七年级下数学《平行公理及推论》练习题 (34)

合集下载

七年级下册知识点《平行公理及推论150题含解析》

七年级下册知识点《平行公理及推论150题含解析》

七年级下册知识点《平行公理及推论150题含解析》一、选择题(本大题共58小题,共174.0分)1.下列说法中正确的个数有两点之间的所有连线中,线段最短;过一点有且只有一条直线与已知直线垂直;平行于同一直线的两条直线互相平行;直线外一点到这条直线的垂线段叫做点到直线的距离.A. 4个B. 3个C. 2个D. 1个【答案】C【解析】【分析】本题考查了直线、线段的性质,点到直线的距离,两点间的距离的定义,是基础题,熟记性质与概念是解题的关键.根据直线的性质,两点间的距离的定义,线段的性质以及直线的表示对各小题分析判断即可得解.【解答】解:①两点之间的所有连线中,线段最短,正确;②过平面上的一点有且只有一条直线与已知直线垂直,故本命题错误;③平行于同一直线的两条直线互相平行,正确;④直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故本命题错误;综上所述,正确的有①,③共2个.故选C.2.下列说法中正确的个数有()(1)在同一平面内,不相交的两条直线必平行;(2)同旁内角互补;(3)相等的角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(5)经过直线外一点,有且只有一条直线与已知直线平行.A. 2个B. 3个C. 4个D. 5个【答案】A【解析】【分析】本题考查了平行线的定义、平行线的性质、平行公理等内容,侧重基础知识,值得关注.(1)根据平行线的定义解答;(2)根据平行线的性质解答;(3)根据对顶角的定义解答;(4)根据点到直线的距离的定义解答;(5)根据平行公理解答.【解答】解:(1)符合平行线的定义,故本选项正确;(2)应为“两直线平行,同旁内角互补”,故本选项错误;(3)相等的角是指度数相等的角,未必为对顶角,故本选项错误;(4)应为“从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离”故本选项错误;(5)这是平行公理,故本选项正确;故选A.3.下列说法中正确的个数()①不相交的两条直线是平行线;②过一点有且只有一条直线与已知直线平行;③平行于同一直线的两直线平行;④同旁内角相等,两直线平行.A. 1B. 2C. 3D. 4【答案】A【解析】解:①在同一平面内,不相交的两条直线叫做平行线,故原命题错误;②应为过直线外一点可以而且只可以画一条直线与已知直线平行,故命题错误;③平行于同一直线的两直线平行;命题正确;④应同旁内角互补,两直线平行,故原命题错误.所以正确的有一个.故选:A.根据平行线的定义,平行公理以及平行线与线段的区别对各小题分析判断后利用排除法求解.本题主要考查了平行线的定义及平行公理,都是基础知识,需要熟练记忆.4.已知在同一平面内,有三条直线a,b,c,若a∥b,b∥c,则直线a与直线c之间的位置关系是()A. 相交B. 平行C. 垂直D. 平行或相交【答案】B【解析】解:∵在同一平面内,直线a∥b,直线b∥c,∴直线c与直线a的位置关系是:a∥c.故选:B.根据平行公理的推论直接判断直线c与直线a的位置关系即可.此题主要考查了平行公理的推论,熟练记忆推论内容是解题关键.5.在下列命题中,为真命题的是()A. 相等的角是对顶角B. 平行于同一条直线的两条直线互相平行C. 同旁内角互补D. 垂直于同一条直线的两条直线互相垂直【答案】B【解析】解:A、相等的角不一定是对顶角,故此选项错误;B、平行于同一条直线的两条直线互相平行,正确;C、两直线平行,同旁内角互补,故此选项错误;D、垂直于同一条直线的两条直线互相平行,故此选项错误.故选:B.分别利用对顶角的性质以及平行线的性质和推论进而判断得出即可.此题主要考查了命题与定理,熟练掌握平行线的性质与判定是解题关键.6.下列说法中正确的是()A. 过一点有且仅有一条直线与已知直线平行B. 若AC=BC,则点C是线段AB的中点C. 相等的角是对顶角D. 两点之间的所有连线中,线段最短【答案】D【解析】解:A、过直线外一点有且仅有一条直线与已知直线平行,故此选项错误;B、若AC=BC,则点C是线段AB的中点,说法错误,应是若AC=BC=AB,则点C是线段AB的中点,故此选项错误;C、相等的角是对顶角,说法错误,应是对顶角相等,故此选项错误;D、两点之间的所有连线中,线段最短,说法正确,故此选项正确;故选:D.