(完整版)带电粒子在电场中的运动专题练习(附详细参考答案)
【物理】物理带电粒子在电场中的运动题20套(带答案)含解析
【物理】物理带电粒子在电场中的运动题20套(带答案)含解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,竖直面内有水平线MN 与竖直线PQ 交于P 点,O 在水平线MN 上,OP 间距为d ,一质量为m 、电量为q 的带正电粒子,从O 处以大小为v 0、方向与水平线夹角为θ=60º的速度,进入大小为E 1的匀强电场中,电场方向与竖直方向夹角为θ=60º,粒子到达PQ 线上的A 点时,其动能为在O 处时动能的4倍.当粒子到达A 点时,突然将电场改为大小为E 2,方向与竖直方向夹角也为θ=60º的匀强电场,然后粒子能到达PQ 线上的B 点.电场方向均平行于MN 、PQ 所在竖直面,图中分别仅画出一条电场线示意其方向。
已知粒子从O 运动到A 的时间与从A 运动到B 的时间相同,不计粒子重力,已知量为m 、q 、v 0、d .求:(1)粒子从O 到A 运动过程中,电场力所做功W ; (2)匀强电场的场强大小E 1、E 2; (3)粒子到达B 点时的动能E kB .【答案】(1)2032W mv = (2)E 1=2034m qd υ E 2=2033m qdυ (3) E kB =20143m υ【解析】 【分析】(1)对粒子应用动能定理可以求出电场力做的功。
(2)粒子在电场中做类平抛运动,应用类平抛运动规律可以求出电场强度大小。
(3)根据粒子运动过程,应用动能计算公式求出粒子到达B 点时的动能。
【详解】(1) 由题知:粒子在O 点动能为E ko =2012mv 粒子在A 点动能为:E kA =4E ko ,粒子从O 到A 运动过程,由动能定理得:电场力所做功:W=E kA -E ko =2032mv ;(2) 以O 为坐标原点,初速v 0方向为x 轴正向,建立直角坐标系xOy ,如图所示设粒子从O 到A 运动过程,粒子加速度大小为a 1, 历时t 1,A 点坐标为(x ,y ) 粒子做类平抛运动:x=v 0t 1,y=21112a t 由题知:粒子在A 点速度大小v A =2 v 0,v Ay 03v ,v Ay =a 1 t 1 粒子在A 点速度方向与竖直线PQ 夹角为30°。
(物理)物理带电粒子在电场中的运动题20套(带答案)及解析
(物理)物理带电粒子在电场中的运动题20套(带答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ==22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角cosxvvα=1cos2α=60α∴=2.如图所示,在两块长为3L、间距为L、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m、电荷量为q的带正电粒子流从两板左端连线的中点O以初速度v0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t的变化规律如图所示,则t=0时刻,从O点射人的粒子P经时间t0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.(1)求两板间磁场的磁感应强度大小B.(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P经过右侧磁场偏转后在电场变化的第一个周期内能够回到O点,求右侧磁场的宽度d 应满足的条件和电场周期T的最小值T min.【答案】(1)0mvBqL=(2)223cosd R a R L≥+=;min(632)3LTvπ+=【解析】【分析】【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R1,则012qv B mvR=由几何关系:222113()()2L LR R=+-解得0mvBqL=(2)粒子P从O003L v t=01122y L v t =解得0y v =设合速度为v ,与竖直方向的夹角为α,则:0tan yv v α== 则=3πα00sin 3v v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则212sin L R α=,解得23R =右侧磁场沿初速度方向的宽度应该满足的条件为22cos d R R L α≥+=; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:2min 0(22)2R T t v πα--=解得()min 023L T v π=【点睛】带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.3.如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧距PQ 为L 处有一与电场E 2平行的屏.现将一电子(电荷量为e ,质量为m ,重力不计)无初速度地放入电场E 1中的A 点,最后电子打在右侧的屏上,A 点到MN 的距离为2L,AO 连线与屏垂直,垂足为O ,求:(1) 电子到达MN 时的速度;(2) 电子离开偏转电场时偏转角的正切值tan θ; (3) 电子打到屏上的点P ′到点O 的距离.【答案】(1) eELv m=L . 【解析】 【详解】(1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,到达MN 的速度为v ,则:a 1=1eE m =eEm 2122La v =解得eELv m=(2)设电子射出电场E 2时沿平行电场线方向的速度为v y ,a 2=2eE m =2eEm t =L v v y =a 2ttan θ=y v v=2(3)电子离开电场E 2后,将速度方向反向延长交于E 2场的中点O ′.由几何关系知:tan θ=2xLL+解得:x =3L .4.如图所示,在空间坐标系x <0区域中有竖直向上的匀强电场E 1,在一、四象限的正方形区域CDEF 内有方向如图所示的正交的匀强电场E 2和匀强磁场B ,已知CD =2L ,OC =L ,E 2 =4E 1。
物理带电粒子在电场中的运动练习题含答案
物理带电粒子在电场中的运动练习题含答案一、高考物理精讲专题带电粒子在电场中的运动1.如图(a)所示,整个空间存在竖直向上的匀强电场(平行于纸面),在同一水平线上的两位置,以相同速率同时喷出质量均为m 的油滴a 和b ,带电量为+q 的a 水平向右,不带电的b 竖直向上.b 上升高度为h 时,到达最高点,此时a 恰好与它相碰,瞬间结合成油滴p .忽略空气阻力,重力加速度为g .求(1)油滴b 竖直上升的时间及两油滴喷出位置的距离; (2)匀强电场的场强及油滴a 、b 结合为p 后瞬间的速度;(3)若油滴p 形成时恰位于某矩形区域边界,取此时为0t =时刻,同时在该矩形区域加一个垂直于纸面的周期性变化的匀强磁场,磁场变化规律如图(b)所示,磁场变化周期为T 0(垂直纸面向外为正),已知P 始终在矩形区域内运动,求矩形区域的最小面积.(忽略磁场突变的影响) 【答案】(12hg2h (2)2mg q ;P v gh = 方向向右上,与水平方向夹角为45°(3)20min 22ghT s π= 【解析】 【详解】(1)设油滴的喷出速率为0v ,则对油滴b 做竖直上抛运动,有2002v gh =- 解得02v gh000v gt =- 解得02ht g=对油滴a 的水平运动,有000x v t = 解得02x h =(2)两油滴结合之前,油滴a 做类平抛运动,设加速度为a ,有qE mg ma -=,2012h at =,解得a g =,2mg E q =设油滴的喷出速率为0v ,结合前瞬间油滴a 速度大小为a v ,方向向右上与水平方向夹θ角,则0a cos v v θ=,00tan v at θ=,解得a 2v gh =45θ=︒两油滴的结束过程动量守恒,有:12p mv mv =,联立各式,解得:p vgh =,方向向右上,与水平方向夹45︒角(3)因2qE mg =,油滴p 在磁场中做匀速圆周运动,设半径为r ,周期为T ,则由2082pp v m qv m qT r π= 得04T gh r π=,由2p r T v π= 得02T T = 即油滴p 在磁场中的运动轨迹是两个外切圆组成的“8”字形.最小矩形的两条边长分别为2r 、4r (轨迹如图所示).最小矩形的面积为20min2242ghT s r r π=⨯=2.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m ,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq dt m= 得2mdt qE=代入数据解得t =1.0×10-6s水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=Lv =0.5×10-6s , 竖直位移201··2Eq y t m==0.0125m 所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 0 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t =2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 2md qE R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2EqmdE B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα) 把R =mv qB 、v =1v sin α、12qEd v m=12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆===Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t 把2md t qE =R =mv qB 、v 1=vsinα、12qEdv m=代入解得 0221221L qE n E v n md n B=⋅++v 0= 4.00.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3、4)第二种情况:L =n(2v 0t +2Rsinα)+v 0t +2Rsinα把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m=02(1)21221L qE n E v n md n B+=⋅++v 0= 3.20.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3).3.如图所示,一内壁光滑的绝缘圆管ADB 固定在竖直平面内.圆管的圆心为O ,D 点为圆管的最低点,AB 两点在同一水平线上,AB=2L ,圆管的半径为2L(自身的直径忽略不计).过OD 的虚线与过AB 的虚线垂直相交于C 点,在虚线AB 的上方存在方向水平向右、范围足够大的匀强电场;虚线AB 的下方存在方向竖直向下、范围足够大的匀强电场,电场强度大小E 2=mgq.圆心O 正上方的P 点有一质量为m 、电荷量为-q(q>0)的小球(可视为质点),PC 间距为L .现将该小球从P 点无初速释放,经过一段时间后,小球刚好从管口A 无碰撞地进入圆管内,并继续运动.重力加速度为g .求:(1)虚线AB 上方匀强电场的电场强度E 1的大小; (2)小球在AB 管中运动经过D 点时对管的压力F D ;(3)小球从管口B 离开后,经过一段时间到达虚线AB 上的N 点(图中未标出),在圆管中运动的时间与总时间之比ABPNt t . 【答案】(1)mg q (2)2mg ,方向竖直向下(3)4ππ+【解析】 【分析】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,根据正交分解,垂直运动方向的合力为零,列出平衡方程即可求出虚线AB 上方匀强电场的电场强度;(2)根据动能定理结合圆周运动的规律求解小球在AB 管中运动经过D 点时对管的压力F D ;(3)小物体由P 点运动到A 点做匀加速直线运动,在圆管内做匀速圆周运动,离开管后做类平抛运动,结合运动公式求解在圆管中运动的时间与总时间之比. 【详解】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,小物体从A 点沿切线方向进入,则此时速度方向与竖直方向的夹角为45°,即加速度方向与竖直方向的夹角为45°,则:tan45°= mgEq解得:mg qE =(2)从P 到A 的过程,根据动能定理:mgL+EqL=12mv A 2 解得v A gL小球在管中运动时,E 2q=mg ,小球做匀速圆周运动,则v 0=v A gL在D点时,下壁对球的支持力2022vF m mgr==由牛顿第三定律,22F F mg=='方向竖直向下.(3)小物体由P点运动到A点做匀加速直线运动,设所用时间为t1,则:211222L gt=解得12Ltg=小球在圆管内做匀速圆周运动的时间为t2,则:2323244Ar Ltv gππ⋅==小球离开管后做类平抛运动,物块从B到N的过程中所用时间:322Ltg=则:24ttππ=+【点睛】本题考查带点小物体在电场力和重力共同作用下的运动,解题关键是要分好运动过程,明确每一个过程小物体的受力情况,并结合初速度判断物体做什么运动,进而选择合适的规律解决问题,匀变速直线运动利用牛顿第二定律结合运动学公式求解或者运用动能定理求解,类平抛利用运动的合成和分解、牛顿第二定律结合运动学规律求解.4.如图所示,在直角坐标系x0y平面的一、四个象限内各有一个边长为L的正方向区域,二三像限区域内各有一个高L,宽2L的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L,L<y<2L的区域内,有沿y轴正方向的匀强电场.现有一质量为四电荷量为q的带负电粒子从坐标(L,3L/2)处以初速度v沿x轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L,0)点,求匀强磁场的磁感应强度大小B;(3)求第(2)问中粒子从进入磁场到坐标(-L,0)点所用的时间.【答案】(1)2mvEqL=(2)04nmvBqL=n=1、2、3 (3)2Ltvπ=【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有:0L v t=,2122Lat=,qE ma=联立解得:2mvEqL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyvvθ==l速度大小02sinvv vθ==设x为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L,0 )点,应满足L=2nx,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R,圆弧对应的圆心角为2π.则有2R,此时满足L=2nx联立可得:22Rn=由牛顿第二定律,洛伦兹力提供向心力,则有:2vqvB mR=得:04nmvBqL=,n=1、2、3....轨迹如图乙设圆弧的半径为R,圆弧对应的圆心角为2π.则有222x R,此时满足()221L n x=+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、 3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==5.如图所示,虚线OL 与y 轴的夹角θ=450,在OL 上侧有平行于OL 向下的匀强电场,在OL 下侧有垂直纸面向外的匀强磁场,一质量为m 、电荷量为q (q >0)的粒子以速率v 0从y 轴上的M (OM =d )点垂直于y 轴射入匀强电场,该粒子恰好能够垂直于OL 进入匀强磁场,不计粒子重力。
高考物理带电粒子在电场中的运动题20套(带答案)及解析
