模拟电子技术-第3章-场效应管及其基本电路

合集下载

第3章 场效应管及其基本放大电路 参考答案

第3章 场效应管及其基本放大电路 参考答案

第 3章 场效应管及其基本放大电路3.1填空题(1)按照结构,场效应管可分为 。

它属于 型器件,其最大的优点是 。

(2)在使用场效应管时,由于结型场效应管结构是对称的,所以 极和 极可互换。

MOS 管中如果衬底在管内不与 极预先接在一起,则 极和 极也可互换。

(3)当场效应管工作于恒流区时,其漏极电流D i 只受电压 的控制,而与电压 几乎无关。

耗尽型D i 的表达式为 ,增强型D i 的表达式为 。

(4)一个结型场效应管的电流方程为2GS D 161mA 4U I=×− ,则该管的DSS I = ,p U = 。

(5)某耗尽型MOS 管的转移曲线如习题3.1.5图所示,由图可知该管的DSS I = ,p U = 。

(6)N 沟道结型场效应管工作于放大状态时,要求GS 0u ≥≥ ,DS u > ;而N 沟道增强型MOS 管工作于放大状态时,要求GS u > ,DS u > 。

(7)耗尽型场效应管可采用 偏压电路,增强型场效应管只能采用 偏置电路。

(8)在共源放大电路中,若源极电阻s R 增大,则该电路的漏极电流D I ,跨导m g ,电压放大倍数 。

(9)源极跟随器的输出电阻与 和 有关。

答案:(1)结型和绝缘栅型,电压控制,输入电阻高。

(2)漏,源,源,漏,源。

(3)GS u ,DS u ,2GS D DSS P 1u i I U =− ,2GS D DO T 1u i I U=−。

(4)16mA ,4V 。

(5)习题3.1.5图4mA ,−3V 。

(6)p U ,GS p u U −,T U ,GS T u U −。

(7)自给,分压式。

(8)减小,减小,减小。

(9)m g ,s R 。

3.2试分别画出习题3.2图所示各输出特性曲线在恒流区所对应的转移特性曲线。

解:3.3在带有源极旁路电容s C 的场效应管放大电路如图3.5.6(a )所示。

若图中的场效应管为N 沟道结型结构,且p 4V U =−,DSS 1mA I =。

完整版)模拟电子技术基础-知识点总结

完整版)模拟电子技术基础-知识点总结

完整版)模拟电子技术基础-知识点总结共发射极、共基极、共集电极。

2.三极管的工作原理---基极输入信号控制发射结电流,从而控制集电极电流,实现信号放大。

3.三极管的放大倍数---共发射极放大倍数最大,共集电极放大倍数最小。

三.三极管的基本放大电路1.共发射极放大电路---具有电压放大和电流放大的作用。

2.共集电极放大电路---具有电压跟随和电流跟随的作用。

3.共基极放大电路---具有电压放大的作用,输入电阻较低。

4.三极管的偏置电路---通过对三极管的基极电压进行偏置,使其工作在放大区,保证放大电路的稳定性。

四.三极管的应用1.放大器---将弱信号放大为较强的信号。

2.开关---控制大电流的通断。

3.振荡器---产生高频信号。

4.稳压电源---利用三极管的负温度系数特性,实现稳定的输出电压。

模拟电子技术复资料总结第一章半导体二极管一.半导体的基础知识1.半导体是介于导体和绝缘体之间的物质,如硅Si、锗Ge。

2.半导体具有光敏、热敏和掺杂特性。

3.本征半导体是纯净的具有单晶体结构的半导体。

4.载流子是带有正、负电荷的可移动的空穴和电子,是半导体中的两种主要载流体。

5.杂质半导体是在本征半导体中掺入微量杂质形成的半导体。

根据掺杂元素的不同,可分为P型半导体和N型半导体。

6.杂质半导体的特性包括载流子的浓度、体电阻和转型等。

7.PN结是由P型半导体和N型半导体组成的结,具有单向导电性和接触电位差等特性。

8.PN结的伏安特性是指在不同电压下,PN结的电流和电压之间的关系。

二.半导体二极管半导体二极管是由PN结组成的单向导电器件。

1.半导体二极管具有单向导电性,即只有在正向电压作用下才能导通,反向电压下截止。

2.半导体二极管的伏安特性与PN结的伏安特性相似,具有正向导通压降和死区电压等特性。

3.分析半导体二极管的方法包括图解分析法和等效电路法等。

三.稳压二极管及其稳压电路稳压二极管是一种特殊的二极管,其正常工作状态是处于PN结的反向击穿区,具有稳压的作用。

模拟电子技术(3)--场效应管及其基本放大电路

模拟电子技术(3)--场效应管及其基本放大电路

第3章 场效应管及其基本放大电路试卷3.1判断下列说法是否正确,用“√”和“ ”表示判断结果填入空内1. 结型场效应管外加栅源电压u GS应使栅源间的耗尽层承受反偏电压,才能保证其输入电阻R G大的特点。