根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行可判断A的正误;根据中点的性质判断B的正误;根据对顶角的性质判断C的正误;根据线段的性质判断D的正误.此题主要考查了平行公理、对顶的性质、线段的性质、中点,关键是熟练掌握课本基础知识,牢固掌握定理.7.点P,Q都是直线l外的点,下列说法正确的是()A. 连接PQ,则PQ一定与直线l垂直B. 连接PQ,则PQ一定与直线l平行C. 连接PQ,则PQ一定与直线l相交D. 过点P只能画一条直线与直线l平行【答案】D【解析】解:PQ与直线l可能平行,也可能相交,故A、B、C,均错误;过直线外一点有且只有一条直线与已知直线平行,故D正确.故选:D.根据过直线外一点有且只有一条直线与已知直线平行以及两直线的位置关系即可做出回答.本题主要考查的是平行线、相交线、垂线的性质,掌握相关定义和性质是解题的关键.8.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【解答】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的长度叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.9.下列语句是真命题的有()①点到直线的垂线段叫做点到直线的距离;②内错角相等;③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行.A. 2个B. 3个C. 4个D. 5个【答案】A【解析】【分析】本题考查了命题与定理的知识,解题的关键是了解点到直线的距离的定义、平行线的性质、线段的性质等知识,难度不大.利用点到直线的距离的定义、平行线的性质、线段公理等知识分别判断后即可确定正确的选项.【解答】解:①点到直线的垂线段的长度叫做点到直线的距离,故错误,是假命题;②两直线平行,内错角相等,故错误,是假命题;③两点之间线段最短,正确,是真命题;④过直线外一点有且只有一条直线与已知直线平行,错误,是假命题;⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行,正确,是真命题,真命题有2个.故选A.10.下列说法正确的个数是()①同位角相等;②两条不相交的直线叫做平行线;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c.A. 1个B. 2个C. 3个D. 4个【答案】A【解析】解:①∵同位角不一定是两平行直线被截得到,∴同位角相等错误,故本小题错误;②应为,在同一平面内两条不相交的直线叫做平行线,故本小题错误;③应为过直线外一点有且只有一条直线与已知直线平行,故本小题错误;④三条直线两两相交,总有一个或三个交点,故本小题错误;⑤若a∥b,b∥c,则a∥c,正确.综上所述,说法正确的有⑤共1个.故选:A.根据平行线的定义,平行公理和相交线对各小题分析判断利用排除法求解.本题考查了平行公理,相交线与平行线,同位角的定义,是基础题,熟记概念是解题的关键.11.下列说法正确的是()A. 有且只有一条直线与已知直线平行B. 垂直于同一条直线的两条直线互相垂直C. 从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离D. 在平面内过一点有且只有一条直线与已知直线垂直【答案】D【解析】解:A、经过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B、垂直于同一条直线的两条直线互相平行,故本选项错误;C、从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故本选项错误;D、在平面内过一点有且只有一条直线与已知直线垂直符合垂直的性质,故本选项正确.故选:D.根据点到直线距离的定义对各选项进行逐一分析即可.本题考查的是点到直线的距离,熟知从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离是解答此题的关键.12.下列说法错误的是()A. 平面内过一点有且只有一条直线与已知直线平行B. 平面内过一点有且只有一条直线与已知直线垂直C. 两点之间的所有连线中,线段最短D. 