高考物理带电粒子在电场中的运动题20套(带答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,一带电荷量q =+0.05C 、质量M =lkg 的绝缘平板置于光滑的水平面上,板上靠右端放一可视为质点、质量m =lkg 的不带电小物块,平板与物块间的动摩擦因数μ=0.75.距平板左端L =0.8m 处有一固定弹性挡板,挡板与平板等高,平板撞上挡板后会原速率反弹。
整个空间存在电场强度E =100N/C 的水平向左的匀强电场。
现将物块与平板一起由静止释放,已知重力加速度g =10m/s 2,平板所带电荷量保持不变,整个过程中物块未离开平板。
求:(1)平板第二次与挡板即将碰撞时的速率; (2)平板的最小长度;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量。
【答案】(1)平板第二次与挡板即将碰撞时的速率为1.0m/s;(2)平板的最小长度为0.53m;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量为8.0N•s 【解析】 【详解】(1)两者相对静止,在电场力作用下一起向左加速, 有a =qEm=2.5m/s 2<μg 故平板M 与物块m 一起匀加速,根据动能定理可得:qEL =12(M +m )v 21 解得v =2.0m/s平板反弹后,物块加速度大小a 1=mgmμ=7.5m/s 2,向左做匀减速运动平板加速度大小a 2=qE mgmμ+=12.5m/s 2, 平板向右做匀减速运动,设经历时间t 1木板与木块达到共同速度v 1′,向右为正方向。
-v 1+a 1t 1=v 1-a 2t 1解得t 1=0.2s ,v 1'=0.5m/s ,方向向左。
此时平板左端距挡板的距离:x =v 1t 122112a t -=0.15m 此后两者一起向左匀加速,设第二次碰撞时速度为v ,则由动能定理12(M +m )v 2212-(M +m )21'v =qEx 1解得v 2=1.0m/s(2)最后平板、小物块静止(左端与挡板接触),此时小物块恰好滑到平板最左端,这时的平板长度最短。
高中物理带电粒子在电场中的运动题20套(带答案)及解析
高中物理带电粒子在电场中的运动题20套(带答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,03P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径r =0.5m 的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离d =0.2m 。
带电粒子在电场中的运动(含解析)
带电粒子在电场中的运动一、带电粒子在电场中的直线运动1.做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动.(2)粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动.2.用动力学观点分析a =qE m ,E =U d,v 2-v 02=2ad . 3.用功能观点分析匀强电场中:W =Eqd =qU =12mv 2-12mv 02 非匀强电场中:W =qU =E k2-E k1●带电粒子在匀强电场中的直线运动【例1】如图所示,三块平行放置的带电金属薄板A 、B 、C 中央各有一小孔,小孔分别位于O 、M 、P 点.由O 点静止释放的电子恰好能运动到P 点.现将C 板向右平移到P ′点,则由O 点静止释放的电子( )图6A .运动到P 点返回B .运动到P 和P ′点之间返回C .运动到P ′点返回D .穿过P ′点【答案】A【解析】根据平行板电容器的电容的决定式C = εr S 4πkd 、定义式C =Q U和匀强电场的电压与电场强度的关系式U =Ed 可得E = 4πkQ εr S,可知将C 板向右平移到P ′点,B 、C 两板间的电场强度不变,由O 点静止释放的电子仍然可以运动到P 点,并且会原路返回,故选项A 正确.【变式1】 两平行金属板相距为d ,电势差为U ,一电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射入,最远到达A 点,然后返回,如图所示,OA =h ,此电子具有的初动能是( )A.edh U B .edUh C.eU dh D.eUh d【答案】D【解析】由动能定理得:-e U d h =-E k ,所以E k =eUh d,故D 正确. 二、带电粒子在交变电场中的直线运动【例2】 匀强电场的电场强度E 随时间t 变化的图象如图所示.当t =0时,在此匀强电场中由静止释放一个带电粒子(带正电),设带电粒子只受电场力的作用,则下列说法中正确的是( )A .带电粒子将始终向同一个方向运动B .2 s 末带电粒子回到原出发点C .3 s 末带电粒子的速度不为零D .0~3 s 内,电场力做的总功为零【答案】D【解析】由牛顿第二定律可知带电粒子在第1 s 内的加速度和第2 s 内的加速度的关系,因此粒子将先加速1 s 再减速0.5 s ,速度为零,接下来的0.5 s 将反向加速……,v -t 图象如图所示,根据图象可知选项A 错误;由图象可知前2 s 内的位移为负,故选项B 错误;由图象可知3 s 末带电粒子的速度为零,故选项C 错误;由动能定理结合图象可知0~3 s 内,电场力做的总功为零,故选项D 正确.●带电粒子在电场力和重力作用下的直线运动问题【例3】如图所示,在竖直放置间距为d 的平行板电容器中,存在电场强度为E 的匀强电场.有一质量为m 、电荷量为+q 的点电荷从两极板正中间处静止释放.重力加速度为g .则点电荷运动到负极板的过程( )A .加速度大小为a =Eq m+g B .所需的时间为t =dm Eq C .下降的高度为y =d 2D .电场力所做的功为W =Eqd 【答案】B【解析】点电荷受到重力、电场力的作用,所以a =(Eq )2+(mg )2m ,选项A 错误;根据运动独立性,水平方向点电荷的运动时间为t ,则d 2=12Eq mt 2,解得t =md Eq ,选项B 正确;下降高度y =12gt 2=mgd 2Eq,选项C 错误;电场力做功W =Eqd 2,选项D 错误. 【例4】如图所示,一带电液滴在重力和匀强电场对它的作用力作用下,从静止开始由b 沿直线运动到d ,且bd 与竖直方向所夹的锐角为45°,则下列结论不正确的是( )A .此液滴带负电B .液滴的加速度大小为2gC .合力对液滴做的总功等于零D .液滴的电势能减少【答案】C【解析】带电液滴由静止开始沿bd 做直线运动,所受的合力方向必定沿bd 直线,液滴受力情况如图所示,电场力方向水平向右,与电场方向相反,所以此液滴带负电,故选项A 正确;由图知液滴所受的合力F =2mg ,其加速度为a =F m =2g ,故选项B 正确;因为合力的方向与运动的方向相同,故合力对液滴做正功,故选项C 错误;由于电场力所做的功W 电=Eqx bd sin 45°>0,故电场力对液滴做正功,液滴的电势能减少,故选项D 正确.三、带电粒子在电场中的偏转1.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:由qU 0=12mv 02 y =12at 2=12·qU 1md ·(l v 0)2 tan θ=qU 1l mdv 02得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l 2. 2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 02,其中U y =U dy ,指初、末位置间的电势差.【例5】 质谱仪可对离子进行分析.如图所示,在真空状态下,脉冲阀P 喷出微量气体,经激光照射产生电荷量为q 、质量为m 的正离子,自a 板小孔进入a 、b 间的加速电场,从b 板小孔射出,沿中线方向进入M 、N 板间的偏转控制区,到达探测器(可上下移动).已知a 、b 板间距为d ,极板M 、N 的长度和间距均为L ,a 、b 间的电压为U 1,M 、N 间的电压为U 2.不计离子重力及进入a 板时的初速度.求:(1)离子从b 板小孔射出时的速度大小;(2)离子自a 板小孔进入加速电场至离子到达探测器的全部飞行时间;(3)为保证离子不打在极板上,U 2与U 1应满足的关系.【答案】 (1)2qU 1m (2)(2d +L )m 2qU 1(3) U 2<2U 1 【解析】(1)由动能定理qU 1=12mv 2,得v =2qU 1m (2)离子在a 、b 间的加速度a 1=qU 1md 在a 、b 间运动的时间t 1=v a 1=2m qU 1·d 在MN 间运动的时间:t 2=Lv =L m 2qU 1离子到达探测器的时间:t =t 1+t 2=(2d +L )m 2qU 1; (3)在MN 间侧移:y =12a 2t 22=qU 2L 22mLv 2=U 2L 4U 1由y <L2,得 U 2<2U 1. 【变式2】 如图所示,电荷量之比为q A ∶q B =1∶3的带电粒子A 、B 以相同的速度v 0从同一点出发,沿着跟电场强度垂直的方向射入平行板电容器中,分别打在C 、D 点,若OC =CD ,忽略粒子重力的影响,则下列说法不正确的是( )A .A 和B 在电场中运动的时间之比为1∶2B .A 和B 运动的加速度大小之比为4∶1C .A 和B 的质量之比为1∶12D .A 和B 的位移大小之比为1∶1【答案】D【解析】粒子A 和B 在匀强电场中做类平抛运动,水平方向由x =v 0t 及OC =CD 得,t A ∶t B =1∶2;竖直方向由h =12at 2得a =2h t 2,它们沿竖直方向运动的加速度大小之比为a A ∶a B =4∶1;根据a =qE m 得m =qE a ,故m A m B =112,A 和B 的位移大小不相等,故选项A 、B 、C 正确,D 错误.【变式3】 如图所示,喷墨打印机中的墨滴在进入偏转电场之前会带上一定量的电荷,在电场的作用下带电荷的墨滴发生偏转到达纸上.已知两偏转极板长度L =1.5×10-2 m ,两极板间电场强度E =1.2×106 N/C ,墨滴的质量m =1.0×10-13 kg ,电荷量q =1.0×10-16 C ,墨滴在进入电场前的速度v 0=15 m/s ,方向与两极板平行.不计空气阻力和墨滴重力,假设偏转电场只局限在平行极板内部,忽略边缘电场的影响.(1)判断墨滴带正电荷还是负电荷?(2)求墨滴在两极板之间运动的时间;(3)求墨滴离开电场时在竖直方向上的位移大小y .【答案】(1)负电荷 (2)1.0×10-3 s (3)6.0×10-4 m【解析】(1)负电荷.(2)墨滴在水平方向做匀速直线运动,那么墨滴在两板之间运动的时间t =L v 0.代入数据可得:t =1.0×10-3 s(3)离开电场前墨滴在竖直方向做初速度为零的匀加速直线运动,a =Eq m代入数据可得:a =1.2×103 m/s 2离开偏转电场时在竖直方向的位移y =12at 2 代入数据可得:y =6.0×10-4 m.。
高考物理带电粒子在电场中的运动试题(有答案和解析)含解析
高考物理带电粒子在电场中的运动试题(有答案和解析)含解析一、高考物理精讲专题带电粒子在电场中的运动1.利用电场可以控制电子的运动,这一技术在现代设备中有广泛的应用,已知电子的质量为m ,电荷量为e -,不计重力及电子之间的相互作用力,不考虑相对论效应.(1)在宽度一定的空间中存在竖直向下的匀强电场,一束电子以相同的初速度0v 沿水平方向射入电场,如图1所示,图中虚线为某一电子的轨迹,射入点A 处电势为A ϕ,射出点B 处电势为B ϕ.①求该电子在由A 运动到B 的过程中,电场力做的功AB W ;②请判断该电子束穿过图1所示电场后,运动方向是否仍然彼此平行?若平行,请求出速度方向偏转角θ的余弦值cos θ(速度方向偏转角是指末速度方向与初速度方向之间的夹角);若不平行,请说明是会聚还是发散.(2)某电子枪除了加速电子外,同时还有使电子束会聚或发散作用,其原理可简化为图2所示.一球形界面外部空间中各处电势均为1ϕ,内部各处电势均为221()ϕϕϕ>,球心位于z 轴上O 点.一束靠近z 轴且关于z 轴对称的电子以相同的速度1v 平行于z 轴射入该界面,由于电子只受到在界面处法线方向的作用力,其运动方向将发生改变,改变前后能量守恒.①请定性画出这束电子射入球形界面后运动方向的示意图(画出电子束边缘处两条即可);②某电子入射方向与法线的夹角为1θ,求它射入球形界面后的运动方向与法线的夹角2θ的正弦值2sin θ.【答案】(1)①()AB B A W e ϕϕ=- ②是平行;()020cos 2B A v ve v mθϕϕ==-+(2)① ②()1122211sin 2e v mθϕϕ=-+【解析】 【详解】(1)①AB 两点的电势差为AB A B U ϕϕ=-在电子由A 运动到B 的过程中电场力做的功为()AB AB B A W eU e ϕϕ=-=-②电子束在同一电场中运动,电场力做功一样,所以穿出电场时,运动方向仍然彼此平行,设电子在B 点处的速度大小为v ,根据动能定理2201122AB W mv mv =- 0cos v v θ=解得:()020cos 2B A v ve v mθϕϕ==-+(2)①运动图如图所示:②设电子穿过界面后的速度为2v ,由于电子只受法线方向的作用力,其沿界面方向的速度不变,则1122sin sin θθ=v v 电子穿过界面的过程,能量守恒则:2211221122mv e mv e ϕϕ-=- 可解得:()212212e v v mϕϕ-=+ 则()1122211sin 2e v mθϕϕ=-+故本题答案是:(1)①()AB B A W e ϕϕ=- ②()020cos 2B A v ve v mθϕϕ==-+(2)① ②()1122211sin 2e v mθϕϕ=-+2.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL=(2)04nmv B qL =n=1、2、3......(3)02L t v π= 【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma = 联立解得: 2mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv vθ==l 速度大小002sin v v v θ== 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2R ,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯== 若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==3.如图所示,在竖直面内有一边长为的正六边形区域,O 为中心点,CD 水平.将一质量为m 的小球以一定的初动能从B 点水平向右拋出,小球运动轨迹过D 点.现在该竖直面内加一匀强电场,并让该小球带电,电荷量为+q ,并以前述初动能沿各个方向从B 点拋入六边形区域,小球将沿不同轨迹运动.已知某一方向拋入的小球过O 点时动能为初动能的,另一方向拋入的小球过C 点时动能与初动能相等.重力加速度为g ,电场区域足够大,求:(1)小球的初动能;(2)取电场中B 点的电势为零,求O 、C 两点的电势;(3)已知小球从某一特定方向从B 点拋入六边形区域后,小球将会再次回到B ,求该特定方向拋入的小球在六边形区域内运动的时间. 【答案】(1);(2);(3)【解析】 【分析】 【详解】(1)设小球从B 点抛出时速度为,从B 到D 所用时间为t ,小球做平抛运动 在水平方向上 在竖直方向上由几何关系可知:,解得小球的初动能为:(2)带电小球B→O :由动能定理得:解得:带电小球B→C:由动能定理得:解得:(3)在正六边形的BC边上取一点G,令,设G到B的距离为x,则由匀强电场性质可知解得:由几何知识可得,直线GO与正六边形的BC边垂直,OG为等势线,电场方向沿CB方向,由匀强电场电场强度与电势的关系可得受力分析如图,根据力合成的平行四边形定则可得:,方向F→B小球只有沿BF方向抛入的小球才会再次回到B点,该小球进入六边形区域后,做匀减速直线运动,速度减为零后反向匀加速直线运动回到B点,设匀减速所用时间为t1,匀加速所用时间为t2,匀减速发生的位移为x由牛顿定律得(未射出六边形区域)小球在六边形区域内运动时间为4.