∠=︒,则3∠=____________︒.。

专题1.4三角形的外角-2021-2022学年八年级数学上册尖子生同步培优题典(原卷版)【浙教版】

专题1.4三角形的外角-2021-2022学年八年级数学上册尖子生同步培优题典(原卷版)【浙教版】

2021-2022学年八年级数学上册尖子生同步培优题典【浙教版】专题1.4三角形的外角姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•苍南县期中)一副三角板,按如图所示叠放在一起,则图中∠α的度数为( )A.10°B.15°C.20°D.25°2.(2020秋•拱墅区期中)将一副直角三角板如图放置,使两直角重合,则∠AFE=( )度.A.145B.155C.165D.1753.(2020•新昌县校级模拟)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容已知:如图,∠BEC=∠B+∠C.求证:AB∥CD.证明:延长BE交★于点F.则∠BEC=■+∠C(三角形的外角等于它不相邻的内角之和).又∠BEC=∠B+∠C,得∠B=▲.故AB∥CD(●相等,两直线平行).则回答错误的是( )A.★代表CD B.■代表∠EFCC.▲代表∠EFC D.●代表同位角4.(2020•眉山)一副三角板如图所示摆放,则∠α与∠β的数量关系为( )A.∠α+∠β=180°B.∠α+∠β=225°C.∠α+∠β=270°D.∠α=∠β5.(2019秋•郑州期末)如图,BP、CP是△ABC的外角角平分线,若∠P=60°,则∠A的大小为( )A.30°B.60°C.90°D.120°6.(2019秋•海曙区期末)一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC 的度数为( )A.60°B.45°C.75°D.90°7.(2019•营口)如图,AD是△ABC的外角∠EAC的平分线,AD∥BC,∠B=32°,则∠C的度数是( )A.64°B.32°C.30°D.40°8.(2020秋•平定县期末)把一副三角尺ABC与BDE按如图所示那样拼在一起,∠ABC=60°,∠C=∠DBE=90°,其中A,D,B三点在同一直线上,BM为∠ABC的平分线,BN为∠CBE的平分线,则∠MBN的度数是( )A.55°B.30°C.45°D.60°9.(2020秋•鼓楼区校级期中)如图,在△ABC中,BP平分∠ABC,AP平分∠NAC,CP平分△ABC的外角∠ACM,连接AP,若∠BPC=40°,则∠NAP的度数是( )A.30°B.40°C.50°D.60°10.(2020秋•大安市期末)如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=( )A.70°B.80°C.90°D.100°二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2021春•西湖区校级期中)如图,直线AB∥CD,∠B=70°,∠D=30°,则∠E的度数是 .12.(2020秋•嵊州市期中)一副分别含有30°和45°的直角三角板,拼成如图,则∠BFD的度数是 .13.(2020秋•温州期中)如图,在△ABC中,点D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于 .14.(2020秋•浑源县期中)如图,∠ACD是△ABC的外角,若∠ACD=110°,∠B=50°,则∠A = .15.(2019秋•滨江区期末)如图,在△ABC中,∠C=60°,∠B=40°,AD平分∠BAC交BC于点D,则∠ADC的度数是 .16.(2020秋•罗湖区期末)如图,已知△ABC中,∠A=50°,BE平分∠ABC,CE平分外角∠ACD,则∠E= 度.17.(2020秋•新宾县期末)如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1,∠A1BC和∠A1CD的平分线交于点A2,得∠A2,…,∠A2017BC和∠A2017CD的平分线交于点A2018,则∠A2018= 度.18.(2020春•遂宁期末)如图,在△ABC中,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC,内角∠ABC,外角∠ACF,以下结论:①AD∥BC;②∠ACB=∠ADB;③∠ADC+∠ABD=90°;④∠ADB=45°―12∠CDB,其中正确的结论有 .