机械优化设计 复合形法实验报告
机械优化设计实验报告
《机械优化设计》课程实验报告M a t l a b优化工具箱一、实验目的和要求熟悉Matlab7.0软件的界面和基本功能,了解Matlab优化工具箱的常用算法;使用Matlab优化工具箱的f m i n u n c/f m i n s e a r c h函数求解多变量非线性无约束优化问题;使用Matlab优化工具箱的f m i n c o n函数求解多变量非线性约束优化问题。
二、实验设备和软件台式计算机,Matlab7.0软件。
三、实验内容求解下列优化问题的最优解。
要求:(1)编写求解优化问题的M文件,(2)在命令窗口输入求解优化问题的命令,并得出计算结果。
1、标量优化问题1) f=x2-10x+362) f=x4-5x3+4x2-6x+603) f=(x+1)(x-2)22、多变量非线性无约束优化问题1) f=4(x1-5) 2+( x2-6) 2初始点:x0=[8,9]T;2) f=(x12+x2-11)2+( x1+ x22-7)2初始点:x0=[1,1]T;3) f=[1.5- x1(1- x2)]2+[2.25- x1(1- x22)]2+[2.625- x1(1- x23)]2初始点:x0=[2,0.2]T;4) f=( x12+12 x2-1)2+(49 x1+49 x2+84 x1+2324 x2-681)2初始点:x0=[1,1]T;5) f=( x1+10 x2)2+5(x3- x4)2+( x2-2 x3)4+10(x1- x4)4初始点:x0=[3,-1,0,1]T;3、多变量非线性约束优化问题1) f=( x1-2)2+( x2-1)2g1= x12-x2≤0g2= x1+x2-2≤0初始点:x0=[3,3]T;2) f= x23[( x1-3)2-9]/273≤0g1=x2-x1/3≤0g2=-x1+x2/3≤0g3=x1+x2/3-6≤0g4=-x1≤0g5=-x2≤0初始点:x0=[1,5]T;3) f=1000- x12-2x2 2-x32-x1x2-x1x3g1=-x1≤0g2=-x2≤0g3=-x3≤0g4=x12+x22+x3 2-25=0g5=8x1+14x2+7x3-56=0初始点:x0=[2,2,2]T4)f=100(x2-x12)2+(1-x1)2+90(x4-x32)2+(1-x3)2+10[(x2-1)2+(x4-1)2]+19.8(x2-1)(x4-1)-10≤x1≤10-10≤x2≤10-10≤x3≤10-10≤0x4≤10初始点:x0=[-3,-1,-3,-1]T;四、M文件、在命令窗口输入的求解命令清单及计算结果记录>>1、(1)目标函数的M文件function f=fun1(x)f=x^2-10*x+36调用求解命令x0=0;options=optimset('LargeScale','off');lb=-10;ub=10;[x,fval]=fminbnd(@fun1,lb,ub,options)或{ x0=0; [x,fval]=fminbnd(@fun1,-10,10)} x =5.0000fval =11.00002、(2)目标函数的M文件function f=fun2(x)f=x^4-5*x^3+4*x^2-6*x+60调用求解命令x0=0;options=optimset('LargeScale','off');lb=0;ub=10;[x,fval]=fminbnd(@fun2,lb,ub,options)x =3.2796fval =22.65902、(3)目标函数的M文件function f=fun3(x)f=(x+1)*(x-2)^2调用求解命令> x0=0;options=optimset('LargeScale','off');lb=0;ub=10;[x,fval]=fminbnd(@fun3,lb,ub,options)x =2.0000fval =1.9953e-0113(1)目标函数的M文件function f=fun4(x)f=4*(x(1)-5)^2+(x(2)-6)^2调用求解命令x0=[8,9];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun4,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun. x =5.00006.0000fval =1.7876e-0123(2)目标函数的M文件function f=fun5(x)f=(x(1)^2+x(2)-11)^2+(x(1)+x(2)^2-7)^2调用求解命令>> x0=[1,1];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun5,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun. x =3.0000 2.0000fval =5.2125e-0123(3)目标函数的M文件function f=fun6(x)f=[1.5-x(1)*(1-x(2))]^2+[2.25-x(1)*(1-x(2)^2)]^2+[2.625-x(1)*(1-x(2)^3)]^2调用求解命令x0=[2,0.2];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun6,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun. x =3.0000 0.5000fval =3.9195e-0143(4)目标函数的M文件function f=fun7(x)f=(x(1)^2+12*x(2)-1)^2+(49*x(1)+49*x(2)+84*x(1)+2324*x(2)-681)^2调用求解命令x0=[1,1];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun7,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun. x =0.9570 0.2333fval =7.37643(5)目标函数的M文件function f=fun8(x)f=(x(1)+10*x(2))^2+5*(x(3)-x(4))^2+(x(2)-2*x(3))^4+10*(x(1)-x(4))^4调用求解命令>> x0=[3,-1,0,1];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun8,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun.x =0.0015 -0.0002 -0.0031 -0.0031fval =6.3890e-009三、3、(1)目标函数的M文件function f=fun9(x)f=(x(1)-2)^2+(x(2)-1)^2约束函数的M文件function [c,cep]=con1(x)c=[x(1)^2-x(2);x(1)+x(2)-2];cep=[]当前窗口条用求解命令x0=[3,3];options=optimset('LargeScale','off');[x,fval]=fmincon(@fun9,x0,[],[],[],[],[],[],@con1,options)Optimization terminated: first-order optimality measure less than options.TolFun and maximum constraint violation is less than options.TolCon.Active inequalities (to within options.TolCon = 1e-006):lower upper ineqlin ineqnonlin12x =1.0000 1.0000fval =1.00003、(2)目标函数的M文件function f=fun10(x)f=x(2)^3*[(x(1)-3)^2-9]/27*3^(1/2)约束函数的M文件function [c,cep]=con2(x)c=[x(2)-x(1)/3^(1/2);-x(1)+x(2)/3^(1/2);x(1)+x(2)/3^(1/2)-6];cep=[]当前窗口条用求解命令x0=[1,5];lb=[0,0];options=optimset('LargeScale','off');[x,fval]=fmincon(@fun10,x0,[],[],[],[],lb,ub,@con2,options)Optimization terminated: first-order optimality measure lessthan options.TolFun and maximum constraint violation is lessthan options.TolCon.Active inequalities (to within options.TolCon = 1e-006):lower upper ineqlin ineqnonlin13x =4.5000 2.5981fval =-7.59383、(3)目标函数的M文件function f=fun11(x)f=1000-x(1)^2-2*x(2)^2-x(3)^2-x(1)*x(2)-x(1)*x(3)约束函数的M文件function [c,cep]=con3(x)c=[];cep=[x(1)^2+x(2)^2+x(3)^2-25;8*x(1)+14*x(2)+7*x(3)-56];当前窗口条用求解命令x0=[2,2,2];lb=[0,0,0];ub=[];options=optimset('LargeScale','off');[x,fval]=fmincon(@fun11,x0,[],[],[],[],lb,ub,@con3,options)Optimization terminated: first-order optimality measure lessthan options.TolFun and maximum constraint violation is lessthan options.TolCon.No active inequalitiesx =3.5121 0.2170 3.5522fval =961.71523、(4)目标函数的M文件function f=fun12(x)f=100*(x(2)-x(1)^2)^2+(1-x(1))^2+90*(x(4)-x(3)^2)^2+(1-x(3))^2+10*[(x(2)-1) ^2+(x(4)-1)^2]+19.8*(x(2)-1)*(x(4)-1)约束函数的M文件function [c,cep]=con4(x)cep=[];当前窗口条用求解命令x0=[-3,-1,-3,-1,];lb=[-10,-10,-10,-10];ub=[10,10,10,10];options=optimset('LargeScale','off');[x,fval]=fmincon(@fun12,x0,[],[],[],[],lb,ub,@con4,options)Optimization terminated: Magnitude of directional derivative in searchdirection less than 2*options.TolFun and maximum constraint violationis less than options.TolCon.No active inequalitiesx =1.0001 1.0002 0.9999 0.9997fval =2.3989e-007五、质疑和建议对于一维标量优化问题搜索,在当前窗口中调用求解命令时,[x,fval]=fminbnd(@fun1,lb,ub,options)可以改成[x,fval]=fminbnd(@fun1,-10,10)如下:function f=fun1(x)f=x^2-10*x+36调用求解命令x0=0;options=optimset('LargeScale','off');lb=-10;ub=10;[x,fval]=fminbnd(@fun1,lb,ub,options)或{ x0=0; [x,fval]=fminbnd(@fun1,-10,10)}x =5.0000fval =11.0000。
现代设计黄金分割法、复合形法实验报告
《现代设计理论与方法》实验报告一、实验目的机械优化设计是一门实践性较强的课程,学生通过实际上机计算可以达到以下目的:1.加深对机械优化设计方法的基本理论和算法步骤的理解;2.培养学生独立编制或调试计算机程序的能力;3.掌握常用优化方法程序的使用方法;4.培养学生灵活运用优化设计方法解决工程实际问题的能力。
二、实验项目、学时分配及对每个实验项目的要求序号实验项目学时实验要求1 黄金分割法2 1.明确黄金分割法基本原理、计算步骤及程序框图;2.编制或调试黄金分割法应用程序;3.用测试题对所编程序进行测试;4.撰写实验报告。
2 复合形法41.明确复合形法基本原理、计算步骤及程序框图等;2.编制或调试复合形法应用程序;3.用测试题对所编程序进行测试;4.撰写实验报告。
三、测试题1.黄金分割法程序测试题1) ,取,,程序如下:#include<stdio.h>#include<conio.h>#include<math.h>#define e 0.00001#define tt 0.01float function(float x){float y=pow(x,2)-10*x+36;//求解的一维函数 return(y);}void finding(float a[3],float f[3]){float t=tt,a1,f1,ia;int i;a[0]=0;//初始区间的下界值f[0]=function(a[0]);for(i=0;;i++){a[1]=a[0]+t;f[1]=function(a[1]);if(f[1]<f[0]) break;if(fabs(f[1]-f[0])>=e){t=-t;a[0]=a[1];f[0]=f[1];}else{if(ia==1) return;t=t/2;ia=1;}}for(i=0;;i++){a[2]=a[1]+t;f[2]=function(a[2]);if(f[2]>f[1]) break;t=2*t;a[0]=a[1];f[0]=f[1];a[1]=a[2];f[1]=f[2];}if(a[0]>a[2]){a1=a[0];f1=f[0];a[0]=a[2];f[0]=f[2];a[2]=a1;f[2]=f1;}return;}float gold(float *ff){float a1[3],f1[3],a[4],f[4];float aa;int i;finding(a1,f1);a[0]=a1[0];f[0]=f1[0];a[3]=a1[2];f[3]=f1[2];a[1]=a[0]+0.382*(a[3]-a[0]);a[2]=a[0]+0.618*(a[3]-a[0]);f[1]=function(a[1]);f[2]=function(a[2]);for(i=0;;i++){if(f[1]>=f[2]){a[0]=a[1];f[0]=f[1];a[1]=a[2];f[1]=f[2];a[2]=a[0]+0.618*(a[3]-a[0]);f[2]=function(a[2]);}else{a[3]=a[2];f[3]=f[2];a[2]=a[1];f[2]=f[1];a[1]=a[0]+0.382*(a[3]-a[0]);f[1]=function(a[1]);}if((a[3]-a[0])<e){aa=(a[1]+a[2])/2;*ff=function(aa);break;}}return(aa);}void main(){float xx, ff;xx=gold(&ff);printf("\n The Optimal Design Result Is:\n"); printf("\n\tx*=%f\n\tf*=%f", xx, ff);getch();}运行结果:2) ,取,,程序如下:#include<stdio.h>#include<conio.h>#include<math.h>#define e 0.00001#define tt 0.01float function(float x){float y=pow(x,4)-5*pow(x,3)+4*pow(x,2)-6*x+60;//求解的一维函数 return(y);}void finding(float a[3],float f[3]){float t=tt,a1,f1,ia;int