金相培训 名词解释 珠光体 索氏体 屈氏体 马氏体 贝氏体 魏氏组织共21页
常见金相组织名词解释
常见金相组织名词解释——全面的特征描述,想不明白都难。
奥氏体定义:碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格特征:奥氏体是一般钢在高温下的组织,其存在有一定的温度和成分范围。
有些淬火钢能使部分奥氏体保留到室温,这种奥氏体称残留奥氏体。
奥氏体一般由等轴状的多边形晶粒组成,晶粒内有孪晶。
在加热转变刚刚结束时的奥氏体晶粒比较细小,晶粒边界呈不规则的弧形。
经过一段时间加热或保温,晶粒将长大,晶粒边界可趋向平直化。
铁碳相图中奥氏体是高温相,存在于临界点A1温度以上,是珠光体逆共析转变而成。
当钢中加入足够多的扩大奥氏体相区的化学元素时,Ni,Mn等,则可使奥氏体稳定在室温,如奥氏体钢。
铁素体定义:碳与合金元素溶解在a-Fe中的固溶体特征:亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。
渗碳体定义:碳与铁形成的一种化合物特征:渗碳体不易受硝酸酒精溶液的腐蚀,在显微镜下呈白亮色,但受碱性苦味酸钠的腐蚀,在显微镜下呈黑色。
渗碳体的显微组织形态很多,在钢和铸铁中与其他相共存时呈片状、粒状、网状或板状。
∙在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状∙过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状∙铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状珠光体定义:铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物特征:珠光体的片间距离取决于奥氏体分解时的过冷度。
过冷度越大,所形成的珠光体片间距离越小。
∙在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。
∙在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。
名词解释
名词解释金属: 具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特性的物质。
金属内部原子具有规律性排列的固体(即晶体)。
合金: 由两种或两种以上金属或金属与非金属熔合组成,具有金属特性的物质。
相:指金属或合金中化学成分相同、晶格结构相同,或原子聚集状态相同,并与其他部分之间有明确界面的独立均匀组成部分。
组织: 组织是指用肉眼可直接观察的,或用放大镜、显微镜能观察分辨的材料内部微观形貌图像。
固溶体: 固溶体是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。
固溶强化: 由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。
化合物: 合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。
混合物: 机械混合物由纯金属、固溶体、金属化合物这些合金的基本相按照固定比例构成的组织称为机械混合物。
铁素体: 碳在α-Fe(体心立方结构的铁)中的间隙固溶体(F)。
奥氏体: 碳在γ-Fe(面心立方结构的铁)中的间隙固溶体(A)。
渗碳体: 碳和铁形成的稳定化合物(Fe3C)。
珠光体: 过冷奥氏体共析分解的铁素体和渗碳体的有机结合的整合组织。
马氏体: 马氏体(martensite)是黑色金属材料的一种组织名称。
马氏体(M)是碳溶于α-Fe的过饱和的固溶体,是奥氏体通过无扩散型相变转变成的亚稳定相。
屈氏体: 过冷奥氏体冷却到600~ 550℃左右以后等温或者缓慢冷却时形成的片间距约为300~800nm 的珠光体(T)。
索氏体: 钢经正火或等温转变所得到的铁素体与渗碳体的机械混合物。
索氏体组织属于珠光体类型的组织,但其组织比珠光体组织细。
索氏体具有良好的综合机械性能(S)。
贝氏体: 钢在奥氏体化后被过冷到珠光体转变温度区间以下,马氏体转变温度区间以上这一中温度区间(所谓“贝氏体转变温度区间”)转变而成的由铁素体及其内分布着弥散的碳化物所形成的亚稳组织,即贝氏体转变的产物。