三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019春•内江期末)如图,在△ABC中,AD是高,∠DAC=10°,AE是∠BAC外角的平分线,BF 平分∠ABC交AE于点F,若∠ABC=46°,求∠AFB的度数.20.(2019•江岸区校级模拟)如图所示,直线AD和BC相交于O,AB∥CD,∠AOC=95°,∠B=50°,求∠A和∠D.21.(2017秋•河北区期中)如图,△ABC中,AD是BC边上的高线,BE是一条角平分线,AD、BE相交于点P,已知∠EPD=125°,求∠BAD的度数.22.(2020秋•盐田区期末)如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)若∠B=30°,∠ACB=40°,求∠E的度数;(2)求证:∠BAC=∠B+2∠E.23.(2020春•丰泽区校级期中)如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC、∠NCB的平分线交于点Q,试探索∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的3倍,请直接写出∠A的度数.24.(2019秋•柯桥区期末)小明在学习过程中,对教材中的一个有趣问题做如下探究:【习题回顾】已知:如图1,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于。

与三角形有关的角大题专练(重难点培优40题)-八年级数学上册尖子生培优必刷题(原卷版)【人教版】

与三角形有关的角大题专练(重难点培优40题)-八年级数学上册尖子生培优必刷题(原卷版)【人教版】

【拔尖特训】2023-2024学年八年级数学上册尖子生培优必刷题(人教版)专题11.6与三角形有关的角大题专练(重难点培优40题)班级:___________________ 姓名:_________________ 得分:_______________一.解答题(共40小题)1.(2022秋•灵宝市期末)如图,在△ABC中,∠B=25°,∠BAC=31°,过点A作BC边上的高,交BC 的延长线于点D,CE平分∠ACD,交AD于点E.求:(1)∠ACD的度数;(2)∠AEC的度数.2.(2021秋•双台子区期末)如图,在△ABC中,CD平分∠ACB,AE⊥CD,垂足为F,交BC于点E,若∠BAE=33°,∠B=37°,求∠EAC的度数.3.(2021秋•天山区校级期末)如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O.(1)若∠ABC=60°,∠C=70°,求∠DAE的度数.(2)若∠C=70°,求∠BOE的度数.(3)若∠ABC=α,∠C=β(α<β),则∠DAE=.(用含α、β的式子表示)4.(2021秋•驻马店期末)(1)如图(a),BD平分∠ABC,CD平分∠ACB,试确定∠A与∠D的数量关系.(2)如图(b),BE平分∠ABC,CE平分∠ACM,试确定∠A与∠E的数量关系.(3)如图(c),BF平分∠CBP,CF平分∠BCQ,试确定∠A与∠F的数量关系.5.(2023春•大荔县期末)我们将内角互为对顶角的两个三角形称为“对顶三角形”.例如,在图1中,△AOB的内角∠AOB与△COD的内角∠COD为对顶角,则△AOB与△COD为“对顶三角形”,根据三角形三个内角和是180°,“对顶三角形”有如下性质:∠A+∠B=∠C+∠D.性质理解:(1)如图1,在“对顶三角形”△AOB与△COD中,则∠AOB=85°,则∠C+∠D=°.性质应用:(2)如图2,在△ABC中,AD、BE分别平分∠BAC和∠ABC,若∠C=60°,∠ADE比∠BED大8°,求∠BED的度数.拓展提高:(3)如图3,BE、CD是△ABC的角平分线,且∠BDC和∠BEC的平分线DP和EP相交于点P,设∠A=α,请尝试求出∠P的度数(用含α的式了表示∠P).6.(2022秋•凤翔县期末)综合与探究:【情境引入】(1)如图1,BD,CD分别是△ABC的内角∠ABC,∠ACB的平分线,说明∠D=90°+12∠A的理由.【深入探究】(2)①如图2,BD ,CD 分别是△ABC 的两个外角∠EBC ,∠FCB 的平分线,∠D 与∠A 之间的等量关系是 ;②如图3,BD ,CD 分别是△ABC 的一个内角∠ABC 和一个外角∠ACE 的平分线,BD ,CD 交于点D ,探究∠D 与∠A 之间的等量关系,并说明理由.7.