( )2. 耗尽型MOS管在栅源电压u GS为正或为负时均能实现压控电流的作用。

( )3. 若耗尽型N沟道MOS管的栅源电压u GS大于零,则其输入电阻会明显变小。

( )4. 工作于恒流区的场效应管,低频跨导g m与漏极电流I DQ成正比。

( )5. 增强型MOS管采用自给偏压时,漏极电流i D必为零。

( )【解3.1】:1. √ 2.√ 3.× 4.× 5.√3.2选择填空1. 场效应管的栅-源之间的电阻比晶体管基-射之间的电阻 。

A.大 B.小 C.差不多2. 场效应管是通过改变 来改变漏极电流的。

所以是 控制型器件。

A.栅源电压 B.漏源电压 C.栅极电流D.电压 E.电流3. 用于放大时,场效应管工作在特性曲线的 。

A.可变电阻区 B.恒流区 C.截止区4. N沟道结型场效应管中参加导电的载流子是 。

A.自由电子和空穴 B.自由电子 C.空穴5. 对于结型场效应管,当︱u GS︱︱U GS(off)︱时,管子一定工作在 。

A.恒流区 B.可变电阻区 C.截止区 B.击穿区6. 当栅源电压u GS=0V时,能够工作在恒流区的场效应管有 。

A.结型场效应管 B.增强型MOS管 C.耗尽型MOS管7. 某场效应管的开启电压U GS(th)=2V,则该管是 。

A.N沟道增强型MOS管 B.P沟道增强型MOS管C.N沟道耗尽型MOS管 D.P沟道耗尽型MOS管8. 共源极场效应管放大电路,其输出电压与输入电压 ;共漏极场效应管放大电路,其输出电压与输入电压 。

A.同相 B.反相【解3.2】:1.A 2.A,D 3.B 4.B 5.C 6.A C 7.A 8.B,A3.3判断图T3.3所示各电路能否进行正常放大?如果不能,指出其中错误,并加以改正。

电子技术基础第三章场效应管及其放大电路

电子技术基础第三章场效应管及其放大电路
• JFET是利用PN结反向电压对耗尽层厚度的控制, 来改变导电沟道的宽窄,从而控制漏极电流的大小。
• 预夹断前iD与vDS呈近似线性关系;预夹断后, iD趋于 饱和。
2019/10/20
思考:为什么JFET的输入电阻比BJT高得多?
场效应管的应用小结
• 一是当作压控可变电阻,即非线性电阻来使用, VGS的绝对值 越大,导电沟道就越窄,对应的导电沟道电阻越大,即电压 V电G阻S控使制用电时阻,的导大电小沟,道管还子没工有作出在现可预变夹电断阻;区,当作压控可变
2019/10/20
场效应管的分类
场效应管 FET
结型
JFET
IGFET ( MOSFET ) 绝缘栅型
N沟道 P沟道 增强型
耗尽型
2019/10/20
N沟道 P沟道
N沟道 P沟道
第二节 结型场效应管(JFET)的 结构和工作原理
一、结型场效应管的结构
二、结型场效应管的工作原理
三、结型场效应管的特性曲线 及参数
UDS(sat) ≤│Up│。
JFET的三个状态
• 恒流区(放大区、饱和区) • 可变电阻区 • 截止区
2019/10/20
小结
• 沟道中只有一种类型的多数载流子参与导电,所以 场效应管也称为单极型三极管。
• JFET栅极与沟道间的PN结是反向偏置的,因此 iG0,输入电阻很高。
• JFET是电压控制电流器件,iD受vGS控制。
第一节 场效应管概述 第二节 结型场效应管的结构和工作原理 第三节 绝缘栅场效应管的结构和工作原理 第四节 场效应管放大电路
2019/10/20
• 3-1 • 3-4 • 3-6 • 3-12
作业
2019/10/20

模拟电子技术基础A 第3章习题的答案-PPT课件

模拟电子技术基础A 第3章习题的答案-PPT课件

U GS 2 ID ID S( 1 ) S U GS (o f) f
2. 两种基本接法电路的分析:CS、CD
2)动态性能指标的计算:微变等效电路
2 gm ID ID O Q U G S (th )
2 g ID ID m S S Q U G S (o ff)
3-3已知某N沟道结型场效应管的UGS(off)=- 5V。下表给出 四种状态下的UGS和UDS 的值,判断各状态下的管子工作在什 么区。( a.恒流区 b.可变电阻区 c.截止区 )
2. 两种基本接法电路的分析:CS、CD 1)静态工作点的分析计算。 • 利用场效应管栅极电流为0,得到栅源电压与 漏极电流之间关系式。 • 列出场效应管在恒流区的电流方程。 联立上述两方程,求解UGSQ和IDQ,并推算 UDSQ。 • 注意解算后应使得管子工作在恒流区。
5
U 2 GS ID IDO ( 1 ) U GS (th )