十五种金相组织的介绍
十五种金相组织的介绍奥氏体定义:碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格特征:奥氏体是一般钢在高温下的组织,其存在有一定的温度和成分范围。
有些淬火钢能使部分奥氏体保留到室温,这种奥氏体称残留奥氏体。
奥氏体一般由等轴状的多边形晶粒组成,晶粒内有孪晶。
在加热转变刚刚结束时的奥氏体晶粒比较细小,晶粒边界呈不规则的弧形。
经过一段时间加热或保温,晶粒将长大,晶粒边界可趋向平直化。
铁碳相图中奥氏体是高温相,存在于临界点A1温度以上,是珠光体逆共析转变而成。
当钢中加入足够多的扩大奥氏体相区的化学元素时,Ni,Mn等,则可使奥氏体稳定在室温,如奥氏体钢。
铁素体定义:碳与合金元素溶解在a-Fe中的固溶体特征:亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。
渗碳体定义:碳与铁形成的一种化合物特征:渗碳体不易受硝酸酒精溶液的腐蚀,在显微镜下呈白亮色,但受碱性苦味酸钠的腐蚀,在显微镜下呈黑色。
渗碳体的显微组织形态很多,在钢和铸铁中与其他相共存时呈片状、粒状、网状或板状。
•在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状•过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状•铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状珠光体定义:铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物特征:珠光体的片间距离取决于奥氏体分解时的过冷度。
过冷度越大,所形成的珠光体片间距离越小。
•在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。
•在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。
(参考课件)金相组织
组钢织中常见金相组织
铁素体 奥氏体 渗碳体 珠光体 莱氏体 贝氏体 马氏体 魏氏组织
2
钢中常见金相组织--铁素体
铁素体是碳在а-Fe中的固溶体。它仍保持а-Fe的体心 立方晶格。碳在铁素体中的溶解度以723 ℃时为最大, 为0.02%,而在室温下溶解度仅为0.008%。铁素体的 性能接近于纯铁,硬度低,塑性好。在合金钢中溶有 合金元素的铁素体,能提高钢的强度和硬度。
奥氏体在金相组织中呈现为规则的多边形,晶界比较 直,并有孪晶现象。
淬火钢中残余奥氏体分布在马氏体针间的空隙处 奥氏体用硝酸酒精腐蚀后的颜色也为白色。 注意 :铁素体、渗碳体、奥氏体经硝酸酒精腐蚀后都
呈现白色,主要通过组织形态区分。
9
钢中常见金相组织—奥氏体
图中可见晶界 平直。明暗晶 粒是因为晶粒 取向不同,腐 蚀程度不同的一次渗碳体34来自钢中常见金相组织-莱氏体
由于合金元素使铁碳合金相图的E和S点左移,因此许 多高合金钢(如W18Cr4V和Cr12MoV)都属于莱氏体钢。
35
钢中常见金相组织—贝氏体
钢在奥氏体化后被过冷到珠光体转变温度区间以下, 马氏体转变温度区间以上这一中温度区间(所谓“贝氏 体转变温度区间”,温度在550~240 ℃)转变而成的由 铁素体及其内分布着弥散的碳化物所形成的亚稳组织, 即贝氏体转变的产物。其金相组织和550 ℃以上共析 分解的珠光体有明显不同。
无碳化物贝氏体:板条状铁素体单相组成的组织,也称为 铁素体贝氏体。形成温度在贝氏体转变温度区的最上部。 板条铁素体之间为富碳奥氏体,富碳奥氏体在随后的冷却 过程中也有类似上面的转变。无碳化物贝氏体一般出现在 低碳钢中,在硅、铝含量高的钢中也容易形成。
铁素体、奥氏体、渗碳体、珠光体、贝氏体、魏氏组织、马氏体、莱氏体......一文识尽!
铁素体、奥氏体、渗碳体、珠光体、贝氏体、魏氏组织、马氏体、莱氏体......一文识尽!现代材料可以分为四大类——金属、高分子、陶瓷和复合材料。
尽管目前高分子材料飞速发展,但金属材料中的钢铁仍是目前工程技术中使用最广泛、最重要的材料,那么到底是什么因素决定了钢铁材料的霸主地位呢?下面就详细介绍8种常见金相组织的特点。
钢铁由铁矿石冶炼而成,来源丰富,价格低廉。