i;a[0]=0;//初始区间的下界值f[0]=function(a[0]);for(i=0;;i++){a[1]=a[0]+t;f[1]=function(a[1]);if(f[1]<f[0]) break;if(fabs(f[1]-f[0])>=e){t=-t;a[0]=a[1];f[0]=f[1];}else{if(ia==1) return;t=t/2;ia=1;}}for(i=0;;i++){a[2]=a[1]+t;f[2]=function(a[2]); if(f[2]>f[1]) break;t=2*t;a[0]=a[1];f[0]=f[1];a[1]=a[2];f[1]=f[2];}if(a[0]>a[2]){a1=a[0];f1=f[0];a[0]=a[2];f[0]=f[2];a[2]=a1;f[2]=f1;}return;}float gold(float *ff){float a1[3],f1[3],a[4],f[4];float aa;int i;finding(a1,f1);a[0]=a1[0];f[0]=f1[0];a[3]=a1[2];f[3]=f1[2];a[1]=a[0]+0.382*(a[3]-a[0]);a[2]=a[0]+0.618*(a[3]-a[0]);f[1]=function(a[1]);f[2]=function(a[2]);for(i=0;;i++){if(f[1]>=f[2]){a[0]=a[1];f[0]=f[1];a[1]=a[2];f[1]=f[2];a[2]=a[0]+0.618*(a[3]-a[0]);f[2]=function(a[2]);}else{a[3]=a[2];f[3]=f[2];a[2]=a[1];f[2]=f[1];a[1]=a[0]+0.382*(a[3]-a[0]);f[1]=function(a[1]);}if((a[3]-a[0])<e){aa=(a[1]+a[2])/2;*ff=function(aa);break;}}return(aa);}void main(){float xx, ff;xx=gold(&ff);printf("\n The Optimal Design Result Is:\n");printf("\n\tx*=%f\n\tf*=%f", xx, ff);getch();}运行结果如下:3) ,其中,取,,程序如下:#include<stdio.h>#include<conio.h>#include<math.h>#define e 0.00001#define tt 0.01float function(float x){float y=(x+1)*pow((x-2),2);//求解的一维函数return(y);}void finding(float a[3],float f[3]){float t=tt,a1,f1,ia;int i;a[0]=0;//初始区间的下界值f[0]=function(a[0]);for(i=0;;i++){a[1]=a[0]+t;f[1]=function(a[1]); if(f[1]<f[0]) break;if(fabs(f[1]-f[0])>=e){t=-t;a[0]=a[1];f[0]=f[1];}else{if(ia==1) return;t=t/2;ia=1;}}for(i=0;;i++){a[2]=a[1]+t;f[2]=function(a[2]); if(f[2]>f[1]) break;t=2*t;a[0]=a[1];f[0]=f[1];a[1]=a[2];f[1]=f[2];}if(a[0]>a[2]){a1=a[0];f1=f[0];a[0]=a[2];f[0]=f[2];a[2]=a1;f[2]=f1;}return;}float gold(float *ff){float a1[3],f1[3],a[4],f[4];float aa;int i;finding(a1,f1);a[0]=a1[0];f[0]=f1[0];a[3]=a1[2];f[3]=f1[2];a[1]=a[0]+0.382*(a[3]-a[0]);a[2]=a[0]+0.618*(a[3]-a[0]);f[1]=function(a[1]);f[2]=function(a[2]);for(i=0;;i++){if(f[1]>=f[2]){a[0]=a[1];f[0]=f[1];a[1]=a[2];f[1]=f[2];a[2]=a[0]+0.618*(a[3]-a[0]);f[2]=function(a[2]);}else{a[3]=a[2];f[3]=f[2];a[2]=a[1];f[2]=f[1];a[1]=a[0]+0.382*(a[3]-a[0]);f[1]=function(a[1]);}if((a[3]-a[0])<e){aa=(a[1]+a[2])/2;*ff=function(aa);break;}}return(aa);}void main(){float xx, ff;xx=gold(&ff);printf("\n The Optimal Design Result Is:\n"); printf("\n\tx*=%f\n\tf*=%f", xx, ff);getch();}运行结果如下:2.复合形法程序测试题1)取:程序如下:#include "math.h"#include "stdio.h"#include "stdlib.h"#define E1 0.001#define ep 0.00001#define n 2#define k 4double af;int i,j;double X0[n],XX[n],X[k][n],FF[k];double a[n],b[n];double rm=2657863.0;double F(double C[n]){double F;F=pow(C[0]-2,2)+pow(C[1]-1,2);return F;}int cons(double D[n]){if((D[1]-pow(D[0],2)>=0)&&((2-D[0]-D[1])>=0)) return 1;elsereturn 0;}void bou(){a[0]=-5,b[0]=6;a[1]=-5,b[1]=8;}double r(){double r1,r2,r3,rr;r1=pow(2,35);r2=pow(2,36);r3=pow(2,37);rm=5*rm; if(rm>=r3){rm=rm-r3;}if(rm>=r2){rm=rm-r2;}if(rm>=r1){rm=rm-r1;}rr=rm/r1;return rr;}void produce(double A[n],double B[n]){int jj;double S;s1: for(i=0;i<n;i++){S=r();XX[i]=A[i]+S*(B[i]-A[i]);}if(cons(XX)==0){goto s1;}for(i=0;i<n;i++){X[0][i]=XX[i];}for(j=1;j<k;j++){for(i=0;i<n;i++){S=r();X[j][i]=A[i]+S*(B[i]-A[i]);}}for(j=1;j<k;j++){for(i=0;i<n;i++){X0[i]=0;for(jj=1;jj<j+1;jj++){X0[i]+=X[jj][i];}X0[i]=(1/j)*(X0[i]);}if(cons(X0)==0){goto s1;}for(i=0;i<n;i++){XX[i]=X[j][i];}while(cons(XX)==0){for(i=0;i<n;i++){X[j][i]=X0[i]+0.5*(X[j][i]-X0[i]); XX[i]=X[j][i];}}}}main(){double EE,Xc[n],Xh[n],Xg[n],Xl[n],Xr[n],Xs[n],w; int l,lp,lp1;bou();s111:produce(a,b);s222:for(j=0;j<k;j++){for(i=0;i<n;i++){XX[i]=X[j][i];}FF[j]=F(XX);}for(l=0;l<k-1;l++){for(lp=0;lp<k-1;lp++){lp1=lp+1;if(FF[lp]<FF[lp1]){w=FF[lp];FF[lp]=FF[lp1];FF[lp1]=w;for(i=0;i<n;i++){XX[i]=X[lp][i];X[lp][i]=X[lp1][i];X[lp1][i]=XX[i]; }}}}for(i=0;i<n;i++){Xh[i]=X[0][i];Xg[i]=X[l][i];Xl[i]=X[k-1][i];}for(i=0;i<n;i++){Xs[i]=0;for(j=0;j<k;j++){Xs[i]+=X[j][i];}Xs[i]=1/(k+0.0)*Xs[i];}EE=0;for(j=0;j<k;j++){EE+=pow((FF[j]-F(Xs)),2); }EE=pow((1/(k+0.0)*EE),0.5); if(EE<=E1){goto s333;}for(i=0;i<n;i++){Xc[i]=0;for(j=1;j<k;j++){Xc[i]+=X[j][i];}Xc[i]=1/(k-1.0)*Xc[i]; }if(cons(Xc)==1){af=1.3;ss:for(i=0;i<n;i++){Xr[i]=Xc[i]+af*(Xc[i]-Xh[i]); }if(cons(Xr)==1){if(F(Xr)>=F(Xh)){if(af<=ep){for(i=0;i<n;i++){Xh[i]=Xg[i];}af=1.3;goto ss;}else{af=1/2.0*af;goto ss;}}else{for(i=0;i<n;i++){X[0][i]=Xr[i];}goto s222;}}else{af=1/2.0*af;goto ss;}}else{for(i=0;i<n;i++){if(Xl[i]<Xc[i]){a[i]=Xl[i];b[i]=Xc[i];}else{a[i]=Xc[i];b[i]=Xl[i];}}goto s111;}s333:printf("F(Xmin)=%f\n",F(Xl));for(i=0;i<n;i++){printf("\n The X%d is %f.",i,Xl[i]); }}运行结果如下:2)取:程序如下:#include "math.h"#include "stdio.h"#include "stdlib.h"#define E1 0.001#define ep 0.00001#define n 4#define k 6double af;int i,j;double X0[n],XX[n],X[k][n],FF[k];double a[n],b[n];double rm=2657863.0;double F(double C[n]){double F;F=100*pow(C[1]-C[0],2)+pow(1-C[0],2)+90*pow(C[3]-(pow(C[2],2)),2)+pow(1-C[2],2)+10*(pow(C[0]-1,2)+pow(C[3]-1,2))+19.8*(C[1]-1)*(C[3]-1);return F;}int cons(double D[n]){if((D[0]>=-10)&&(D[1]>=-10)&&(D[2]>=-10)&&(D[3]>=-10)&&(D[0]<=10)&&(D[1]<=10)&&(D[2]<=10)&&(D[3]<=10))return 1;elsereturn 0;}void bou(){a[0]=-10,b[0]=10;a[1]=-10,b[1]=10;a[2]=-10,b[2]=10;a[3]=-10,b[3]=10;}double r(){double r1,r2,r3,rr;r1=pow(2,35);r2=pow(2,36);r3=pow(2,37);rm=5*rm;if(rm>=r3){rm=rm-r3;}if(rm>=r2){rm=rm-r2;}if(rm>=r1){rm=rm-r1;}rr=rm/r1;return rr;}void produce(double A[n],double B[n]){int jj;double S;s1: for(i=0;i<n;i++){S=r();XX[i]=A[i]+S*(B[i]-A[i]);}if(cons(XX)==0){goto s1;}for(i=0;i<n;i++){X[0][i]=XX[i];}for(j=1;j<k;j++){for(i=0;i<n;i++){S=r();X[j][i]=A[i]+S*(B[i]-A[i]); }}for(j=1;j<k;j++){for(i=0;i<n;i++){X0[i]=0;for(jj=1;jj<j+1;jj++){X0[i]+=X[jj][i];}X0[i]=(1/j)*(X0[i]);}if(cons(X0)==0){goto s1;}for(i=0;i<n;i++){XX[i]=X[j][i];}while(cons(XX)==0){for(i=0;i<n;i++){X[j][i]=X0[i]+0.5*(X[j][i]-X0[i]);XX[i]=X[j][i];}}}}main(){double EE,Xc[n],Xh[n],Xg[n],Xl[n],Xr[n],Xs[n],w; int l,lp,lp1;bou();s111:produce(a,b);s222:for(j=0;j<k;j++){for(i=0;i<n;i++){XX[i]=X[j][i];}FF[j]=F(XX);}for(l=0;l<k-1;l++){for(lp=0;lp<k-1;lp++){lp1=lp+1;if(FF[lp]<FF[lp1]){w=FF[lp];FF[lp]=FF[lp1];FF[lp1]=w;for(i=0;i<n;i++){XX[i]=X[lp][i];X[lp][i]=X[lp1][i];X[lp1][i]=XX[i]; }}}}for(i=0;i<n;i++){Xh[i]=X[0][i];Xg[i]=X[l][i];Xl[i]=X[k-1][i];}for(i=0;i<n;i++){Xs[i]=0;for(j=0;j<k;j++){Xs[i]+=X[j][i];}Xs[i]=1/(k+0.0)*Xs[i];}EE=0;for(j=0;j<k;j++){EE+=pow((FF[j]-F(Xs)),2);}EE=pow((1/(k+0.0)*EE),0.5);if(EE<=E1){goto s333;}for(i=0;i<n;i++){Xc[i]=0;for(j=1;j<k;j++){Xc[i]+=X[j][i];}Xc[i]=1/(k-1.0)*Xc[i];}if(cons(Xc)==1){af=1.3;ss:for(i=0;i<n;i++){Xr[i]=Xc[i]+af*(Xc[i]-Xh[i]); }if(cons(Xr)==1){if(F(Xr)>=F(Xh)){if(af<=ep){for(i=0;i<n;i++){Xh[i]=Xg[i];}af=1.3;goto ss;}else{af=1/2.0*af;goto ss;}}else{for(i=0;i<n;i++){X[0][i]=Xr[i];}goto s222;}}else{af=1/2.0*af;goto ss;}}else{for(i=0;i<n;i++){if(Xl[i]<Xc[i]){a[i]=Xl[i];b[i]=Xc[i];}else{a[i]=Xc[i];b[i]=Xl[i];}}goto s111;}s333:printf("F(Xmin)=%f\n",F(Xl));for(i=0;i<n;i++){printf("\n The X%d is %f.",i,Xl[i]); }}运行结果下:3)取:程序如下:#include "math.h"#include "stdio.h"#include "stdlib.h"#define E1 0.001#define ep 0.00001#define n 2#define k 4double af;int i,j;double X0[n],XX[n],X[k][n],FF[k];double a[n],b[n];double rm=2657863.0;double F(double C[n]){double F;F=pow(C[0],2)+pow(C[1],2)-C[0]*C[1]-10*C[0]-4*C[1]+60; return F;}int cons(double D[n]){if((D[0]>=0)&&(D[1]>=0)&&(6-D[0]>=0)&&(8-D[1]>=0)) return 1;elsereturn 0;}void bou(){a[0]=0,b[0]=6;a[1]=0,b[1]=8;}double r(){double