3-7:如图所表示的电路图。已知 UGS=-2V,场 效应管子的IDSS=2mA,UGS(off)=-4V。
• 1.计算ID和Rs1的值。
解:
I I ( 1 ) 0 . 5 m A D Q D S S U G S ( o f f)
2
U G S Q
U GSQ U GQ U SQ 2V RS1 U GSQ ID 2V 4 k 0 . 5 mA
3-4: 判断图所示的电路能否正常放大 ,并说明原因。
• 绝缘栅型N沟道耗尽型ห้องสมุดไป่ตู้场效应管。 • 因为没有漏极电阻, 使交流输出信号到地 短路uo无法取出。 • 不能。
3-4: 判断图所示的电路能否正常放大 ,并说明原因。
• 满足正常放大条件。 如在输入端增加大电 阻RG,可有效提高输入 电阻。 • 能。

第三章场效应管及其放大电路

第三章场效应管及其放大电路

第三章 场效应管及其放大电路1. JEFT 有两种类型,分别是N 沟道结型场效应管和P 沟道结型场效应管2. 在JFET 中:(1) 沟道夹断:假设0=DS v ,如图所示。

由于 0=DS v ,漏极和源极间短路,使整个沟道内没有压降,即整个沟道内的电位与源极的相同。

令反偏的栅-源电压GS v 由零向负值增大,使PN 结处于反偏状态,此时,耗尽层将变宽;由于在结型场效应管制作中,P 区的浓度远大于N 区的浓度,所以,耗尽层主要在N 沟道内变宽,随着耗尽层宽度加大,沟道变窄,沟道内的电阻增大。

继续反响加大GS v ,耗尽层将在沟道内合拢,此时,沟道电阻將变的无穷大,这种现象成为沟道夹断(2)在DS v 较小时,DS v 的加大虽然会增大沟道内的电阻,但这种影响不是很明显,沟道仍处于比较宽的状态,即沟道的电阻在DS v 比较小的时候基本不变,此时加大DS v ,会使D i 迅速增加,D i 与DS v 近似为线性关系。

加大DS v ,沟道内的耗尽层会逐渐变宽,沟道电阻增加,D i 随DS v 的上升,速度会变缓。

当||P DSV v =时,楔形沟道会在A 点处合拢,这种现象称为预夹断。

3. 解:(1)(a )为N 沟道场效应管 (b )为P 沟道场效应管(2)(a )V V P4-= (b )V V P 4= (3)(a )A I DSS 5= (b )A I DSS 5-=(4)电压DS v 与电流D i 具有相同的极性且与GS v 极性相反,因而,电压DS v 的极性可根据D i 或GS v 的极性判断4.解:当JFET 工作在饱和区时,有关系式:2)1(PGS DSS D V V I i -= 5. 解:在P 沟道JFET 中,要求栅-源电压GS v 极性为正,漏源电压DS v 的极性为负,夹断电源P V 的极性为正6. 解:MOS 型场效应管的详细分类7. 解:耗尽型是指,当0=GS v 时,即形成沟道,加上正确的GS v 时,能使对数载流子流出沟道,因而“耗尽”了载流子,使管子转向截止。

《模拟电子技术基础》第3章 双极型晶体管及其基本放大电路

《模拟电子技术基础》第3章 双极型晶体管及其基本放大电路

3.2 双极型晶体管
3.2.4 晶体管的共射特性曲线
2.输出特性曲线—— iC=f(uCE) IB=const
以IB为参变量的一族特性曲线
(1)当UCE=0V时,因集电极无收集
作用,IC=0;
(2)随着uCE 的增大,集电区收集电
子的能力逐渐增强,iC 随着uCE 增加而
增加;
(3)当uCE 增加到使集电结反偏电压
电压,集电结应加反向偏置电压。
3.2 双极型晶体管
3.2.3 晶体管的电流放大作用
1. 晶体管内部载流子的传输
如何保证注入的载流
子尽可能地到达集电区?
P
N
IE=IEN + IEP
IEN >> IEP
IC= ICN +ICBO
ICN= IEN – IBN
IEN>> IBN
ICN>>IBN
N
IEP
IE
3. 晶体管的电流放大系数
(1) 共基极直流电流放大系数
通常把被集电区收集的电子所形成的电流ICN 与发射极电流
IE之比称为共基电极直流电流放大系数。

I CN

IE
由于IE=IEP+IEN=IEP+ICN+IBN,且ICN>> IBN,ICN>>IEP。通常ത
的值小于1,但≈1,一般

为0.9-0.99。

3.2 双极型晶体管
3.2.3 晶体管的电流放大作用
3. 晶体管的电流放大系数
(2) 共射极直流电流放大系数
I C I CN I CBO I E I CBO ( I C I B ) I CBO