如图,平面直角坐标系中,在,y>0及y<-32L区域存在场强大小相同,方向相反均平行于y轴的匀强电场,在-32L<y<0区域存在方向垂直于xOy平面纸面向外的匀强磁场,一质量为m,电荷量为q的带正电粒子,经过y轴上的点P1(0,L)时的速率为v0,方向沿x轴正方向,然后经过x轴上的点P2(32L,0)进入磁场.在磁场中的运转半径R=52L (不计粒子重力),求:(1)粒子到达P2点时的速度大小和方向;(2)EB;(3)粒子第一次从磁场下边界穿出位置的横坐标;(4)粒子从P1点出发后做周期性运动的周期.【答案】(1)53v0,与x成53°角;(2)043v;(3)2L;(4)()4053760Lvπ+.【解析】【详解】(1)如图,粒子从P1到P2做类平抛运动,设到达P2时的y方向的速度为v y,由运动学规律知32L=v0t1,L=2yvt1可得t1=32Lv,v y=43v0故粒子在P2的速度为v220yv v+=53v0设v与x成β角,则tanβ=yvv=43,即β=53°;(2)粒子从P1到P2,根据动能定理知qEL=12mv2-12mv02可得E =2089mv qL粒子在磁场中做匀速圆周运动,根据qvB =m 2v R解得:B =mv qR =05352m v q L ⨯⨯=023mv qL解得:43v E B =; (3)粒子在磁场中做圆周运动的圆心为O ′,在图中,过P 2做v 的垂线交y =-32L 直线与Q ′点,可得: P 2O ′=3253L cos o=52L =r 故粒子在磁场中做圆周运动的圆心为O ′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y =-32L 直线从M 点穿出磁场,由几何关系知M 的坐标x =32L +(r -r cos37°)=2L ; (4)粒子运动一个周期的轨迹如上图,粒子从P 1到P 2做类平抛运动:t 1=032Lv在磁场中由P 2到M 动时间:t 2=372360r v π︒⨯o =037120Lv π 从M 运动到N ,a =qE m =289v L则t 3=v a =0158L v则一个周期的时间T =2(t 1+t 2+t 3)=()04053760Lv π+.5.如图所示,在平面直角坐标系xOy 平面内,直角三角形abc 的直角边ab 长为6d ,与y 轴重合,∠bac=30°,中位线OM 与x 轴重合,三角形内有垂直纸面向里的匀强磁场.在笫一象限内,有方向沿y 轴正向的匀强电场,场强大小E 与匀强磁场磁感应强度B 的大小间满足E=v 0B .在x=3d 的N 点处,垂直于x 轴放置一平面荧光屏.电子束以相同的初速度v 0从y 轴上-3d≤y≤0的范围内垂直于y 轴向左射入磁场,其中从y 轴上y=-2d 处射入的电子,经磁场偏转后,恰好经过O 点.电子质量为m,电量为e,电子间的相互作用及重力不计.求 (1)匀强磁杨的磁感应强度B(2)电子束从y 轴正半轴上射入电场时的纵坐标y 的范围;(3)荧光屏上发光点距N 点的最远距离L【答案】(1)0mv ed ; (2)02y d ≤≤;(3)94d ; 【解析】(1)设电子在磁场中做圆周运动的半径为r ; 由几何关系可得r =d电子在磁场中做匀速圆周运动洛伦兹力提供向心力,由牛顿第二定律得:20v ev B m r=解得:0mv B ed=(2)当电子在磁场中运动的圆轨迹与ac 边相切时,电子从+ y 轴射入电场的位置距O 点最远,如图甲所示.设此时的圆心位置为O ',有:sin 30rO a '=︒3OO d O a ='-' 解得OO d '=即从O 点进入磁场的电子射出磁场时的位置距O 点最远 所以22m y r d ==电子束从y 轴正半轴上射入电场时的纵坐标y 的范围为02y d ≤≤设电子从02y d ≤≤范围内某一位置射入电场时的纵坐标为y ,从ON 间射出电场时的位置横坐标为x ,速度方向与x 轴间夹角为θ,在电场中运动的时间为t ,电子打到荧光屏上产生的发光点距N 点的距离为L ,如图乙所示:根据运动学公式有:0x v t =212eE y t m=⋅ y eE v t m=tan y v v θ=tan 3Ld xθ=- 解得:(32)2L d y y =-⋅ 即98y d =时,L 有最大值 解得:94L d =当322d y y -=【点睛】本题属于带电粒子在组合场中的运动,粒子在磁场中做匀速圆周运动,要求能正确的画出运动轨迹,并根据几何关系确定某些物理量之间的关系;粒子在电场中的偏转经常用化曲为直的方法,求极值的问题一定要先找出临界的轨迹,注重数学方法在物理中的应用.6.如图所示,虚线OL 与y 轴的夹角θ=450,在OL 上侧有平行于OL 向下的匀强电场,在OL 下侧有垂直纸面向外的匀强磁场,一质量为m 、电荷量为q (q >0)的粒子以速率v 0从y 轴上的M (OM =d )点垂直于y 轴射入匀强电场,该粒子恰好能够垂直于OL 进入匀强磁场,不计粒子重力。
带电粒子在电场中的运动讲解及习题(含答案)
第1章静电场第08节 带电粒子在电场中的运动[知能准备]1.利用电场来改变或控制带电粒子的运动,最简单情况有两种,利用电场使带电粒子________;利用电场使带电粒子________.2.示波器:示波器的核心部件是_____________,示波管由电子枪、_____________和荧光屏组成,管内抽成真空.[同步导学]1.带电粒子的加速(1)动力学分析:带电粒子沿与电场线平行方向进入电场,受到的电场力与运动方向在同一直线上,做加(减)速直线运动,如果是匀强电场,则做匀加(减)速运动.(2)功能关系分析:粒子只受电场力作用,动能变化量等于电势能的变化量.221qU mv =(初速度为零);2022121qU mv mv -= 此式适用于一切电场. 2.带电粒子的偏转(1)动力学分析:带电粒子以速度v 0垂直于电场线方向飞入两带电平行板产生的匀强电场中,受到恒定的与初速度方向成900角的电场力作用而做匀变速曲线运动 (类平抛运动).(2)运动的分析方法(看成类平抛运动):①沿初速度方向做速度为v 0的匀速直线运动.②沿电场力方向做初速度为零的匀加速直线运动.例1如图1—8—1所示,两板间电势差为U ,相距为d ,板长为L .—正离子q 以平行于极板的速度v 0射入电场中,在电场中受到电场力而发生偏转,则电荷的偏转距离y 和偏转角θ为多少?解析:电荷在竖直方向做匀加速直线运动,受到的力F =Eq =Uq/d由牛顿第二定律,加速度a = F/m = Uq/md水平方向做匀速运动,由L = v 0t 得t = L/ v 0由运动学公式221at s =可得: U dmv qL L md Uq y 202202)v (21=⋅= 带电离子在离开电场时,竖直方向的分速度:v ⊥dmv qUL at 0==离子离开偏转电场时的偏转角度θ可由下式确定:d mv qUL v v 200Ítan ==θ 电荷射出电场时的速度的反向延长线交两板中心水平线上的位置确定:如图所示,设交点P 到右端Q 的距离为x ,则由几何关系得:x y /tan =θ21/2/tan 20202===∴dmv qLU d mv U qL y x θ 点评:电荷好像是从水平线OQ 中点沿直线射出一样,注意此结论在处理问题时应用很方便.3.示波管的原理(1)构造及功能如图l —8—2所示①电子枪:发射并加速电子.②偏转电极YY ,:使电子束竖直偏转(加信号电压) XX ,:使电子束水平偏转(加扫描电压).③荧光屏.(2)工作原理(如图1—8—2所示)偏转电极XX ,和YY ,不加电压,电子打到屏幕中心;若电压只加XX ,,只有X 方向偏;若电压只加YY ,,只有y 方向偏;若XX ,加扫描电压,YY ,加信号电压,屏上会出现随信号而变化的图象.4.在带电粒子的加速或偏转的问题中,何时考虑粒子的重力?何时不计重力?一般来说:(1)基本粒子:如电子、质子、α粒子、离子等除有特别说明或有明确暗示以外,一般都不考虑重力(但不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有特别说明或有明显暗示以外,一般都不能忽略重力.5.易错易混点带电粒子在电场中发生偏转,—定要区分开位移的方向与速度的方向,它们各自偏角的正切分别为: x y =αtan ,xy v v =βtan ,切不可混淆 6.带电粒子在电场中的运动(1)带电粒子在电场中的运动由粒子的初始状态和受力情况决定.在非匀强电场中,带电粒子受到的电场力是变力,解决这类问题可以用动能定理求解.在匀强电场中,带电粒子受到的是恒力,若带电粒子初速度为零或初速度方向平行于电场方向,带电粒子将做匀变速直线运动;若带电粒子初速度方向垂直于电场方向,带电粒子做类平抛运动,根据运动规律求解,(2)带电小球、带电微粒(重力不能忽略)在匀强电场中运动,由于带电小球、带电微粒可视为质点,同时受到重力和电场力的作用,其运动情况由重力和电场力共同决定.又因为重力和电场力都是恒力,其做功特点一样,常将带电质点的运动环境想象成一等效场,等效场的大小和方向由重力场和电场共同决定.例2两平行金属板相距为d ,电势差为U ,一电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射出,最远到达A 点,然后返回,如图1—8—3所示,OA =h ,此电子具有的初动能是 ( )A .U edhB .edUhC .dh eUD .d eUh 解析:电子从O 点到A 点,因受电场力作用,速度逐渐减小,根据题意和图示可知,电子仅受电场力,由能量关系:OA eU mv =2021,又E =U /d ,h dU Eh U OA ==,所以deUh mv =2021 . 故D 正确. 点评:应用电场力做功与电势差的关系,结合动能定理即可解答本题.例3一束质量为m 、电荷量为q 的带电粒子以平行于两极板的速度v 0进入匀强电场,如图1—8—4所示.如果两极板间电压为U ,两极板间的距离为d 、板长为L .设粒子束不会击中极板,则粒子从进入电场到飞出极板时电势能的变化量为 .(粒子的重力忽略不计)分析:带电粒子在水平方向做匀速直线运动,在竖直方向做匀加速运动.电场力做功导致电势能的改变.解析:水平方向匀速,则运动时间t =L/ v 0 ①竖直方向加速,则侧移221at y =② 且dmqU a = ③ 图1—8—4由①②③得2022mdv qUL y = 则电场力做功20222220222v md L U q mdv qUL d U q y qE W =⋅⋅=⋅= 由功能原理得电势能减少了2022222v md L U q 例4如图1—8-5所示,离子发生器发射出一束质量为m ,电荷量为q 的离子,从静止经加速电压U 1加速后,获得速度0v ,并沿垂直于电场线方向射入两平行板中央,受偏转电压U 2作用后,以速度v 离开电场,已知平行板长为l ,两板间距离为d ,求:①0v 的大小;②离子在偏转电场中运动时间t ;③离子在偏转电场中受到的电场力的大小F ;④离子在偏转电场中的加速度;⑤离子在离开偏转电场时的横向速度y v ;⑥离子在离开偏转电场时的速度v 的大小;⑦离子在离开偏转电场时的横向偏移量y ;⑧离子离开偏转电场时的偏转角θ的正切值tgθ解析:①不管加速电场是不是匀强电场,W =qU 都适用,所以由动能定理得:0121mv qU = mqU v 20=∴ ②由于偏转电场是匀强电场,所以离子的运动类似平抛运动.即:水平方向为速度为v 0的匀速直线运动,竖直方向为初速度为零的匀加速直线运动.∴在水平方向102qU m l v l t == ③d U E 2=F =qE =.d qU 2 ④mdqU m F a 2== ⑤.mU q d l U qU m l md qU at v y 121222=•== 图1—8-5⑥1242222212220U md U ql U qd v v v y +=+=⑦1221222422121dU U l qU m l md qU at y =•==(和带电粒子q 、m 无关,只取决于加速电场和偏转电场)解题的一般步骤是:(1)根据题目描述的物理现象和物理过程以及要回答问题,确定出研究对象和过程.并选择出“某个状态”和反映该状态的某些“参量”,写出这些参量间的关系式.(2)依据题目所给的条件,选用有关的物理规律,列出方程或方程组,运用数学工具,对参量间的函数关系进行逻辑推理,得出有关的计算表达式.(3)对表达式中的已知量、未知量进行演绎、讨论,得出正确的结果.[同步检测]1.如图l —8—6所示,电子由静止开始从A 板向B 板运动,当到达B 板时速度为v ,保持两板间电压不变.则 ( )A .当增大两板间距离时,v 也增大B .当减小两板间距离时,v 增大C .当改变两板间距离时,v 不变D .当增大两板间距离时,电子在两板间运动的时间延长2.如图1—8—7所示,两极板与电源相连接,电子从负极板边缘垂直电场方向射入匀强电场,且恰好从正极板边缘飞出,现在使电子入射速度变为原来的两倍,而电子仍从原位置射入,且仍从正极板边缘飞出,则两极板的间距应变为原来的( )A .2倍B .4倍C .0.5倍D .0.25倍3.电子从负极板的边缘垂直进入匀强电场,恰好从正极板边缘飞出,如图1—8—8所示,现在保持两极板间的电压不变,使两极板间的距离变为原来的2倍,电子的入射方向及位臀不变,且要电子仍从正极板边缘飞出,则电子入射的初速度大小应为原来的( )A .22B .21 C .2 D .2 4.下列带电粒子经过电压为U 的电压加速后,如果它们的初速度均为0,则获得速度图1—8-6图1—8-7图1—8-8最大的粒子是( )A.质子B.氚核C.氦核D.钠离子Na+5.真空中有一束电子流,以速度v、沿着跟电场强度方向垂直.自O点进入匀强电场,如图1—8—9所示,若以O为坐标原点,x轴垂直于电场方向,y轴平行于电场方向,在x 轴上取OA=AB=BC,分别自A、B、C点作与y轴平行的线跟电子流的径迹交于M、N、P三点,那么:(1)电子流经M,N、P三点时,沿x轴方向的分速度之比为.(2)沿y轴的分速度之比为.(3)电子流每经过相等时间的动能增量之比为.6.如图1—8—10所示,—电子具有100 eV的动能.从A点垂直于电场线飞入匀强电场中,当从D点飞出电场时,速度方向跟电场强度方向成1 500角.则A、B两点之间的电势差U AB=V.7.静止在太空中的飞行器上有一种装置,它利用电场加速带电粒子形成向外发射的高速电子流,从而对飞行器产生反冲力,使其获得加速度.已知飞行器质量为M,发射的是2价氧离子.发射离子的功率恒为P,加速的电压为U,每个氧离子的质量为m.单位电荷的电荷量为e.不计发射氧离子后飞行器质量的变化,求:(1)射出的氧离子速度.(2)每秒钟射出的氧离子数.(离子速度远大于飞行器的速度,分析时可认为飞行器始终静止不动)8.如图1—8—12所示,一个电子(质量为m)电荷量为e,以初速度v0沿着匀强电场的电场线方向飞入匀强电场,已知匀强电场的场强大小为E,不计重力,问:(1)电子在电场中运动的加速度.(2)电子进入电场的最大距离.(3)电子进入电场最大距离的一半时的动能.图1—8-9图1—8—10 图1—8—129.如图1—8—13所示,A 、B 为两块足够大的平行金属板,两板间距离为d ,接在电压为U 的电源上.在A 板上的中央P 点处放置一个电子放射源,可以向各个方向释放电子.设电子的质量m 、电荷量为e ,射出的初速度为v .求电子打在B 板上区域的面积.10. 如图1—8—1 4所示一质量为m ,带电荷量为+q 的小球从距地面高h 处以一定初速度水平抛出,在距抛出点水平距离l 处,有一根管口比小球直径略大的竖直细管,管上口距地面h/2,为使小球能无碰撞地通过管子,可在管子上方的整个区域里加一个场强方向水平向左的匀强电场,求:(1)小球的初速度v 0.(2)电场强度E 的大小.(3)小球落地时的动能E k .[综合评价]1.一束带电粒子以相同的速率从同一位置,垂直于电场方向飞入匀强电场中,所有粒子的运动轨迹都是一样的,这说明所有粒子图1—8—13 图1—8—14( )A .都具有相同的质量B .都具有相同的电荷量C .电荷量与质量之比都相同D .都是同位素2.有三个质量相等的小球,分别带正电、负电和不带电,以相同的水平速度由P 点射入水平放置的平行金属板间,它们分别落在下板的A 、B 、C 三处,已知两金属板的上板带负电荷,下板接地,如图1—8—15所示,下列判断正确的是 ( )A 、落在A 、B 、C 三处的小球分别是带正电、不带电和带负电的B 、三小球在该电场中的加速度大小关系是a A <a B <a CC 、三小球从进入电场至落到下板所用的时间相等D 、三小球到达下板时动能的大小关系是E KC <E KB <E KA3.