如果a∥b,b∥c,那么a∥c【答案】A【解析】解:A、在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故本选项说法错误.B、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项说法正确.C、两点之间的所有连线中,线段最短,故本选项说法正确.D、根据平行公理知,如果a∥b,b∥c,那么a∥c,故本选项说法正确.故选:A.根据平行公理及推理,平行线的判定以及线段的性质判断.本题考查了平行线的判定与性质、线段的性质以及平行公理及推论,逐一分析三条结论的正误是解题的关键.13.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A. 平行B. 垂直C. 平行或垂直D. 无法确定【答案】A【解析】【分析】本题主要考查平行线的判定.如果一条直线垂直于两平行线中的一条,那么它与另一条一定也垂直.再根据“垂直于同一条直线的两直线平行”,可知L1与L8的位置关系是平行.灵活运用“垂直于同一条直线的两直线平行”是解决此类问题的关键.【解答】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选A14.下列说法中正确的个数有()①在同一平面内,不重合的两条直线的位置关系为平行或垂直;②过一点有且只有一条直线与已知直线平行;③平行于同一直线的两条直线互相平行;④垂直于于同一直线的两条直线互相平行;⑤三角形的角平分线,中线及高都是射线.A. 4个B. 3个C. 2个D. 1个【答案】C【解析】解:①在同一平面内,不重合的两条直线的位置关系为平行或垂直;错误,应该是在同一平面内,不重合的两条直线的位置关系为平行或相交.②过一点有且只有一条直线与已知直线平行;错误,应该是过直线外一点有且只有一条直线与已知直线平行③平行于同一直线的两条直线互相平行;正确.④垂直于于同一直线的两条直线互相平行;正确.⑤三角形的角平分线,中线及高都是射线.错误,应该都是相等.故选:C.根据平行线的判定方法以及三角形的高,角平分线,中线的定义一一判断即可.本题考查平行线的判定,三角形的高,角平分线,中线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.下列说法错误的是:A. 平面内过一点有且只有一条直线与已知直线平行B. 平面内过一点有且只有一条直线与已知直线垂直C. 两点之间的所有连线中,线段最短D. 如果a∥b,b∥c,那么a∥c【答案】A【解析】【分析】本题考查了平行线的判定与性质、线段的性质以及平行公理及推论,逐一分析三条结论的正误是解题的关键.根据平行公理及推理,平行线的判定以及线段的性质判断.【解答】解:A.在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故本选项说法错误.B.在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项说法正确.C.两点之间的所有连线中,线段最短,故本选项说法正确.D.根据平行公理知,如果a∥b,b∥c,那么a∥c,故本选项说法正确.故选A.16.如图,,则下列说法中一定正确的是()A.B.C.D.【答案】B【解析】【分析】此题考查的是平行线的性质和平行公理的推论.通过观察图形的结构特征结合已知条件正确作出辅助线构造平行公理的基本图形是关键.过点C作CM∥AB,则根据平行线的传递性,得CM∥DE.先利用AB∥CM,可得∠1+∠BCM=180°,即∠BCM=180°-∠1,再利用CM∥DE,可得∠3=∠DCM,而∠2-∠BCM=∠3,整理可得出三个角的关系式.【解答】解:过点C作CM∥AB,∵AB∥DE,∴CM∥DE,∴∠1+∠BCM=180°,∠MCD=∠3,又∠BCM=∠2-∠MCD=∠2-∠3,∴180°-∠1=∠2-∠3,∴∠1+∠2-∠3=180°.故选B.17.如图,下列推理错误的是()A. ∵∠1=∠2,∴a∥bB. ∵b∥c,∴∠2=∠4C. ∵a∥b,b∥c,∴a∥cD. ∵∠2+∠3=180°,∴a∥c【答案】D【解析】解:∵∠1=∠2,∴a∥b,选项A正确;∵b∥c,∴∠2=∠4,选项B正确;∵a∥b,b∥c,∴a∥c,选项C正确;∵∠2+∠3=180°,∴b∥c,选项D错误;故选:D.由平行线的判定与性质得出选项A、B、C正确,D错误;即可得出结论.