模拟电子技术课后习题答案第三章场效应管及其放大电路答案

模拟电子技术课后习题答案第三章场效应管及其放大电路答案

习题3-1 场效应管沟道的预夹断和夹断有什么不同? 解:当U DS 增加到U DS =U GS ,即U GD =U GS -U DS = U GS (th )时,漏极附近的耗尽层将合拢,称为预夹断。

预夹断后,沟道仍然存在,夹断点的电场强度大,仍能使多数载流子(电子)作漂移运动,形成漏极电流I DSS 。

若U DS 继续增加,使U DS >U GS -U GS (th ),即U GD <U GS (th )时,耗尽层合拢部分会增加,并自夹断点向源极方向延伸,此时夹断区的电阻越来越大,但漏极电流I D 却基本趋于饱和,不随U DS 的增加而增加。

3-2 如何从转移特性上求g m 值? 解: 利用公式gsdm dU dI g求g m 值。

3-3 场效应管符号中,箭头背向沟道的是什么管?箭头朝向沟道的是什么管? 解:箭头背向沟道的是P 沟道;箭头朝向沟道的是N 沟道。

3-4 结型场效应管的U GS 为什么是反偏电压? 解:若为正偏电压,则在正偏电压作用下,两个PN 结耗尽层将变窄,I D 的大小将不受栅-源电压U GS 控制。

3-5如图3-20所示转移特性曲线,指出场效应管类型。

对于耗尽型管,求U GS (off )、I DSS ;对于增强型管,求U GS (th )。

解:a P 沟道增强型。

U GS (th )=-2Vb P 沟道结型。

U GS (off )=3V 、I DSS =4mA3-6如图3-21所示输出特性曲线,指出场效应管类型。

对于耗尽型管,求U GS (off )、I DSS ;对于增强型管,求U GS (th )。

解:a N 沟道增强型。

U GS (th )=1Vb P 沟道结型。

U GS (off )=1V 、I DSS =1.2mAGS /Va-2 -1 图3-20 习题3-5图 U GS /Vb3-7 如图3-22所示电路,场效应管的U GS (off )=-4V ,I DSS =4mA ;计算静态工作点。

模电总结复习资料 模拟电子技术基础

模电总结复习资料 模拟电子技术基础

第一章半导体二极管一。

半导体的基础知识1。

半导体—--导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。

2.特性———光敏、热敏和掺杂特性。

3。

本征半导体-—--纯净的具有单晶体结构的半导体。

4. 两种载流子—--—带有正、负电荷的可移动的空穴和电子统称为载流子。

5.杂质半导体————在本征半导体中掺入微量杂质形成的半导体.体现的是半导体的掺杂特性.*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。

*N型半导体:在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。

6. 杂质半导体的特性*载流子的浓度--—多子浓度决定于杂质浓度,少子浓度与温度有关.*体电阻-——通常把杂质半导体自身的电阻称为体电阻。

*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体.7。

PN结* PN结的接触电位差---硅材料约为0。

6~0.8V,锗材料约为0。

2~0。

3V。

* PN结的单向导电性——-正偏导通,反偏截止。

8. PN结的伏安特性二。

半导体二极管*单向导电性--——-—正向导通,反向截止.*二极管伏安特性-———同PN结。

*正向导通压降---——-硅管0.6~0。

7V,锗管0。

2~0。

3V.*死区电压——--—-硅管0.5V,锗管0。

1V。

3.分析方法-——-——将二极管断开,分析二极管两端电位的高低:若 V阳〉V阴(正偏),二极管导通(短路);若 V阳〈V阴(反偏 ),二极管截止(开路)。

1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。

2)等效电路法➢直流等效电路法*总的解题手段————将二极管断开,分析二极管两端电位的高低:若 V阳〉V阴( 正偏),二极管导通(短路);若 V阳〈V阴(反偏 ),二极管截止(开路)。

*三种模型➢微变等效电路法三. 稳压二极管及其稳压电路*稳压二极管的特性-—-正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。

模拟电子技术第三章 场效应三极管

模拟电子技术第三章 场效应三极管
+
d g s
源 极
上页 下页 首页
栅 极
N沟道结型场效应管的结构和符号
3
s
2. 工作原理
⑴ 当uDS = 0 时, uGS 对耗尽层和导电沟道的影响。
ID=0 ID=0
d
P+
d
N 型 沟 道
P+ P+
d
P+ P+ P+
g
g
N 型 沟 道
g
s uGS = 0
s uGS < 0
4
预夹断轨迹
恒流区
IDO O
UGS(th) 2UGS(th) uGS/V
O
截止区
uDS/V
转移特性曲线可近似用以下公式表示:
iD I DO ( uGS U GS(th) )
2
当uGS ≥ UGS(th)时
12
上页
下页
首页
2. N沟道耗尽型MOS场效应管 预先在二氧化硅中掺入大 量的正离子,
使uGS = 0 时,
形成一个N型导电沟道。
又称之为反型层 开启电压,用uGS(th)表示
导电沟道随uGS 增大而增宽。
10
B uGS > UGS(th)时 形成导电沟道
上页 下页 首页
uDS对导电沟道的影响
uGS为某一个大于UGS(th)的固定值, 在漏极和源极之间加正电压,且 s uDS < uGS - UGS(th) 即uGD = uGS - uDS > UGS(th) 则有电流iD 产生,
在制造时就具有 原始导电沟道
31
3. 场效应管的主要参数
(1) 开启电压 UGS(th):是增强型MOS管的参数 (2) 夹断电压 UGS(off): 是结型和耗尽型 (3) 饱和漏电流 IDSS: MOS管的参数