(2023春•德清县期末)如图,已知在同一平面内有线段AB 和直线CD ,且AB ∥CD ,点E 是直线CD 上的一个动点,连结AE ,BE ,过点B 作BF ⊥CD ,垂足为F .(1)如图1,若AE ⊥BE ,请说明∠BAE +∠BEF =90°的理由;(2)如图2,作∠BAE 的角平分线与∠EBF 的角平分线交于点P ,设∠APB =α,∠AEB =β,请求出α和β之间的数关系;(3)如图3,当点E 运动到点F 的右边时,在(2)的条件下,α和β之间的数量关系是否会发生改变?请说明理由.8.(2023春•丹江口市期末)如图,△ABC 中,∠ACE >∠B ,AD 是角平分线,AE ⊥AD 交BC 的延长线于点E .(1)若∠B =40°,∠ACB =100°,求∠E 的度数;(2)①试求∠E ,∠B ,∠ACB 之间的数量关系;②若∠E =∠B ,求∠ACB ∠B 的值.9.(2023春•定兴县期末)综合与实践课上,同学们以“一个含30°角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线a,b且a∥b,三角形ABC中,∠ACB=90°,∠ABC=60°,∠BAC=30°.操作发现:(1)如图1,若∠1=42°,求∠2的度数;(2)小聪同学把图1中的直线a向上平移得到如图2,请你探究图2中的∠1与∠2的数量关系,并说明理由.(3)小颖同学将图2中的直线b向上平移得到图3,若∠2=4∠1,求∠1的度数.10.(2023春•莆田月考)(1)已知:三角形ABC,求证:∠A+∠B+∠ACB=180;小明同学经过认真思弯,他过点C作CE∥AB,利用添加辅助线的方法成功解决了这个问题,你能说出小明是怎么解决这个问题的吗?写出论证过程.(2)利用以上结论或方法,解决如下问题:已知:六边形ABCDEF,满足∠A+∠B+∠C=∠D+∠E+∠F,求证:AF∥CD.11.(2023春•江都区期末)如图,在△ABC中,∠B>∠C,AD⊥BC于点D,AE平分∠BAC.(1)若∠B=64°,∠C=42°,则∠DAE=°;(2)∠B、∠C与∠DAE有何数量关系?证明你的结论;(3)点G是线段CE上任一点(不与C、E重合),作GH⊥CE,交AE的延长线于点H,点F在BA的延长线上.若∠F AC=α,∠GHE=β,求∠B、∠C(用含α、β代数式表示).12.(2023春•榕城区期末)定义:如果一个三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B的度数是;(2)若△ABC是直角三角形,∠ACB=90°.①如图,若AD是∠BAC的平分线,请判断△ABD是否为“准互余三角形”?并说明理由.②点E是边BC上一点,△ABE是“准互余三角形”,若∠ABC=24°,则∠EAC的度数是.13.(2023春•曹县期末)如图,∠AOB=90°,点C、D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F.(1)在图1中,当∠CDO=50°时,求∠F的度数;(2)如图2,当C、D两点分别在射线OA、OB上移动时(不与点O重合),其他条件不变,∠F的大小是否变化?若变化,请说明理由;若不变化,试求出∠F的度数.14.(2023春•无为市期末)如图,直线m∥n,Rt△ABC中∠ACB=90°,Rt△ABC的边AC、AB与直线m 相交于D、E两点,边BC、AB与直线n交于F、G两点.(1)将Rt△ABC如图1位置摆放,如果∠ADE=46°,则∠CFG=;(2)将Rt△ABC如图2位置摆放,H为AC上一点,∠HFG+∠CFG=180°,请写出∠HFG与∠ADE 之间的数量关系,并说明理由;(3)将Rt△ABC如图3位置摆放,若∠EDC=140°,延长AC交直线n于点K,点P是射线EG上一动点,探究∠PDK,∠DPK与∠PKG的数量关系,请直接写出结论(题中的所有角都大于0°小于180°).15.(2023春•枣庄期末)在三角形三个内角中,如果满足其中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中内角α称为“主特征角”,内角β称为“次特征角”.(1)已知在△ABC中,∠A=30°,∠B=50°,判断△ABC是否为“特征三角形”,并说明理由;(2)在△DEF中,∠D=96°,若△DEF是“特征三角形”,且∠E是“次特征角”,求∠E的度数.16.(2022秋•潍坊期末)通过学习第5章《几何证明初步》知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性,实验的方法能给我们证明提供思路.