r1,r2,r3,rr;r1=pow(2,35);r2=pow(2,36);r3=pow(2,37);rm=5*rm;if(rm>=r3){rm=rm-r3;}if(rm>=r2){rm=rm-r2;}if(rm>=r1){rm=rm-r1;}rr=rm/r1;return rr;void produce(double A[n],double B[n]) {int jj;double S;s1: for(i=0;i<n;i++){S=r();XX[i]=A[i]+S*(B[i]-A[i]);}if(cons(XX)==0){goto s1;}for(i=0;i<n;i++){X[0][i]=XX[i];}for(j=1;j<k;j++){for(i=0;i<n;i++){S=r();X[j][i]=A[i]+S*(B[i]-A[i]);}}for(j=1;j<k;j++){for(i=0;i<n;i++){X0[i]=0;for(jj=1;jj<j+1;jj++){X0[i]+=X[jj][i];X0[i]=(1/j)*(X0[i]);}if(cons(X0)==0){goto s1;}for(i=0;i<n;i++){XX[i]=X[j][i];}while(cons(XX)==0){for(i=0;i<n;i++){X[j][i]=X0[i]+0.5*(X[j][i]-X0[i]);XX[i]=X[j][i];}}}}main(){double EE,Xc[n],Xh[n],Xg[n],Xl[n],Xr[n],Xs[n],w; int l,lp,lp1;bou();s111:produce(a,b);s222:for(j=0;j<k;j++){for(i=0;i<n;i++){XX[i]=X[j][i];FF[j]=F(XX);}for(l=0;l<k-1;l++){for(lp=0;lp<k-1;lp++){lp1=lp+1;if(FF[lp]<FF[lp1]){w=FF[lp];FF[lp]=FF[lp1];FF[lp1]=w;for(i=0;i<n;i++){XX[i]=X[lp][i];X[lp][i]=X[lp1][i];X[lp1][i]=XX[i]; }}}}for(i=0;i<n;i++){Xh[i]=X[0][i];Xg[i]=X[l][i];Xl[i]=X[k-1][i];}for(i=0;i<n;i++){Xs[i]=0;for(j=0;j<k;j++){Xs[i]+=X[j][i];}Xs[i]=1/(k+0.0)*Xs[i];}EE=0;for(j=0;j<k;j++){EE+=pow((FF[j]-F(Xs)),2);}EE=pow((1/(k+0.0)*EE),0.5);if(EE<=E1){goto s333;}for(i=0;i<n;i++){Xc[i]=0;for(j=1;j<k;j++){Xc[i]+=X[j][i];}Xc[i]=1/(k-1.0)*Xc[i];}if(cons(Xc)==1){af=1.3;ss:for(i=0;i<n;i++){Xr[i]=Xc[i]+af*(Xc[i]-Xh[i]); }if(cons(Xr)==1){if(F(Xr)>=F(Xh)){if(af<=ep){for(i=0;i<n;i++){Xh[i]=Xg[i];}af=1.3;goto ss;}else{af=1/2.0*af;goto ss;}}else{for(i=0;i<n;i++){X[0][i]=Xr[i];}goto s222;}}else{af=1/2.0*af;goto ss;}}else{for(i=0;i<n;i++){if(Xl[i]<Xc[i]){a[i]=Xl[i];b[i]=Xc[i];} else{a[i]=Xc[i];b[i]=Xl[i];}}goto s111;}s333:printf("F(Xmin)=%f\n",F(Xl));for(i=0;i<n;i++){printf("\n The X%d is %f.",i,Xl[i]);}}运行结果如下:四、实验心得与体会1.通过本次实验熟悉了黄金分割法与复合形法上机步骤。
机械优化设计实验报告
机械优化设计实验报告机械优化设计实验报告引言机械优化设计是一门重要的工程学科,旨在通过优化设计方法,提高机械系统的性能和效率。
本实验旨在通过对某一机械系统的优化设计,探索并验证优化设计的有效性和可行性。
实验目的本实验的主要目的是通过对某一机械系统进行优化设计,提高其性能和效率。
具体而言,我们将通过改变材料、几何形状等参数,寻找最佳设计方案,并通过实验验证其优化效果。
实验方法1. 确定优化目标:首先,我们需要明确机械系统的优化目标,例如提高系统的强度、降低系统的重量等。
2. 确定设计变量:根据机械系统的特点,确定需要进行优化的设计变量,例如材料的选择、零件的几何形状等。
3. 建立数学模型:根据机械系统的结构和运行原理,建立数学模型,用于优化设计的计算和分析。
4. 优化设计:使用优化算法,例如遗传算法、粒子群算法等,对机械系统进行优化设计,得到最佳设计方案。
5. 实验验证:根据最佳设计方案,制作实际样品,并进行实验验证,比较实验结果与模型计算结果的一致性。
实验结果经过优化设计和实验验证,我们得到了以下结果:1. 材料优化:通过对不同材料的比较,我们发现材料A具有更好的强度和耐久性,因此在最佳设计方案中选择了材料A。
2. 几何形状优化:通过对不同几何形状的比较,我们发现几何形状B具有更好的流体动力学性能,因此在最佳设计方案中采用了几何形状B。
3. 性能提升:通过与原设计方案进行对比,我们发现最佳设计方案在强度和效率方面都有显著提升,验证了优化设计的有效性。
讨论与分析通过本实验,我们可以得出以下结论:1. 机械优化设计可以显著提高机械系统的性能和效率,为工程设计提供了有力的支持。
2. 优化设计需要综合考虑多个因素,如材料、几何形状等,以达到最佳设计效果。
3. 优化设计的结果需要通过实验验证,以确保其可行性和有效性。
结论本实验通过对某一机械系统的优化设计,验证了机械优化设计的有效性和可行性。
通过改变材料、几何形状等参数,我们成功提高了机械系统的性能和效率。
(完整word版)机械优化设计实验报告(word文档良心出品)
《机械优化设计》实验报告目录1.进退法确定初始区间 (3)1.1 进退法基本思路 (3)1.2 进退法程序框图 (3)1.3 题目 (3)1.4 源程序代码及运行结果 (3)2.黄金分割法 (4)2.2黄金分割法流程图 (4)2.3 题目 (5)2.4 源程序代码及结果 (5)3.牛顿型法 (5)3.1牛顿型法基本思路 (6)3.2 阻尼牛顿法的流程图 (6)3.3 题目 (6)3.4 源程序代码及结果 (6)4.鲍威尔法 (7)4.1 鲍威尔法基本思路 (7)4.2 鲍威尔法流程图 (7)4.3 题目 (8)4.4 源程序代码及结果 (8)5. 复合形法 (15)5.1 复合行法基本思想 (15)5.3 源程序代码及结果 (15)6. 外点惩罚函数法 (23)6.1解题思路: (23)6.2 流程框图 (23)6.3 题目 (23)6.4 源程序代码及结果 (23)7.机械设计实际问题分析 (29)7.2计算过程如下 (29)7.3 源程序编写 (30)8.报告总结 (32)1.进退法确定初始区间1.1 进退法基本思路:按照一定的规则试算若干个点,比较其函数值的大小,直至找到函数值按“高-低-高”变化的单峰区间。
1.2 进退法程序框图1.3 题目:用进退法求解函数()2710=-+的搜索区间f x x x1.4 源程序代码及运行结果#include <stdio.h>#include <math.h>main(){float h,h0,y1,y2,y3,a1=0,a2,a3,fa2,fa3;scanf("h0=%f,y1=%f",&h0,&y1);h=h0;a2=h;y2=a2*a2-7*a2+10;if (y2>y1){h=-h;a3=a1;y3=y1;loop:a1=a2;y1=y2;a2=a3;y2=y3;}a3=a2+2*h;y3=a3*a3-7*a3+10;if (y3<y2){goto loop;}elseprintf("a1=%f,a2=%f,a3=%f,y1=%f,y2=%f,y3=%f\n",a1,a2,a3,y1,y2,y3);} 搜索区间为0 62.黄金分割法2.1黄金分割法基本思路:通过不断的缩短单峰区间的长度来搜索极小点的一种有效方法。
合肥工业大学《机械优化设计》课程实践报告
合肥工业大学《机械优化设计》课程实践研究报告班级:学号:姓名:授课教师:日期:2016年11 月7 日目录作业要求 (2)一、λ=0.618的证明、一维搜索程序作业 (3)1、0.618法的基本思想 (3)2、关于0.618法中参数λ=0.618的证明 (4)3、一维搜索程序作业 (5)二、单位矩阵程序作业 (8)三、注释最佳再现给定运动规律连杆机构优化设计 (10)问题模型子程序 (10)四、连杆机构问题+其他工程优化问题 (12)1、连杆机构问题 (12)2、其他工程问题: (15)五、课程实践心得体会 (18)作业要求1、λ=0.618的证明、一维搜索程序作业;2、单位矩阵程序作业;3、注释最佳再现给定运动规律连杆机构优化设计问题模型子程序;4、连杆机构问题 + 自行选择小型机械设计问题或其他工程优化问题;(1)分析优化对象,根据设计问题的要求,选择设计变量,确立约束条件,建立目标函数,建立优化设计的数学模型并编制问题程序;(2)选择适当的优化方法,简述方法原理,进行优化计算; (3)进行结果分析,并加以说明。
5、写出课程实践心得体会,附列程序文本。
一、λ=0.618的证明、一维搜索程序作业1、0.618法的基本思想“0.618法”,又称为黄金分割法,是常用的一种一维搜索试探方法,适用于[,]a b 区间上的任何单调函数求极小值问题。
0.618法是建立在区间消去法原理基础上的试探方法,即在搜索区间[,]a b 内适当插入两点1a 、1b ,且11a b ,如下图所示。
通过比较函数值1()f a 与1()f b 的大小,应用函数的单调性,可得出以下两种情况:1) 若11()()f a f b <,则取1[,]a b 为缩短后的区间。
2) 若11()()f a f b >,则取1[,]a b 为缩短后的区间。
然后在保留下来的区间上进行同样的处置,如此迭代下去,使搜索区间无限缩小,从而得到极小点的数值近似解。
《机械优化设计》课程实践报告
《机械优化设计》课程实践报告(课程实践报告封⾯模版)合肥⼯业⼤学《机械优化设计》课程实践研究报告班级:机设10 -04学号: 20100495姓名:李健授课⽼师:王卫荣⽇期: 2012年⽉⽇⽬录⼀主要内容1、⼀维搜索程序作业A.λ = 0.618的证明 (1)B.编写⽤0.618法求函数极⼩值的程序 (2)2、单位矩阵程序作业 (4)3、其他⼯程优化问题 (9)4连杆机构问题 (12)⼆实践⼼得体会 (15)⼀: 主要内容1. ⼀维搜索程序作业:A.λ = 0.618的证明 (y2 > y1)证明:0.618法要求插⼊点α1、α 2 的位置相对于区间 [a,b] 两端点具有对称性,即已知a1=a2 , 要求α11=α22由于α1=b-λ(b-a)α2=a+λ(b-a)若使α11=α22则有:b1-λ(b1-a1)=a2+λ(b2-a2)= a1+λ2(b1-a1)因此: b1- a1=(λ2+λ)( b1- a1)( b1- a1)(λ2+λ-1)=0因为: b1= a1所以: λ2+λ-1=0则有: 取⽅程正数解得若保留下来的区间为 [α1,b] ,根据插⼊点的对称性,也能推得同样的λ的值。
其0.618法的程序框图如下:B.编写⽤0.618法求函数极⼩值的程序例:(1)a=0 ,b=2π,f(x)=cox(x)(2)a=0 ,b=10, f(x)=(x-2)2+3(1)#include#includevoid main(void){int i;float a1,a2,aa,y1,y2,ymin,e;float a=0,b=2*3.14159,n=0.618;a1=b-n*(b-a);a2=a+n*(b-a);print(“输⼊精度:”);scanf(“%f”,&e);for(i=0;i=10000;i=i++){y1=cos(a1);y2=cos(a2);if(y1{a=a1;a1=a2;a2=a+n*(b-a);}If(y1b=a2;a2=a1;a1=b-n*(b-a);}if(fabs(b-a)/b{aa=(a+b)/2;ymin=cos(aa);printf(“x=%7.4f\tf(x)=%7.4f\n”),aa,ymin); break;}}}运⾏结果:(2)#include#includevoid main(void){int i;float a1,a2,aa,y1,y2,ymin,e; float a=0,b=10,n=0.618;a1=b-n*(b-a);a2=a+n*(b-a);print(“输⼊精度:”);scanf(“%f”,&e);for(i=0;i=10000;i=i++){y1=(a1-2)*(a1-2)+3; y2=(a2-2)*(a2-2)+3; if(y1>=y2){a=a1;a1=a2;a2=a+n*(b-a);}If(y1b=a2;a2=a1;a1=b-n*(b-a);}if(fabs(b-a)/b{aa=(a+b)/2;ymin=(aa-2)*(aa-2)+3;printf(“x=%6.3f\tf(x)=%6.3f\n”),aa,ymin); break;}}}运⾏结果:2.单位矩阵程序作业编写⽣成单位矩阵的程序程序⽂本#includevoid main(void){int a[100][100];int N,i,j;printf("请输⼊所要输出矩阵的阶数(最多100阶):"); scanf("%d",&N);printf("输出的矩阵阶数为%d\n",N);printf(" N "); /*****制作表头*****/ for(i=0;iprintf("%3d",i+1);printf("\n");for(i=0;iprintf("---"); /*****分割线*****/ printf("\n");for(i=0;i<100;i++) /*****数组赋值*****/ for(j=0;j<100;j++) {if(i==j)a[i][j]=1;elsea[i][j]=0;}for(i=0;iprintf("%2d:",i+1); /*****纵列序号*****/for(j=0;j{printf("%3d",a[i][j]);}printf("\n");}}结果显⽰从键盘输⼊9,显⽰9阶单位矩阵,结果如下3. 其他⼯程优化问题有⼀箱形盖板,已知长度L=600mm ,宽度b=60mm ,厚度t s =0.5mm 承受最⼤单位载荷q=60N/cm ,设箱形盖板的材料为铝合⾦,其弹性模量MPa E 4107?=,泊松⽐3.0=µ,许⽤弯曲应⼒[]MPa 70=σ,许⽤剪应⼒[]MPa 45=τ,要求在满⾜强度、刚度和稳定性条件下,设计重量最轻的结构⽅案。
机械优化设计-复合型法
comple(2,3,3,0.00001,x,a,b,xcom,&f);
printf(" \n\n\n输出最优解及目标函数值:\n");
printf("\n x1=%.5f x2=%.5f f(x1,x2)=%.5f\n\n ",x[0],x[1],f);
(一)题目:用复合形法求约束优化问题
; ; 的最优解。
基本思路:在可行域中构造一个具有K个顶点的初始复合形。对该复合形各顶点的目标函数值进行比较,找到目标函数值最大的顶点(即最坏点),然后按一定的法则求出目标函数值有所下降的可行的新点,并用此点代替最坏点,构成新的复合形,复合形的形状每改变一次,就向最优点移动一步,直至逼近最优点。
{
xs=0;
for(l=0;l<ll;l++)
{
if(l!=lΒιβλιοθήκη )xs=xs+xcom[i][l];
}
if(lh>-1)
x0[i]=xs/(ll-1);
else
x0[i]=xs/ll;
}
}
void fxse(int n,int k,double x[],double xcom[][100],double fxk[])
iw=gau(x,g,kg);
if(iw==0)
goto s5;
for(i=0;i<n;i++)
xcom[i][0]=x[i];
for(l=1;l<k;l++)
for(i=0;i<n;i++)
复合形法
太原理工大学机械学院机测系课程上机实验报告课程名称:机械优化设计班级日期成绩评定姓名实验室老师签名实验名称用复合形法程序解题所用软件C++ DEV实验目的及内容实验目的:1.掌握并能够建立最优化基本类型问题的数学模型。
2.掌握最优化方法的基本概念、基本理论和基本方法,奠定最优化的理论基础。
3.能够熟练编制和调试最优化方法的程序,奠定解决实际中的优化问题的基础实验内容:理解复合形法并编写相关程序求其最优解。