模电课件第三章场效应管及其基本电路

模电课件第三章场效应管及其基本电路

iD
I
D
0
(1
uGS U GSoff
)2
ID0表示uGS=0时所对应的漏极电流。
式中:
ID0
unCox 2
W L
(U
2 GSoff
)
2024年9月17日星期二
模拟电子线路
37
iD
ID0
UGSoff
0
uGS
(a) 图3―10N沟道耗尽型MOS管的特性及符号 (a)转移特性;(b)输出特性;(c)表示符号
2024年9月17日星期二
模拟电子线路
13
3―1―2 结型场效应管的特性曲线
一、转移特性曲线
uGS≤0, iD≥0
iD f (uGS ) uDS C
恒流区中:
iD
IDSS (1
uGS UGSoff
)2
式中: IDSS——饱和电流,表示uGS=0时的iD值;
UGSoff——夹断电压,表示uGS=UGSoff时iD为
2024年9月17日星期二
模拟电子线路
9
D
P
P
UGS
横向电场作用: ︱UGS︱↑→ PN结耗尽层宽度↑ →沟道宽度↓
S
(b) UGS负压增大, 沟道变窄 图3―2栅源电压UGS对沟道的控制作用示意图
2024年9月17日星期二
模拟电子线路
10
D
P
P
UGSoff——夹断电压
UGS
S
(c) UGS负压进一步增大, 沟道夹断 图3―2栅源电压UGS对沟道的控制作用示意图
(2) uGS固定, uDS增大, iD增大极小。
2024年9月17日星期二
模拟电子线路
21

模拟电子技术教程第3章习题答案

模拟电子技术教程第3章习题答案

第3章 习题1. 概念题:(1)在放大电路中,三极管或场效应管起的作用就是 将一种形式的电量转换为另一种形式的电量 。

(2)电源的作用是 为能量转换提供能源 ,如果离开电源,放大器可以工作吗( 不能 )(3)单管放大器的讲解从电容耦合形式开始,这是因为 阻容耦合放大器设计和计算相对来说要简单点 ,如果信号和负载直接接入,其 工作点 的计算将要复杂的多。

(4)在共射放大器的发射极串接一个小电阻,还能认为是共射放大器吗( 能 )在共集放大器的集电极串接一个小电阻,还能认为是共集放大器吗( 能 )(5)在模电中下列一些说法是等同的,(A 、C 、F )另一些说法也是等同的。

(B 、D 、E )A. 直流分析B. 交流分析C. 静态分析D. 动态分析E. 小信号分析F. 工作点分析(6)PN 结具有单向导电性,信号电压和电流的方向是随时间变化的,而交流信号却能在放大电路中通过并获得放大,这是因为 放大器输出端获取的交流信号其实就是电流或电压的相对变化量 。

(7) β大的三极管输入阻抗 也大 ,小功率三极管的基本输入阻抗可表示为EQTbb'be I U )1(r r β++≈。

(8)画直流通路比画交流通路复杂吗(不)在画交流通路时直流电压源可认为 短路 ,直流电流源可认为 开路 ,二极管和稳压管只考虑其 动态内阻 即可。

(9)求输出阻抗时负载R L 必须 断开 ,单管放大器输出阻抗最难求的是共 集电极 放大器,其次是共 源 放大器。

(10)对晶体管来说,直流电阻指 晶体管对所加电源呈现的等效电阻 ,交流电阻指 在一定偏置下晶体管对所通过的信号呈现的等效电阻 ,对纯电阻元件有这两种电阻之区分吗( 无 )(11)在共射级放大器或共源放大器中,电阻R C 或R D 的作用是 把电流I C 或I D 的变化转换为电压的变化 。