本题考查了平行线的判定与性质、平行线公理;熟练掌握平行线的判定与性质是解决问题的关键.18.直线a、b、c在同一平面内,以下四种说法中,正确的个数有()(1)如果a⊥b,b⊥c,那么a∥c;(2)如果a∥b,b∥c,那么a∥c(3)如果a∥b,b⊥c,那么a⊥c;(4)如果a与b相交,b与c相交,那么a与c 相交.A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:(1)如果a⊥b,b⊥c,那么a∥c,故正确;(2)如果a∥b,b∥c,那么a∥c,故正确;(3)如果a∥b,b⊥c,那么a⊥c,故正确;(4)如果a与b相交,b与c相交,那么a与c不一定相交,故错误.故选:C.根据平行线的定义:在同一平面内,不相交的两条直线叫平行线,以及平行公理及推论矩形判断即可.本题考查了平行公理及推论和平行线的定义,在同一平面内,不相交的两条直线叫平行线;如果两条直线都与第三条直线平行,那么这两条直线也互相平行等来判断.19.下列说法:①任意两条直线的位置关系不是相交就是平行;②过一点有且只有一条直线与已知直线平行;③若直线a∥b,b∥c,则a∥c;④若直线则a∥b。

七年级数学下册 5.2平行线及其判定(十大题型)(解析版 )

七年级数学下册 5.2平行线及其判定(十大题型)(解析版 )

七级下册数学《第五章相交线与平行线》5.2平行线及其判定平行线及其表示方法★1、平行线定义:在同一个平面内,不相交的两条直线叫做平行线.记作:AB∥CD;记作:a∥b;读作:直线AB平行于直线CD.读作:直线a平行于直线b.【注意】1、在同一平面内,不重合的两条直线只有两种位置关系:相交和平行.(重合的直线视为一条直线)2、.线段或射线平行是指它们所在的直线平行.平行线的画法◆过直线外一点画已知直线的平行线的方法:一“落”把三角尺一边落在已知直线上;二“靠”把直尺紧靠三角尺的另一边;三“移”沿直尺移动三角尺,使三角尺与已知直线重合的边过已知点;四“画”沿三角尺过已知点的边画直线.【注意】1.经过直线上一点不能作已知直线的平行线.2.画线段或射线的平行线是指画它们所在直线的平行线.3.借助三角尺画平行线时,必须保持紧靠,否则画出的直线不平行.平行公理及其推论★1、平行公理:经过直线外一点,有且只有一条直线与这条直线平行.★2、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.也就是说:如图,如果b∥a,c∥a,那么b∥c.几何语言:∵b∥a,c∥a,∴b∥c.【注意】1、平行公理的推论中,三条直线可以不在同一个平面内.2、平行公理中强调“直线外一点”,因为若点在直线上,不可能有平行线;“有且只有”强调这样的直线是存在的,也是唯一的.平行线的判定方法★1、平行线的判定:判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.几何语言表示:∵∠2=∠3(已知),∴a∥b(同位角相等,两直线平行).判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.几何语言表示:∵∠2=∠4(已知),∴a∥b.(内错角相等,两直线平行).判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.几何语言表示:∵∠1+∠2=180°(已知),∴a∥b(同旁内角互补,两直线平行).★2、在同一平面内,垂直于同一条直线的两直线垂直.几何语言表示:直线a,b,c在同一平面内,∵a⊥c,b⊥c,∴a∥b.【注意】三条直线在“同一平面内”是前提,没有这个条件结论不一定成立.★3、判定两直线平行的方法(1)平行线的定义;(2)平行公理的推论(如果两条直线都与第三条直线平行,那么这两条直线也互相平行);(3利用同位角相等说明两直线平行;(4)利用内错角相等说明两直线平行;(5)利用同旁内角互补说明两直线平行;(6)同一平面内,垂直于同一直线的两直线平行.【例题1】(2023秋•埇桥区期中)在同一平面内,两条直线的位置关系可能是()A.相交或垂直B.垂直或平行C.平行或相交D.相交或垂直或平行【分析】根据两条直线有一个交点的直线是相交线,没有交点的直线是平行线,可得答案.【解答】解:在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C正确;故选:C.