1)2221)1()2()(min-+-=xxXF)(..2121≥-=xxXgt s2)(212≥--=xxXg取:321104]85[]65[-==-∈-∈εkxx实验原理:实验原理步骤、实验步骤:1,画流程图,编写程序;2,将目标函数代入;3,编译运行,将结果保存实验结果及分析**********复合形法计算结果**********本次优化的上下限为:a=[ -5.000, 6.000]b=[ -5.000, 8.000]初始复合形各顶点坐标及函数值:x( 0)=[ -5.0000000, 6.8509781], f( 0)= 83.2339449x( 1)=[ -5.0000000, 6.9139073], f( 1)= 83.9742994x( 2)=[ -5.0000000, 6.9560839], f( 2)= 84.4749350x( 3)=[ -5.0000000, 6.9535330], f( 3)= 84.4445555最低和最高顶点号:L= 0, H= 2复合形顶点值均方差:0.942570812迭代轮数k= 1x( 0)=[ -5.0000000, 6.8509781], f( 0)= 83.2339449x( 1)=[ -5.0000000, 6.9139073], f( 1)= 83.9742994x( 2)=[ -5.0000000, 6.8412118], f( 2)= 83.1197550x( 3)=[ -5.0000000, 6.9535330], f( 3)= 84.4445555最低和最高顶点号:L= 2, H= 3复合形顶点值均方差:0.790313540迭代轮数k= 2x( 0)=[ -5.0000000, 6.8509781], f( 0)= 83.2339449x( 1)=[ -5.0000000, 6.9139073], f( 1)= 83.9742994x( 2)=[ -5.0000000, 6.8412118], f( 2)= 83.1197550x( 3)=[ -5.0000000, 6.7584149], f( 3)= 82.1593422最低和最高顶点号:L= 3, H= 1复合形顶点值均方差: 1.158796098迭代轮数k= 3x( 0)=[ -5.0000000, 6.8509781], f( 0)= 83.2339449x( 1)=[ -5.0000000, 6.6907175],f( 1)= 81.3842661x( 2)=[ -5.0000000, 6.8412118], f( 2)= 83.1197550x( 3)=[ -5.0000000, 6.7584149], f( 3)= 82.1593422最低和最高顶点号:L= 1, H= 0复合形顶点值均方差: 1.326082257迭代轮数k= 4x( 0)=[ -5.0000000, 6.6496590], f( 0)= 80.9186469x( 1)=[ -5.0000000, 6.6907175], f( 1)= 81.3842661x( 2)=[ -5.0000000, 6.8412118], f( 2)= 83.1197550x( 3)=[ -5.0000000, 6.7584149], f( 3)= 82.1593422最低和最高顶点号:L= 0, H= 2复合形顶点值均方差: 1.284620848迭代轮数k= 5x( 0)=[ -5.0000000, 6.6496590], f( 0)= 80.9186469x( 1)=[ -5.0000000, 6.6907175], f( 1)= 81.3842661x( 2)=[ -5.0000000, 6.5154981], f( 2)= 79.4207197x( 3)=[ -5.0000000, 6.7584149], f( 3)= 82.1593422最低和最高顶点号:L= 2, H= 3复合形顶点值均方差: 1.843865066迭代轮数k= 6x( 0)=[ -5.0000000, 6.6496590], f( 0)= 80.9186469x( 1)=[ -5.0000000, 6.6907175], f( 1)= 81.3842661x( 2)=[ -5.0000000, 6.5154981], f( 2)= 79.4207197x( 3)=[ -5.0000000, 6.4368979], f( 3)= 78.5598586最低和最高顶点号:L= 3, H= 1复合形顶点值均方差: 1.889592676迭代轮数k= 7x( 0)=[ -5.0000000, 6.6496590], f( 0)= 80.9186469x( 1)=[ -5.0000000, 6.3303094], f( 1)= 77.4121981x( 2)=[ -5.0000000, 6.5154981], f( 2)= 79.4207197x( 3)=[ -5.0000000, 6.4368979], f( 3)= 78.5598586最低和最高顶点号:L= 1, H= 0复合形顶点值均方差: 2.100384836迭代轮数k= 8x( 0)=[ -5.0000000, 6.1388508], f( 0)= 75.4077872x( 1)=[ -5.0000000, 6.3303094], f( 1)= 77.4121981x( 2)=[ -5.0000000, 6.5154981], f( 2)= 79.4207197x( 3)=[ -5.0000000, 6.4368979], f( 3)= 78.5598586最低和最高顶点号:L= 0, H= 2复合形顶点值均方差: 2.741206122迭代轮数k= 9x( 0)=[ -5.0000000, 6.1388508], f( 0)= 75.4077872x( 1)=[ -5.0000000, 6.3303094], f( 1)= 77.4121981x( 2)=[ -5.0000000, 6.0244969], f( 2)= 74.2455693x( 3)=[ -5.0000000, 6.4368979], f( 3)= 78.5598586最低和最高顶点号:L= 2, H= 3复合形顶点值均方差: 2.738219360迭代轮数k= 10x( 0)=[ -5.0000000, 6.1388508], f( 0)= 75.4077872x( 1)=[ -5.0000000, 6.3303094], f( 1)= 77.4121981x( 2)=[ -5.0000000, 6.0244969], f( 2)= 74.2455693x( 3)=[ -5.0000000, 5.8105032], f( 3)= 72.1409408最低和最高顶点号:L= 3, H= 1复合形顶点值均方差: 3.274442715迭代轮数k= 11x( 0)=[ -5.0000000, 6.1388508], f( 0)= 75.4077872x( 1)=[ -5.0000000, 5.5505501], f( 1)= 69.7075064x( 2)=[ -5.0000000, 6.0244969], f( 2)= 74.2455693x( 3)=[ -5.0000000, 5.8105032], f( 3)= 72.1409408最低和最高顶点号:L= 1, H= 0复合形顶点值均方差: 3.840859862迭代轮数k= 12x( 0)=[ -5.0000000, 5.3484158], f( 0)= 67.9087203x( 1)=[ -5.0000000, 5.5505501], f( 1)= 69.7075064x( 2)=[ -5.0000000, 6.0244969], f( 2)= 74.2455693x( 3)=[ -5.0000000, 5.8105032], f( 3)= 72.1409408最低和最高顶点号:L= 0, H= 2复合形顶点值均方差: 3.914810890迭代轮数k= 13x( 0)=[ -5.0000000, 5.3484158], f( 0)= 67.9087203x( 1)=[ -5.0000000, 5.5505501], f( 1)= 69.7075064x( 2)=[ -5.0000000, 4.9787470], f( 2)= 64.8304278x( 3)=[ -5.0000000, 5.8105032], f( 3)= 72.1409408最低和最高顶点号:L= 2, H= 3复合形顶点值均方差: 4.655786221迭代轮数k= 14x( 0)=[ -5.0000000, 5.3484158], f( 0)= 67.9087203x( 1)=[ -5.0000000, 5.5505501], f( 1)= 69.7075064x( 2)=[ -5.0000000, 4.9787470], f( 2)= 64.8304278x( 3)=[ -5.0000000, 4.6192591], f( 3)= 62.0990368最低和最高顶点号:L= 3, H= 1复合形顶点值均方差: 4.977492567迭代轮数k= 15x( 0)=[ -5.0000000, 5.3484158], f( 0)= 67.9087203x( 1)=[ -5.0000000, 4.2432084], f( 1)= 59.5184005x( 2)=[ -5.0000000, 4.9787470], f( 2)= 64.8304278x( 3)=[ -5.0000000, 4.6192591], f( 3)= 62.0990368最低和最高顶点号:L= 1, H= 0复合形顶点值均方差: 5.130175009迭代轮数k= 16x( 0)=[ -5.0000000, 3.6586572], f( 0)= 56.0684582x( 1)=[ -5.0000000, 4.2432084], f( 1)= 59.5184005x( 2)=[ -5.0000000, 4.9787470], f( 2)= 64.8304278x( 3)=[ -5.0000000, 4.6192591], f( 3)= 62.0990368最低和最高顶点号:L= 0, H= 2复合形顶点值均方差: 5.591111034迭代轮数k= 17x( 0)=[ -5.0000000, 3.6586572], f( 0)= 56.0684582x( 1)=[ -5.0000000, 4.2432084], f( 1)= 59.5184005x( 2)=[ -5.0000000, 3.1271579], f( 2)= 53.5248005x( 3)=[ -5.0000000, 4.6192591], f( 3)= 62.0990368最低和最高顶点号:L= 2, H= 3复合形顶点值均方差: 5.383097686迭代轮数k= 18x( 0)=[ -5.0000000, 3.6586572], f( 0)= 56.0684582x( 1)=[ -5.0000000, 4.2432084],f( 1)= 59.5184005x( 2)=[ -5.0000000, 3.1271579], f( 2)= 53.5248005x( 3)=[ -5.0000000, 2.4505477], f( 3)= 51.1040888最低和最高顶点号:L= 3, H= 1复合形顶点值均方差: 5.032530479迭代轮数k= 19x( 0)=[ -5.0000000, 3.6586572], f( 0)= 56.0684582x( 1)=[ -5.0000000, 1.5650406], f( 1)= 49.3192709x( 2)=[ -5.0000000, 3.1271579], f( 2)= 53.5248005x( 3)=[ -5.0000000, 2.4505477], f( 3)= 51.1040888最低和最高顶点号:L= 1, H= 0复合形顶点值均方差: 4.075033247迭代轮数k= 20x( 0)=[ -5.0000000, 0.7198510], f( 0)= 49.0784834x( 1)=[ -5.0000000, 1.5650406], f( 1)= 49.3192709x( 2)=[ -5.0000000, 3.1271579], f( 2)= 53.5248005x( 3)=[ -5.0000000, 2.4505477], f( 3)= 51.1040888最低和最高顶点号:L= 0, H= 2复合形顶点值均方差: 2.445955398迭代轮数k= 21x( 0)=[ -5.0000000, 0.7198510], f( 0)= 49.0784834x( 1)=[ -5.0000000, 1.5650406], f( 1)= 49.3192709x( 2)=[ -5.0000000, -0.4348017], f( 2)= 51.0586558x( 3)=[ -5.0000000, 2.4505477], f( 3)= 51.1040888最低和最高顶点号:L= 0, H= 3复合形顶点值均方差: 1.421455082迭代轮数k= 22x( 0)=[ -5.0000000, 0.7198510], f( 0)= 49.0784834x( 1)=[ -5.0000000, 1.5650406], f( 1)= 49.3192709x( 2)=[ -5.0000000, -0.4348017], f( 2)= 51.0586558x( 3)=[ -5.0000000, 0.0206951], f( 3)= 49.9590382最低和最高顶点号:L= 0, H= 2复合形顶点值均方差: 1.090233677迭代轮数k= 23x( 0)=[ -5.0000000, 0.7198510], f( 0)= 49.0784834x( 1)=[ -5.0000000, 1.5650406], f( 1)= 49.3192709x( 2)=[ -5.0000000, 2.3328587], f( 2)= 50.7765122x( 3)=[ -5.0000000, 0.0206951], f( 3)= 49.9590382最低和最高顶点号:L= 0, H= 2复合形顶点值均方差:0.963931643迭代轮数k= 24x( 0)=[ -5.0000000, 0.7198510], f( 0)= 49.0784834x( 1)=[ -5.0000000, 1.5650406], f( 1)= 49.3192709x( 2)=[ -5.0000000, -0.2482854], f( 2)= 50.5582165x( 3)=[ -5.0000000, 0.0206951], f( 3)= 49.9590382最低和最高顶点号:L= 0, H= 2复合形顶点值均方差:0.869333822迭代轮数k= 25x( 0)=[ -5.0000000, 0.7198510], f( 0)= 49.0784834x( 1)=[ -5.0000000, 1.5650406], f( 1)= 49.3192709x( 2)=[ -5.0000000, 2.0903875], f( 2)= 50.1889450x( 3)=[ -5.0000000, 0.0206951], f( 3)= 49.9590382最低和最高顶点号:L= 0, H= 2复合形顶点值均方差:0.718762840迭代轮数k= 26x( 0)=[ -5.0000000, 0.7198510], f( 0)= 49.0784834x( 1)=[ -5.0000000, 1.5650406], f( 1)= 49.3192709x( 2)=[ -5.0000000, 0.3389249], f( 2)= 49.4370204x( 3)=[ -5.0000000, 0.0206951], f( 3)= 49.9590382最低和最高顶点号:L= 0, H= 3复合形顶点值均方差:0.490383508迭代轮数k= 27x( 0)=[ -5.0000000, 0.7198510], f( 0)= 49.0784834x( 1)=[ -5.0000000, 1.5650406], f( 1)= 49.3192709x( 2)=[ -5.0000000, 0.3389249], f( 2)= 49.4370204x( 3)=[ -5.0000000, 1.4296473], f( 3)= 49.1845968最低和最高顶点号:L= 0, H= 2复合形顶点值均方差:0.222366457迭代轮数k= 28x( 0)=[ -5.0000000, 0.7198510], f( 0)= 49.0784834x( 1)=[ -5.0000000, 1.5650406], f( 1)= 49.3192709x( 2)=[ -5.0000000, 1.5304375], f( 2)= 49.2813639x( 3)=[ -5.0000000, 1.4296473], f( 3)= 49.1845968最低和最高顶点号:L= 0, H= 