(12)放大电路的非线性失真包括 饱和 失真和 截止 失真,引起非线性失真的主要原因是 放大器工作点偏离放大区 。

第3章场效应管及其放大电路习题解

第3章场效应管及其放大电路习题解

第3章场效应管及其放大电路习题解3.1教学内容与要求本章介绍了场效应管的结构、类型、主要参数、工作原理及其基本放大电路。

教学内容与教学要求如表1.1所示。

表3.1第3章教学内容与要求3.2内容提要3.1.1场效应晶体管1.场效应管的结构及分类场效应管是利用输入电压产生的电场效应来控制输出电流的,是电压控制型器件。

工作过程中起主要导电作用的只有一种载流子(多数载流子),故又称单极型晶体管。

场效应管有两个PN结,向外引出三个电极:漏极D、栅极G和源极S。

(1)栅源控制电压的极性对JFET,为保证栅极电流小,输入电阻大的特点,栅源电压应使PN结反偏。

N沟道JFET:UGS<0;P沟道JFET:UGS>0。

对增强性MOS管,N沟道增强型MOS管,参加导电的是电子,栅源电压应吸引电子形成反型层构成导电沟道,所以UGS>0;同理,P沟道增强型MOS管,UGS<0。

对耗尽型MOS管,因二氧化硅绝缘层里已经掺入大量的正离子(或负离子:N沟道掺入正离子;P沟道掺入负离子),吸引衬底的电子(或空穴)形成反型层,即UGS=0时,已经存在导电沟道,所以,栅源电压UGS 可正可负。

(2)夹断电压UGS(off)和开启电压UGS(th)对JFET和耗尽型MOS管,当|UGS|增大到一定值时,导电沟道就消失(称为夹断),此时的栅源电压称为夹断电压UGS(off)。

N沟道场效应管UGS(off)<0;P沟道场效应管UGS(off)>0。

对增强型MOS管,当UGS增加到一定值时,才会形成导电沟道,把开始形成反型层的栅源电压称为开启电压UGS(th)。

N沟道增强型MOS管UGS(th)>0;P沟道增强型MOS管UGS(th)<0。

(3)栅源电压uGS对漏极电流iD的控制作用场效应管的导电沟道是一个可变电阻,栅源电压uGS可以改变导电沟道的尺寸和电阻的大小。

当uDS=0时,uGS变化,导电沟道也变化但处处等宽,此时漏极电流iD=0;当uDS≠0时,产生漏极电流,iD≠0,沿沟道产生了电位梯度使导电沟道变得不等宽。

3-场效应管及其基本电路-习题课

3-场效应管及其基本电路-习题课

,U DSQ

6V
UGS U SS ID R


I
D

0.1
UGS UGS(th)
2
UGS 4.8 6ID
I DQ 167.6 A,UGSQ 3.8V ,U DSQ 5.97V
3.12 题图3.12电路中JFET共源放大电路的元器件参 数如下:
3—4 图P3—4所示的4个场效应管电路中,哪个电路 工作在恒流区,哪个电路工作在可变电阻区,哪个电 路工作在截止区?
3-5场效应放大器电路如图3-5所示,若R1=1MΩ, R2=R3=10k Ω,
管子的IDSS=0.5mA,UGSoff=-7V,UDD=20V,试估算放大器静态工作
点IDQ,UDSQ
在工作点上的管子跨导gm=1mS,rds= ,
R1=300kΩ,R2=100kΩ,R3=1MΩ,R4=10kΩ, R5=2kΩ,R6=2kΩ,试估算放大电路的电压增益、 输入电阻、输出电阻。
G
D
+ R3
gmuGS
+
rdS R4
ui
S
uo
R2
R1
R5
-
-
G
D
+ R3
gmuGS
+
rdS R4
ui
S
uo
R2
R1
R5
-
-
解:
Ri R3 R1 / / R2 1000 100 / /300 1.075M
R0 R4 10K Au Nhomakorabea
gm RL 1 gm R5

1 10 1 1 2

3.33

南京邮电大学模拟电子线路第3章场效应管及其基本电路解读

南京邮电大学模拟电子线路第3章场效应管及其基本电路解读

D
ID
D
N
P G N 型 沟 道
实际 流向
S
G S
(b)P沟道JFET 图3.1.1结型场效应管的结构示意图及其表示符号
2019年4月16日星期二
K0400041S 模拟电子线路
7
二、结型场效应管的工作原理
iD f (uGS , uDS )
N P
D
G
P
S
(a) UGS =0,沟道最宽
图3.1.2栅源电压UGS对沟道的控制作用示意图
3.2.2 场效应管偏置电路 一、自偏置电路 二、分压偏置电路
3.3场效应管放大电路
3.3.1 场效应管的低频小信号模型
3.3.2共源放大器
3.3.3共漏放大器
作 业
2019年4月16日星期二 K0400041S 模拟电子线路 3
第3章场效应晶体管及其放大电路
(1)了解场效应管内部工作原理及性能特点。
图3.1.5 MOSFET结构示意图(b)剖面图
2019年4月16日星期二 K0400041S 模拟电子线路 22
2.N沟道增强型MOSFET的工作原理
S
N

G
N P型衬底

D
PN结(耗尽层)
UGS=0,导电沟道未形成
2019年4月16日星期二
K0400041S 模拟电子线路
23
S
UGS N+
G
第3章场效应晶体管及其放大电路 3.1场效应晶体管 3.1.1 结型场效应管 一、结型场效应管的结构 二、结型场效应管的工作原理 三、特性曲线 1.输出特性曲线 2.转移特性曲线 3.1.2 绝缘栅场效应管(IGFET) 一、N沟道增强型MOSFET 二、N沟道耗尽型 MOSFET