如图1—8—16所示,一个带负电的油滴以初速v 0从P 点倾斜向上进入水平方向的匀强电场中,若油滴达最高点时速度大小仍为v 0,则油滴最高点的位置 ( )A 、P 点的左上方B 、P 点的右上方C 、P 点的正上方D 、上述情况都可能4. 一个不计重力的带电微粒,进入匀强电场没有发生偏转,则该微粒的( )A. 运动速度必然增大 B .运动速度必然减小C. 运动速度可能不变 D .运动加速度肯定不为零5. 氘核(电荷量为+e ,质量为2m)和氚核(电荷量为+e 、质量为3m)经相同电压加速后,垂直偏转电场方向进入同一匀强电场.飞出电场时,运动方向的偏转角的正切值之比为(不计原子核所受的重力) ( )A .1:2B .2:1C .1:1D .1:46. 如图1-8-17所示,从静止出发的电子经加速电场加速后,进入偏转电场.若加速电压为U 1、偏转电压为U 2,要使电子在电场中的偏移距离y 增大为原来的2倍(在保证电子不会打到极板上的前提下),可选用的方法有 ( )A .使U 1减小为原来的1/2B .使U 2增大为原来的2倍C .使偏转电场极板长度增大为原来的2倍 图1—8—15 图1—8—16图1-8-17D .使偏转电场极板的间距减小为原来的1/27.如图1-8-18所示是某示波管的示意图,如果在水平放置的偏转电极上加一个电压,则电子束将被偏转.每单位电压引起的偏转距离叫示波管的灵敏度,下面这些措施中对提高示波管的灵敏度有用的是 ( )A .尽可能把偏转极板L 做得长一点B .尽可能把偏转极板L 做得短一点C .尽可能把偏转极板间的距离d 做得小一点D .将电子枪的加速电压提高 8.一个初动能为E k 的电子,垂直电场线飞入平行板电容器中,飞出电容器的动能为2E k ,如果此电子的初速度增至原来的2倍,则它飞出电容器的动能变为( )A .4E kB .8E kC .4.5E kD .4.25E k9.在匀强电场中,同一条电场线上有A 、B 两点,有两个带电粒子先后由静止从A 点出发并通过B 点.若两粒子的质量之比为2:1,电荷量之比为4:1,忽略它们所受重力,则它们由A 点运动到B 点所用时间之比为( )A.1:2 B .2: 1 C .1:2 D .2:110. 电子所带电荷量最早是由美国科学家密立根通过油滴实验测出的.油滴实验的原理如图1-8-19所示,两块水平放置的平行金属板与电源连接,上、下板分别带正、负电荷.油滴从喷雾器喷出后,由于摩擦而带电,油滴进入上板中央小孔后落到匀强电场中,通过显微镜可以观察到油滴的运动情况.两金属板间的距离为d ,忽略空气对油滴的浮力和阻力.(1)调节两金属板间的电势u ,当u=U 0时,使得某个质量为m 1的油滴恰好做匀速运动.该油滴所带电荷量q 为多少?(2)若油滴进入电场时的速度可以忽略,当两金属板间的电势差u=U 时,观察到某个质量为m 2的油滴进入电场后做匀加速运动,经过时间t 运动到下极板,求此油滴所带电荷量Q.11.图1—8—20是静电分选器的原理示意图,将磷酸盐和石英的混合颗粒由传送带送至两个竖直的带电平行板上方,颗粒经漏斗从电场区域中央处开始下落,经分选后的颗粒分别装入A 、B 桶中.混合颗粒离开漏斗进入电场时磷酸盐颗粒带正电,石英颗粒带图1-8-18图1-8-19图1-8-20负电,所有颗粒所带的电荷量与质量之比均为10-5C /kg .若已知两板间的距离为10 cm ,两板的竖直高度为50 cm .设颗粒进入电场时的速度为零,颗粒间相互作用不计.如果要求两种颗粒离开两极板间的电场区域时有最大的偏转量且又恰好不接触到极板.(1)两极板间所加的电压应多大?(2)若带电平行板的下端距A 、B 桶底的高度H=1.3m ,求颗粒落至桶底时速度的大小.第八节 带电粒子在电场中的运动知能准备答案:1.加速、偏转 2.示波管、偏转电板同步检测答案:1.CD 2.C 3.B 4.A 5.111 123 135 6.300V 7.(1)2m eU (2)eU P 2 8.(1)meE (2)eE mv 220 (3)420mv 9.eU d mv 222π 10.(1)h q l v 20= (2)E=qh mgl 2 (3)mgh E k =综合评估答案:1.C 2.AB 3.A 4.D 5.C 6.ABD 7.AC 8.D 9.A 10.(1)01U gd m q = (2))2(22t d g U d m Q -=11.(1)1×104V (2)1.36m/s。
物理带电粒子在电场中的运动题20套(带答案)及解析
物理带电粒子在电场中的运动题20套(带答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。
y 轴右侧存在一个匀强电场,方向沿y 轴正方向,电场区域宽度l =0.1m 。
现从坐标为(﹣0.2m ,﹣0.2m )的P 点发射出质量m =2.0×10﹣9kg 、带电荷量q =5.0×10﹣5C 的带正电粒子,沿y 轴正方向射入匀强磁场,速度大小v 0=5.0×103m/s (粒子重力不计)。
(1)带电粒子从坐标为(0.1m ,0.05m )的点射出电场,求该电场强度;(2)为了使该带电粒子能从坐标为(0.1m ,﹣0.05m )的点回到电场,可在紧邻电场的右侧区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和方向。
【答案】(1)1.0×104N/C (2)4T ,方向垂直纸面向外 【解析】 【详解】解:(1)带正电粒子在磁场中做匀速圆周运动,根据洛伦兹力提供向心力有:200v qv B m r=可得:r =0.20m =R根据几何关系可以知道,带电粒子恰从O 点沿x 轴进入电场,带电粒子做类平抛运动,设粒子到达电场边缘时,竖直方向的位移为y 根据类平抛规律可得:2012l v t y at ==, 根据牛顿第二定律可得:Eq ma = 联立可得:41.010E =⨯N/C(2)粒子飞离电场时,沿电场方向速度:305.010y qE lv at m v ===⨯g m/s=0v 粒子射出电场时速度:02=v v根据几何关系可知,粒子在B '区域磁场中做圆周运动半径:2r y '=根据洛伦兹力提供向心力可得: 2v qvB m r'='联立可得所加匀强磁场的磁感应强度大小:4mvB qr'=='T 根据左手定则可知所加磁场方向垂直纸面向外。
高考物理带电粒子在电场中的运动题20套(带答案)
高考物理带电粒子在电场中的运动题20套(带答案)一、高考物理精讲专题带电粒子在电场中的运动1.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ==22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角cos x v v α=1cos 2α=060α∴=2.如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧距PQ 为L 处有一与电场E 2平行的屏.现将一电子(电荷量为e ,质量为m ,重力不计)无初速度地放入电场E 1中的A 点,最后电子打在右侧的屏上,A 点到MN 的距离为2L,AO 连线与屏垂直,垂足为O ,求:(1) 电子到达MN 时的速度;(2) 电子离开偏转电场时偏转角的正切值tan θ; (3) 电子打到屏上的点P ′到点O 的距离.【答案】(1) eELv m=L . 【解析】 【详解】(1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,到达MN 的速度为v ,则:a 1=1eE m =eEm 2122La v =解得eELv m=(2)设电子射出电场E 2时沿平行电场线方向的速度为v y ,a 2=2eE m =2eEm t =L v v y =a 2ttan θ=y v v=2(3)电子离开电场E2后,将速度方向反向延长交于E2场的中点O′.由几何关系知:tanθ=2xLL+解得:x=3L.3.在如图甲所示的直角坐标系中,两平行极板MN垂直于y轴,N板在x轴上且其左端与坐标原点O重合,极板长度l=0.08m,板间距离d=0.09m,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场.在y轴上(0,d/2)处有一粒子源,垂直于y轴连续不断向x轴正方向发射相同的带正电的粒子,粒子比荷为qm=5×107C/kg,速度为v0=8×105m/s.t=0时刻射入板间的粒子恰好经N板右边缘打在x轴上.不计粒子重力及粒子间的相互作用,求:(1)电压U0的大小;(2)若沿x轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度;(3)若在第四象限加一个与x轴相切的圆形匀强磁场,半径为r=0.03m,切点A的坐标为(0.12m,0),磁场的磁感应强度大小B=23T,方向垂直于坐标平面向里.求粒子出磁场后与x轴交点坐标的范围.【答案】(1)42.1610VU=⨯ (2)0.04mx∆= (3)0.1425mx≥【解析】【分析】【详解】(1)对于t=0时刻射入极板间的粒子:l v T=7110T s-=⨯211()22Ty a=2yTv a=22yT y v = 122dy y =+ Eq ma =U E d=解得:40 2.1610V U =⨯(2)2Tt nT =+时刻射出的粒子打在x 轴上水平位移最大:032A T x v = 所放荧光屏的最小长度A x x l ∆=-即:0.04x m ∆= (3)不同时刻射出极板的粒子沿垂直于极板方向的速度均为v y . 速度偏转角的正切值均为:0tan y v v β=37β=ocos37v v=o 6110m/s v =⨯即:所有的粒子射出极板时速度的大小和方向均相同.2v qvB m R=0.03m R r ==由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点B 离开磁场.由几何关系,恰好经N 板右边缘的粒子经x 轴后沿磁场圆半径方向射入磁场,一定沿磁场圆半径方向射出磁场;从x 轴射出点的横坐标:tan 53C A Rx x ︒=+0.1425m C x =.由几何关系,过A 点的粒子经x 轴后进入磁场由B 点沿x 轴正向运动. 综上所述,粒子经过磁场后第二次打在x 轴上的范围为:0.1425m x ≥4.两平行的带电金属板水平放置,板间电场可视为匀强电场.带电量相等粒子a ,b 分别以相同初速度水平射入匀强电场,粒子a 飞离电场时水平方向分位移与竖直方向分位移大小相等,粒子b 飞离电场时水平方向速度与竖直方向速度大小相等.忽略粒子间相互作用力及重力影响,求粒子a 、b 质量之比. 【答案】1:2 【解析】 【详解】假设极板长度为l ,粒子a 的质量为m a ,离开电场时竖直位移为y ,粒子b 的质量为m b ,离开电场时竖直分速度为v y ,两粒子初速度均为v 0,在极板间运动时间均为t 对粒子a :l =v 0t …① y =12a 1t 2…② 1aqEa m =…③ y =l …④①②③④联立解得:202a qEl m v = 对粒子b :v y =a 2t …⑤ v y =v 0…⑥2bqEa m =…⑦ ①⑤⑥⑦联立解得:20b qEl m v =则12a b m m =.5.如图,以竖直向上为y 轴正方向建立直角坐标系;该真空中存在方向沿x 轴正向、场强为E 的匀强电场和方向垂直xoy 平面向外、磁感应强度为B 的匀强磁场;原点O 处的离子源连续不断地发射速度大小和方向一定、质量为m 、电荷量为-q (q>0)的粒子束,粒子恰能在xoy 平面内做直线运动,重力加速度为g,不计粒子间的相互作用; (1)求粒子运动到距x 轴为h 所用的时间;(2)若在粒子束运动过程中,突然将电场变为竖直向下、场强大小变为'mgE q=,求从O 点射出的所有粒子第一次打在x 轴上的坐标范围(不考虑电场变化产生的影响); (3)若保持EB 初始状态不变,仅将粒子束的初速度变为原来的2倍,求运动过程中,粒子速度大小等于初速度λ倍(0<λ<2)的点所在的直线方程.【答案】(1)Bh tE =(2)2222225m g m gxq B q B≤≤(3)22211528m gy xq B=-+【解析】(1)粒子恰能在xoy平面内做直线运动,则粒子在垂直速度方向上所受合外力一定为零,又有电场力和重力为恒力,其在垂直速度方向上的分量不变,而要保证该方向上合外力为零,则洛伦兹力大小不变,因为洛伦兹力F Bqv=洛,所以受到大小不变,即粒子做匀速直线运动,重力、电场力和磁场力三个力的合力为零,设重力与电场力合力与-y轴夹角为θ,粒子受力如图所示,()()()222Bqv qE mg=+,()()225qE mg mgv+==则v在y方向上分量大小sin2yqE E mgv v vBqv B qBθ====因为粒子做匀速直线运动,根据运动的分解可得,粒子运动到距x轴为h处所用的时间2yh Bh qhBtv E mg===;(2)若在粒子束运动过程中,突然将电场变为竖直向下,电场强度大小变为'mgEq=,则电场力''F qE mg==电,电场力方向竖直向上;所以粒子所受合外力就是洛伦兹力,则有,洛伦兹力充当向心力,即2v qvB m r =,()()22mqE mg mv R Bq+==如图所示,由几何关系可知,当粒子在O 点就改变电场时,第一次打在x 轴上的横坐标最小,()()()()22212222222sin 2mqE mg mE m gx R B q q BqE mg θ+====+ 当改变电场时粒子所在处于粒子第一次打在x 轴上的位置之间的距离为2R 时,第一次打在x 轴上的横坐标最大,()()()()()()22222222222222[]25sin mqE mg m qE mg Rm g x qEB q Eq BqE mg θ++====+ 所以从O 点射出的所有粒子第一次打在x 轴上的坐标范围为12x x x ≤≤,即2222225m g m gx q B q B≤≤ (3)粒子束的初速度变为原来的2倍,则粒子不能做匀速直线运动,粒子必发生偏转,而洛伦兹力不做功,电场力和重力对粒子所做的总功必不为零;那么设离子运动到位置坐标(x ,y )满足速率'v v =,则根据动能定理有()2211222qEx mgy mv m v --=--,3222231528m g qEx mgy mv q B --=-=-,所以22211528m gy x q B =-+点睛:此题考查带电粒子在复合场中的运动问题;关键是分析受力情况及运动情况,画出受力图及轨迹图;注意当求物体运动问题时,改变条件后的问题求解需要对条件改变引起的运动变化进行分析,从变化的地方开始进行求解.6.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d 的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO ’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t 0;:当在两板间加最大值为U 0、周期为2t 0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L ,电子的质量为m 、电荷量为e ,其重力不计.(1)求电子离开偏转电场时的位置到OO ’的最远位置和最近位置之间的距离 (2)要使所有电子都能垂直打在荧光屏上, ①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y 【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中0 yU e vtdm=又:1mvRBe=解得:00U tBdL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO′的最大距离和最小距离的差值为△y1,所以垂直打在荧光屏上的电子束的宽度为:210U ey y tdm∆=∆=7.如图所示,在xOy平面的第一象限有一匀强磁场,方向垂直于纸面向外;在第四象限有一匀强电场,方向平行于y轴向下.一电子以速度v0从y轴上的P点垂直于y轴向右飞入电场,经过x轴上M点进入磁场区域,又恰能从y轴上的Q点垂直于y轴向左飞出磁场已知P点坐标为(0,-L),M点的坐标为(233L,0).求(1)电子飞出磁场时的速度大小v(2)电子在磁场中运动的时间t【答案】(1)02v v=;(2)249Ltvπ=【解析】【详解】(1)轨迹如图所示,设电子从电场进入磁场时速度方向与x轴夹角为θ,(1)在电场中x 轴方向:0123Lv t =,y 轴方向12y v L t =:,0tan 3y v v θ== 得60θ=o ,002cos v v v θ== (2)在磁场中,2343L r L == 磁场中的偏转角度为23απ=202439rL t v v ππ==8.如图所示,在y >0的区域内有沿y 轴正方向的匀强电场,在y <0的区域内有垂直坐标平面向里的匀强磁场,一电子(质量为m 、电量为e )从y 轴上A 点以沿x 轴正方向的初速度v 0开始运动,当电子第一次穿越x 轴时,恰好到达C 点,当电子第二次穿越x 轴时,恰好到达坐标原点;当电子第三次穿越x 轴时,恰好到达D 点,C 、D 两点均未在图中标出.已知A 、C 点到坐标原点的距离分别为d 、2d .不计电子的重力.求(1)电场强度E 的大小. (2)磁感应强度B 的大小. (3)电子从A 运动到D 经历的时间t . 【答案】(1);(2);(3).【解析】试题分析:(1)电子在电场中做类平抛运动 设电子从A 到C 的时间为t 11分 1分 1分 求出 E =1分(2)设电子进入磁场时速度为v ,v 与x 轴的夹角为θ,则θ = 45° 1分电子进入磁场后做匀速圆周运动,洛仑兹力提供向心力1分由图可知1分得1分(3)由抛物线的对称关系,电子在电场中运动的时间为 3t1=1分电子在磁场中运动的时间 t2 =2分电子从A运动到D的时间 t=3t1+ t2=1分考点:带电粒子在电场中做类平抛运动匀速圆周运动牛顿第二定律9.水平面上有一个竖直放置的部分圆弧轨道,A为轨道的最低点,半径OA竖直,圆心角AOB为60°,半径R=0.8m,空间有竖直向下的匀强电场,场强E=1×104N/C。