例如:在证明“三角形的内角和是180°”的结论时,如图2,有两种实验方法.小明受实验方法1的启发,形成了证明该结论的思路,写出了已知、求证,并进行了证明,如下:已知:∠A,∠B,∠C是△ABC的三个内角.求证:∠A+∠B+∠C=180°.证明:延长BC,过点C作CM∥BA.∴∠A=∠1,∠B=∠2.∵∠1+∠2+∠ACB=180°,∴∠A+∠B+∠ACB=180°.(1)小明的证明过程依据有哪些?(写两条即可)(2)请你参考小明同学解决问题的方法1的思路,写出实验方法2的证明过程.17.(2023春•镇平县期末)小明在学习中遇到这样一个问题:如图1,在△ABC中,∠C>∠B,AE平分∠BAC,AD⊥BC于D.猜想∠B、∠C、∠EAD之间的数量关系.(1)小明阅读题目后,没有发现数量关系与解题思路,于是尝试代入∠B、∠C的值求∠EAD值,得到下面几组对应值:∠B(单位:度)1030302020∠C(单位:度)7070606080∠EAD(单位:度)30a152030上表中a=,于是得到∠B、∠C、∠EAD之间的数量关系为;(2)小明继续探究,如图2,在线段AE上任取一点P,过点P作PD⊥BC于点D,请尝试写出∠B、∠C、∠EPD之间的数量关系,并说明理由.(3)小明突发奇想,交换B、C两个字母位置,如图3,过EA的延长线上一点F作FD⊥BC交CB的延长线于点D,当∠ABC=85°,∠C=23°时,∠F度数为°.18.(2023春•太平区期末)如图1,已知等腰△ABC中,∠A=∠C=30°,动点D在AB的平行线l上,联结AD.(1)如图2,若∠B=∠ADC,说明AD∥BC的理由;(2)如图3,当∠CDA=∠DAB时,△ACD是什么三角形?为什么?(3)过点A作l的垂线,垂足为H,若∠ADH=60°,求∠DAC的度数.19.(2023春•青秀区校级期末)我们定义:在一个三角形中,若一个角的度数是另一个角度数的3倍,则这样的三角形称之为“美好三角形”.如:三个内角分别为120°,40°,20°的三角形是“美好三角形”.如图,∠AOB=40°,点C在边OA上,过点C作EC⊥OA交OB于点E,以C为端点作射线CD,交线段OE于点F(点F不与O,E重合).【概念理解】(1)∠CEO的度数为,△OCE(填“是”或“不是”)“美好三角形”.【应用拓展】(2)若∠CFE=75°,试说明:△OCF是“美好三角形”.20.(2023春•栾城区校级期末)在△ABC中,点D在线段AC上,DE∥BC交AB于点E,点F在线段AB 上(点F不与点A,E,B重合),连接DF,过点F作FG⊥FD交射线CB于点G.(1)如图1,点F在线段BE上.①直接写出∠EDF与∠BGF的数量关系;②求证:∠ABC+∠BFG﹣∠EDF=90°;(2)当点F在线段AE上时,请在备用图中补全图形,并直接写出∠EDF与∠BGF的数量关系.21.(2023春•邗江区期中)综合与探究:爱思考的小明在学习过程中,发现课本有一道习题,他在思考过程中,对习题做了一定变式,让我们来一起看一下吧.在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如图1,如果∠A=80°,那么∠BPC=°(2)如图2,作△ABC的外角∠MBC,∠NCB的平分线交于点Q,试探究∠Q与∠BPC的数量关系.(3)如图3,在(2)的条件下,延长线段BP,QC交于点E,在△BQE中,若∠Q=4∠E,求∠A的度数.22.(2023春•洪洞县期末)在△ABC中,AD⊥BC于点D.特例研究:(1)如图1,若∠BAC的平分线AE能交BC于点E,∠B=35°,∠EAD=5°,求∠C的度数;操作发现:如图2,点M,N分别在线段AB,AC,将△ABC折叠,点B落在点F处,点C落在点G处,折痕分别为DM和DN,点G,F都在射线DA上;(2)若∠B+∠C=60°,试猜想∠AMF与∠ANG之间的数量关系,并说明理由;(3)将△DFM绕点D逆时针旋转,旋转角记为α(0°<α<360°).记旋转中的△DMF为△DM1F1,在旋转过程中,点M,F的对应点分别为M1,F1,直线M1F1,与直线BC交于点Q,与直线AB交于点P.若∠B=35°,∠PQB=90°,请直接写出旋转角α的度数.23.(2023春•东方校级期末)在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如图1,如果∠A=70°,∠ABC=50°,∠ACB=60°,求∠BPC的度数;(2)如图1,如果∠A=α,用含α的代数式表示∠BPC;(3)探索:如图2,作△ABC外角∠MBC、∠NCB的平分线交于点Q,试写出∠Q、∠A之间的数量关系;(4)拓展:如图3,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的3倍,请直接写出∠A的度数.24.