钢铁又称为铁碳合金,是铁(Fe)与碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)以及其他少量元素(Cr、V等)所组成的合金。
通过调节钢铁中各种元素的含量和热处理工艺(主要的四把火:淬火、退火、回火、正火),可以获得各种各样的金相组织,从而使钢铁具有不同的物理性能。
将钢材取样,经过打磨、抛光,最后用特定的腐蚀剂腐蚀显示后,在金相显微镜下观察到的组织称为钢铁的金相组织。
钢铁材料的秘密便隐藏在这些组织结构中。
在Fe-Fe3C系中,可配制多种成分不同的铁碳合金,他们在不同温度下的平衡组织各不相同,但由几个基本相(铁素体F、奥氏体A和渗碳体Fe3C)组成。
这些基本相以机械混合物的形式结合,形成了钢铁中丰富多彩的金相组织结构。
常见的金相组织有下列八种:1铁素体碳溶于α-Fe晶格间隙中形成的间隙固溶体称为铁素体,属bcc结构,呈等轴多边形晶粒分布,用符号F表示。
其组织和性能与纯铁相似,具有良好的塑性和韧性,而强度与硬度较低(30-100 HB)。
在合金钢中,则是碳和合金元素在α-Fe中的固溶体。
碳在α-Fe 中的溶解量很低,在AC1温度,碳的最大溶解量为0.0218%,但随温度下降的溶解度则降至0.0084%,因而在缓冷条件下铁素体晶界处会出现三次渗碳体。
随钢铁中碳含量增加,铁素体量相对减少,珠光体量增加,此时铁素体则是网络状和月牙状。
2奥氏体碳溶于γ-Fe晶格间隙中形成的间隙固溶体称为奥氏体,具有面心立方结构,为高温相,用符号A表示。
奥氏体在1148℃有最大溶解度2.11%C,727℃时可固溶0.77%C;强度和硬度比铁素体高,塑性和韧性良好,并且无磁性,具体力学性能与含碳量和晶粒大小有关,一般为170~220 HBS。
金相基础知识培训
三、钢中的常见金相组织
1、铁素体 铁素体又称纯铁体,属体心立方结构。在碳钢中 它是碳固溶于α-Fe中的固溶体;在合金钢中则是碳 和合金元素固溶于α-Fe中的固溶体。碳在α-Fe中 的溶解量是很低的,在A1温度碳溶解量的质量分 数最大值是0· 02%。随着温度下降,碳的溶解度 降低至0· 008%。用4%硝酸酒精溶液侵蚀能显示 铁素体组织。在光学显微镜下,铁素体呈白亮色 多边形,也可呈块状明牙状、网络状等,铁素体 性软而韧,一般硬度在100HB左右。
渗碳体
3、珠光体
珠光体是铁素体和渗碳体的机械混合物。
按碳化物的分布形态又将珠光体分成片 状珠光体和球状珠光体。
片状珠光体
片状珠光体是钢从奥氏体过冷到A1线以下的温度, 在C曲线上部发生共析转变的产物。当奥氏体冷到C 曲线上部时,渗碳体首先在奥氏体晶界处生核,并 且不断地从周围的奥氏体中获得碳原子而成长。与 此同时,渗碳体周围的奥氏体中含碳量将不断降低, 这就使得部分奥氏体转变成铁素体片。如此反复进 行,奥氏体共析转变最终为铁素体与渗碳体彼此相 间形如指纹呈层状排列的珠光体组织。
由于回火温度较高,碳化物进一步聚集长 大,故回火索氏体的基本特征是:铁素体十细 小颗粒状碳化物,在光学显微镜下能分辨清 楚。这种组织有时又称为调质组织,它具有 良好的强度和韧性的配合。
回火索氏体
三、钢的热处理基础
热处理是通过加热、保温和冷却的方法, 来改变钢的内部组织结构,从而改变钢的 性能的一种工艺。
下贝氏体
4、奥氏体
在碳钢中,奥氏体是碳溶于Y-Fe中的固溶体。在合 金钢中,奥氏体则是碳和合金元素固溶于γ-Fe中的 固溶体。奥氏体具有面心立方结构。 从Fe-Fe3C平衡状态图可知,在碳素结构钢或一般 低合金结构钢中,奥氏体是一个高温相,在高温时 才稳定存在。在室温时奥氏体将转变成其他组织。 结构钢经淬火后会存在残留奥氏体,它分布在马氏 体针间隙中,或分布在下贝氏体针间隙中,不易受 侵蚀,在光学显微镜下呈白色。
金相检验培训2.pptx
粒状珠光体 500×
2024/10/8
19
第20页/共23页
• (1)形3成.:先也共符合析形相核长大的相变规律,形核地点与长大方
式如下:
• 低碳钢先共析铁素体在奥氏体晶界上形核,然后长大增厚直至 彼此相碰最后成块状。
• 中碳钢和过共析钢先共析相也在奥氏体晶界上形核然后长大, 最后变成沿奥氏体晶界连成网状。
9
第10页/共23页
2.钢的热处理原理
• 一.临界点 反应固态组织转变的临界温度 • Ac1珠光体向奥氏体转变的实际开始温度(加热) • Ar1奥氏体向珠光体转变的实际开始温度(冷却) • Ac3游离铁素体全部转变为奥氏体的终了温度(加热) • Ar3奥氏体开始析出游离铁素体的温度(冷却) • Accm二次渗碳体全部溶入奥氏体的终了温度(加热) • Arcm奥氏体开始析出二次渗碳体的温度(冷却)