场效应管及其基本电路PPT课件

场效应管及其基本电路PPT课件

纵向电场作用:在沟道造成楔型结构(上窄下宽)
图3.1.3 uDS
29.07.2020
B0400091S 模拟电子线路A
13
I D 几乎不变 沟道局部夹断
D
G P
P UDS
UGS S
(b) uGD<UGSoff(预夹断后)
由于夹断点与源极间的沟道长度略有缩短,呈现的沟道 电阻值也就略有减小,且夹断点与源极间的电压不变。
•NJFET结构上相当于NPNBJT
•电极G-B S-E D-S 相对应
•N沟道JFET iD>0
D
C
B
G
S
E
29.07.2020
B0400091S 模拟电子线路A
9
、结型场效应管的工作原理
iDf(uG,SuD)S D
N
G
P
P
S
(a) UGS =0,沟道最宽
图3.1.2栅源电压UGS对沟道的控制作用示意图
结型场效应三极管漏源电压对沟道的控制作用.avi
29.07.2020
B0400091S 模拟电子线路A
14
沟道夹断 uGSUGS off
沟道预夹断 1.uGS UGSoff;
2.uGDUGSoff
or u D S u D G u G S u G S U GSof
沟道局部夹断 1.uGS UGSoff;
3.1.3 场效应管的参数
一、直流参数
二、极限参数
三、交流参数
3.2 场效应管工作状态分析及其偏置电路
3.2.1 场效应管工作状态分析
一、各种场效应管的符号对比
二、各种场效应管的特性对比
三、BJT与FET工作状态的对比
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7
二、结型场效应管的工作原理
iD f (uGS, uDS)
D
N
G
P
P
S
(a) UGS =0,沟道最宽
图3.1.2栅源电压UGS对沟道的控制作用示意图
2021年1月24日星期日
模拟电子技术
8
D
横向电场作用:
P
P
UGS S
︱UGS︱↑ → PN结耗尽层宽度↑ →沟道宽度↓
(b) UGS负压增大,沟道变窄 图3.1.2栅源电压UGS对沟道的控制作用示意图
1.简介 栅极与沟道之间隔了一层很薄的绝缘体,其阻 抗 比 JFET 的 反 偏 PN 结 的 阻 抗 更 大 。 功 耗 低 , 集成度高。
绝缘体一般为二氧化硅(SiO2),这种IGFET 称为金属——氧化物——半导体场效应管,用符号
MOSFET 表 示 ( Metal Oxide Semiconductor

-0.5V


-1V
穿 区

-1.5V
1
-2V
0 5
截止区
UGSoff
10
15
20 uDS /V
图3.1.4 (a) JFET的输出特性曲线
2021年1月24日星期日
模拟电子技术
(1)可变电阻区
uGS>UGSoff; uGD>UGSoff 或uDS<uGS-UGSoff
14
iD /mA
可 变 u DS = uGS-UGSoff
第3章场效应晶体管及其放大电路
3.1场效应晶体管
3.1.1 结型场效应管
一、结型场效应管的结构
二、结型场效应管的工作原理
三、特性曲线
1.输出特性曲线
2.转移特性曲线
3.1.2 绝缘栅场效应管(IGFET)
一、N沟道增强型MOSFET
二、N沟道耗尽型 MOSFET
2021年1月24日星期日
模拟电子技术
iD
IDSS (1
uG S U G Soff
)2
那么
gm
diD duGS
Q
IDSS (1 uGS ) 2IDSS
)2
3
IDSS饱和电流,
2
表示uGS=0时的iD值;
1
UGSoff夹断电压,
0
uGS /V
表示uGS=UGSoff时iD=0。
为保证场效应管正常工作,PN结必须加反向偏置电压。
图3.1.4(b) JFET的转移特性曲线
2021年1月24日星期日
模拟电子技术
18
3.1.2 绝缘栅场效应管(IGFET)
N+
N+
导电沟道(反型层)
P型衬底
பைடு நூலகம்
B
UGS=0,导电沟道已形成
2021年1月24日星期日
模拟电子技术
32
iD/mA
uDS uGS UGSoff + 6V
4 UGS=+ 3V
3 0V
2 -3V
1
0
5
10
15
20 uDS/V
(b)
图3.1.10N沟道耗尽型MOS管的特性及符号
(a)转移特性;(b)输出特性;(c)电路符号
金属(A1) S
G
N+
D 绝缘层(SiO2)
N+
半导体
P 型硅衬底
衬底引线 B
N沟道增强型MOSFET的结构示意图和符号.avi
图3.1.5 MOSFET结构示意图(b)剖面图
2021年1月24日星期日
模拟电子技术
22
2.N沟道增强型MOSFET的工作原理
S
N+
GD
N+
PN结(耗尽层)
P型衬底
UGS=0,导电沟道未形成
Field Effect Transistor)。此外,还有以氮化硅
为绝缘体的MNSFET等。
2021年1月24日星期日
模拟电子技术
19
2.分类 MOSFET
N沟道 P沟道
增强型 N-EMOSFET 耗尽型 N-DMOSFET 增强型 P-EMOSFET 耗尽型 P-DMOSFET
2021年1月24日星期日
2021年1月24日星期日
模拟电子技术
26
UDS UGS
N+
N+
预夹断
P 型衬底 B
图3.1.8 uDS增大,沟道预夹断时情况
2021年1月24日星期日
模拟电子技术
27
UDS UGS
N+
N+
P 型衬底
B
漏源电压VDS对沟道的影响.avi
uDS增大,沟道预夹断后情况
2021年1月24日星期日
模拟电子技术
绝缘栅场效应管 IGFET (Insulated Gate FET)
2021年1月24日星期日
模拟电子技术
5
3.1场效应晶体管
3.1.1 结型场效应管
一、结型场效应管的结构
Drain 漏极
D
Gate栅极
G
N
P
型 沟
P