【点评】本题考查了平行线,两条直线有一个交点的直线是相交线,没有交点的直线是平行线.解题技巧提炼解题的关键是准确把握平行线的概念,牢记平行线的三个条件:①在同一平面内;②不相交;③都是直线,通过与定义进行对比来进行判断.【变式1-1】如图所示,能相交的是,平行的是.(填序号)【分析】根据平行线、相交线的定义,逐项进行判断,即可正确得出结果.【解答】解:①中一条直线,一条射线,不可相交,也不会平行;②中一条直线,一条线段,不可相交,也不会平行;③中一条直线,一条线段,可相交;④中都是线段,不可延长,不可相交,也不平行,⑤中都是直线,延长后不相交,是平行.故答案为:③,⑤.【点评】本题考查平行线和相交线,解题的关键是掌握直线可以沿两个方向延伸,射线可以沿一个方向延伸,线段不能延伸.【变式1-2】下列说法正确的是()A.同一平面内,如果两条直线不平行,那么它们互相垂直B.同一平面内,如果两条直线不相交,那么它们互相垂直C.同一平面内,如果两条直线不相交,那么它们互相平行D.同一平面内,如果两条直线不垂直,那么它们互相平行【分析】根据平行线的判定及垂直、相交的定义判断求解即可.【解答】解:在同一平面内,如果两条直线不平行,那么这两条直线相交,故A不符合题意;在同一平面内,两条直线不相交,那么这两条直线平行,故B不符合题意;同一平面内,如果两条直线不相交,那么这两条直线平行,故C符合题意;同一平面内,如果两条直线不垂直,它们不一定平行,故D不符合题意;故选:C.【点评】此题考查了平行线的判定、垂直、相交等知识,熟练掌握有关定理、定义是解题的关键.【变式1-3】(2022春•莱芜区校级期末)下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.在同一平面内,若直线a∥b,a∥c,则b∥cD.若两条线段不相交,则它们互相平行【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.【解答】解:A、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;B、过直线外一点,有且只有一条直线与已知直线平行.一条直线的平行线有无数条,故错误;C、在同一平面内,平行于同一直线的两条直线平行.故正确;D、根据平行线的定义知是错误的.故选:C.【点评】本题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解决本题的关键.【变式1-4】(2022秋•乌鲁木齐期末)如图,在长方体AB CD-EFGH中,与棱EF异面且与平面EFGH 平行的棱是.【分析】与棱EF异面且与平面EFGH平行的棱是:棱AD和棱BC.【解答】解:与棱EF异面且与平面EFGH平行的棱是:棱AD和棱BC.故答案为:棱AD和棱BC.【点评】本题主要考查了平行线与立体图形,熟练掌握平行线与立体图形的特征进行求解是解决本题的关键.【变式1-5】(2022春•沙河市期末)观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.1【分析】根据长方体即平行线的性质解答.【解答】解:图中与AB平行的棱有:EF、CD、GH.共有3条.故选:B.【点评】本题考查了平行线的定义、长方体的性质.一个长方形的两条对边平行.【变式1-6】在同一平面内,直线l1与l2满足下列关系,写出其对应的位置关系:(1)若l1与l2没有公共点,则l1和l2;(2)若l1与l2只有一个公共点,则l1和l2;(3)若l1与l2有两个公共点,则l1和l2.【分析】(1)结合平行线的定义进行解答即可;(2)结合相交的定义进行解答即可;(3)结合重合的定义进行解答即可.【解答】解:(1)由于l1和l2没有公共点,所以l1和l2平行;(2)由于l1和l2有且只有一个公共点,所以l1和l2相交;(3)由于l1和l2有两个公共点,所以l1和l2重合;故答案为:(1)平行;(2)相交;(3)重合.【点评】本题侧重考查两直线的位置关系,掌握平行定义是解题关键.【变式1-7】(2022春•赵县月考)在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是.【分析】根据同一平面内,一条直线与两条平行线中的一条相交,则必与另一条直线也相交.解答即可.【解答】解:因为a∥c,直线a,b相交,所以直线b与c也有交点;故答案为:相交.【点评】本题主要考查了平行线和相交线,同一平面内,一条直线与两条平行线中的一条相交,则必与另一条直线也相交.