• 过共析钢结晶过程 室温组织为珠光体+二次渗碳体
• 共晶白口铁结晶过程 室温组织为低温莱氏体(渗碳体 基体及分布在其上的珠光体)
• 亚共晶白口铁结晶过程 室温组织为珠光体+二次渗碳 体+低温莱氏体
• 过共晶白口铁结晶过程 室温组织为一次渗碳体+低温 莱氏体
• ③选材
• ④指导热工艺制定
2024/10/8
2024/10/8
6
第7页/共23页
3.铁碳状态图
(1) 铁碳合金的基本相 • 铁氏体:是碳溶于α-铁中的固溶体,它的溶碳能力很小 • 奥氏体:是碳溶于γ-铁中的固溶体,它的溶碳能力较大 • 渗碳体:是铁的碳化物,Fe3C表示,其含碳量6.69%
2024/10/8
7
第8页/共23页
(2)铁碳状态图(Fe-Fe3C状态图)
金相组织名词知识(基础)
金相组织名词知识铁素体(F)1.组织: 碳在α铁中的固溶体2.特性:呈体心立方晶格.溶碳能力最小,最大为0.02%;硬度和强度很低,HB=80-120,σb=250N/mm^2;而塑性和韧性很好,δ=50%,ψ=70-80%.因此,含铁素体多的钢材(软钢)中用来做可压、挤、冲板与耐冲击震动的机件.这类钢有超低碳钢,如 0Cr13,1Cr13、硅钢片等奥氏体1.组织: 碳在γ铁中的固溶体2.特性:呈面心立方晶格.最高溶碳量为2.06%,在一般情况下,具有高的塑性,但强度和硬度低,HB=170-220,奥氏体组织除了在高温转变时产生以外,在常温时亦存在于不锈钢、高铬钢和高锰钢中,如奥氏体不锈钢等渗碳体(C)1.组织: 铁和碳的化合物(Fe3C)2.特性:呈复杂的八面体晶格.含碳量为6.67%,硬度很高,HRC70-75,耐磨,但脆性很大,因此,渗碳体不能单独应用,而总是与铁素体混合在一起.碳在铁中溶解度很小,所以在常温下,钢铁组织内大部分的碳都是以渗碳体或其他碳化物形式出现珠光体(P)1.组织; 铁素体片和渗碳体片交替排列的层状显微组织,是铁素体与渗碳体祷旌衔?共析体)2.特性:是过冷奥氏体进行共析反应的直接产物.其片层组织的粗细随奥氏体过冷程度不同,过冷程度越大,片层组织越细性质也不同.奥氏体在约600℃分解成的组织称为细珠光体(有的叫一次索氏体),在500-600℃分解转变成用光学显微镜不能分辨其片层状的组织称为极细珠光体(有的一次屈氏体),它们的硬度较铁素体和奥氏体高,而较渗碳体低,其塑性较铁素体和奥氏体低而较渗碳体高.正火后的珠光体比退火后的珠光体组织细密,弥散度大,故其力学性能较好,但其片状渗碳体在钢材承受负荷时会引起应力集中,故不如索氏体莱氏体(L)1.组织: 奥氏体与渗碳体的共晶混合物2.特性:铁合金溶液含碳量在2.06%以上时,缓慢冷到1130℃便凝固出莱氏体.当温度到达共析温度莱氏体中的奥氏转变为珠光体.因此,在723℃以下莱氏体是珠光体与渗碳体机械混合物(共晶混合).莱氏体硬而脆(>HB700),是一种较粗的组织,不能进行压力加工,如白口铁. 在铸态含有莱氏体组织的钢有高速工具钢和Cr12型高合金工具钢等.这类钢一般有较大有耐磨性和较好的切削性淬火与马氏体1.组织: 碳在α-Fe中的过饱和固溶体,显微组织呈针叶状2.特性:淬火后获得的不稳定组织.具有很高的硬度,而且随含碳量增加而提高,但含碳量超过0.6%后的硬度值基本不变,如含C0.8%的马氏体,硬度约为HRC65,冲击韧性很低,脆性很大,延伸率和断面收缩率几乎等于零.奥氏体晶粒愈大,马氏体针叶愈粗大,则冲击韧性愈低;淬火温度愈低,奥氏体晶粒愈细,得到的马氏体针叶非常细小,即无针状马氏组织,其韧性最高回火马氏体(S)1.组织: 与淬火马氏体硬度相近,而脆性略低的黑色针叶状组织2.特性:淬火钢重新加热到150-250℃回火获得的组织.硬度一般只比淬火马氏体低HRC1-3格,但内应力比淬火马氏体小索氏体(S)1.组织: 铁索体和较细的粒状渗碳体组成的组织2.特性:淬火钢重新加热到500-680℃回火后获得的组织.与细珠光体相比,在强度相同情冲下塑性及韧性都高,随回火温度提高,硬度和强度降低,冲击韧性提高.硬度约为HRC23-35.综合机械性能比较好. 索氏体有的叫二次索氏体或回火索氏体屈氏体屈氏体(T)组织或特性1.组织: 铁索体和更细的粒状渗碳体组成的组织2.特性:淬火钢重新加热到350-450℃回火后获得的组织.