带电粒子在电场中的运动(附详解答案)
带电粒子在电场中的运动 强化训练1.(多选题)冬天当脱毛衫时,静电经常会跟你开个小玩笑.下列一些相关的说法中正确的是( ) A .在将外衣脱下的过程中,内外衣间摩擦起电,内衣和外衣所带的电荷是同种电荷B .如果内外两件衣服可看作电容器的两极,并且在将外衣脱下的某个过程中两衣间电荷量一定,随着两衣间距离的增大,两衣间电容变小,则两衣间的电势差也将变小C .在将外衣脱下的过程中,内外两衣间隔增大,衣物上电荷的电势能将增大(若不计放电中和)D .脱衣时如果人体带上了正电,当手接近金属门把时,由于手与门把间空气电离会造成对人体轻微的电击2.(2012·新课标全国卷) (多选题)如图,平行板电容器的两个极板与水平地面成一角度,两极板与一直流电源相连.若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子( )A .所受重力与电场力平衡B .电势能逐渐增加C .动能逐渐增加D .做匀变速直线运动3.(2011·安徽卷)如图6-3-12甲所示,两平行正对的金属板A 、B 间加有如图乙所示的交变电压,一重力可忽略不计的带正电粒子被固定在两板的正中间P 处.若在t 0时刻释放该粒子,粒子会时而向A 板运动,时而向B 板运动,并最终打在A 板上.则t 0可能属于的时间段是( )A .0<t 0<T 4 B.T 2<t 0<3T4C.3T 4<t 0<T D .T <t 0<9T 84.示波管是一种多功能电学仪器,它的工作原理可以等效成下列情况:如图所示,真空室中电极K 发出电子(初速度不计)经过电压为U 1的加速电场后,由小孔S 沿水平金属板A 、B 间的中心线射入板中.金属板长为L ,相距为d ,当A 、B 间电压为U 2时,电子偏离中心线飞出电场打到荧光屏上而显示亮点.已知电子的质量为m ,电荷量为e ,不计电子重力,下列情况中一定能使亮点偏离中心的距离变大的是( )A .U 1变大,U 2变大B .U 1变小,U 2变大C .U 1变大,U 2变小D .U 1变小,U 2变小 5.(2011·广东卷) (多选题)如图6-3-14为静电除尘器除尘机理的示意图.尘埃在电场中通过某种机制带电,在电场力的作用下向集尘极迁移并沉积,以达到除尘的目的.下列表述正确的是( )A .到达集尘极的尘埃带正电荷B .电场方向由集尘极指向放电极C .带电尘埃所受电场力的方向与电场方向相同D .同一位置带电荷量越多的尘埃所受电场力越大6.如图所示,D 是一只二极管,AB 是平行板电容器,在电容器两极板间有一带电微粒P处于静止状态,当两极板A 和B 间的距离增大一些的瞬间(两极板仍平行),带电微粒P 的运动情况是( )A .向下运动B .向上运动C .仍静止不动D .不能确定 7.(多选题)如图6-3-16所示,灯丝发热后发出的电子经加速电场后,进入偏转电场,若加速电压为U 1,偏转电压为U 2,要使电子在电场中偏转量y 变为原来的2倍,可选用的方法有(设电子不落到极板上)( )A .只使U1变为原来的12倍B .只使U 2变为原来的12倍C .只使偏转电极的长度L 变为原来的2倍D .只使偏转电极间的距离d 减为原来的12倍8.(2013·沈阳二中测试) (多选题)在空间中水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方的A 点以一定初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,如图6-3-17所示.由此可见( )A .电场力为3mgB .小球带正电C .小球从A 到B 与从B 到C 的运动时间相等D.小球从A到B与从B到C的速度变化量的大小相等姓名:班级:学号:分数: + =9.(2011·安徽卷)图甲为示波管的原理图.如果在电极YY′之间所加的电压按图乙所示的规律变化,在电极XX′之间所加的电压按图丙所示的规律变化,则在荧光屏上会看到的图形是图6-3-19中的( )甲乙丙A.B.C. D.10.(多选题)在地面附近,存在着一有界电场,边界MN将某空间分成上下两个区域Ⅰ、Ⅱ,在区域Ⅱ中有向上的匀强电场,在区域Ⅰ中离边界某一高度由静止释放一质量为m的带电小球A,如图6-3-20甲所示,小球运动的v-t图像如图6-3-20乙所示,已知重力加速度为g,不计空气阻力,则( )A.在t=2.5 s时,小球经过边界MNB.小球受到的重力与电场力之比为3∶5C.在小球向下运动的整个过程中,重力做的功与电场力做的功大小相等D.在小球运动的整个过程中,小球的机械能与电势能总和先变大再变小11.如图所示的真空中,场强为E的匀强电场,方向与竖直平面xOy平行且与竖直轴Oy负方向成θ=37°的夹角.带电粒子以初速度v0=7.5 m/s,从原点O沿着Ox轴运动,达到A点时速度为0.此刻,匀强电场的方向突然变为竖直向下,而大小不变,粒子又运动了t2=2 s.(g取10 m/s2)求:(1)粒子带何种电荷?粒子到A点前的运动情况;(2)带电粒子运动2 s后所在位置的坐标.12.如图6-3-25所示,长L=1.2 m、质量M=3 kg的木板静止放在倾角为37°的光滑斜面上,质量m=1 kg、带电荷量q=+2.5×10-4 C的物块放在木板的上端,木板和物块间的动摩擦因数μ=0.1,所在空间加有一个方向垂直斜面向下、场强E=4.0×104N/C的匀强电场.现对木板施加一平行于斜面向上的F=10.8 N的拉力.取g =10 m/s2,斜面足够长.求:(1)物块经多长时间离开木板?(2)如果拉力保持F=10.8 N恒定不变,物块离开木板时木板获得的动能.(3)物块在木板上运动的过程中,由于摩擦而产生的内能.带电粒子在电场中的运动 强化训练(答案)1、解析:根据电荷守恒知,A 错;由C =Q U 和C ∝Sd知,当内外衣之间的距离d 增大时,两衣间的电势差增大,B错;因为内外衣所带的是异种电荷,产生静电引力作用,故当两衣之间的距离增大时,电场力做负功,电荷的电势能增大,C 对;由于人体带上正电荷,当手靠近金属门把时,产生静电感应现象,当两者之间的电压足以使空气电离时,产生放电现象,故人感觉到有轻微的电击,D 也正确. 答案:CD2、解析:由题意可知粒子做直线运动,受到竖直向下的重力和垂直极板的电场力,考虑到电场力和重力不可能平衡,故只有电场力与重力的合力方向水平向左才能满足直线运动条件,故粒子做匀减速直线运动,电场力做负功,电势能逐渐增加,B 、D 对. 答案:BD3、解析:本题考查带电粒子在交变电场中的运动,意在考查考生综合分析问题的能力.两板间加的是方波电压,刚释放粒子时,粒子向A 板运动,说明释放粒子时U AB 为负,因此A 项错误.若t 0=T2时刻释放粒子,则粒子做方向不变的单向直线运动,一直向A 运动;若t 0=3T4时刻释放粒子,则粒子在电场中固定两点间做往复运动,因此T 2<t 0<3T4时间内,粒子的运动满足题意的要求,选项B 正确,选项C 、D 错误. 答案:B4、解析:当电子离开偏转电场时速度的反向延长线一定经过偏转电场中水平位移的中点,所以电子离开偏转电场时偏转角度越大(偏转距离越大),亮点距离中心就越远.设电子经过U 1加速后速度为v 0,离开偏转电场时侧向速度为v y ,根据题意得eU 1=12m v 20①电子在A 、B 间做类平抛运动,当其离开偏转电场时侧向速度为v y =at =eU 2md ·Lv 0②结合①②式,速度的偏转角θ满足tan θ=v y v 0=U 2L2dU 1.显然,欲使θ变大,应该增大U 2、L ,或者减小U 1、d .正确选项是B. 答案:B5、解析:本题考查电场、电场力的基本概念,考查考生对静电除尘器原理的理解及对电场知识的掌握.集尘极与电源的正极相连带正电,放电极带负电,尘埃在电场力作用下向集尘极迁移,说明尘埃带负电荷,A 项错误;电场方向由集尘极指向放电极,B 项正确;带电尘埃带负电,因此所受电场力方向与电场方向相反,C 项错误;同一位置电场强度一定,由F =qE 可知,带电荷量越多的尘埃,所受电场力越大,D 项正确. 答案:BD6、解析:当带电微粒P 静止时,对其进行受力分析得Eq =mg ,即Udq =mg .当A 、B 之间距离增大时,电容器的电容C 减小,由Q =CU 得,Q 也减小,但由于电路中连接了一个二极管,它具有单向导电性,不能放电,故电容器A 、B 两极板上的电荷量不变,场强不变,电场力仍等于微粒的重力,故带电微粒仍保持静止状态,C 选项正确. 答案:C7、解析:先求出y 值.由qU 1=12m v 20,得v 0=2qU 1m . 故y =12at 2=U 2qL 22dm v 20=U 2L 24dU 1.由此可确定A 、C 、D 正确. 答案:ACD 8、解析:设AC 与竖直方向的夹角为θ,对带电小球从A 到C ,电场力做负功,小球带负电,由动能定理,mg ·AC ·cos θ-qE ·BC ·cos θ=0,解得电场力为qE =3mg ,选项A 正确,B 错误.小球水平方向做匀速直线运动,从A 到B 的运动时间是从B 到C 的运动时间的2倍,选项C 错误;小球在竖直方向先加速后减速,小球从A 到B 与从B 到C 竖直方向的速度变化量的大小相等,水平速度不变,小球从A 到B 与从B 到C 的速度变化量的大小相等,选项D 正确. 答案:AD9、解析:本题考查示波管的原理,意在考查考生对示波管原理的掌握.在0~2t 1时间内,扫描电压扫描一次,信号电压完成一个周期,当U Y 为正的最大值时,电子打在荧光屏上有正的最大位移,当U Y 为负的最大值时,电子打在荧光屏上有负的最大位移,因此一个周期内荧光屏上的图像为B. 答案:B10、解析:由速度图像可知,带电小球在区域Ⅰ与区域Ⅱ中的加速度之比为3∶2,由牛顿第二定律可知:mgF -mg=32,所以小球所受的重力与电场力之比为3∶5,B 正确.小球在t =2.5 s 时速度为零,此时下落到最低点,由动能定理可知,重力与电场力的总功为零,故C 正确.因小球只受重力与电场力作用,所以小球的机械能与电势能总和保持不变,D 错. 答案:BC11、解析:(1)由于带电粒子沿着Ox 轴运动,根据受力分析知粒子一定带负电. 粒子到达A 点前沿Ox 轴做匀减速运动. (2)前阶段,受力分析如图6-3-22所示. F 合=ma 1=mg tan37°,a 1=34g =7.5 m/s 2,又由v 2-v 20=2a 1s , 得x =s =3.75 m.电场的方向改变后,受力分析如图6-3-23所示,粒子做竖直向上的匀加速运动,a 2=F 电-mg m =14g =2.5 m/s 2,y =12a 2t 22=5 m. 带电粒子所在的位置坐标为(3.75 m,5 m). 答案:(1)负电 匀减速运动 (2)(3.75 m,5 m)12、解析:(1)物块向下做加速运动,设其加速度为a 1,木板的加速度为a 2,则由牛顿第二定律,对物块:mg sin37°-μ(mg cos37°+qE )=ma 1① 对木板:Mg sin37°+μ(mg cos37°+qE )-F =Ma 2② 又12a 1t 2-12a 2t 2=L ③ 得物块滑过木板所用时间t = 2 s.(2)物块离开木板时木板的速度v 2=a 2t =32m/s.其动能为E k2=12M v 22=27 J.(3)由于摩擦而产生的内能为 Q =F 摩 x 相=μ(mg cos37°+qE )·L =2.16 J. 答案:(1) 2 s (2)27 J (3)2.16 J。
带电粒子在电场中运动题目及标准答案(分类归纳经典)
带电粒子在电场中的运动一、带电粒子在电场中做偏转运动1.如图所示的真空管中,质量为m ,电量为e 的电子从灯丝F发出,经过电压U1加速后沿中心线射入相距为d 的两平行金属板B、C间的匀强电场中,通过电场后打到荧光屏上,设B、C间电压为U2,B、C板长为l 1,平行金属板右端到荧光屏的距离为l 2,求:⑴电子离开匀强电场时的速度与进入时速度间的夹角. ⑵电子打到荧光屏上的位置偏离屏中心距离. 解析:电子在真空管中的运动过分为三段,从F发出在电压U1作用下的加速运动;进入平行金属板B、C间的匀强电场中做类平抛运动;飞离匀强电场到荧光屏间的匀速直线运动.⑴设电子经电压U1加速后的速度为v 1,根据动能定理有: 21121mv eU =电子进入B、C间的匀强电场中,在水平方向以v 1的速度做匀速直线运动,竖直方向受电场力的作用做初速度为零的加速运动,其加速度为: dmeU meE a 2==电子通过匀强电场的时间11v l t =电子离开匀强电场时竖直方向的速度v y 为: 112mdv l eU at v y ==电子离开电场时速度v 2与进入电场时的速度v 1夹角为α(如图5)则d U l U mdv l eU v v tg y 112211212===α ∴dU l U arctg1122=α ⑵电子通过匀强电场时偏离中心线的位移dU l U v l dm eU at y 1212212122142121=•== 电子离开电场后,做匀速直线运动射到荧光屏上,竖直方向的位移 dU l l U tg l y 1212222==α ∴电子打到荧光屏上时,偏离中心线的距离为 )2(22111221l l d U l U y y y +=+= 图 52. 如图所示,在空间中取直角坐标系Oxy ,在第一象限内平行于y 轴的虚线MN 与y 轴距离为d ,从y 轴到MN 之间的区域充满一个沿y 轴正方向的匀强电场,场强大小为E 。
带电粒子在电场中的运动练习题(含答案)