【例题2】(2022春•梁山县期中)若a、b、c是同一平面内三条不重合的直线,则它们的交点可以有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.以上都不对【分析】根据平行线的定义,相交线的定义,可得答案.【解答】解:当三条直线互相平行,交点是个0;当两条直线平行,与第三条直线相交,交点是2个;当三条直线两两相交交于同一点,交点个数是1个;当三条直线两两相交且不交于同一点,交点个数是3个;故选:B.【点评】本题考查了平行线,分类讨论是解题关键.解题技巧提炼用分类讨论的思想根据平面内两条直线的位置关系去讨论求解.【变式2-1】在同一平面内,两条不重合直线的位置关系可能是()A.垂直或平行B.垂直或相交C.平行或相交D.平行、垂直或相交【分析】同一平面内,直线的位置关系通常有两种:平行或相交;垂直不属于直线的位置关系,它是特殊的相交.【解答】解:平面内的直线有平行或相交两种位置关系.故选:C.【点评】本题主要考查了在同一平面内的两条直线的位置关系.【变式2-2】在同一平面内有三条直线,如果使其中有且只有两条直线平行,那么这三条直线有且只有个交点.【分析】根据同一平面内直线的位置关系得到第三条直线与另两平行直线相交,再根据直线平行和直线相交的定义即可得到交点的个数.【解答】解:∵在同一平面内有三条直线,如果其中有两条且只有两条相互平行,∴第三条直线与另两平行直线相交,∴它们共有2个交点.故答案为2.【点评】本题考查了直线平行的定义:没有公共点的两条直线是平行直线.也考查了同一平面内两直线的位置关系有:平行,相交.【变式2-3】平面内四条直线共有三个交点,则这四条直线中最多有条平行线.【分析】根据同一平面内两条直线的位置关系有两种:相交或平行,及一条直线的平行线有无数条,由四条直线相互平行,其交点为0个开始分析,然后依次变为三条直线相互平行、两条直线相互平行即可求解.【解答】解:若四条直线相互平行,则没有交点;若四条直线中有三条直线相互平行,则此时恰好有三个交点;若四条直线中有两条直线相互平行,另两条不平行,则此时有三个交点或五个交点;若四条直线中有两条直线相互平行,另两条也平行,但它们之间相互不平行,则此时有四个交点;若四条直线中没有平行线,则此时的交点是一个或四个或六个.综上可知,平面内四条直线共有三个交点,则这四条直线中最多有三条平行线.故答案是:三.【点评】本题考查了平行线,题目没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都是平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出答案.【变式2-4】平面上不重合的四条直线,可能产生交点的个数为个.【分析】从平行线的角度考虑,先考虑四条直线都平行,再考虑三条、两条直至都不平行,作出草图即可看出.【解答】解:(1)当四条直线平行时,无交点;(2)当三条平行,另一条与这三条不平行时,有三个交点;(3)当两两直线平行时,有4个交点;(4)当有两条直线平行,而另两条不平行时,有5个交点;(5)当四条直线同交于一点时,只有一个交点;(6)当四条直线两两相交,且不过同一点时,有6个交点;(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点.故答案为:0,1,3,4,5,6.【点评】本题没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出所有答案;本题对学生要求较高.【例题3】如图,直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?【分析】根据平行公理及推论进行解答.【解答】解:(1)如图,过直线a外的一点画直线a的平行线,有且只有一条直线与直线a平行;(2)过点C画直线a的平行线,它与过点B的平行线平行.理由如下:如图,∵b∥a,c∥a,∴c∥b.【点评】本题考查了平行公理及推论.平行公理:经过直线外一点,有且只有一条直线与这条直线平行(平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思);推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【变式3-1】如图中完成下列各题.