它的硬度和强度虽然比马氏体低,但因其组织很致密,仍具有较高的强度和硬度,并有比马氏体好的韧性和塑性,硬度约为HRC35-45.屈氏体有的叫二次屈氏体或回火屈氏体下贝氏体(B)1.组织:显微组织呈黑色针状形态,其中的铁素体呈现针状,而碳化物呈现极小的质点以弥散状分布在针状铁素体内2.特性:过冷奥氏体在400-240℃等温度转变后的产物.具有较高的硬度,约为HRC40-55,良好的塑性和很高的冲击韧性,其综合机械性能比索氏体更好;因此,在要求较大的、韧性和高强度相配合时,常以含有适当合金元素的中碳结构钢等温淬火,获得贝氏体以改善钢的机械性能,并减小内应力和变形低碳马氏体具有高强度与良好的塑性、韧性相结合的特点(σb=1200-1600N/mm^2,σ0.2=1000-1300N/mm^2,δ5≥10%,ψ≥40%αk≥60J/cm^2); 同时还有低的冷脆转化温度(≤-60℃);在静载荷、疲劳及多次冲击载荷下,其缺口敏感度和过载敏感性都较低.低碳马氏体状态的20SiMn2MoVA综合力学性能,比中碳合金钢等温淬火获得的下贝氏体更好.保持了低碳钢的工艺性能,但切削加工较难.铁-碳合金平衡图中特性点与线(搂冷却叙述,加热为可逆的)符号说明A 纯铁的凝固点E 碳在γ-Fe中的最大溶解度G γ-Fe→α-Fe转变点C 共晶点S 共折点ABCD 液相线.液体开始结晶AHJECF 固相线,液体终止结晶ES Acm线,渗碳体开始从奥氏体中析出ECF 共晶线,开始从液体结晶出奥氏体和渗碳体的共晶混合物GS As线,自奥氏体开始析出铁素体,即γ-Fe→α-Fe的开始线PSK 共析线或称A1线,自奥氏体开始析出铁素体和渗碳体的共析混合物注:1.As线在加热时称为Ac3线,冷却时称Ar3线;2.A1线在加热时称为Ac1线,冷却时称Ar1线室温下铁-碳合金的平衡组织名称含碳量,% 平衡组织亚共析钢 0.02-0.8 铁素体+珠光体共析钢 0.8 珠光体过共析钢 0.8-2.06 珠光体+二次渗碳体亚共晶的口铁 2.06-4.3 树状珠光体+二次渗透体+共晶体共晶白口铁 4.3 共晶体(珠光体+渗碳体)过共晶白口铁>4.3-6.67 板状一次渗碳体+共晶体。
金相基础
三、金相设备及技术
1.金相显微镜
金相分析方法在金属学中占有重要的地位。金相分析大多需要靠某些 观察装置来实现, 把样品放大到一定的倍数以观察金属内部的金相组 织。所指观察装置, 首先是金相显微镜。分为台式、正置式、倒置式 金相显微镜 正置式金相显微镜特点: 1)试样观察面向上放置; 2)试样观察面必须与底面平行, 才能保证与物镜光轴; 3)试样观察面向上,不易损伤; 4)试样受高度, 形状的限制; 5)操作方便, 适用于快速检验; 6)照相、图像捕捉时防振要求高。
η : 介质的折光系数 ψ:角孔径的一半
3、 金相显微镜的光线系统
• 物镜:是显微镜最主要的部件,它是由许多种类的玻璃制成的不同形状 的透镜组所构成的,位于物镜最前端的平凸透镜称为前透镜,其用途是 放大,在它以下的其他透镜均是校正透镜,用以校正前透镜所引起的各 种光学缺陷(如色差、像差、像弯曲等) • 目镜主要是用来对物镜已放大的图像进行再放大。目镜又可分为普通目 镜、校正目镜和投影目镜 • 照明系统:两种观察物体的方法,即450 平面玻璃反射和棱镜全反射, 这两种方法都是为了能使光线进行垂直转向,并投射到物体上。起这种 作用的结构称为“垂直照明器”。在金相工作中的照明方式分为明场和 暗场照明两种 • 光栏:在金相显微镜中,常安置两个可变的光栏,使用时可调节光栏大 小,为了提高映像的质量 • 滤色片:金相显微镜摄影时一个重要的辅助工具,其作用是吸收光源发 出的白光中波长不合需要的光线,而只让所需波长的光线通过,以得到 一定色彩的光线,从而得到能明显表达各种组成物氏体-在碳钢中,马氏体是碳溶于а-Fe中的过饱和固溶体:在合金 钢中,马氏体是碳和合金元素溶于а-Fe中的过饱和固溶体。 8) 回火马氏体-淬火钢经低温回火后的产物,回火马氏体的基本特征是: 仍具有马氏体针状特征,但经侵蚀后的颜色比淬火马氏体要深。在光 学显微镜下的形貌与下贝氏体相似。马氏体内析出为ε-碳化物,呈 无规则分布。 9) 回火屈氏体-淬火钢经中温回火后的产物,回火屈氏体的基本特征是: 马氏体针状形态将逐步消失,但仍隐约可见(某些合金钢、特别含铬 等元素的钢,由于合金铁素体的再结晶温度较高,故仍保持明显的针 状形态),回火时析出的碳化物细小,在光学显微镜下难以分辨清楚, 只有在电子显微镜下可以看出碳化物的颗粒。 10)回火索氏体-淬火钢经高温回火后的产物,由于回火温度较高碳化物 进一步聚集长大,故回火索氏体的基本特征是:铁素体+细小颗粒状 碳化物,在光学显微镜下能分辨清楚,这种组织有时又称为调质组织, 它具有良好的强度和韧性的配合。