带电粒子在电场中的活动 【1 】 1.如图所示,A 处有一个静止不动的带电体Q,若在c 处有初速度为零的质子和α粒子,在电场力感化下由c 点向d 点活动,已知质子到达d 时速度为v1,α粒子到达d 时速度为v2,那么v1.v2等于:()A. :1B.2∶1C.2∶1D.1∶22.如图所示,一电子沿等量异种电荷的中垂线由 A→O→B 匀速活动,电子重力不计,则电子除受电场力外,所受的另一个力的大小和偏向变更情形是:( )A .先变大后变小,偏向程度向左B .先变大后变小,偏向程度向右C .先变小后变大,偏向程度向左D .先变小后变大,偏向程度向右3.让. . 的混杂物沿着与电场垂直的偏向进入统一有界匀强电场偏转, 要使它们的偏转角雷同,则这些粒子必须具有雷同的( )4.如图所示,有三个质量相等,分离带正电,负电和不带电的小球,从上.下带电平行金属板间的P 点.以雷同速度垂直电场偏向射入电场,它们分离落到 A.B.C 三点,则 ( )A.A 带正电.B 不带电.C 带负电B.三小球在电场中活动时光相等C.在电场中加快度的关系是aC>aB>aAD.到达正极板时动能关系EA>EB>EC5.如图所示,实线为不知偏向的三条电场线,从电场中M 点以雷同速度垂直于电场线偏向飞出 a.b 两个带电粒子,活动轨迹如图中虚线所示,不计粒子重力及粒子之间的库仑力,则()A .a 必定带正电,b 必定带负电B .a 的速度将减小,b 的速度将增长C .a 的加快度将减小,b 的加快度将增长D .两个粒子的动能,一个增长一个减小2H 11H 21H 316.空间某区域内消失着电场,电场线在竖直平面上的散布如图所示,一个质量为m.电荷量为q 的小球在该电场中活动,小球经由A 点时的速度大小为v1,偏向程度向右,活动至B 点时的速度大小为v2,活动偏向与程度偏向之间的夹角为α,A.B 两点之间的高度差与程度距离均为H,则以下断定中准确的是( )A .若v2>v1,则电场力必定做正功B .A.B 两点间的电势差2221()2m U v v q =-C .小球活动到B 点时所受重力的瞬时功率2P mgv =D .小球由A 点活动到B 点,电场力做的功22211122W mv mv mgH =-- 7.如图所示的真空管中,质量为m,电量为e 的电子从灯丝F发出,经由电压U1加快后沿中间线射入相距为d 的两平行金属板B.C间的匀强电场中,经由过程电场后打到荧光屏上,设B.C间电压为U2,B.C板长为L1,平行金属板右端到荧光屏的距离为L 2,求:(1)电子分开匀强电场时的速度与进入时速度间的夹角.(2)电子打到荧光屏上的地位偏离屏中间距离.8. 在真空中消失空间规模足够大的.程度向右的匀强电场.若将一个质量为m.带正电电量q 的小球在此电场中由静止释放,小球将沿与竖直偏向夹角为︒37的直线活动.现将该小球从电场中某点以初速度0v 竖直向上抛出,求活动进程中(取8.037cos ,6.037sin =︒=︒)(1)小球受到的电场力的大小及偏向;(2)小球活动的抛出点至最高点之间的电势差U .带电粒子在电场中的活动答案7.解析:电子在真空管中的活动过火为三段,从F发出在电压U1感化下的加快活动;进入平行金属板B.C间的匀强电场中做类平抛活动;飞离匀强电场到荧光屏间的匀速直线活动.⑴设电子经电压U1加快后的速度为v1,依据动能定理有:21121mv eU = 电子进入B.C间的匀强电场中,在程度偏向以v1的速度做匀速直线活动,竖直偏向受电场力的感化做初速度为零的加快活动,其加快度为:dm eU m eE a 2==电子经由过程匀强电场的时光11v l t =电子分开匀强电场时竖直偏向的速度vy 为:112mdv l eUat v y ==电子分开电场时速度v2与进入电场时的速度v1夹角为α(如图5)则dU l U mdv l eU v v tg y112211212===α∴dU l U arctg 1122=α⑵电子经由过程匀强电场时偏离中间线的位移dU l U v l dm eU at y 1212212122142121=•== 电子分开电场后,做匀速直线活动射到荧光屏上,竖直偏向的位移d U l l U tg l y 1212222==α∴电子打到荧光屏上时,偏离中间线的距离为)2(22111221l l d U l U y y y +=+=8.解析:(1)依据题设前提,电场力大小mg mg F e 4337tan =︒=①电场力的偏向向右(2)小球沿竖直偏向做初速为0v 的匀减速活动,到最高点的时光为t ,则:图 500=-=gt v v ygv t 0=② 沿程度偏向做初速度为0的匀加快活动,加快度为x a g m F a e x 43==③ 此进程小球沿电场偏向位移为:gv t a s x x 8321202==④ 小球上升到最高点的进程中,电场力做功为: 20329mv S F qU W x e === q mv U 32920=⑤。
高考物理带电粒子在电场中的运动试题(有答案和解析)及解析
高考物理带电粒子在电场中的运动试题(有答案和解析)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,质量分别为m A=1kg、m B=2kg的A、B两滑块放在水平面上,处于场强大小E=3×105N/C、方向水平向右的匀强电场中,A不带电,B带正电、电荷量q=2×10-5C.零时刻,A、B用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s末细绳断开.已知A、B与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s2.求:(1)前2s内,A的位移大小;(2)6s末,电场力的瞬时功率.【答案】(1) 2m (2) 60W【解析】【分析】【详解】(1)B所受电场力为F=Eq=6N;绳断之前,对系统由牛顿第二定律:F-μ(m A+m B)g=(m A+m B)a1可得系统的加速度a1=1m/s2;由运动规律:x=12a1t12解得A在2s内的位移为x=2m;(2)设绳断瞬间,AB的速度大小为v1,t2=6s时刻,B的速度大小为v2,则v1=a1t1=2m/s;绳断后,对B由牛顿第二定律:F-μm B g=m B a2解得a2=2m/s2;由运动规律可知:v2=v1+a2(t2-t1)解得v2=10m/s电场力的功率P=Fv,解得P=60W2.如图所示,竖直平面内有一固定绝缘轨道ABCDP,由半径r=0.5m的圆弧轨道CDP和与之相切于C点的水平轨道ABC组成,圆弧轨道的直径DP与竖直半径OC间的夹角θ=37°,A、B两点间的距离d=0.2m.质量m1=0.05kg的不带电绝缘滑块静止在A点,质量m2=0.1kg、电荷量q=1×10-5C的带正电小球静止在B点,小球的右侧空间存在水平向右的匀强电场.现用大小F=4.5N、方向水平向右的恒力推滑块,滑块到达月点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P点时恰好和轨道无挤压且所受合力指向圆心.小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦.取g=10m/s2,sin37°=0.6,cos37°=0.8.(1)求撤去该恒力瞬间滑块的速度大小v 以及匀强电场的电场强度大小E ; (2)求小球到达P 点时的速度大小v P 和B 、C 两点间的距离x . 【答案】(1) 6m /s ;7.5×104N /C (2) 2.5m /s ;0.85m 【解析】 【详解】(1)对滑块从A 点运动到B 点的过程,根据动能定理有:2112Fd m v = 解得:v =6m /s小球到达P 点时,受力如图所示:则有:qE =m 2g tan θ, 解得:E =7.5×104N /C(2)小球所受重力与电场力的合力大小为:2cos m gG 等θ=小球到达P 点时,由牛顿第二定律有:2P v G r=等解得:v P =2.5m /s滑块与小球发生弹性正碰,设碰后滑块、小球的速度大小分别为v 1、v 2, 则有:m 1v =m 1v 1+m 2v 222211122111222m v m v m v =+ 解得:v 1=-2m /s(“-”表示v 1的方向水平向左),v 2=4m /s 对小球碰后运动到P 点的过程,根据动能定理有:()()22222211sincos 22P qE x r m g r r m v m v θθ--+=- 解得:x =0.85m3.如图所示,一内壁光滑的绝缘圆管ADB 固定在竖直平面内.圆管的圆心为O ,D 点为圆管的最低点,AB 两点在同一水平线上,AB=2L ,圆管的半径为r=2L(自身的直径忽略不计).过OD 的虚线与过AB 的虚线垂直相交于C 点,在虚线AB 的上方存在方向水平向右、范围足够大的匀强电场;虚线AB 的下方存在方向竖直向下、范围足够大的匀强电场,电场强度大小E 2=mgq.圆心O 正上方的P 点有一质量为m 、电荷量为-q(q>0)的小球(可视为质点),PC 间距为L .现将该小球从P 点无初速释放,经过一段时间后,小球刚好从管口A 无碰撞地进入圆管内,并继续运动.重力加速度为g .求:(1)虚线AB 上方匀强电场的电场强度E 1的大小; (2)小球在AB 管中运动经过D 点时对管的压力F D ;(3)小球从管口B 离开后,经过一段时间到达虚线AB 上的N 点(图中未标出),在圆管中运动的时间与总时间之比ABPNt t . 【答案】(1)mg q (2)2mg ,方向竖直向下(3)4ππ+【解析】 【分析】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,根据正交分解,垂直运动方向的合力为零,列出平衡方程即可求出虚线AB 上方匀强电场的电场强度;(2)根据动能定理结合圆周运动的规律求解小球在AB 管中运动经过D 点时对管的压力F D ;(3)小物体由P 点运动到A 点做匀加速直线运动,在圆管内做匀速圆周运动,离开管后做类平抛运动,结合运动公式求解在圆管中运动的时间与总时间之比. 【详解】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,小物体从A 点沿切线方向进入,则此时速度方向与竖直方向的夹角为45°,即加速度方向与竖直方向的夹角为45°,则:tan45°= mg Eq解得:mg qE =(2)从P 到A 的过程,根据动能定理:mgL+EqL=12mv A 2 解得v A =2gL小球在管中运动时,E 2q=mg ,小球做匀速圆周运动,则v 0=v A =2gL在D 点时,下壁对球的支持力2022v F m mg r==由牛顿第三定律,22F F mg =='方向竖直向下.(3)小物体由P 点运动到A 点做匀加速直线运动,设所用时间为t 1,则:211222L gt =解得12L t g= 小球在圆管内做匀速圆周运动的时间为t 2,则:2323244A rL t v gππ⋅==小球离开管后做类平抛运动,物块从B 到N 的过程中所用时间:322L t g= 则:24t t ππ=+ 【点睛】本题考查带点小物体在电场力和重力共同作用下的运动,解题关键是要分好运动过程,明确每一个过程小物体的受力情况,并结合初速度判断物体做什么运动,进而选择合适的规律解决问题,匀变速直线运动利用牛顿第二定律结合运动学公式求解或者运用动能定理求解,类平抛利用运动的合成和分解、牛顿第二定律结合运动学规律求解.4.如图1所示,光滑绝缘斜面的倾角θ=30°,整个空间处在电场中,取沿斜面向上的方向为电场的正方向,电场随时间的变化规律如图2所示.一个质量m=0.2kg ,电量q=1×10-5C 的带正电的滑块被挡板P 挡住,在t=0时刻,撤去挡板P .重力加速度g=10m/s 2,求:(1)0~4s 内滑块的最大速度为多少? (2)0~4s 内电场力做了多少功? 【答案】(1)20m/s (2)40J 【解析】 【分析】对滑块受力分析,由牛顿运动定律计算加速度计算各速度. 【详解】【解】(l)在0~2 s 内,滑块的受力分析如图甲所示,电场力F=qE11sin F mg ma θ-=解得2110/a m s =在2 ---4 s 内,滑块受力分析如图乙所示22sin F mg ma θ+=解得2210/a m s =因此物体在0~2 s 内,以2110/a m s =的加速度加速, 在2~4 s 内,2210/a m s =的加速度减速,即在2s 时,速度最大由1v a t =得,max 20/v m s =(2)物体在0~2s 内与在2~4s 内通过的位移相等.通过的位移max202v x t m == 在0~2 s 内,电场力做正功1160W F x J == - 在2~4 s 内,电场力做负功2220W F x J ==-电场力做功W=40 J5.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯【解析】 【分析】 【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联立解得46.2510/qC kg m-=⨯6.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度51.610/E N C =⨯,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为81.010/qC kg m=⨯的带正电的粒子,已知粒子的发射速率60 4.010/v m s =⨯.不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动20v qv B m r=解得:05mv r cm qB== (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.(3)假设粒子没有射出电场就打到荧光屏上,有000x v t =2012h at =qE a m=解得:18210h cm R cm =>=,说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则0x v t =212y at =代入数据解得2x y =设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ===g,所以()()00tan 22H x x x y y θ=-=-g , 由数学知识可知,当()022x y y -=时,即 4.5y cm =时H 有最大值,所以max 9H cm =7.能量守恒是自然界基本规律,能量转化通过做功实现。
105带电粒子在电场中的运动同步练习(Word版含解析)
人教版必修第三册 10.5 带电粒子在电场中的运动一、单选题1.示波器是一种常见的电学仪器,可以在荧光屏上显示出被检测的电压随时间变化的情况。
示波器的内部构造简化图如图所示,电子经电子枪加速后进入偏转电场,最终打在荧光屏上。
下列关于所加偏转电压与荧光屏上得到图形的说法中正确的是()A.如果只在XX'上加图甲所示的电压,则在荧光屏上看到的图形如图(a)B.如果只在YY'上加图乙所示的电压,则在荧光屏上看到的图形如图(b)C.如果在YY'、XX'上分别加图甲、乙所示的电压,则在荧光屏上看到的图形如图(c)D.如果在YY',XX'上分别加图甲、乙所示的电压,则在荧光屏上看到的图形如图(d)2.如图,竖直放置的圆环处于水平向左的匀强电场中,A,B、C、D为圆环上的四个点,AD竖直,AB与AD间夹角=60θ,AC为圆环直径,沿AB、AC、AD分别固定光滑细杆。
现让质量均为m、带电量均为+ q的带孔小球分别套在细杆AB、AC、AD上(图中未画出),均从A点由静止开始下滑,设小球分别经时间tB、tC、tD到达B、C、D三点。
已知匀强电场场强大小E g,关于三个小球的运动时间tB、tC、tD,下列说法正确的是()A.tB=tC=tD B.tB > tC > tD C.tB < tC < tD D.tD < tB < tC 3.如图所示,绝缘的水平面上有一质量为0.1kg的带电物体,物体与水平面间的动摩擦因数μ=0.75,物体恰能在水平向左的匀强电场中向右匀速运动,电场强度E=1×103N/C,g取10m/s2。
则下列说法正确的是()A.物体带正电B.物体所带的电荷量绝对值为47.510CC.若使物体向右加速运动,则电场方向应变为斜向左下方且与水平方向成37°角D.若使物体向右加速运动,则加速度的最大值为1.25m/s24.如图所示,氘核和氦核以相同初速度从水平放置的两平行金属板正中间进入板长为L、两板间距离为d、板间加直流电压U的偏转电场,一段时间后离开偏转电场。
【物理】 高考物理带电粒子在电场中的运动试题(有答案和解析)及解析
【答案】(1) E mg q
(2) xCN 7L
(3)
t总=(3
3 4
)
2L g
【解析】
(1)小物体无初速释放后在重力、电场力的作用下做匀加速直线运动,小物体刚好沿切线 无碰撞地进入圆管内,故小物体刚好沿 PA 连线运动,重力与电场力的合力沿 PA 方向;又
PA AC L ,故 tan 450 qE ,解得: E mg
6.如图所示,一根光滑绝缘细杆与水平面成 α=30°角倾斜固定.细杆的一部分处在场强 方向水平向右的匀强电场中,场强 E=2 3 ×104N/C.在细杆上套有一个带负电的小球, 带电量为 q=1×10﹣5C、质量为 m=3×10﹣2kg.现使小球从细杆的顶端 A 由静止开始沿杆 滑下,并从 B 点进入电场,小球在电场中滑至最远处的 C 点.已知 AB 间距离 x1=0.4m,g =10m/s2.求: (1)小球通过 B 点时的速度大小 VB; (2)小球进入电场后滑行的最大距离 x2; (3)试画出小球从 A 点运动到 C 点过程中的 v﹣t 图象.