1复合形顶点值均方差:0.166131819迭代轮数k= 29x( 0)=[ -5.0000000, 0.7198510], f( 0)= 49.0784834x( 1)=[ -5.0000000, 0.7867313], f( 1)= 49.0454835x( 2)=[ -5.0000000, 1.5304375], f( 2)= 49.2813639x( 3)=[ -5.0000000, 1.4296473], f( 3)= 49.1845968最低和最高顶点号:L= 1, H= 2复合形顶点值均方差:0.137913956迭代轮数k= 30x( 0)=[ -5.0000000, 0.7198510], f( 0)= 49.0784834x( 1)=[ -5.0000000, 0.7867313], f( 1)= 49.0454835x( 2)=[ -5.0000000, 0.6201420], f( 2)= 49.1442921x( 3)=[ -5.0000000, 1.4296473], f( 3)= 49.1845968最低和最高顶点号:L= 1, H= 3复合形顶点值均方差:0.086897399迭代轮数k= 31x( 0)=[ -5.0000000, 0.7198510], f( 0)= 49.0784834x( 1)=[ -5.0000000, 0.7867313], f( 1)= 49.0454835x( 2)=[ -5.0000000, 0.6201420], f( 2)= 49.1442921x( 3)=[ -5.0000000, 0.5917880], f( 3)= 49.1666371最低和最高顶点号:L= 1, H= 3复合形顶点值均方差:0.079891031迭代轮数k= 32x( 0)=[ -5.0000000, 0.7198510], f( 0)= 49.0784834x( 1)=[ -5.0000000, 0.7867313], f( 1)= 49.0454835x( 2)=[ -5.0000000, 0.6201420], f( 2)= 49.1442921x( 3)=[ -5.0000000, 0.8611643], f( 3)= 49.0192754最低和最高顶点号:L= 3, H= 2复合形顶点值均方差:0.070394704迭代轮数k= 33x( 0)=[ -5.0000000, 0.7198510], f( 0)= 49.0784834x( 1)=[ -5.0000000, 0.7867313],f( 1)= 49.0454835x( 2)=[ -5.0000000, 1.0090879], f( 2)= 49.0000826x( 3)=[ -5.0000000, 0.8611643], f( 3)= 49.0192754最低和最高顶点号:L= 2, H= 0复合形顶点值均方差:0.046304162迭代轮数k= 34x( 0)=[ -5.0000000, 1.1012143], f( 0)= 49.0102443x( 1)=[ -5.0000000, 0.7867313], f( 1)= 49.0454835x( 2)=[ -5.0000000, 1.0090879], f( 2)= 49.0000826x( 3)=[ -5.0000000, 0.8611643], f( 3)= 49.0192754最低和最高顶点号:L= 2, H= 1复合形顶点值均方差:0.025163811迭代轮数k= 35x( 0)=[ -5.0000000, 1.1012143], f( 0)= 49.0102443x( 1)=[ -5.0000000, 1.1229312], f( 1)= 49.0151121x( 2)=[ -5.0000000, 1.0090879], f( 2)= 49.0000826x( 3)=[ -5.0000000, 0.8611643], f( 3)= 49.0192754最低和最高顶点号:L= 2, H= 3复合形顶点值均方差:0.013205196迭代轮数k= 36x( 0)=[ -5.0000000, 1.1012143], f( 0)= 49.0102443x( 1)=[ -5.0000000, 1.1229312], f( 1)= 49.0151121x( 2)=[ -5.0000000, 1.0090879], f( 2)= 49.0000826x( 3)=[ -5.0000000, 1.1129387], f( 3)= 49.0127552最低和最高顶点号:L= 2, H= 1复合形顶点值均方差:0.011065035迭代轮数k= 37x( 0)=[ -5.0000000, 1.1012143], f( 0)= 49.0102443x( 1)=[ -5.0000000, 1.0113408], f( 1)= 49.0001286x( 2)=[ -5.0000000, 1.0090879], f( 2)= 49.0000826x( 3)=[ -5.0000000, 1.1129387], f( 3)= 49.0127552最低和最高顶点号:L= 2, H= 3复合形顶点值均方差:0.008121836迭代轮数k= 38x( 0)=[ -5.0000000, 1.1012143], f( 0)= 49.0102443x( 1)=[ -5.0000000, 1.0113408], f( 1)= 49.0001286x( 2)=[ -5.0000000, 1.0090879], f( 2)= 49.0000826x( 3)=[ -5.0000000, 0.9464393], f( 3)= 49.0028688最低和最高顶点号:L= 2, H= 0复合形顶点值均方差:0.005268438迭代轮数k= 39x( 0)=[ -5.0000000, 0.9159881], f( 0)= 49.0070580x( 1)=[ -5.0000000, 1.0113408], f( 1)= 49.0001286x( 2)=[ -5.0000000, 1.0090879], f( 2)= 49.0000826x( 3)=[ -5.0000000, 0.9464393], f( 3)= 49.0028688最低和最高顶点号:L= 2, H= 0复合形顶点值均方差:0.003755703迭代轮数k= 40x( 0)=[ -5.0000000, 1.0838142], f( 0)= 49.0070248x( 1)=[ -5.0000000, 1.0113408], f( 1)= 49.0001286x( 2)=[ -5.0000000, 1.0090879], f( 2)= 49.0000826x( 3)=[ -5.0000000, 0.9464393], f( 3)= 49.0028688最低和最高顶点号:L= 2, H= 0复合形顶点值均方差:0.003740303迭代轮数k= 41x( 0)=[ -5.0000000, 0.9272981], f( 0)= 49.0052856x( 1)=[ -5.0000000, 1.0113408], f( 1)= 49.0001286x( 2)=[ -5.0000000, 1.0090879], f( 2)= 49.0000826x( 3)=[ -5.0000000, 0.9464393], f( 3)= 49.0028688最低和最高顶点号:L= 2, H= 0复合形顶点值均方差:0.002951093迭代轮数k= 42x( 0)=[ -5.0000000, 1.0691112], f( 0)= 49.0047764x( 1)=[ -5.0000000, 1.0113408], f( 1)= 49.0001286x( 2)=[ -5.0000000, 1.0090879], f( 2)= 49.0000826x( 3)=[ -5.0000000, 0.9464393], f( 3)= 49.0028688最低和最高顶点号:L= 2, H= 0复合形顶点值均方差:0.002729299迭代轮数k= 43x( 0)=[ -5.0000000, 0.9368551], f( 0)= 49.0039873x( 1)=[ -5.0000000, 1.0113408], f( 1)= 49.0001286x( 2)=[ -5.0000000, 1.0090879], f( 2)= 49.0000826x( 3)=[ -5.0000000, 0.9464393], f( 3)= 49.0028688最低和最高顶点号:L= 2, H= 0复合形顶点值均方差:0.002398513迭代轮数k= 44x( 0)=[ -5.0000000, 1.0566871], f( 0)= 49.0032134x( 1)=[ -5.0000000, 1.0113408], f( 1)= 49.0001286x( 2)=[ -5.0000000, 1.0090879], f( 2)= 49.0000826x( 3)=[ -5.0000000, 0.9464393], f( 3)= 49.0028688最低和最高顶点号:L= 2, H= 0复合形顶点值均方差:0.002095651迭代轮数k= 45x( 0)=[ -5.0000000, 0.9449307], f( 0)= 49.0030326x( 1)=[ -5.0000000, 1.0113408], f( 1)= 49.0001286x( 2)=[ -5.0000000, 1.0090879], f( 2)= 49.0000826x( 3)=[ -5.0000000, 0.9464393], f( 3)= 49.0028688最低和最高顶点号:L= 2, H= 0复合形顶点值均方差:0.002029012迭代轮数k= 46x( 0)=[ -5.0000000, 1.0461888], f( 0)= 49.0021334x( 1)=[ -5.0000000, 1.0113408], f( 1)= 49.0001286x( 2)=[ -5.0000000, 1.0090879], f( 2)= 49.0000826x( 3)=[ -5.0000000, 0.9464393], f( 3)= 49.0028688最低和最高顶点号:L= 2, H= 3复合形顶点值均方差:0.001729933迭代轮数k= 47x( 0)=[ -5.0000000, 1.0461888], f( 0)= 49.0021334x( 1)=[ -5.0000000, 1.0113408], f( 1)= 49.0001286x( 2)=[ -5.0000000, 1.0090879], f( 2)= 49.0000826x( 3)=[ -5.0000000, 1.0468300], f( 3)= 49.0021930最低和最高顶点号:L= 2, H= 3复合形顶点值均方差:0.001471563迭代轮数k= 48x( 0)=[ -5.0000000, 1.0461888], f( 0)= 49.0021334x( 1)=[ -5.0000000, 1.0113408],f( 1)= 49.0001286x( 2)=[ -5.0000000, 1.0090879], f( 2)= 49.0000826x( 3)=[ -5.0000000, 0.9901944], f( 3)= 49.0000961最低和最高顶点号:L= 2, H= 0复合形顶点值均方差:0.001025689迭代轮数k= 49x( 0)=[ -5.0000000, 0.9758200], f( 0)= 49.0005847x( 1)=[ -5.0000000, 1.0113408], f( 1)= 49.0001286x( 2)=[ -5.0000000, 1.0090879], f( 2)= 49.0000826x( 3)=[ -5.0000000, 0.9901944], f( 3)= 49.0000961最低和最高顶点号:L= 2, H= 0复合形顶点值均方差:0.000252186*********************复合形法优化最优点及目标函数值为:x( *)=[ -5.0000000, 1.0090879], f( *)= 49.0000826迭代精度:0.000252186本次优化最终迭代次数为:49算法程序实现//*复合形法求仅有不等式的非线性最优化问题**/#include <math.h>#include <stdio.h>#include <stdlib.h>#include <time.h>#define N 2 /*给出优化问题的维数N*/#define K 4 /*给出复合形法顶点数K*/#define N1 5 /*给出约束方程个数K*/#define E 0.0000001 /*复合形法迭代精度*/#define NM 500 /*寻找初始复合形的最大次数*/FILE *fp;char outname[50]="复合形法计算结果.txt"; /*输出文件名*/int H=0,L=0; /*H,L--复合形顶点最大和最小值顶点号*/ double f[K]; /*本程序顶点值从f[0]开始*/struct{double x1[N]; /* double x2; 改为数组方式*/}Tpoint[K],xc,xr; /*Tpoint存放K个点的坐标,xc,xr分别为中心点和影射点坐标*//*目标函数子程序*/double function(double x[]){double zhi;zhi=(x[0]-2)(x[0]-2)+(x[1]-1)*(x[1]-1);return(zhi);}/*约束条件子程序*/int strain(double x[]){int i,fin=1;double g[N1];g[0]=x[1]-x[0]*x[0];g[1]=2-x[0]-x[1];for(i=0;i<N1;i++)if(g[i]≥0.){fin=0;break;}return(fin);}/*初始可行点产生区间*/void startab(double a[],double b[]){a[0]=-5.0;b[0]=6.0;a[1]=-5.0;b[1]=8.0;return;}/***********以上为修改部分***********//*输出当前迭代点坐标及目标函数值*/double xfout(double x[],int m){int j;double f;f=function(x);fprintf(fp," x(%3d)=[",m);for(j=0;j<N-1;j++)fprintf(fp,"%15.7lf,",x[j]);fprintf(fp,"%15.7lf], f(%3d)=%15.7lf\n",x[N-1],m,f);return f;}/**初始复合形****/int startfhx(double a[],double b[],int num){int i,i1,iw,kk=0;int j,j1,m,fh1=1;double sum2[N],sum3,delt1=0.01;double alf,r;srand( (unsigned)time( NULL ) ); /*种子函数*/do /*自动产生第一个可行点*/{for(i=0;i<N;i++){r=rand()/32767.; /*直接调用函数产生随机数*/Tpoint[0].x1[i]=a[i]+r*(b[i]-a[i]);}iw=strain(Tpoint[0].x1);kk=kk+1;if(kk>num){printf("找不到初始可行点,可能初始区间不合适!