金相组织介绍
金相组织介绍1、索氏体(martensite)索氏体,是在光学金相显微镜下放大600倍以上才能分辨片层的细珠光体(GB/T 7232标准)。
其实质是一种珠光体,是钢的高温转变产物,是片层的铁素体与渗碳体的双相混合组织,其层片间距较小(30~80nm),碳在铁素体中已无过饱和度,是一种平衡组织。
回火索氏体(tempered martensite)是马氏体于回火时形成的,在在光学金相显微镜下放大500~600倍以上才能分辨出来,其为铁素体基体内分布着碳化物(包括渗碳体)球粒的复合组织。
回火索氏体是马氏体的一种回火组织,是铁素体与粒状碳化物的混合物。
此时的铁素体已基本无碳的过饱和度,碳化物也为稳定型碳化物。
常温下是一种平衡组织。
2、珠光体珠光体是奥氏体(奥氏体是碳溶解在γ-Fe中的间隙固溶体)发生共析转变所形成的铁素体与渗碳体的共析体。
其形态为铁素体薄层和渗碳体薄层交替重叠的层状复相物,也称片状珠光体。
用符号P表示,含碳量为ωc=0.77%。
在珠光体中铁素体占88%,渗碳体占12%,由于铁素体的数量大大多于渗碳体,所以铁素体层片要比渗碳体厚得多。
在球化退火条件下,珠光体中的渗碳休也可呈粒状,这样的珠光体称为粒状珠光体。
珠光体的性能介于铁素体和渗碳体之间,强韧性较好。
其抗拉强度为750 ~900MPa,180 ~280HBS,伸长率为20 ~25%,冲击功为24 ~32J.力学性能介于铁素体与渗碳体之间,强度较高,硬度适中,塑性和韧性较好σb=770MPa,180HBS,δ=20%~35%,AKU=24~32J)。
经2-4%硝酸酒精溶液浸蚀后,在不同放大倍数的显微镜下可以观察到不同特征的珠光体组织.当放大倍数较高时可以清晰地看到珠光体中平行排列分布的宽条铁素体和窄条渗碳体;当放大倍数较低时,珠光体中的渗碳体只能看到一条黑线;而当放大倍数继续降低或珠光体变细时,珠光体的层片状结构就不能分辨了,此时珠光体呈黑色的一团.3、铁素体(ferrite,缩写:FN)铁素体,即α-Fe和以它为基础的固溶体,具有体心立方点阵。
贝氏体、马氏体、珠光体的比较,你都知道吗?
贝氏体、马氏体、珠光体的比较,你都知道吗?一、组织形态珠光体由一层铁素体和一层渗碳体交替平行堆叠而形成的双相组织。
珠光体的片层间距主要取决于珠光体形成时的过冷度,而与奥氏体晶粒度无关。
贝氏体上贝氏体形成于贝氏体转变区较高温度范围,中、高碳钢大约在350-550℃形成。
上贝氏体为成束分布、平行排列的条状铁素体和夹于其间的断续条状渗碳体的混合物。
多在奥氏体晶界形核,自晶界的一侧或两侧向晶内长大,具有羽毛状特征。
下贝氏体形成于贝氏体转变区较低温度范围,中、高碳钢大约在350℃-M s之间温度形成。
下贝氏体是由过饱和片状铁素体和其内部沉淀的渗碳体组成的机械混合物。
铁素体片空间呈双凸透镜状,截面为针状或竹叶状,片间呈一定角度,可在奥氏体晶界形核,也可在奥氏体晶内形核。
下贝氏体的铁素体中碳化物细小、弥散、呈粒状或条状,沿着与铁素体长轴成一定角度平行排列。
下贝氏体铁素体的亚结构为位错,密度比上贝氏体高。
下贝氏体中铁素体过饱和碳含量高于上贝氏体。
马氏体板条马氏体是低、中碳钢中形成的一种典型马氏体组织,在一个原奥氏体晶粒内部有几个(3-5个)马氏体板条束,板条束间取向随意;在一个板条束内有若干个相互平行的板条块,块间是大角晶界;在一个板条块内是若干个相互平行的马氏体板条,板条间是小角晶界。
马氏体板条内存在大量的位错,所以板条马氏体的亚结构是高密度的位错和位错缠结。
板条状马氏体也称为位错型马氏体。
片状马氏体是中、高碳钢中形成的一种典型马氏体组织,在一个原奥氏体晶粒内部有许多相互有一定角度的马氏体片。
马氏体片的空间形态为双凸透镜状,横截面为针状或竹叶状。
在原奥氏体晶粒中首先形成的马氏体片贯穿整个晶粒,将奥氏体晶粒分割,以后陆续形成的马氏体片越来越小,所以马氏体片的尺寸取决于原始奥氏体晶粒的尺寸。
片状马氏体的形成温度较低,在马氏体片的周围往往存在着残余奥氏体。
片状马氏体的内部亚结构主要是孪晶。
当碳含量较高时,在马氏体片中可以看到中脊,中脊面是密度很高的微孪晶区。