(2023春•商水县期末)【基本模型】(1)如图1,在△ABC中,BP平分∠ABC,CP平分外角∠ACD,试说明∠P=12∠A.【变式应用】(2)如图2,∠MON=90°,A,B分别是射线ON,OM上的两个动点,∠ABO与∠BAN的平分线的交点为P,则点A,B的运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.【拓展应用】(3)如图3,∠MON=90°,作∠MON的平分线OD,A是射线OD上的一定点,B是直线OM上的任意一点(不与点O重合),连接AB,设∠ABO的平分线与∠BAO的邻补角的平分线的交点为P,请直接写出∠P的度数.25.(2023春•金华期末)数学兴趣小组围绕“三角形的内角和是180°”,进行了一系列探究,过程如下:【论证】如图1,延长BA至D,过点A作AE∥BC,就可以说明∠BAC+∠B+∠C=180°成立,即:三角形的内角和为180°,请完成上述说理过程.【应用】如图2,在△ABC中,∠BAC的平分线与∠ACB的角平分线交于点P,过点A作AE∥BC,M 在射线AE上,且∠ACM=∠AMC,MC的延长线与AP的延长线交于点D.①求∠DCP的度数;②设∠B=α,请用α的代数式表示∠D.【拓展】如图3,在△ABC中,∠BAC=90°,∠ACB=30°,过点A作EF∥BC,直线MN与EF相交于A点右侧的点P,∠APN=75°.△ABC绕点A以每秒12°的速度顺时针方向旋转,同时MN绕点P 以每秒5°的速度顺时针方向旋转,与EF重合时MN再绕着点P以原速度逆时针方向旋转,当△ABC 旋转一周时,运动全部停止,设运动时间为t秒,在旋转过程中,是否某一时刻,使得MN与△ABC的一边平行?若存在,求t的值;若不存在,请说明理由.26.(2023春•云浮期末)如图1,在直角三角形ABC中,∠CAB=90°,∠C=30°,现将△ABC绕点A 顺时针旋转α角度得到△ADE.(1)若α=28°时,则∠DAC=°;若0°<α<90°时,α与∠CAE的关系是;(2)∠DAC与∠BAE有怎样的关系?请说明理由;(3)在旋转过程中,若0°<α<180°时,△ADE与△ABC这两个三角形是否存在一组边互相平行?若存在,请求出α的所有可能取值.27.(2023春•荣成市期末)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等,如图1,一束光线m射到平面镜a上,被a反射后的光线为n,则入射光线m,反射光线n与平面镜a所夹的锐角∠1=∠2.(1)如图2,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射,若被b反射出的光线n与光线m平行,且∠1=50°,则∠2=,∠3=;(2)图2中,当被b反射出的光线n与光线m平行时,不论∠1如何变化,∠2与∠1总具有一定的数量关系,请猜想∠2和∠1的数量关系,并说明理由;(3)图2中,请你探究:当任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行,求两平面镜a、b的夹角∠3的度数;(4)如图3,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射,若被b反射出的光线n与光线m垂直,求出此时∠O的度数?(友情提示:三角形内角和等于180°)28.(2023春•乐山期末)(1)如图1,△ABC中,延长AB到M,BP平分∠MBC,延长AC到N,CP平分∠NCB,PB交PC于点P,若∠ABC=α,∠ACB=β,∠BPC=θ,求证:α=α+β2;(2)如图2,△ABC中,E是AB边上一点,F是AC边上一点,延长AB到M,PB平分∠MBC,PF平分∠EFC,BP交PF于点P,若∠AEF=α,∠ACB=β,∠BPF=θ,求证:θ=α+β2;(3)如图3,△ABC中,E是AB边上一点,F是AC边上一点,延长EF到G,PB平分∠ABC,PF平分∠AFG,BP交PF于点P,若∠AEF=α,∠ACB=β,∠BPF=θ,探究并直接写出α,β,θ之间的等量关系.29.(2022秋•太平区校级期末)【基本模型】:如图1,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN 的平分线交于点O,请你写出∠BOC与∠A的数量关系,并说明理由.