解得:小球抛出时的初速度
v0
23 3
m
s
(2)在
B
点时, sin60
vy vB
,则 vB
43 3
m s
小球在
A
点时, FN
qE
mg
m
vA2 R
,解得: vA
3ms
小球从 B 到 A 过程,由动能定理得: (mg qE)(R Rcos ) Wf
1 2
mvA2
1 2
mvB2
解得:小球从 B 到 A 的过程中克服摩擦所做的功Wf
mg qE ma ,解得:小球的加速度
a mg qE 210 1103 104 m / s2 5m / s2
微型专题03 带电粒子在电场中的运动(四种题型)(练习题)(解析版)
第十章静电场中的能量微型专题3 带电粒子在电场中的运动(四种题型)一、单选题:1.A、B是一条电场线上的两个点,一带负电的微粒仅在静电力作用下以一定的初速度从A点沿电场线运动到B点,其速度v与时间t的关系图象如图1所示。
则此电场的电场线分布可能是()【解析】从v-t图象可以看出物体的速度逐渐减小,图线的斜率逐渐增大,v-t图线中图线的斜率表示物体的加速度大小,故物体做加速度逐渐增大的减速运动,所以带负电的粒子顺着电场线运动,电场力做负功,速度逐渐减小,且电场线沿粒子运动方向逐渐密集,故选项A正确,选项B、C、D 错误。
【答案】A2.如图所示,两平行的带电金属板水平放置.若在两板中间a点从静止释放一带电微粒,微粒恰好保持静止状态,现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°,再由a点从静止释放一同样的微粒,该微粒将()A.保持静止状态B.向左上方做匀加速运动C.向正下方做匀加速运动D.向左下方做匀加速运动【答案】D【解析】两平行金属板水平放置时,带电微粒静止,有mg=qE,现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°后,两板间电场强度方向逆时针旋转45°,电场力方向也逆时针旋转45°,但大小不变,此时电场力和重力的合力大小恒定,方向指向左下方,故该微粒将向左下方做匀加速运动,选项D正确.3.如图所示,两极板与电源相连接,电子从负极板边缘沿垂直电场方向射入匀强电场,电子恰好从正极板边缘飞出,现保持负极板不动,正极板在竖直方向移动,并使电子入射速度变为原来的2倍,而电子仍从原位置射入,且仍从正极板边缘飞出,则两极板间距离变为原来的()A.2倍B.4倍C.12D.14【答案】C【解析】电子从负极板边缘垂直电场方向射入匀强电场,做类平抛运动.假设电子的带电荷量为e ,质量为m ,初速度为v ,极板的长度为L ,极板的间距为d ,电场强度为E .由于电子做类平抛运动,所以水平方向有:L =vt ,竖直方向有:y =12at 2=12·eE m ·(L v )2=d .因为E =U d ,可得:d 2=eUL 22mv 2,若电子的速度变为原来的两倍,仍从正极板边缘飞出,则由上式可得两极板的间距d 应变为原来的12,故选C.4.一匀强电场的电场强度E 随时间t 变化的图象如图4所示,在该匀强电场中,有一个带负电粒子于t =0时刻由静止释放,若带电粒子只受电场力作用,则下列说法中正确的是(假设带电粒子不与板相碰)( )A.带电粒子只向一个方向运动B.0~2 s 内,电场力做功等于0C.4 s 末带电粒子回到原出发点D.2.5~4 s 内,电场力做功等于0 【答案】D【解析】画出带电粒子速度v 随时间t 变化的图象如图所示,v -t 图线与时间轴所围“面积”表示位移,可见带电粒子不是只向一个方向运动,4 s 末带电粒子不能回到原出发点,A 、C 错误;2 s 末速度不为0,可见0~2 s 内电场力做的功不等于0,B 错误;2.5 s 末和4 s 末,速度的大小、方向都相同,则2.5~4 s 内,电场力做功等于0,所以D 正确.5.如图所示,在竖直向上的匀强电场中,一根不可伸长的绝缘细绳的一端系着一个带电小球,另一端固定于O 点,小球在竖直平面内做匀速圆周运动,最高点为a ,最低点为b .不计空气阻力,则下列说法正确的是( )A.小球带负电B.电场力跟重力平衡C.小球在从a 点运动到b 点的过程中,电势能减小D.小球在运动过程中机械能守恒 【答案】B【解析】由于小球在竖直平面内做匀速圆周运动,所以重力与电场力的合力为0,电场力方向竖直向上,小球带正电,A 错,B 对;从a →b ,电场力做负功,电势能增大,C 错;由于有电场力做功,机械能不守恒,D 错.6.如图所示,场强大小为E 、方向竖直向下的匀强电场中有一矩形区域abcd ,水平边ab 长为s ,竖直边ad 长为h .质量均为m 、带电量分别为+q 和-q 的两粒子,由a 、c 两点先后沿ab 和cd 方向以速率v 0进入矩形区域(两粒子不同时出现在电场中).不计重力,若两粒子轨迹恰好相切,则v 0等于( )A.s 22qEmh B.s 2qE mh C.s 42qEmhD.s 4qE mh【答案】B【解析】根据对称性,两粒子轨迹的切点位于矩形区域abcd 的中心,则在水平方向有12s =v 0t ,在竖直方向有12h =12·qE m ·t 2,解得v 0=s2qEmh,故选项B 正确,选项A 、C 、D 错误. 7.如图甲所示,Q 1、Q 2为两个被固定的点电荷,a 、b 、c 三点在它们连线的延长线上,其中Q 1带负电。
【物理】物理带电粒子在电场中的运动专题练习(及答案)及解析
【物理】物理带电粒⼦在电场中的运动专题练习(及答案)及解析【物理】物理带电粒⼦在电场中的运动专题练习(及答案)及解析⼀、⾼考物理精讲专题带电粒⼦在电场中的运动1.如图甲所⽰,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续⽆初速地释放质量为m 、电荷量为+q 的粒⼦,经电场加速后,沿极板C 、D 的中⼼线射向荧光屏(荧光屏⾜够⼤且与中⼼线垂直),当C 、D 板间未加电压时,粒⼦通过两板间的时间为t 0;当C 、D 板间加上图⼄所⽰电压(图中电压U 1已知)时,粒⼦均能从C 、D 两板间飞出,不计粒⼦的重⼒及相互间的作⽤.求:(1)C 、D 板的长度L ;(2)粒⼦从C 、D 板间飞出时垂直于极板⽅向偏移的最⼤距离;(3)粒⼦打在荧光屏上区域的长度.【答案】(1)02qU L t m =2)2102qU t y md =(3)21032qU t s s md== 【解析】试题分析:(1)粒⼦在A 、B 板间有20012qU mv = 在C 、D 板间有00L v t = 解得:02qU L t m=(2)粒⼦从nt 0(n=0、2、4……)时刻进⼊C 、D 间,偏移距离最⼤粒⼦做类平抛运动偏移距离2012y at = 加速度1qU a md=得:2102qU t y md=(3)粒⼦在C 、D 间偏转距离最⼤时打在荧光屏上距中⼼线最远ZXXK] 出C 、D 板偏转⾓0tan y v v θ=0y v at =打在荧光屏上距中⼼线最远距离tan s y L θ=+荧光屏上区域长度21032qU t s s md==考点:带电粒⼦在匀强电场中的运动【名师点睛】此题是带电粒⼦在匀强电场中的运动问题;关键是知道粒⼦在⽔平及竖直⽅向的运动规律和特点,结合平抛运动的规律解答.2.如图1所⽰,光滑绝缘斜⾯的倾⾓θ=30°,整个空间处在电场中,取沿斜⾯向上的⽅向为电场的正⽅向,电场随时间的变化规律如图2所⽰.⼀个质量m=0.2kg ,电量q=1×10-5C 的带正电的滑块被挡板P 挡住,在t=0时刻,撤去挡板P .重⼒加速度g=10m/s 2,求:(1)0~4s 内滑块的最⼤速度为多少? (2)0~4s 内电场⼒做了多少功? 【答案】(1)20m/s (2)40J 【解析】【分析】对滑块受⼒分析,由⽜顿运动定律计算加速度计算各速度.【详解】【解】(l)在0~2 s 内,滑块的受⼒分析如图甲所⽰,电场⼒F=qE11sin F mg ma θ-=解得2110/a m s =在2 ---4 s 内,滑块受⼒分析如图⼄所⽰22sin F mg ma θ+=解得2210/a m s =因此物体在0~2 s 内,以2110/a m s =的加速度加速,在2~4 s 内,2210/a m s =的加速度减速,即在2s 时,速度最⼤由1v a t =得,max 20/v m s =(2)物体在0~2s 内与在2~4s 内通过的位移相等.通过的位移max202v x t m == 在0~2 s 内,电场⼒做正功1160W F x J == - 在2~4 s 内,电场⼒做负功2220W F x J ==- 电场⼒做功W=40 J 3.在⽔平桌⾯上有⼀个边长为L 的正⽅形框架,内嵌⼀个表⾯光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.⼀带电⼩球从圆盘上的P 点(P 为正⽅形框架对⾓线AC 与圆盘的交点)以初速度v 0⽔平射⼊磁场区,⼩球刚好以平⾏于BC 边的速度从圆盘上的Q 点离开该磁场区(图中Q 点未画出),如图甲所⽰.现撤去磁场,⼩球仍从P 点以相同的初速度v 0⽔平⼊射,为使其仍从Q 点离开,可将整个装置以CD 边为轴向上抬起⼀定⾼度,如图⼄所⽰,忽略⼩球运动过程中的空⽓阻⼒,已知重⼒加速度为g .求:(1)⼩球两次在圆盘上运动的时间之⽐;(2)框架以CD 为轴抬起后,AB 边距桌⾯的⾼度.【答案】(1)⼩球两次在圆盘上运动的时间之⽐为:π:2;(2)框架以CD 为轴抬起后,AB边距桌⾯的⾼度为222vg.【解析】【分析】【详解】(1)⼩球在磁场中做匀速圆周运动,由⼏何知识得:r2+r2=L2,解得:r=22L,⼩球在磁场中做圆周运的周期:T=2rvπ,⼩球在磁场中的运动时间:t1=14T=2Lπ,⼩球在斜⾯上做类平抛运动,⽔平⽅向:x=r=v0t2,运动时间:t2=22Lv,则:t1:t2=π:2;(2)⼩球在斜⾯上做类平抛运动,沿斜⾯⽅向做初速度为零的匀加速直线运动,位移:r=2212at,解得,加速度:a=222vL,对⼩球,由⽜顿第⼆定律得:a=mgsinmθ=g sinθ,AB 边距离桌⾯的⾼度:h =L sinθ=222v g;4.⼀电路如图所⽰,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平⾏板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有⼀未知的、待研究的带电粒⼦沿虚线⽅向以v0=2.0m/s 的初速度射⼊MN 的电场中,已知该带电粒⼦刚好从极板的右侧下边缘穿出电场,求该带电粒⼦的⽐荷q/m (不计粒⼦的重⼒,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -? (2)46.2510/C kg -?【解析】【分析】【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===?=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==??=?(2)粒⼦在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联⽴解得46.2510/qC kg m-=?5.如图所⽰,在不考虑万有引⼒的空间⾥,有两条相互垂直的分界线MN 、PQ ,其交点为O .MN ⼀侧有电场强度为E 的匀强电场(垂直于MN ),另⼀侧有匀强磁场(垂直纸⾯向⾥).宇航员(视为质点)固定在PQ 线上距O 点为h 的A 点处,⾝边有多个质量均为m 、电量不等的带负电⼩球.他先后以相同速度v0、沿平⾏于MN ⽅向抛出各⼩球.其中第1个⼩球恰能通过MN 上的C 点第⼀次进⼊磁场,通过O 点第⼀次离开磁场,OC=2h .求:(1)第1个⼩球的带电量⼤⼩;(2)磁场的磁感强度的⼤⼩B ;(3)磁场的磁感强度是否有某值,使后⾯抛出的每个⼩球从不同位置进⼊磁场后都能回到宇航员的⼿中?如有,则磁感强度应调为多⼤.【答案】(1)20 12mvqEh=;(2)2EBv=;(3)存在,EBv'=【解析】【详解】(1)设第1球的电量为1q,研究A到C的运动:2112q E=2h v t=解得:212mvqEh=;(2)研究第1球从A到C的运动:12yq Ev hm=解得:0yv v=tan1yvvθ==,45oθ=,2v v=;研究第1球从C作圆周运动到达O的运动,设磁感应强度为B 由2q vB mR=得1mvRq B=由⼏何关系得:22sinR hθ=解得:2EBv=;(3)后⾯抛出的⼩球电量为q ,磁感应强度B '①⼩球作平抛运动过程002hmx v tv qE== 2y qE v h m= ②⼩球穿过磁场⼀次能够⾃⾏回到A ,满⾜要求:sin R x θ=,变形得:sin mvx qB θ'= 解得:0E B v '=.6.