(1)用直尺在网格中完成:①画出直线AB的一条平行线;②经过C点画直线垂直于CD.(2)用符号表示上面①、②中的平行、垂直关系.【分析】(1)根据AB所在直线,利用AB所在直角三角形得出EF,以及MD⊥CD即可;(2)根据图形得出EF,MD⊥CD,标出字母即可.【解答】解:(1)如图所示:(2)EF∥AB,MC⊥CD.【点评】此题考查了基本作图以及直角三角形的性质,利用直角三角形的性质得出平行线以及垂线是解答此题的关键.【变式3-2】如图,已知直线a和直线a外一点A.(1)完成下列画图:过点A画AB⊥a,垂足为点B,画AC∥a;(2)过点A你能画几条直线和a垂直?为什么?过点A你能画几条直线和a平行?为什么?(3)说出直线AC与直线AB的位置关系.【分析】(1)根据要求画出图形即可;(2)过点A有一条直线和直线a垂直,过点A可以画一条直线和a平行.(3)结论:AC⊥AB.【解答】解:(1)直线AB、AC如图所示;(2)过点A有一条直线和直线a垂直,理由:过直线外一点有且只有一条直线和已知直线垂直.过点A可以画一条直线和a平行.理由:过直线外一点有且只有一条直线和已知直线平行.(3)结论:AC⊥AB.【点评】本题考查复杂作图、垂线、平行线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【变式3-3】作图题:(只保留作图痕迹)如图,在方格纸中,有两条线段AB、BC.利用方格纸完成以下操作:(1)过点A作BC的平行线;(2)过点C作AB的平行线,与(1)中的平行线交于点D;(3)过点B作AB的垂线.【分析】(1)A所在的横线就是满足条件的直线;(2)在直线AD上到A得等于BC的点D,则直线CD即为所求;(3)取AE上D右边的点F,过B,F的直线即为所求.【解答】解:如图,(1)A所在的横线就是满足条件的直线,即AE就是所求;(2)在直线AE上,到A距离是5个格长的点就是D,则CD就是所求与AB平行的直线;(3)取AE上D右边的点F,过B,F作直线,就是所求.【点评】本题考查复杂作图、垂线、平行线的定义等知识,解题的关键是灵活运用所学知识解决问题,【变式3-4】(2022秋•内乡县期末)如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?【分析】用两个三角板,根据同位角相等,两直线平行来画平行线,然后用量角器量一量l1与l2相交的角与∠O的关系为:相等或互补.【解答】解:(1)(2)如图所示,(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.【点评】注意∠2与∠O是互补关系,容易漏掉.【例题4】(2022•寻乌县模拟)下面推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c【分析】根据平行公理的推论“如果两条直线都和第三条直线平行,那么这两条直线平行“进行分析,得出正确答案.【解答】解:A、a、c都和b平行,应该推出的是a∥c,而非c∥d,故错误;B、没有两条直线都和第三条直线平行,推不出平行,故错误;C、b、c都和a平行,可推出是b∥c,故正确;D、a、c与不同的直线平行,无法推出两者也平行.故选:C.【点评】本题考查的重点是平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线平行.【变式4-1】(2022春•丛台区校级期中)如图,过点A画直线l的平行线,能画()A.两条以上B.2条C.1条D.0条【分析】经过直线外一点,有且只有一条直线与这条直线平行.【解答】解:因为经过直线外一点,有且只有一条直线与这条直线平行.所以如图,过点A画直线l的平行线,能画1条.故选:C.【点评】本题考查了平行公理及推论.平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.【变式4-2】(2023春•萨尔图区期中)下面说法正确的个数为()(1)在同一平面内,过直线外一点有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)两角之和为180°,这两个角一定邻补角;(4)同一平面内不平行的两条直线一定相交.A.1个B.2个C.3个D.4个【分析】根据同一平面内,过直线外一点有一条直线和已知直线平行即可判断(1);在同一平面内,过一点有且只有一条直线和已知直线垂直即可判断(2);举出反例即可判断(3);根据在同一平面内,两直线的位置关系是平行或相交,即可判断(4).