Google大数据发展与应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
IT新技术课题报告Google大数据技术
专业名称:软件工程
姓名:王六平
2019年12月19日
目录
一、简述 (4)
二、Google经典三篇大数据论文介绍 (5)
2.1、GFS (5)
2.2、MapReduce (6)
2.3、BigTable一个分布式的结构化数据存储系统 (7)
三、Google新大数据论文介绍 (8)
3.1、Caffeine:处理个体修改 (8)
3.2、Pregel:可扩展的图计算 (9)
3.3、Dremel:在线可视化 (11)
四、Google大数据的应用 (14)
一、大数据时代的来临
1.大数据的概念:
按照维基百科上的定义,所谓“大数据”(big data)在当今的互联网业指的是这样一种现象:一个网络公司日常运营所生成和积累用户网络行为的数据“增长如此之快,以至于难以使用现有的数据库管理工具来驾驭”。这些数据量是如此之大,已经不是以我们所熟知的多少G和多少T为单位来衡量,而是以P(1000个T),E(一百万个T)或Z(10亿个T)为计量单位,所以称之为大数据。
大数据泛指巨量的数据集,因可从中挖掘出有价值的信息而受到重视。《华尔街日报》将大数据时代、智能化生产和无线网络革命称为引领未来繁荣的三大技术变革。麦肯锡公司的报告指出数据是一种生产资料,大数据是下一个创新、竞争、生产力提高的前沿。世界经济论坛的报告认定大数据为新财富,价值堪比石油。因此,发达国家纷纷将开发利用大数据作为夺取新一轮竞争制高点的重要抓手。
2.大数据的发展
互联网特别是移动2互联网的发展,加快了信息化向社会经济各方面、大众日常生活的渗透。有资料显示,1998年全球网民平均每月使用流量是1MB(兆字节),2000年是10MB,2003年是100MB,2008年是1GB(1GB等于1024MB),2014年将是10GB。全网流量累计达到1EB(即10亿GB或1000PB)的时间在2001年是一年,在2004年是一个月,在2007年是一周,而2013年仅需一天,即一天产生的信息量可刻满1.88亿张DVD光盘。我国网民数居世界之首,每天产生的数据量也位于世界前列。淘宝网站每天有超过数千万笔交易,单日数据产生量超过50TB(1TB等于1000GB),存储量40PB(1PB等于1000TB)。百度公司目前数据总量接近1000PB,存储网页数量接近1万亿页,每天大约要处理60亿次搜索请求,几十PB数据。一个8Mbps(兆比特每秒)的摄像头一小时能产生3.6GB数据,一个城市若安装几十万个交通和安防摄像头,每月产生的数据量
将达几十PB。医院也是数据产生集中的地方。现在,一个病人的CT影像数据量达几十GB,而全国每年门诊人数以数十亿计,并且他们的信息需要长时间保存。总之,大数据存在于各行各业,一个大数据时代正在到来。
信息爆炸不自今日起,但近年来人们更加感受到大数据的来势迅猛。一方面,网民数量不断增加,另一方面,以物联网和家电为代表的联网设备数量增长更快。2007年全球有5亿个设备联网,人均0.1个;2013年全球将有500亿个设备联网,人均70个。随着宽带化的发展,人均网络接入带宽和流量也迅速提升。全球新产生数据年增40%,即信息总量每两年就可以翻番,这一趋势还将持续。目前,单一数据集容量超过几十TB甚至数PB已不罕见,其规模大到无法在容许的时间内用常规软件工具对其内容进行抓取、管理和处理。
数据规模越大,处理的难度也越大,但对其进行挖掘可能得到的价值更大,这就是大数据热的原因。
3.大数据的特征:
大数据(Big Data)是指“无法用现有的软件工具提取、存储、搜索、共享、分析和处理的海量的、复杂的数据集合”。业界通常用四个V来概括大数据的特征。
数据体量巨大(Volume)。到目前为止,人类生产的所有印刷材料的数据量是200PB(1PB=210TB),而历史上全人类说过的所有的话的数据量大约5EB (1EB=210PB)。当前,典型个人计算机硬盘的容量为TB量级,而一些大企业的数据量已经接近EB量级。
数据类型繁多(Variety)。这种类型的多样性也让数据被分为结构化数据和非结构化数据。相对于以往便于存储的以文本为主的结构化数据,非结构化数据越来越多,包括网络日志、音频、视频、图片、地理位置信息等,这些多类型的数据对数据的处理能力提出了更高要求。
价值密度低(Value)。价值密度的高低与数据总量的大小成反比。以视频为例,一部1小时的视频,在连续不间断的监控中,有用数据可能仅有一两
秒。如何通过强大的机器算法更迅速地完成数据的价值“提纯”,成为目前大数据背景下亟待解决的难题。
处理速度快(Velocity)。这是大数据区分于传统数据挖掘的最显着特征。根据IDC的“数字宇宙”报告,预计到2020年,全球数据使用量将达到35.2ZB (1ZB=210EB)。在如此海量的数据面前,处理数据的效率就是企业的生命
二、Google经典三篇大数据论文介绍
Google在2003年到2006年公布了关于GFS、MapReduce和BigTable三篇技术论文。
2.1、GFS
公布时间:2003年。
GFS阐述了Google File System的设计原理,GFS是一个面向大规模数据密集型应用的、可伸缩的分布式文件系统。GFS虽然运行在廉价的普遍硬件设备上,但是它依然了提供灾难冗余的能力,为大量客户机提供了高性能的服务。
虽然GFS的设计目标与许多传统的分布式文件系统有很多相同之处,但是,我们设计还是以我们对自己的应用的负载情况和技术环境的分析为基础的,不管现在还是将来,GFS和早期的分布式文件系统的设想都有明显的不同。所以我们重新审视了传统文件系统在设计上的折衷选择,衍生出了完全不同的设计思路。
GFS完全满足了我们对存储的需求。GFS作为存储平台已经被广泛的部署在Google内部,存储我们的服务产生和处理的数据,同时还用于那些需要大规模数据集的研究和开发工作。目前为止,最大的一个集群利用数千台机器的数千个硬盘,提供了数百TB的存储空间,同时为数百个客户机服务。
为了满足Google迅速增长的数据处理需求,我们设计并实现了Google文件系统(Google File System –GFS)。GFS 与传统的分布式文件系统有着很多相同的设计目标,比如,性能、可伸缩性、可靠性以及可用性。但是,我们的设计还基于我们对我们自己的应用的负载情况和技术环境的观察的影响,不管现在