珠光体、索氏体、屈氏体
珠光体(P)索氏体(S)屈氏体(T)1、铁素体和渗碳体的共析混合物(机械混合物)(铁素体+片状渗碳体)用符号P表示奥氏体发生共析转变所形成的铁素体与渗碳体的共析体。
,含碳量为ωc=0。
77%。
2、珠光体的性能介于铁素体和渗碳体之间,强度较高,硬度适中,强韧性较好。
其抗拉强度为750 ~900MPa,硬度180 ~280HBS(HB170—220),伸长率为20 ~25%,冲击功为24 ~32J,力学性能介于铁素体与渗碳体之间,,塑性和韧性较好σb=770MPa,180HBS,δ=20%~35%,AKU=24~32J)3、在珠光体中铁素体占88%,渗碳体占12%,由于铁素体的数量大大多于渗碳体,所以铁素体层片要比渗碳体厚得多.铁素体的体积约是渗碳体的8倍,所以在金相显微镜下,较厚的是铁素体,较薄的是渗碳体.4、按碳化物分布形态又可分为片状珠光体和球状珠光体二种。
在相同的成分下,粒状珠光体的硬度比片状珠光体的硬度稍低,但塑性较好,但有较好的冷加工性能。
5、片状珠光体一般经退火得到,是铁素体和渗碳体交替分布的层片状组织,疏密程度不同。
经3~5%硝酸酒精溶液或苦味酸溶液浸蚀后,铁素体和渗碳体皆呈白亮色,但其边界被浸蚀呈黑色线条。
在不同放大倍下观察是组织具有不太一样的特征。
铁素体的体积约是渗碳体的8倍,所以在金相显微镜下,较厚的是铁素体,较薄的是渗碳体。
奥氏体分解成粗片状的珠光体和铁素体。
这种组织不仅增加切削加工的难度,而且在以后淬火时容易产生组织不均匀,过热组织和变形量大等缺陷6、粒状(球状)珠光体由铁素体和粒状碳化物组成(铁素体+颗粒状渗碳体).它由过共析钢经球化退火或马氏体在650℃~A1温度范围内回火形成。
其特征是碳化物成颗粒状分布在铁素体上球状珠光体比片状珠光体的比体积大,强度大,所以经过预备球化热处理的工件淬火变形相对较小.同时有良好冲制性能,冲压件常使用这种工艺。
球状珠光体的成因:在720°C退火时,由于成分的不均匀,在渗碳体和铁素体的晶界处局部萌芽奥氏体晶核,原来的片状渗碳体破断.由于渗碳体呈球体时,表面的自由能最低,所以有长大成球状的趋势,奥氏体缓冷时,以渗碳体为核心,逐步长大因而呈球状.在720°C退火,实际是在这个温度附近震荡,在震荡过程中,片状渗碳体不断破断,并逐渐长成球状。
金相组织名词知识(基础)
金相组织名词知识铁素体(F)1.组织: 碳在α铁中的固溶体2.特性:呈体心立方晶格.溶碳能力最小,最大为0.02%;硬度和强度很低,HB=80-120,σb=250N/mm^2;而塑性和韧性很好,δ=50%,ψ=70-80%.因此,含铁素体多的钢材(软钢)中用来做可压、挤、冲板与耐冲击震动的机件.这类钢有超低碳钢,如 0Cr13,1Cr13、硅钢片等奥氏体1.组织: 碳在γ铁中的固溶体2.特性:呈面心立方晶格.最高溶碳量为2.06%,在一般情况下,具有高的塑性,但强度和硬度低,HB=170-220,奥氏体组织除了在高温转变时产生以外,在常温时亦存在于不锈钢、高铬钢和高锰钢中,如奥氏体不锈钢等渗碳体(C)1.组织: 铁和碳的化合物(Fe3C)2.特性:呈复杂的八面体晶格.含碳量为6.67%,硬度很高,HRC70-75,耐磨,但脆性很大,因此,渗碳体不能单独应用,而总是与铁素体混合在一起.碳在铁中溶解度很小,所以在常温下,钢铁组织内大部分的碳都是以渗碳体或其他碳化物形式出现珠光体(P)1.组织; 铁素体片和渗碳体片交替排列的层状显微组织,是铁素体与渗碳体祷旌衔?共析体)2.特性:是过冷奥氏体进行共析反应的直接产物.其片层组织的粗细随奥氏体过冷程度不同,过冷程度越大,片层组织越细性质也不同.奥氏体在约600℃分解成的组织称为细珠光体(有的叫一次索氏体),在500-600℃分解转变成用光学显微镜不能分辨其片层状的组织称为极细珠光体(有的一次屈氏体),它们的硬度较铁素体和奥氏体高,而较渗碳体低,其塑性较铁素体和奥氏体低而较渗碳体高.正火后的珠光体比退火后的珠光体组织细密,弥散度大,故其力学性能较好,但其片状渗碳体在钢材承受负荷时会引起应力集中,故不如索氏体莱氏体(L)1.组织: 奥氏体与渗碳体的共晶混合物2.特性:铁合金溶液含碳量在2.06%以上时,缓慢冷到1130℃便凝固出莱氏体.当温度到达共析温度莱氏体中的奥氏转变为珠光体.因此,在723℃以下莱氏体是珠光体与渗碳体机械混合物(共晶混合).莱氏体硬而脆(>HB700),是一种较粗的组织,不能进行压力加工,如白口铁. 