【变式应用】:如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE 分别是∠ADC和∠BCD的角平分线.(1)若∠POM=80°,在点A、B运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(2)若AP∥DE,BM∥CE,直接写出∠POM度数.30.(2023春•盐都区期中)【教材呈现】苏科版义务教育数学教科书七下第42页第20题,是一道研究双内角平分线的夹角和双外角平分线夹角的数学问题,原题如下.在△ABC中,∠A=n°.(1)设∠B、∠C的平分线交于点O,求∠BOC的度数;(2)设△ABC的外角∠CBD、∠BCE的平分线交于点O′,求∠BO′C的度数;(3)∠BOC与∠BO′C有怎样的数量关系?【问题解决】聪聪对上面的问题进行了研究,得出以下答案:如图1,在△ABC中,∠A=n°.(1)∠ABC、∠ACB的平分线交于点O,则∠BOC的度数为;(2)△ABC的外角∠CBD、∠BCE的平分线交于点O′,则∠BO′C的度数为;(3)∠BOC与∠BO'C的数量关系是.(4)【问题深入】:如图2,在△ABC中,∠ABC、∠ACB的角平分线交于点O,将△ABC沿MN折叠使得点A与点O重合,请直接写出∠1+∠2与∠BOC的一个等量关系式;(5)如图3,过△ABC的外角∠CBD、∠BCE的平分线的交点O′,作直线PQ交AD于点P,交AE 于点Q.当∠APQ=∠AQP时,∠CO′Q与∠ABC有怎样的数量关系?请直接写出结果.31.(2023春•郯城县期中)已知AB∥CD,直线MN交AB、CD交于点M、N.(1)如图1所示,点E在线段MN上,设∠MBE=15°,∠MND=70°,则∠MEB=.(2)如图2所示,点E在线段MN上,∠1=∠2,DF平分∠EDC,交BE的延长线于点F,试找出∠AEN、∠1、∠3之间的数量关系,并证明;(提示:不能使用“三角形内角和是180°”).(3)如图3所示,点B、C、D在同一条直线上,∠ABC与∠ACD的角平分线交于点P,请直接写出∠A与∠P的数量关系:.32.(2023春•桂林期末)实验与探究小芳同学在用数学图形软件探究平行线的性质时,进行如下实验与探究:在直线CD上取一定点N,作一任意三角形MNP,过点M作直线AB∥CD,并标记∠BMP为∠1,∠DNP为∠2,请用平行线的相关知识解决下列问题.(1)如图1,小芳发现,当点P落在直线AB与CD之间时,总有∠1+∠2=∠P的结论,请你帮小芳说明理由;(2)将三角形MNP绕点N旋转,当点P落在直线AB与CD之外时(如图2),小芳发现∠1,∠2,∠P之间依然满足某种数量关系,请你写出这个数量关系,并说明理由;(3)如图3,当点P落在直线AB与CD之间时,小芳用数学软件作出∠AMP与∠CNP的角平分线MQ 和NQ,交点为点Q,发现∠P与∠MQN之间也满足某种数量关系,请你写出这个数量关系,并说明理由.33.(2023春•增城区期末)如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF交CD于点M,且∠FEM=∠FME.(1)直线AB与直线CD是否平行,说明你的理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H 作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=60°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.34.(2023春•信都区期末)在△ABC中,BD平分∠ABC交AC于点D,点E是线段AC上的动点(不与点D重合),过点E作EF∥BC交射线BD于点F,∠CEF的平分线所在直线与射线BD交于点G.(1)如图,点E在线段AD上运动.①若∠ABC=40°,∠C=60°,则∠A的度数是;∠EFB的度数是,②探究∠BGE与∠A之间的数量关系,并说明理由;(2)若点E在线段DC上运动时,请直接写出∠BGE与∠A之间的数量关系.35.(2023春•海沧区期中)如图1,在△ABC中,点D是AC延长线上一点,过点D作DE∥BC,DG平分∠ADE,BG平分∠ABC,DG与BG交于点G,直线DG与直线BC交于点F.(1)证明:∠A+∠ABC=∠ACF;(2)在图1中,若∠G=30°,求∠A的度数;(3)如图2,连接FE,若2∠DFE=∠ABC+2∠G,求证:FE∥AD.36.