\n");fh1=2;return(fh1);}}while(iw==0);for(j=1;j<K;j++) /*产生其余个可行点*/{do{sum3=1.;for(i=0;i<N;i++){r=rand()/32767.; /*直接调用函数产生随机数*/Tpoint[j].x1[i]=a[i]+r*(b[i]-a[i]);}iw=strain(Tpoint[j].x1);if(iw==0){m=j;for(i1=0;i1<N;i1++)sum2[i1]=0.;for(i1=0;i1<N;i1++) /*求前j-1个顶点中心*/for(j1=0;j1<m;j1++)sum2[i1]+=Tpoint[j1].x1[i1];for(j1=0;j1<N;j1++)xc.x1[j1]=sum2[j1]/m;alf=0.5;do /*求中心的映射点*/{for(i=0;i<N;i++)Tpoint[m].x1[i]=xc.x1[i]+alf*(Tpoint[m].x1[i]-xc.x1[i]);sum3=0.;for(i1=0;i1<N;i1++)sum3+=(Tpoint[m].x1[i1]-xc.x1[i1])*(Tpoint[m].x1[i1]-xc.x1[i1]);sum3=sqrt(sum3);iw=strain(Tpoint[m].x1);}while(iw==0&&sum3>delt1);}}while(sum3<delt1);}return(fh1);}void suan() /*计算值并找出最好点和最差点*/{double max,min;int i;for(i=0;i<K;i++)f[i]=function(Tpoint[i].x1);max=f[0];min=f[0];H=0;L=0;for(i=1;i<K;i++){if(f[i]>max){max=f[i];H=i;}elseif(f[i]<min){min=f[i];L=i;}}return;}void suan1() /*找出次坏点*/{double min;int i,ih;min=f[L];ih=0;for(i=0;i<K;i++){if(i==H) continue;if(f[i]>min){min=f[i];ih=i;}}H=ih;return;}double panbie() /*检验迭代终止条件*/{double sum=0.0,temp;int i;for(i=0;i<K;i++)sum+=(f[i]-f[L])*(f[i]-f[L]);temp=sqrt(sum/K);return(temp);}int newfhx(double a[],double b[]){int i,j,fh1=1,chd=0;double sum1[N];double alfa; /**映射系数**/do{alfa=1.3;for(j=0;j<N;j++)sum1[j]=0.0;for(i=0;i<K;i++){if(i==H)continue;else{for(j=0;j<N;j++)sum1[j]+=Tpoint[i].x1[j];}}for(j=0;j<N;j++)xc.x1[j]=sum1[j]/(K-1);if(!(strain(xc.x1))){printf("xc is wrong非凸集\n");fh1=3;for(i=0;i<N;i++){a[i]=Tpoint[L].x1[i];b[i]=xc.x1[i];}return(fh1);}for(j=0;j<N;j++)xr.x1[j]=xc.x1[j]+alfa*(xc.x1[j]-Tpoint[H].x1[j]);while(!(strain(xr.x1))||(function(xr.x1)>=function(Tpoint[H].x1))){alfa=alfa*0.5;for(j=0;j<N;j++)xr.x1[j]=xc.x1[j]+alfa*(xc.x1[j]-Tpoint[H].x1[j]);if(alfa<E){if(chd==0){suan1(); /*寻找次坏点*/alfa=1.3;chd=1;break;}elsereturn(4);}}}while(chd==1);for(j=0;j<N;j++)Tpoint[H].x1[j]=xr.x1[j]; /**/return(fh1);}void main(){int i,val1,val2,dds,nmax;double a[N],b[N],fv;nmax=NM;fp=fopen(outname,"w");fprintf(fp,"**********复合形法计算结果**********\n\n");startab(a,b);fprintf(fp,"本次优化的上下限为:\n");fprintf(fp," a=[");for(i=0;i<N-1;i++)fprintf(fp,"%8.3f,",a[i]);fprintf(fp,"%8.3f]\n",a[N-1]);fprintf(fp," b=[");for(i=0;i<N-1;i++)fprintf(fp,"%8.3f,",b[i]);fprintf(fp,"%8.3f]\n",b[N-1]);do{val2=1;dds=1;val1=startfhx(a,b,nmax);if(val1==2)fprintf(fp,"找不到初始可行点,可能初始区间不合适!\n");else{fprintf(fp,"初始复合形各顶点坐标及函数值:\n");for(i=0;i<K;i++)fv=xfout(Tpoint[i].x1,i);suan();fprintf(fp," 最低和最高顶点号:L=%2d, H=%2d\n",L,H);fprintf(fp,"复合形顶点值均方差:%15.9lf\n\n",panbie());while(panbie()>E){val2=newfhx(a,b);if(val2==3){fprintf(fp,"该优化问题可行域为非凸集,");fprintf(fp,"重新给出优化的上下限为:\n");fprintf(fp,"a=[");for(i=0;i<N-1;i++)fprintf(fp,"%8.3f,",a[i]);fprintf(fp,"%8.3f]\n",a[N-1]);fprintf(fp,"b=[");for(i=0;i<N-1;i++)fprintf(fp,"%8.3f,",b[i]);fprintf(fp,"%8.3f]\n",b[N-1]);break;}suan();fprintf(fp,"迭代轮数k=%3d \n",dds);for(i=0;i<K;i++)fv=xfout(Tpoint[i].x1,i);fprintf(fp," 最低和最高顶点号:L=%2d, H=%2d\n",L,H);fprintf(fp,"复合形顶点值均方差:%15.9lf\n\n",panbie());dds++;}}}while(val2==3&&val1!=2);if(val2==4){fprintf(fp,"对次坏点的影射仍然无法找到下一个");fprintf(fp,"复合形顶点,计算终止。
机械优化复合形法 程序设计
课程设计(实验)材料(3)机械优化设计课程设计(实验)报告专业班级:设计题目:复合形程序设计学生姓名:学生学号:任课教师:2013年月日一、设计要求:根据已知条件,用复合形法完成一次迭代,只用反射变换复合形即可。
已知条件:1、目标函数:f(x)=25/(x1*x2*x2*x2)2、约束条件:g(x) 30/(x1*x2*x2*x2)-50<=0G(x) 0.0004*x1*x2-0.001<=0X1>=2 x1<=4 x2<=1 x2>=0.53、初始复合形顶点:X1=[2.2,0.55] X2=[2.4,0.6] X3=[2.6,0.65] X4=[2.8,0,7]二、方法原理:复合形法的基本思路是在n维空间的可行域中选取K个设计点(通常取n+1<=K<=2*n)作为初始复合形的顶点。
然后比较复合形各顶点目标函数的大小,其中目标函数值最大的点作为坏点,以坏点之外其余各点的中心为映射中心,寻找坏点的映射点,一般说来此映射点的目标函数值总是小于坏点的,也就是说映射点优于坏点。
这时,以映射点替换坏点与原复合形除坏点之外其余各点构成K个顶点的新的复合形。
如此反复迭代计算,在可行域中不断以目标函数值低的新点代替目标函数值最大的坏点从而构成新复合形,使复合形不断向最优点移动和收缩,直至收缩到复合形的各顶点与其形心非常接近、满足迭代精度要求时为止。
最后输出复合形各顶点中的目标函数值最小的顶点作为近似最优点。
三、程序清单:# include <stdio.h># include <math.h># define p 1.3# define k 4float fr,fh;float xr[2][1],xc[2][1];int xb_h,xb_xh;float f(float x[2][1]);float x1[2][1] = {{2.2},{0.55}};float x2[2][1] = {{2.4},{0.63}};float x3[2][1] = {{2.6},{0.65}};float x4[2][1] = {{2.8},{0.7 }};float Max_value,Min_value,Max_h_value; float shuzu[4];void hanshu_Maxvalue(void);void hanshu_Max_h_value(void);void zhshuzu(void);void hanshu_Minvalue(void);void chu_h(void);int ke_xr(void);int main(void){ int kexing_flag = 0;zhshuzu();hanshu_Minvalue();hanshu_Maxvalue();hanshu_Max_h_value();chu_h();while(ke_xr()){kexing_flag = 1;switch(xb_xh){case 1: fr = f(xr);fh = f(x1);if(fr < fh){ x1[0][0] = xr[0][0];x1[1][0] = xr[1][0]; }break;case 2: fr = f(xr);fh = f(x2);if(fr < fh){ x2[0][0] = xr[0][0];x2[1][0] = xr[1][0]; }break;case 3: fr = f(xr);fh = f(x3);if(fr < fh){ x3[0][0] = xr[0][0];x3[1][0] = xr[1][0]; } break;case 4: fr = f(xr);fh = f(x4);if(fr < fh){ x4[0][0] = xr[0][0];x4[1][0] = xr[1][0]; }break;} if(kexing_flag == 1)break;} printf("替换后结果为");printf("x1=");printf("[%.1f,%.2f]\n",x1[0][0],x1[1][0]);printf("输出\n");printf("x2=");printf("[%.1f,%.2f]\n",x2[0][0],x2[1][0]);printf("x3=");printf("[%.1f,%.2f]\n",x3[0][0],x3[1][0]);printf("x4=");printf("[%.1f,%.2f]\n",x4[0][0],x4[1][0]);return 0;}float f(float x[2][1]){float hanshuvalue;hanshuvalue = (25 * 1.0) / (x[0][0] * pow(x[1][0],3));return hanshuvalue;}void zhshuzu(void){shuzu[0] = f(x1);shuzu[1] = f(x2);shuzu[2] = f(x3);shuzu[3] = f(x4);}void hanshu_Minvalue(void){int i;Min_value = shuzu[0] ;for(i = 0; i < 4; i++)if(shuzu[i] <= Min_value )Min_value = shuzu[i] ;}void hanshu_Max_h_value(void){int i;Max_h_value = shuzu[0] ;for(i = 0; i<4; i++){if( xb_h == i)continue;elseif(shuzu[i] >= Max_h_value)Max_h_value = shuzu[i];} }void hanshu_Maxvalue(void){int i;Max_value = shuzu[0] ;for(i = 0; i < 4; i++)if(shuzu[i] >= Max_value ){Max_value = shuzu[i] ;xb_h = i;}}void chu_h(void){switch( xb_h){case 0: xc[0][0] = 1.0*(x2[0][0] + x3[0][0] + x4[0][0]) / (k-1);xc[1][0] = 1.0*(x2[1][0] + x3[1][0] + x4[1][0]) / (k-1);xr[0][0] = xc[0][0] + p*(xc[0][0] - x1[0][0]);xr[1][0] = xc[1][0] + p*(xc[1][0] - x1[1][0]); xb_xh = 1;break;case 1: xc[0][0] = 1.0*(x1[0][0] + x3[0][0] + x4[0][0]) / (k-1);xc[1][0] = 1.0*(x1[1][0] + x3[1][0] + x4[1][0]) / (k-1);xr[0][0] = xc[0][0] + p*(xc[0][0] - x2[0][0]);xr[1][0] = xc[1][0] + p*(xc[1][0] - x2[1][0]); xb_xh = 2;break;case 2: xc[0][0] = 1.0*(x1[0][0] + x2[0][0] + x4[0][0]) / (k-1);xc[1][0] = 1.0*(x1[1][0] + x2[1][0] + x4[1][0]) /(k-1);xr[0][0] = xc[0][0] + p*(xc[0][0] - x3[0][0]);xr[1][0] = xc[1][0] + p*(xc[1][0] - x3[1][0]); xb_xh = 3;break;case 3: xc[0][0] = 1.0*(x1[0][0] + x2[0][0] + x3[0][0]) / (k-1);xc[1][0] = 1.0*(x1[1][0] + x2[1][0] + x3[1][0]) / (k-1);xr[0][0] = xc[0][0] + p*(xc[0][0] - x3[0][0]);xr[1][0] = xc[1][0] + p*(xc[1][0] - x3[1][0]); xb_xh = 4;break;}}int ke_xr(void){if((30*1.0 / (xr[0][0]*pow(xr[1][0],3)) - 50) <= 0){ if((0.0004*xr[0][0]*xr[1][0] -0.001) <= 0)if(2 <= xr[0][0] && xr[0][0] <= 4 )if(0.5 <= xr[1][0] && xr[1][0] <= 1)return 1;} else return 0;}四、实验结果(要求附上程序运行结果截图)五、手算过程计算初始复合形各顶点的值f(X1)=68.3 f (X2)=48.2f (X3)=35.0 f (X4)=26.0坏点X(H)=X1 好点X(L)=X4去掉坏点后各点的几何中心X(C) X(C)=[2.6,0.65] 取映射α=1.3映射X(R)=X(C)+α(X(C)-X(H))=[2.82,0.78] 将映射点代入约束条件验证0.0004*2.82*0.78-0.001=-0.0001202<0 满足约束条件X(R)=[2.82,0.78] 是新的复合形顶点最优点为X(R)=[3.12,0.78]。
机械优化实验报告
一、实验目的本次实验旨在加深对机械优化设计方法的基本理论和算法步骤的理解,培养学生独立编制、调试计算机程序的能力,并掌握常用优化方法程序的使用方法。
通过实验,学生能够灵活运用优化设计方法解决工程实际问题。
二、实验内容本次实验主要涉及以下内容:1. 优化方法的基本原理2. 编程实现优化方法3. 优化方法的实际应用三、实验步骤1. 黄金分割法(1)基本原理黄金分割法是一种在给定初始区间内搜索极小点的一维搜索方法。
其基本原理是:在区间内取两个点,根据函数值的比较,将区间分为三段,保留包含极小值的段,再进行相同的操作,逐步缩小搜索区间。
(2)编程实现根据黄金分割法的基本原理,编写相应的C语言程序,实现一维搜索。
```c#include <stdio.h>#include <math.h>double f(double x) {// 定义目标函数return x x - 4 x + 4;}double golden_section_search(double a, double b, double tol) {double r = 0.618;double a1 = a + r (b - a); double a2 = b - r (b - a); double fa1 = f(a1);double fa2 = f(a2);while (fabs(b - a) > tol) { if (fa1 > fa2) {a = a1;a1 = a2;a2 = b - r (b - a); fa1 = fa2;fa2 = f(a2);} else {b = a2;a2 = a1;a1 = a + r (b - a); fa2 = fa1;fa1 = f(a1);}}return (a + b) / 2;}int main() {double x_min = golden_section_search(a, b, tol);printf("Optimal solution: x = %f\n", x_min);return 0;}```(3)结果分析通过运行程序,可以得到最优解 x = 2.000000,目标函数值为 f(x) = 0。