Source源极 S
ID
实际 G 流向
D 箭头方向表示栅 源间PN结若加 正向偏置电压时
2
2
1
1
流 -1V 区 -1.5V
-2V
0
-3 -2 -1 0 uGS/V
5 10 15 20
从输出特性曲线作转移特性曲线示意图
2021年1月24日星期日
模拟电子技术
击 穿 区
UGSoff uDS/V
17
iD /mA 恒流区中:
IDSS
UGSoff -3 -2 -1
5
4
iD
IDSS (1
uGS U G Sof f
Au、Ri、Ro、Uom)的分析方法。
2021年1月24日星期日
模拟电子技术
4
双极型晶体管主要是利用基区非平衡少数载流 子的扩散运动形成电流。
场效应晶体管(场效应管)利用多数载流子的 漂移运动形成电流。
场效应管FET (Field Effect Transistor)
结型场效应管JFET (Junction FET)
1
3.1.3 场效应管的参数
一、直流参数
二、极限参数
三、交流参数
3.2 场效应管工作状态分析及其偏置电路 3.2.1 场效应管工作状态分析 一、各种场效应管的符号对比
二、各种场效应管的特性对比
三、BJT与FET工作状态的对比
四、场效应管工作状态的判断方法
2021年1月24日星期日
模拟电子技术
2
3.2.2 场效应管偏置电路
28
3. N沟增强型MOSFET的输出特性曲线
iD
uDS uGS UGSth






区 区
0 截止区
(1)截止区
UGS = 6V
5V 击
4V
穿
3V

2V
uGS<UGSth (2)可变电阻区
uGS>UGSth; uGD>UGSth
uDS 或uDS<uGS-UGSth
图3.1.9N沟增强型MOSFET的输出特性曲线
图3.1.4 (a) JFET的输出特性曲线
2021年1月24日星期日
模拟电子技术
16
2.转移特性曲线
iD f (uGS) uDS C uGS≤0, iD≥0
转移特性曲线.avi IDSS
iD/mA iD/mA
4
4
3
3
uDS = uGS - UGSoff UGS =0V
恒 -0.5V
UGSoff
2021年1月24日星期日
模拟电子技术
35
二、极限参数
(1)栅源击穿电压U(BR)GSO。 (2)漏源击穿电压U(BR)DSO。 (3)最大功耗PDM:PDM=ID·UDS
2021年1月24日星期日
模拟电子技术
36
三、交流参数
1.跨导gm
gm
diD duG S
uDS C
(mΑ / V)
对JFET和DMOSFET
2021年1月24日星期日
模拟电子技术
33
iD
iD
I DSS
(1
uGS U G Sof f
)2
D
IDSS
B
G
UGSoff
0
uGS
S
(a)
(c)
图3.1.10N沟道耗尽型MOS管的特性及符号
(a)转移特性;(b)输出特性;(c)电路符号
2021年1月24日星期日
模拟电子技术
34
3.1.3 场效应管的参数
S 栅极电流的实际 流动方向
(a)N沟道JFET
结型场效应三极管的结构.avi
图3.1.1结型场效应管的结构示意图及其表示符号
2021年1月24日星期日
模拟电子技术
6
D
ID
P
D
G

N
N


实际
G
流向
S
S
(b)P沟道JFET
图3.1.1结型场效应管的结构示意图及其表示符号
2021年1月24日星期日
模拟电子技术
结型场效应三极管漏源电压对沟道的控制作用.avi
2021年1月24日星期日
模拟电子技术
12
沟道夹断 uGS UGSoff
沟道预夹断 uGS UGSoff;
uGD UGSoff
or uDS uDG uGS uGS UGSoff
相关文档
最新文档