(2023•诸暨市模拟)在△ABC中,CD平分∠ACB交AB于点D,点E是射线AB上的动点(不与点D 重合),过点E作EF∥BC交直线CD于点F,∠BEF的角平分线所在的直线与射线CD交于点G.(1)如图1,点E在线段AD上运动.①若∠B=60°,∠ACB=40°,则∠EGC=°;②若∠A=90°,求∠EGC的度数;(2)若点E在射线DB上运动时,探究∠EGC与∠A之间的数量关系.37.(2023春•邗江区期末)如图,已知MN∥GH,点C在MN上,点A、B在GH上.在△ABC中,∠ACB =90°,∠BAC=45°,点E、F在直线BC上,在△DEF中,∠EDF=90°,∠DFE=30°.(1)图中∠BCN的度数是°;(2)将△DEF沿直线BC平移,当点D在MN上时,求∠CDE的度数;(3)将△DEF沿直线BC平移,当以C、D、F为顶点的三角形中有两个角相等时,请直接写出∠CDE 的度数.38.(2023春•遂宁期末)如图,直线PQ∥MN,两个三角形如图①放置,其中∠ABC=∠CDE=90°,∠ACB=30°,∠BAC=60°,∠DCE=∠DEC=45°,点E在直线PQ上,点B,C均在直线MN上,且CE平分∠ACN.(1)求∠DEQ的度数;(2)如图②,若将△ABC绕B点以每秒3°的速度按逆时针方向旋转(A,C的对应点分别为F,G).设旋转时间为t秒,当t=10时,边BG与CD有何位置关系?请说明理由.39.(2023春•漳州期末)将一把直角尺放置在钝角△ABC(∠BAC>90°)上,使得点B、C分别在该直角尺的两条直角边DE、DF上,且直角顶点D与点A在BC边的同侧.(1)如图,点A在直角尺内部.①若∠A=120°,∠ABD=10°,求∠ACD的度数;②若∠A=α,∠ABD=β,求∠ACD的度数(用含α、β的式子表示).(2)改变直角尺的位置,使点A在直角尺外部,其它条件不变,探索∠ABD、∠ACD、∠A三者之间的数量关系,并说明理由.40.(2023春•邗江区校级期末)如图1,△ABC的外角平分线BF、CF交于点F.(1)若∠A=50°,则∠F的度数为.(2)过点F作直线MN,交射线AB,AC于点M、N,并将直线MN绕点F转动.①如图2,当直线MN与线段BC没有交点时,若设∠MFB=α,∠NFC=β,试探索∠A与α,β之间满足的数量关系,并说明理由;②当直线MN与线段BC有交点时,试问①中∠A与α,β之间的数量关系是否仍然成立?若成立,请说明理由;若不成立,请直接写出三者之间满足的数量关系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年八年级数学上册尖子生同步培优题典【人教版】
专题1.3三角形的外角
姓名:__________________ 班级:______________ 得分:_________________
注意事项:
本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2020春•江阴市期中)AD是∠CAE的平分线,∠B=35°,∠DAE=60°,则∠ACD=()
A.25°B.60°C.85°D.95°
2.(2020春•黑河期中)以下判断正确的是()
A.三角形的一个外角等于两个内角的和
B.三角形的外角大于任何一个内角
C.一个三角形中,至少有一个角大于或等于60°
D.三角形的外角是内角的邻补角
3.(2019秋•琼山区校级期末)如图,已知∠ACD=130°,∠B=20°,则∠A的度数是()
A.110°B.30°C.150°D.90°
4.(2019秋•都江堰市期末)如图,△ABC中,点D在BC延长线上,则下列结论一定成立的是()
A.∠1=∠A+∠B B.∠1=∠2+∠A C.∠1=∠2+∠B D.∠2=∠A+∠B
5.(2019春•玄武区期中)如图,在△ABC中,∠A=78°,∠ACD是△ABC的一个外角,∠EBC=1
3∠ABC,
∠ECD=1
3∠ACD,则∠E为()
A.22°B.26°C.28°D.30°
6.(2019秋•织金县期末)如图,∠1,∠2,∠3,∠4恒满足关系式是()
A.∠1+∠2=∠3+∠4B.∠1+∠2=∠4﹣∠3
C.∠1+∠4=∠2+∠3D.∠1+∠4=∠2﹣∠3
7.(2020春•雅安期末)如图,在△ABC中,∠B=45°,∠C=30°,延长线段BA至点E,则∠EAC的度数为()
A.105°B.75°C.70°D.60°
8.(2019春•镇江期末)在△ABC,∠A,∠C与∠B的外角度数如图所示,则x的值是()
A.80B.70C.65D.60