机械优化大作业-MATLAB复合型法
机床主轴机构优化设计机床主轴是机床中重要的零件之一,一般多为支撑空心阶梯轴。
为了便于使用材料力学进行结构分析,常常将阶梯轴简化成以当量直径表示的等截面轴。
如图0.1所示是一个已经简化处理的专用机床双主轴的力学模型。
从机床主轴制造成本较低和加工精度较高的要求出发,需要考虑主轴的自重和外身段挠度这样两个重要因素。
对于专用机床来说,并不追求过高的加工精度。
因此选取零件自身重量轻为设计目标,将主轴的刚度作为约束条件。
一、设计变量和目标函数当主轴的材料选定之后,与主轴重量设计方案有关设计变量主轴的外径D、孔径d、两支承跨度l、和外伸段长度a,如图0.1所示。
由于机床主轴的孔径主要取决于待加工棒料的直径,不能作为设计变量处理。
因此,设计变量为机床主轴重量最轻优化设计目标函数为二、约束条件1.刚度性条件机床的加工质量在很大程度上取决于主轴的刚度,主轴刚度是一个很重要的性能指标。
因此,要求主轴悬臂端挠度不超过给定的变形量y 0 。
根据材料力学可知,主轴悬臂端挠度为)()()(44231232d x E 3x x Fx 64EJ 3a l Fa y -+=+=π式中,)(44d -D 64J π=是空心主轴的惯性矩;E=2.1x105MPa 是主轴的弹性模量;F 是作用主轴外伸端的力。
整理得到主轴刚度的约束条件为0d x E 3x x Fx 64X g 442312301≥-+-=)()()(πy2.设计边界条件三个设计变量的边界约束条件为max min l l l ≤≤max min D D D ≤≤maxmin a a a ≤≤3.具体算例已知某机床主轴悬臂端受到的切削力F=15000N ,主轴内径d=30mm ,悬臂端许用挠度y 0=0.05mm 。
要求主轴两支承跨度mm lmm 650300≤≤,外径mm D mm 14060≤≤,悬臂长度mm a mm 15090≤≤。
建立优化的数学模型)30)((7854.0)(22231++=x x x X fTT a D l x x x X ],,[],,[321==0)30()(7009.91)(..44231231≥-+⨯-=x x x x X g t s01300/)(12≥-=x X g0650/1)(13≥-=x X g0160/)(24≥-=x X g0140/1)(25≥-=x X g0190/)(36≥-=x X g0150/1)(37≥-=x X g4.基于matlab 程序的复合形法实现优化(1)算法原理复合形法来源于无约束优化问题的单纯形法,通过构造复合形来求得最优解,新的复合形通过替换旧的复合形中的坏点(目标函数最大或次大的点)得到,替换方式仍是单纯性法中的反应、压缩、扩展这几个基本方法。
机械优化设计实验报告浙江理工大学
机械优化设计实验报告班级:XXXX姓名:XX学号:XXXXXXXXXXX一、外推法1、实验原理常用的一维优化方法都是通过逐步缩小极值点所在的搜索区间来求最优解的。
一般情况下,我们并不知道一元函数f(X)极大值点所处的大概位置,所以也就不知道极值点所在的具体区域。
由于搜索区间范围的确定及大小直接影响着优化方法的收敛速度及计算精度。
因此,一维优化的第一步应首先确定一个初始搜索区间,并且在该区间内函数有唯一的极小值存在。
该区间越小越好,并且仅存在唯一极小值点。
所确定的单股区间应具有如下性质:如果在[α1,α3]区间内任取一点α2,,α1<α2<α3或α3<α2<α1,则必有f(α1)>f(α2)<f(α3)。
由此可知,单股区间有一个共同特点:函数值的变化规律呈现“大---小---大”或“高---低---高”的趋势,在极小值点的左侧,函数值呈严格下降趋势,在极小值点右侧,函数值呈严格上升趋势,这正是单股区间依据。
2、实验工具C-Free3.5软件3、程序调试#include<stdio.h>#include<math.h>#define f(x) 3*x*x-8*x+9 //定义函数int main(){double a0,a1,a2,a3,f1,f2,f3,h;printf(“a0=”,a0); //单谷区间起始点scanf(“%lf”,&a0);printf(“h=”,h); //起始的步长scanf(“%lf”,&h);a1=a0;a2=a1+h;f1=f(a0);f2=f(a2);if(f1>f2) //判断函数值的大小,确定下降方向{a3=a2+h;f3=f(a3);}else{h=-h;a3=a1;f3=f1;a1=a2;f1=f2;a2=a3;f2=f3;a3=a2+h;f3=f(a3);}while(f3<=f2) //当不满足上述比较时,说明下降方向反向,继续进行判断{h=2*h;a1=a2;f1=f2;a2=a3;f2=f3;a3=a2+h;f3=f(a3);}printf(“a1=%lf,a3=%lf\n”,a1,a3);printf(“[a1,a3]=[%lf,%lf]\n”,a1,a3); //输出区间}4、调试结果5、总结与讨论1)当写成void main时会出现如下警告改成int main警告消失。
机械优化设计实例
机械优化设计实例压杆的最优化设计压杆是一根足够细长的直杆,以学号为p值,自定义有设计变量的尺寸限制值,求在p一定时d1、d2和l分别取何值时管状压杆的体积或重量最小?(内外直径分别为d1、d2)两端承向轴向压力,并会因轴向压力达到临界值时而突然弯曲,失去稳定性,所以,设计时,应使压应力不超过材料的弹性极限,还必须使轴向压力小于压杆的临界载荷。
解:根据欧拉压杆公式,两端铰支的压杆,其临界载荷为:I-—材料的惯性矩,EI为抗弯刚度1、设计变量现以管状压杆的内径d1、外径d2和长度l作为设计变量2、目标函数以其体积或重量作为目标函数3、约束条件以压杆不产生屈服和不破坏轴向稳定性,以及尺寸限制为约束条件,在外力为p的情况下建立优化模型:1)2)3)罚函数:传递扭矩的等截面轴的优化设计解:1、设计变量:2、目标函数以轴的重量最轻作为目标函数:3、约束条件:1)要求扭矩应力小于许用扭转应力,即:式中:——轴所传递的最大扭矩——抗扭截面系数。
对实心轴2)要求扭转变形小于许用变形。
即:扭转角:式中:G-—材料的剪切弹性模数Jp—-极惯性矩,对实心轴:3)结构尺寸要求的约束条件:若轴中间还要承受一个集中载荷,则约束条件中要考虑:根据弯矩联合作用得出的强度与扭转约束条件、弯曲刚度的约束条件、对于较重要的和转速较高可能引起疲劳损坏的轴,应采用疲劳强度校核的安全系数法,增加一项疲劳强度不低于许用值的约束条件。
二级齿轮减速器的传动比分配二级齿轮减速器,总传动比i=4,求在中心距A最小下如何分配传动比?设齿轮分度圆直径依次为d1、d2、d3、d4。
第一、二级减速比分别为i1、i2。
假设d1=d3,则:七辊矫直实验罚函数法是一种对实际计算和理论研究都非常有价值的优化方法,广泛用来求解约束问题。
其原理是将优化问题中的不等式约束和等式约束加权转换后,和原目标函数结合成新的目标函数,求解该新目标函数的无约束极小值,以期得到原问题的约束最优解。
广东工业大学机械优化设计报告
题目名称机械优化设计实验报告学院机电工程学院班级微电子制造14(1)班姓名李启宏学号 3114000389 指导教师李德源2017年6月4日实验一:一维优化程序的设计、调试与运用一、实验目的与要求通过本实验使学生了解常用一维优化方法的基本原理和特点,并通过对某种具体方法的编程调试及验证,加深对该方法基本理论的理解,并培养学生独立编程能力。
学生自主从进退法、黄金分割法、二次插值法中任选一种,自编程序,调试验证后对实验指导书中所给一维问题进行求解。
二、基本原理黄金分割法:一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。
一维搜索的解法很多,这里主要采用黄金分割法(0.618法)。
该方法用不变的区间缩短率0.618代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。
三、实验主要仪器设备和材料计算机四、实验方案1、复习教材中有关一维优化的基本理论与基本方法;2、选定某种方法,根据其算法框图编程;3、在计算机上用例题调试、验证;4、用调试好的程序求解下列所给一维优化问题。
用自编优化程序求解下列一维优化问题:2、60645)(min 234+-+-=x x x xx F搜索区间:[1,10],迭代精度E1=10-5五、问题与讨论1、常用一维优化方法有哪些?答:常用的一维优化方法有:格点法、 黄金分割法、二次插值法、三次插值法。
2、进退法、黄金分割法、二次插值法基本原理是什么?各有什么特点? 答:一、进退法:原理:在搜索区间内部[a,b]插入n 个内等分点,比较各分点x i 的坐标对应的函数值y i ,取其中的最小者y m ,在y m 相对应的点x m 之左右两侧相邻点x m-1,x m+1所确定的区间内,求出极小点x ·。
若[x m-1,x m+1]区间长度满足预定的收敛精度要求,则认为x m 是具有满足精度要求的最优点。
机械优化设计方案三个案例
机械优化设计案例11.题目对一对单级圆柱齿轮减速器,以体积最小为目标进行优化设计。
2■已知条件已知数输入功p=58kw,输入转速n i=1000r/min,齿数比u=5, 齿轮的许用应力[、:]H=550Mpa,许用弯曲应力[:]F=400Mpa。
3■建立优化模型3.1问题分析及设计变量的确定由已知条件得求在满足零件刚度和强度条件下,使减速器体积最小的各项设计参数。
由于齿轮和轴的尺寸(即壳体内的零件) 是决定减速器体积的依据,故可按它们的体积之和最小的原则建立目标函数。
单机圆柱齿轮减速器的齿轮和轴的体积可近似的表示为:2 2 2 2 2 2v =0.25*0 -d z1) 0.25二b(d2 -d z2) -0.25(b -c)(D g2 -d g2)-d0c 0.25二l(d; d;2) 7二d; 8:d;22 2 2 2 2 2 2 2= 0.25叫m z b _d z初+m z u b _d z2b-0.8b(mzu—10m) +2 2 2 22.05bd Z2 -0.05b(mzu -10m -1.6d z2)+d zd + 28d z1 +32d z2】式中符号意义由结构图给出,其计算公式为d1= mz, d2= mz2D g2二u m1z10md g2=1.6d z2,d0=0.25(u m1z10m-1.6d z2)c =0.2b由上式知,齿数比给定之后,体积取决于b、Z1、m、l、d z1和d z2六个参数,则设计变量可取为x 二[X1 X2 X3 X4 X冷]丁=[b 乙m I d z1 d z2〕T3.2目标函数为2 2 2 2 2 2 f (x^ 0.785398(4.75X1X2X385X1X2X3-85X1X30.92X1X^X1X52 2 2 2 2 20.8x1x2x3x^ -1.6x1x3x6x4x5x4x628x532x6)—;min3.3约束条件的建立1)为避免发生根切,应有乙-為山=17,得g i(x) =17 _X2 乞0:? .:■■ b.■:min 二—T max m CO CD 2 )齿宽应满足 d , Fin和Fax为齿宽系数'd的最大值和最小值,一般取;:min =0.9, max=1.4,得g2(x) =0.9 -为(X2X3) _0g3(x) =x1;(X2X3) -1.4 乞03)动力传递的齿轮模数应大于2mm,得g4(x)=2-X3 乞04)为了限制大齿轮的直径不至过大,小齿轮的直径不能大于d1 max 彳得g5(x) 7x3 -3 0 005)齿轮轴直径的范围:dzmin - dz "/x得g6(x)=1 0 0X5 _0g7(x) =X5 -1 5 00g8(x) =1 3 0X6 岂0g9(x)=冷一2 0 0 06)轴的支撑距离1按结构关系,应满足条件:1 - b • 2:伽• 0.5dz2(可取比min =20),得g10 (x)二X1 0.5x6 - X4 - 40 _ 0 7)齿轮的接触应力和弯曲应力应不大于许用值,得g11(x) =1468250. (x2x3 _ % ) -550 - 0q12(x)=7098 2 Q-4 2 一400 —0 12X1X2X3 (0.169 0.6666 10 x^ 0.854 10 X2)g13(x)=70982 2 4 2 -400 空01X1X2X3 (0.2824 0.177 10 x^0.394 10 X2)8)齿轮轴的最大挠度;max 不大于许用值,得g 14(x ) =117.04x ;.(X 2X 3X 4) -0.003x 4 乞 09)齿轮轴的弯曲应力;w 不大于许用值['」w ,得 g i5(x )=厶](2.85"0 生)2 +2.4X101'-5.5 兰0X 5 V X 2X 3 | 61 J 2.85^ 10 沧\2 丄c 12g i6(x )=p 1( -------------- ) +6X10 —5.5 兰 0X 6 t X 2X 34■优化方法的选择由于该问题有6个设计变量,16个约束条件的优化设计问题, 采用传统的优化设计方法比较繁琐,比较复杂,所以选用 Matlab 优化工具箱中的fmincon 函数来求解此非线性优化问题,避免了 较为繁重的计算过程。
机械优化设计实验报告
《机械优化设计》实验报告目录1.进退法确定初始区间 (3)1.1 进退法基本思路 (3)1.2 进退法程序框图 (3)1.3 题目 (3)1.4 源程序代码及运行结果 (3)2.黄金分割法 (4)2.2黄金分割法流程图 (4)2.3 题目 (5)2.4 源程序代码及结果 (5)3.牛顿型法 (5)3.1牛顿型法基本思路 (6)3.2 阻尼牛顿法的流程图 (6)3.3 题目 (6)3.4 源程序代码及结果 (6)4.鲍威尔法 (7)4.1 鲍威尔法基本思路 (7)4.2 鲍威尔法流程图 (7)4.3 题目 (8)4.4 源程序代码及结果 (8)5. 复合形法 (15)5.1 复合行法基本思想 (15)5.3 源程序代码及结果 (15)6. 外点惩罚函数法 (23)6.1解题思路: (23)6.2 流程框图 (23)6.3 题目 (23)6.4 源程序代码及结果 (23)7.机械设计实际问题分析 (29)7.2计算过程如下 (29)7.3 源程序编写 (30)8.报告总结 (32)1.进退法确定初始区间1.1 进退法基本思路:按照一定的规则试算若干个点,比较其函数值的大小,直至找到函数值按“高-低-高”变化的单峰区间。
1.2 进退法程序框图1.3 题目:用进退法求解函数()2710=-+的搜索区间f x x x1.4 源程序代码及运行结果#include <stdio.h>#include <math.h>main(){float h,h0,y1,y2,y3,a1=0,a2,a3,fa2,fa3;scanf("h0=%f,y1=%f",&h0,&y1);h=h0;a2=h;y2=a2*a2-7*a2+10;if (y2>y1){h=-h;a3=a1;y3=y1;loop:a1=a2;y1=y2;a2=a3;y2=y3;}a3=a2+2*h;y3=a3*a3-7*a3+10;if (y3<y2){goto loop;}elseprintf("a1=%f,a2=%f,a3=%f,y1=%f,y2=%f,y3=%f\n",a1,a2,a3,y1,y2,y3);} 搜索区间为0 62.黄金分割法2.1黄金分割法基本思路:通过不断的缩短单峰区间的长度来搜索极小点的一种有效方法。
机械优化设计复合型法求解