在铸态含有莱氏体组织的钢有高速工具钢和Cr12型高合金工具钢等.这类钢一般有较大有耐磨性和较好的切削性淬火与马氏体1.组织: 碳在α-Fe中的过饱和固溶体,显微组织呈针叶状2.特性:淬火后获得的不稳定组织.具有很高的硬度,而且随含碳量增加而提高,但含碳量超过0.6%后的硬度值基本不变,如含C0.8%的马氏体,硬度约为HRC65,冲击韧性很低,脆性很大,延伸率和断面收缩率几乎等于零.奥氏体晶粒愈大,马氏体针叶愈粗大,则冲击韧性愈低;淬火温度愈低,奥氏体晶粒愈细,得到的马氏体针叶非常细小,即无针状马氏组织,其韧性最高回火马氏体(S)1.组织: 与淬火马氏体硬度相近,而脆性略低的黑色针叶状组织2.特性:淬火钢重新加热到150-250℃回火获得的组织.硬度一般只比淬火马氏体低HRC1-3格,但内应力比淬火马氏体小索氏体(S)1.组织: 铁索体和较细的粒状渗碳体组成的组织2.特性:淬火钢重新加热到500-680℃回火后获得的组织.与细珠光体相比,在强度相同情冲下塑性及韧性都高,随回火温度提高,硬度和强度降低,冲击韧性提高.硬度约为HRC23-35.综合机械性能比较好. 索氏体有的叫二次索氏体或回火索氏体屈氏体屈氏体(T)组织或特性1.组织: 铁索体和更细的粒状渗碳体组成的组织2.特性:淬火钢重新加热到350-450℃回火后获得的组织.它的硬度和强度虽然比马氏体低,但因其组织很致密,仍具有较高的强度和硬度,并有比马氏体好的韧性和塑性,硬度约为HRC35-45.屈氏体有的叫二次屈氏体或回火屈氏体下贝氏体(B)1.组织:显微组织呈黑色针状形态,其中的铁素体呈现针状,而碳化物呈现极小的质点以弥散状分布在针状铁素体内2.特性:过冷奥氏体在400-240℃等温度转变后的产物.具有较高的硬度,约为HRC40-55,良好的塑性和很高的冲击韧性,其综合机械性能比索氏体更好;因此,在要求较大的、韧性和高强度相配合时,常以含有适当合金元素的中碳结构钢等温淬火,获得贝氏体以改善钢的机械性能,并减小内应力和变形低碳马氏体具有高强度与良好的塑性、韧性相结合的特点(σb=1200-1600N/mm^2,σ0.2=1000-1300N/mm^2,δ5≥10%,ψ≥40%αk≥60J/cm^2); 同时还有低的冷脆转化温度(≤-60℃);在静载荷、疲劳及多次冲击载荷下,其缺口敏感度和过载敏感性都较低.低碳马氏体状态的20SiMn2MoVA综合力学性能,比中碳合金钢等温淬火获得的下贝氏体更好.保持了低碳钢的工艺性能,但切削加工较难.铁-碳合金平衡图中特性点与线(搂冷却叙述,加热为可逆的)符号说明A 纯铁的凝固点E 碳在γ-Fe中的最大溶解度G γ-Fe→α-Fe转变点C 共晶点S 共折点ABCD 液相线.液体开始结晶AHJECF 固相线,液体终止结晶ES Acm线,渗碳体开始从奥氏体中析出ECF 共晶线,开始从液体结晶出奥氏体和渗碳体的共晶混合物GS As线,自奥氏体开始析出铁素体,即γ-Fe→α-Fe的开始线PSK 共析线或称A1线,自奥氏体开始析出铁素体和渗碳体的共析混合物注:1.As线在加热时称为Ac3线,冷却时称Ar3线;2.A1线在加热时称为Ac1线,冷却时称Ar1线室温下铁-碳合金的平衡组织名称含碳量,% 平衡组织亚共析钢 0.02-0.8 铁素体+珠光体共析钢 0.8 珠光体过共析钢 0.8-2.06 珠光体+二次渗碳体亚共晶的口铁 2.06-4.3 树状珠光体+二次渗透体+共晶体共晶白口铁 4.3 共晶体(珠光体+渗碳体)过共晶白口铁>4.3-6.67 板状一次渗碳体+共晶体。
金相
】
索氏体(s)是F+Fe3C的机械混合物,其比P更细密。
托氏体(T),同上,但比S更细密。
贝氏体(B)为A的中温转变产物,也是F+Fe3C的混合物,有上贝氏体,下贝氏体和粒状贝氏体三种。
马氏体M,是C在a-Fe中的过饱和固溶体。
按C含量分板条(一般为低碳钢低碳合金钢的淬火组织)和针状马氏体(高碳钢的淬火组织)。
残余A 是含碳量0.5%的A淬火时保留到室温没有转变的那部分A,
回火马氏体,是低温回火(150~250℃)组织,保留了原M的特征,针状M析出极细的碳化物,可以消除淬火钢的内应力,增加韧性,同时仍能保持刚到高硬度。
回火屈氏体,中温回火(350~500℃)组织,是F+粒状Fe3C组成的极细混合物,中温回火有很好的弹性和一定的韧性。
回火索氏体,高温回火(600~650℃)组织,是F+较粗粒状Fe3C组成的混合物,具有良好的综合机械性能。