9.(2019春•溧水区期末)如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线.如果∠ABP=20°,∠ACP=50°,则∠P=()
A.20°B.30°C.40°D.50°
10.(2019春•徐州期中)如图,∠ABC=∠ACB,AD,BD,CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③DB平分∠ADC;④∠ADC=90°﹣
∠ABD;⑤∠BDC=1
2∠BAC.其中正确的结论有()
A.1个B.2个C.3个D.4个
二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上
11.(2020春•芝罘区期中)一副含有30°和45°的直角三角尺叠放如图,则图中∠α的度数是.
12.(2019秋•阳东区期中)如图,在△ABC中,∠A=40°,点D为AB的延长线上一点,且∠CBD=120°,则∠C=.
13.(2019秋•覃塘区期中)如图,若∠A=30°,∠B=35°,∠C=50°,则∠ADB的度数是.
14.(2020春•赣榆区期中)如图,在△ABC中,∠B=45°,∠C=30°,点D在边BC上,若△ACD是直角三角形,则∠BAD的度数为.
15.(2019秋•虹口区校级月考)如图所示,∠ACD是△BC的外角,∠A=45°,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E.∠E=.
16.(2020春•东台市期中)如图,∠1、∠2是△ABC的外角,已知∠1+∠2=260°,求∠A的度数是.
17.(2019春•鲤城区校级期中)(1)如图①,△ABC中,∠CBO=1
3∠ABC,∠BCO=
1
3∠ACB,∠A=60°,
则∠BOC=.
(2)如图②,BO,CO分别是△ABC的外角∠DBC,∠BCE的等分线,它们交于点O.∠CBO=1 n∠
DBC,∠BCO=1
n∠BCE.∠A=β,则∠BOC=.(用含β的代数式表示)
18.(2019秋•大观区校级期中)如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,交BO的延长线CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2,正确的是.(把所有正确的结论的序号写在横线上)
三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)
19.(2020春•鼓楼区期末)用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD 是△ABC的三个外角.
求证:∠BAE+∠CBF+∠ACD=360°.
证法1:∵∠BAE、∠CBF、∠ACD是△ABC的三个外角.
∴.
∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),
∵.
∴∠BAE+∠CBF+∠ACD=360°
请把证法1补充完整,并用不同的方法完成证法2.
20.(2020春•浦东新区期末)已知:如图,△ABC的两个外角的平分线交于点P,如果∠A=40°,求∠BPC的度数.
21.(2019秋•碑林区校级期末)如图,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、
CE交于点E,∠ABC=∠ACE.
(1)求证:AB∥CE;
(2)猜想:若∠A=50°,求∠E的度数.
22.(2019秋•洛阳期末)如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)若∠B=35°,∠E=25°,求∠BAC的度数;
(2)请你写出∠BAC、∠B、∠E三个角之间存在的等量关系,并写出证明过程.
23.(2019秋•潜山市期末)如图,∠A=37°,∠B=28°,∠ADB=148°,求∠C的度数.
24.(2019秋•普宁市期末)某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.
(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=;
(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);
(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC 与∠A的数量关系,并证明.。

相关文档
最新文档