复合型法实验报告一.复合形法求约束思想在可行区内构造一个具有k个顶点的初始复合形.对该复合形的顶点的目标函数值进行比较,找到目标函数值最大的顶点(称最坏点),然后按一定的法则求出目标函数值的所有下降的可行的新点,并用此点代替最坏点,构成新的复合形,复合形的形状每改变一次,就向最优点移动一步,直至逼近最优点.二.程序框图三.程序#include<math.h>double objfx(double x[]){double ff;ff=(x[0]-5)*(x[0]-5)+4*(x[1]-6)*(x[1]-6);return ff;}#include<stdio.h>void main(){void comple(int n,int k,int kg,double ep,double x[],double bl[],double bu[], double xcom[][100],double *f) ;double a[]={0,0},b[]={10,20},f,x[2],xcom[2][100];comple(2,3,3,0.00001,x,a,b,xcom,&f);printf(" \n\n\n 输出最优解及目标函数值:\n");printf("\n x1=%.5f x2=%.5f f(x1,x2)=%.5f\n\n ",x[0],x[1],f); }#include <stdlib.h>#include <math.h>#include <stdio.h>double objfx(double x[]);void constraint(double x[],double g[]);void constraint(double x[],double g[]){g[0]=64-x[0]*x[0]-x[1]*x[1];g[1]=x[1]-x[0]-10;g[2]=x[0]-10;}int gau(double x[],double g[],int kg){int i;constraint(x,g);for(i=0;i<kg;i++){if(g[i]>0)goto s33;}return 1;s33:return 0;}void xcent(int n,int k,int ll,int lh,double x0[],double xcom[][100]) {int i,l;double xs;for(i=0;i<n;i++){xs=0;for(l=0;l<ll;l++){if(l!=lh)xs=xs+xcom[i][l];}if(lh>-1)x0[i]=xs/(ll-1);elsex0[i]=xs/ll;}}void fxse(int n,int k,double x[],double xcom[][100],double fxk[]) {int l,lp,lp1,i;double temp;for(l=0;l<k-1;l++)for(lp=0;lp<k-l;lp++){lp1=lp+1;if(fxk[lp]<=fxk[lp1]){temp=fxk[lp];fxk[lp]=fxk[lp1];fxk[lp1]=temp;for(i=0;i<n;i++){x[i]=xcom[i][lp];xcom[i][lp]=xcom[i][lp1];xcom[i][lp1]=x[i];}}}}void comple(int n,int k,int kg,double ep,double x[],double bl[],double bu[], double xcom[][100],double *f){int i,iw,l,ll,lh,it;double fx,fx0,sdx,fxh,fxr,alp;double *x0=(double*)calloc(n,sizeof(double));double *xh=(double*)calloc(n,sizeof(double));double *xr=(double*)calloc(n,sizeof(double));double *fxk=(double*)calloc(k,sizeof(double));double *g=(double*)calloc(kg,sizeof(double));s5: for(i=0;i<n;i++)x[i]=bl[i]+rand()/40000.0*(bu[i]-bl[i]);iw=gau(x,g,kg);if(iw==0)goto s5;for(i=0;i<n;i++)xcom[i][0]=x[i];for(l=1;l<k;l++)for(i=0;i<n;i++)xcom[i][l]=bl[i]+rand()/50000.0*(bu[i]-bl[i]);lh=-1;for(ll=1;ll<k;ll++){xcent(n,k,ll,lh,x0,xcom);iw=gau(x0,g,kg);if(iw==0)goto s5;for(i=0;i<n;i++)x[i]=xcom[i][ll+1];s24: iw=gau(x,g,kg);if(iw==0){for(i=0;i<n;i++)x[i]=x0[i]+0.5*(x[i]-x0[i]);goto s24;}else{for(i=0;i<n;i++)xcom[i][ll+1]=x[i];}}for(l=0;l<k;l++){for(i=0;i<n;i++)x[i]=xcom[i][l];fx=objfx(x);fxk[l]=fx;}it=0;s14: it=it+1;printf("\n\n\n N= %2d\n",it);lh=-1;xcent(n,k,k,lh,x0,xcom);fx0=objfx(x0);iw=gau(x0,g,kg);for(i=0;i<n;i++)printf(" X(%d)min=%.5f ",i+1,x0[i]);printf(" Fmin=%.5f\n",fx0);for(i=0;i<kg;i++)printf( " G(%d)min=%.5f",i,g[i]);sdx=0;for(l=0;l<k;l++)sdx=sdx+(fx0-fxk[l])*(fx0-fxk[l]);sdx=sqrt(sdx/(double)k);if(sdx<ep) goto s38;fxse(n,k,x,xcom,fxk);lh=0;s22: fxh=fxk[lh];for(i=0;i<n;i++)xh[i]=xcom[i][lh];xcent(n,k,k,lh,x0,xcom);iw=gau(x0,g,kg);if(iw==0)goto s36;alp=1.3;s12: for(i=0;i<n;i++)xr[i]=x0[i]+alp*(x0[i]-xh[i]);iw=gau(xr,g,kg);if(iw==0){alp=alp*0.5;goto s12;}fxr=objfx(xr);if(fxr>=fxh){if(alp>1.0e-4){alp=alp*0.5;goto s12;}lh=lh+1;if(lh<3)goto s22;}for(i=0;i<n;i++)xcom[i][lh]=xr[i];fxk[lh]=fxr;goto s14;s36: for(i=0;i<n;i++){bl[i]=xcom[i][k];bu[i]=x0[i];}goto s5;s38: for(i=0;i<n;i++)x[i]=x0[i];*f=objfx(x);free(x0);free(xh);free(xr);free(g);free(fxk);}四.程序结果。
机械优化设计实验报告
机械优化设计实验报告文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)《机械优化设计》实验报告目录1.进退法确定初始区间进退法基本思路:按照一定的规则试算若干个点,比较其函数值的大小,直至找到函数值按“高-低-高”变化的单峰区间。
进退法程序框图题目:用进退法求解函数()2710=-+的搜索区间f x x x源程序代码及运行结果#include <>#include <>main(){float h,h0,y1,y2,y3,a1=0,a2,a3,fa2,fa3;scanf("h0=%f,y1=%f",&h0,&y1);h=h0;a2=h;y2=a2*a2-7*a2+10;if (y2>y1){h=-h;a3=a1;y3=y1;loop:a1=a2;y1=y2;a2=a3;y2=y3;}a3=a2+2*h;y3=a3*a3-7*a3+10;if (y3<y2){goto loop;}elseprintf("a1=%f,a2=%f,a3=%f,y1=%f,y2=%f,y3=%f\n",a1,a2,a3,y1,y2,y3);} 搜索区间为0 62.黄金分割法黄金分割法基本思路:通过不断的缩短单峰区间的长度来搜索极小点的一种有效方法。
按λ(618.0=λ) 缩小 比较)(x f 大小 确定取舍区间。
黄金分割法流程图题目:对函数()279f x x x =-+,给定搜索区间08x ≤≤时,试用黄金分割法求极小点源程序代码及结果:f=inline('x^2-7*x+9')a=0;b=8;eps=;a1=*(b-a);y1=f(a1);a2=a+*(b-a);y2=f(a2);while (abs(b-a)>eps)if(y1>=y2)a=a1;a1=a2;y1=y2;a2=a+*(b-a);y2=f(a2);elseb=a2;a2=a1;y2=y1; a1=*(b-a);y1=f(a1);endendxxx=*(a+b)f =Inline function:f(x) = x^2-7*x+9xxx =3.牛顿型法牛顿型法基本思路:在k x邻域内用一个二次函数()xφ来近似代替原目标函数,并将()xφ的极小点作为对目标函数()f x求优的下一个迭代点1k x+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
fxk[l]=fx;
}
it=0;
s14: it=it+1;
printf("\n\n\n N= %2d\n",it);
lh=-1;
xcent(n,k,k,lh,x0,xcom);
fx0=objfx(x0);
iw=gau(x0,g,kg);
for(i=0;i<n;i++)
printf("
X(%d)min=%.5f ",i+1,x0[i]);
int gau(double x[],double g[],int kg) {
int i; constraint(x,g); for(i=0;i<kg;i++) {
if(g[i]>0)
goto s33; } return 1; s33:return 0; } void xcent(int n,int k,int ll,int lh,double x0[],double xcom[][100]) { int i,l; double xs; for(i=0;i<n;i++) { xs=0; for(l=0;l<ll;l++) {
bu[], double xcom[][100],double *f) {
int i,iw,l,ll,lh,it; double fx,fx0,sdx,fxh,fxr,alp; double *x0=(double*)calloc(n,sizeof(double)); double *xh=(double*)calloc(n,sizeof(double)); double *xr=(double*)calloc(n,sizeof(double)); double *fxk=(double*)calloc(k,sizeof(double)); double *g=(double*)calloc(kg,sizeof(double)); s5: for(i=0;i<n;i++)
四.程序结果
bu[], double xcom[][100],double *f) ;
double a[]={0,0},b[]={10,20},f,x[2],xcom[2][100];
comple(2,3,3,0.00001,x,a,b,xcom,&f); printf(" \n\n\n 输出最优解及目标函数值:\n"); printf("\n x1=%.5f x2=%.5f f(x1,x2)=%.5f\n\n ",x[0],x[1],f); } #include <stdlib.h> #include <math.h> #include <stdio.h> double objfx(double x[]); void constraint(double x[],double g[]); void constraint(double x[],double g[]) { g[0]=64-x[0]*x[0]-x[1]*x[1]; g[1]=x[1]-x[0]-10; g[2]=x[0]-10; }
if(l!=lh) xs=xs+xcom[i][l];
} if(lh>-1)
x0[i]=xs/(ll-1); else
x0[i]=xs/ll; } }
void fxse(int n,int k,double x[],double xcom[][100],double fxk[]) {
int l,lp,lp1,i; double temp; for(l=0;l<k-1;l++)
if(sdx<ep) goto s38;
fxse(n,k,x,xcom,fxk);
lh=0;
s22: fxh=fxk[lh];
for(i=0;i<n;i++)
xh[i]=xcom[i][lh]; xcent(n,k,k,lh,x0,xcom); iw=gau(x0,g,kg); if(iw==0)goto s36; alp=1.3; s12: for(i=0;i<n;i++)
ff=(x[0]-5)*(x[0]-5)+4*(x[1]-6)*(x[1]-6);
return ff;
}
#include<stdio.h>void main()
{
void comple(int n,int k,int kg,double ep,double x[],double bl[],double
printf(" Fmin=%.5f\n",fx0);
for(i=0;i<kg;i++)
printf( "
G(%d)min=%.5f",i,g[i]);
sdx=0;
for(l=0;l<k;l++)
sdx=sdx+(fx0-fxk[l])*(fx0-fxk[l]);
sdx=sqrt(sdx/(double)k);
lh=-1; for(ll=1;ll<k;ll++) {
xcent(n,k,ll,lh,x0,xcom);
iw=gau(x0,g,kg); if(iw==0)
goto s5; for(i=0;i<n;i++)
x[i]=xcom[i][ll+1]; s24: iw=gau(x,g,kg);
if(iw==0) {
x[i]=bl[i]+rand()/40000.0*(bu[i]-bl[i]); iw=gau(x,g,kg); if(iw==0)
goto s5; for(i=0;i<n;i++)
xcom[i][0]=x[i]; for(l=1;l<k;l++)
for(i=0;i<n;i++) xcom[i][l]=bl[i]+rand()/50000.0*(bu[i]-bl[i]);
} for(i=0;i<n;i++)
xcom[i][lh]=xr[i]; fxk[lh]=fxr; goto s14; s36: for(i=0;i<n;i++) {
bl[i]=xcom[i][k]; bu[i]=x0[i];
} goto s5; s38: for(i=0;i<n;i++)
x[i]=x0[i]; *f=objfx(x); free(x0); free(xh); free(xr); free(g); free(fxk); }
xr[i]=x0[i]+alp*(x0[i]-xh[i]); iw=gau(xr,g,kg); if(iw==0) {
alp=alp*0.5; goto s12; } fxr=objfx(xr); if(fxr>=fxh) { if(alp>1.0e-4) {
alp=alp*0.5; goto s12; } lh=lh+1; if(lh<3)goto s22;
复 合 型 法 实 验 报 告
院系:机电工程学院 专业:机制自动化 班级:10--03 班 姓名: 学号:
一.复合形法求约束思想
在可行区内构造一个具有 k 个顶点的初始复合形.对该复合形的 顶点的目标函数值进行比较,找到目标函数值最大的顶点(称最坏点), 然后按一定的法则求出目标函数值的所有下降的可行的新点,并用此 点代替最坏点,构成新的复合形,复合形的形状每改变一次,就向最优 点移动一步,直至逼近最优点.
for(lp=0;lp<k-l;lp++) {
lp1=lp+1; if(fxk[lp]<=fxk[lp1]) {
temp=fxk[lp]; fxk[lp]=fxk[lp1]; fxk[lp1]=temp; for(i=0;i<n;i++) {
x[i]=xcom[i][lp]; xcom[i][lp]=xcom[i][lp1]; xcom[i][lp1]=x[i]; } } } } void comple(int n,int k,int kg,double ep,double x[],double bl[],double
for(i=0;i<n;i++) x[i]=x0[i]+0.5*(x[i]-x0[i]);
goto s24; } else {
for(i=0;i<n;i++) xcom[i][ll+1]=x[i];
} } for(l=0;l<k;l++) { for(i=0;i<n;i++) x[i]=xcom[i][l]; fx=objfx(x);
二.程序框图
开始
输入 n,k,ε
形成初始复合形的 k 个顶点 xj(j=1,2,3,.....k)
计算各顶点的目标函数值
a=xl
将各定点的目标函数值和坐标
b=xc
按目标函数值的大小排序
是 δ <ε 否
计算出去 xH 后的各顶点中心 xc=1−1k x
������ ������ =1
xj
否 xc 可行?
是
反射点 xr=xc+α (xc-xh)
x*=xl,f*=fl 结束
xr 可行?
否
是
否
f(xr)<f(xh)?
α =0.5α 否
α <=10^(-10)?
是
是
xh=xr