竖直平⾯内存在着如图甲所⽰管道,虚线左侧管道⽔平,虚线右侧管道是半径R=1m 的半圆形,管道截⾯是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度E=4×103V/m .⼩球a 、b 、c 的半径略⼩于管道内径,b 、c 球⽤长2m L =的绝缘细轻杆连接,开始时c 静⽌于管道⽔平部分右端P 点处,在M 点处的a 球在⽔平推⼒F 的作⽤下由静⽌向右运动,当F 减到零时恰好与b 发⽣了弹性碰撞,F-t 的变化图像如图⼄所⽰,且满⾜224F t π+=.已知三个⼩球均可看做质点且m a =0.25kg ,m b =0.2kg ,m c =0.05kg ,⼩球c 带q=5×10-4C 的正电荷,其他⼩球不带电,不计⼀切摩擦,g =10m/s 2,求(1)⼩球a 与b 发⽣碰撞时的速度v 0; (2)⼩球c 运动到Q 点时的速度v ;(3)从⼩球c 开始运动到速度减为零的过程中,⼩球c 电势能的增加量.【答案】(1)04m/s v = (2)v =2m/s (3) 3.2J P E ?=【分析】对⼩球a ,由动量定理可得⼩球a 与b 发⽣碰撞时的速度;⼩球a 与⼩球b 、c 组成的系统发⽣弹性碰撞由动量守恒和机械能守恒可列式,⼩球c 运动到Q 点时,⼩球b 恰好运动到P 点,由动能定理可得⼩球c 运动到Q 点时的速度;由于b 、c 两球转动的⾓速度和半径都相同,故两球的线速度⼤⼩始终相等,从c 球运动到Q 点到减速到零的过程列能量守恒可得;解:(1)对⼩球a ,由动量定理可得00a I m v =-由题意可知,F-图像所围的图形为四分之⼀圆弧,⾯积为拉⼒F 的冲量,由圆⽅程可知21S m = 代⼊数据可得:04/v m s =(2)⼩球a 与⼩球b 、c 组成的系统发⽣弹性碰撞,由动量守恒可得012()a a b c m v m v m m v =++ 由机械能守恒可得222012111()222a abc m v m v m m v =++ 解得120,4/v v m s ==⼩球c 运动到Q 点时,⼩球b 恰好运动到P 点,由动能定理22211()()22c b c b c m gR qER m m v m m v -=+-+ 代⼊数据可得2/v m s =(3)由于b 、c 两球转动的⾓速度和半径都相同,故两球的线速度⼤⼩始终相等,假设当两球速度减到零时,设b 球与O 点连线与竖直⽅向的夹⾓为θ从c 球运动到Q 点到减速到零的过程列能量守恒可得:21(1cos )sin ()sin 2b c b c m gR m gR m m v qER θθθ-+++=解得sin 0.6,37θθ==?因此⼩球c 电势能的增加量:(1sin ) 3.2P E qER J θ?=+=7.如图所⽰,在竖直⾯内有两平⾏⾦属导轨AB 、CD .导轨间距为L ,电阻不计.⼀根电阻不计的⾦属棒ab 可在导轨上⽆摩擦地滑动.棒与导轨垂直,并接触良好.导轨之间有垂直纸⾯向外的匀强磁场,磁感强度为B .导轨右边与电路连接.电路中的三个定值电阻阻值分别为2R 、R 和R .在BD 间接有⼀⽔平放置的电容为C 的平⾏板电容器,板间距离为d ,电容器中质量为m 的带电微粒电量为q 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在电场中的运动专题练习1、如图所示,长为L 、倾角为θ的光滑绝缘斜面处于电场中, 一带电量为+q 、质量为m 的小球,以初速度v 0从斜面底端 A 点开始沿斜面上滑,当到达斜面顶端B 点时,速度仍为v 0,则 ( )A .A 、B 两点间的电压一定等于mgLsin θ/qB .小球在B 点的电势能一定大于在A 点的电势能C .若电场是匀强电场,则该电场的电场强度的最大值一定为mg/qD .如果该电场由斜面中点正止方某处的点电荷产生,则该点电荷必为负电荷2、如图所示,质量相等的两个带电液滴1和2从水平方向的匀强电场中0点自由释放后,分别抵达B 、C 两点,若AB=BC ,则它们带电荷量之比q 1:q 2等于( )A .1:2B .2:1C .1:D .:1223.如图所示,两块长均为L 的平行金属板M 、N 与水平面成α角放置在同一竖直平面,充电后板间有匀强电场。
一个质量为m 、带电量为q 的液滴沿垂直于电场线方向射人电场,并沿虚线通过电场。
下列判断中正确的是( )。
A 、电场强度的大小E =mgcos α/qB 、电场强度的大小E =mgtg α/qC 、液滴离开电场时的动能增量为-mgLtg αD 、液滴离开电场时的动能增量为-mgLsin α4.如图所示,质量为m 、电量为q 的带电微粒,以初速度V 0从A 点竖直向上射入水平方向、电场强度为E 的匀强电场中。
当微粒经过B 点时速率为V B =2V 0,而方向与E同向。
下列判断中正确的是()。
A 、A 、B 两点间电势差为2mV 02/q B 、A 、B 两点间的高度差为V 02/2gC 、微粒在B 点的电势能大于在A 点的电势能D 、从A 到B 微粒作匀变速运动5.一个带正电的微粒,从A 点射入水平方向的匀强电场中,微粒沿直线AB 运动,如图,AB 与电场线夹角θ=30°,已知带电微粒的质量m =1.0×10-7kg ,电量q =1.0×10-10C ,A 、B 相距L =20cm .(取g =10m/s 2,结果保留二位有效数字)求:(1)说明微粒在电场中运动的性质,要求说明理由.(2)电场强度的大小和方向?(3)要使微粒从A 点运动到B 点,微粒射入电场时的最小速度是多少?6.一个带电荷量为-q 的油滴,从O 点以速度v 射入匀强电场中,v 的方向与电场方向成θ角,已知油滴的质量为m ,测得油滴达到运动轨迹的最高点时,它的速度大小又为v ,求:(1) 最高点的位置可能在O 点的哪一方? (2) 电场强度 E 为多少?(3) 最高点处(设为N )与O 点的电势差U NO 为多少?v7. 如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,它的极板长L = 0.1m ,两板间距离 d = 0.4 cm ,有一束相同微粒组成的带电粒子流从两板中央平行极板射入,由于重力作用微粒能落到下板上,已知微粒质量为 m = 2×10-6kg ,电量q = 1×10-8 C ,电容器电容为C =10-6 F .求(1) 为使第一粒子能落点范围在下板中点到紧靠边缘的B 点之内,则微粒入射速度v 0应为多少?(2) 以上述速度入射的带电粒子,最多能有多少落到下极板上?8.如图所示,在竖直平面内建立xOy 直角坐标系,Oy 表示竖直向上的方向。
已知该平面内存在沿x 轴负方向的区域足够大的匀强电场,现有一个带电量为2.5×10-4C 的小球从坐标原点O 沿y 轴正方向以0.4kg.m/s 的初动量竖直向上抛出,它到达的最高点位置为图中的Q 点,不计空气阻力,g 取10m/s 2. (1)指出小球带何种电荷; (2)求匀强电场的电场强度大小;(3)求小球从O 点抛出到落回x 轴的过程中电势能的改变量.V 1.63.2BA9、如图所示,一对竖直放置的平行金属板A 、B 构成电容器,电容为C 。
电容器的A 板接地,且中间有一个小孔S ,一个被加热的灯丝K 与S 位于同一水平线,从丝上可以不断地发射出电子,电子经过电压U 0加速后通过小孔S 沿水平方向射入A 、B 两极板间。
设电子的质量为m ,电荷量为e ,电子从灯丝发射时的初速度不计。
如果到达B 板的电子都被B 板吸收,且单位时间内射入电容器的电子数为n 个,随着电子的射入,两极板间的电势差逐渐增加,最终使电子无法到达B 板,求:(1)当B 板吸收了N 个电子时,AB 两板间的电势差(2)A 、B 两板间可以达到的最大电势差(U O )(3)从电子射入小孔S 开始到A 、B 两板间的电势差达到最大值所经历的时间。
10.如图所示是示波器的示意图,竖直偏转电极的极板长L 1=4cm ,板间距离d=1cm 。
板右端距离荧光屏L 2=18cm ,(水平偏转电极上不加电压,没有画出)电子沿中心线进入竖直偏转电场的速度是v=1.6×107m/s ,电子电量e=1.6×10-19C ,质量m=0.91×10-30kg 。
(1)要使电子束不打在偏转电极上,加在竖直偏转电极上的最大偏转电压U 不能超过多大?(2)若在偏转电极上加u=27.3sin100πt (V)的交变电压,在荧光屏竖直坐标轴上能观察到多长的线段?带电粒子在电场中的运动专题练习参考答案1、A D2、B 3 AD 4 ABD 5.(1)微粒只在重力和电场力作用下沿AB 方向作直线运动,所以其合力在AB 方向上,分析可知电场力的方向水平向左,微粒所受合力的方向由B 指向A ,与初速度v A 方向相反,微粒做匀减速运动.(2)在垂直于AB 方向上,有qE sin θ-mg cos θ=0 所以电场强度E =1.7×104N/C 电场强度的方向水平向左(3)微粒由A 运动到B 时的速度v B =0时,微粒进入电场时的速度最小,由动能定理得, mgL sin θ+qEL cos θ=mv A 2/2 代入数据,解得v A =2.8m/s6.(1) 在O 点的左方.(2) U NO =.qmv 2sin 22θ(1)由动能定理可得在O 点的左方.(2)在竖直方向 mgt = mv sin θ,水平方向 qEt = mv + mv cos θ.(3)油滴由O 点N 点,由qU -mgh = 0,在竖直方向上,(v 0 sin θ)2 = 2gh .U NO =.qmv 2sin 22θ7.(1)若第1个粒子落到O 点,由=v 01t 1,=gt 12得v 01=2.5 m/s .若落到B 点,由2L 2d 21L =v 02t 1,=gt 22得v 02=5 m/s .故2.5 m/s ≤v 0≤5 m/s .(2)由L =v 01t ,得t =4×10-2 s .=at 2得2d 212d 21a =2.5 m/s 2,有mg -qE=ma ,E=得Q =6×10-6 C .所以=600个.dc Q qQn =8.说明:动量是运动物体质量与速度的乘积。
(1)小球带负电(2)小球在y 方向上做竖直上抛运动,在x 方向做初速度为零的匀加速运动,最高点Q 的坐标为(1.6m, 3.2m ) 由 ①代入数据得 (1分) 由初动量p=m v 0 ②gy v 220=s m v /80=解得 m=0.05kg 又 ③ ④ 由③④代入数据得E=1×103N/CmqEt at x 22122==221gt y =(3)由④式可解得上升段时间为t=0.8s 所以全过程时间为s t t 6.12=='代入③式可解得x 方向发生的位移为x =6.4m由于电场力做正功,所以电势能减少,设减少量为△E,代入数据得△E=qE x =1.6J9.(1)(2)U 0(3)t=C NeneC U 010.解:(1) ①② ③22121at d =dm Uea =v L t 1=由以上三式,解得: ④代入数据,得 U=91V ⑤2122eL v md U =(2)偏转电压的最大值:U 1=27.3V⑥l l t h n gin the通过偏转极板后,在垂直极板方向上的最大偏转距离: ⑦21121)(221vL dm e U t a y ==设打在荧光屏上时,亮点距O'的距离为y',则: ⑧2/2/'112L L L y y +=荧光屏上亮线的长度为:l=2y'⑨代入数据,解得l=3cm ⑩11. (画出电子在t=0时和t=t 0时进入电场的v-t 图象进行分析)(1), 001t md eU v y ===0022t md eU v y mdt eU 002 233)21(2200010101maxdmd t eU t v t v t v s y y y y ===+=4235.121200010101mind md t eU t v t v t v s y y y y ===+=解得 , 006t m eU d =m eU td s y 00max 622==meU td s y 00min 644==(2)由此得, m eU t md eU v y 6)(020021====20022)2(t md eU v y meU 320而 meU v 0202=131612/3/21212121000021202220minmax=++=++=eU eU eU eU m mv mv mv E E y y K K 0v v v 100。