【解答】解:在同一平面内,过直线外一点有一条直线和已知直线平行,故(1)正确;只有在同一平面内,过一点有且只有一条直线和已知直线垂直,故(2)错误;如图:∠ABC=∠DEF=90°,且∠ABC+∠DEF=180°,但是两角不是邻补角,故(3)错误;同一平面内不平行的两条直线一定相交正确,因为不特别指出时,一般认为,两条直线重合就是同一条直线,所以所提出的命题是正确的,故(4)正确.即正确的个数是2个.故选:B.【点评】本题考查了平行公理和推论,邻补角,垂线,平行线等知识点,此题比较典型,但是一道比较容易出错的题目.【变式4-3】(2023春•泸县校级期中)下列说法正确的是()A.经过一点有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有且只有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行【分析】平行线公理:经过直线外一点有且只有一条直线与已知直线平行.【解答】解:根据平行线公理:经过直线外一点有且只有一条直线与已知直线平行,可判断只有D选项正确.【点评】本题考查了平行公理,要熟练掌握.【变式4-4】(2023春•新民市期中)已知a∥b,c∥d,若由此得出b∥d,则直线a和c应满足的位置关系是()A.在同一个平面内B.不相交C.平行或重合D.不在同一个平面内【分析】根据平行推论:平行于同一条直线的两条直线互相平行,可得答案.【解答】解:当a∥c时,a∥b,c∥d,得b∥d;当a、c重合时,a∥b,c∥d,得b∥d,故C正确;故选:C.【点评】本题考查了平行公理及推论,利用了平行推论:平行于同一条直线的两条直线互相平行.【变式4-5】(2022春•和平区校级月考)下列语句正确的有()个①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b④若直线a∥b,b∥c,则c∥a.A.4B.3C.2D.1【分析】根据同一平面内,任意两条直线的位置关系是相交、平行;过直线外一点有且只有一条直线和已知直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行进行分析即可.【解答】解:①任意两条直线的位置关系不是相交就是平行,说法错误,应为根据同一平面内,任意两条直线的位置关系不是相交就是平行;②过一点有且只有一条直线和已知直线平行,说法错误,应为过直线外一点有且只有一条直线和已知直线平行;③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b,说法错误;④若直线a∥b,b∥c,则c∥a,说法正确;【点评】此题主要考查了平行线,关键是掌握平行公理:过直线外一点有且只有一条直线和已知直线平行;推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【变式4-6】(2022春•大荔县期末)如图,已知OM∥a,ON∥a,所以点O、M、N三点共线的理由是.【分析】利用平行公理:经过直线外一点,有且只有一条直线与这条直线平行,进而得出答案.【解答】解:已知OM∥a,ON∥a,所以点O、M、N三点共线的理由:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:经过直线外一点,有且只有一条直线与这条直线平行.【点评】此题主要考查了平行公理,正确掌握平行公理是解题关键.【变式4-7】(2022春•海阳市期末)若P,Q是直线AB外不重合的两点,则下列说法不正确的是()A.直线PQ可能与直线AB垂直B.直线PQ可能与直线AB平行C.过点P的直线一定与直线AB相交D.过点Q只能画出一条直线与直线AB平行【分析】根据过直线外一点有且只有一条直线与已知直线平行以及两直线的位置关系即可回答.【解答】解:PQ与直线AB可能平行,也可能垂直,过直线外一点有且只有一条直线与已知直线平行,故A、B、D均正确,故C错误;故选:C.【点评】本题考查了平行线、相交线、垂线的性质,掌握相关定义和性质是解题的关键.【变式4-8】如图所示,将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定【分析】根据平行公理和垂直的定义解答.【解答】解:∵长方形对边平行,∴根据平行公理,前两次折痕互相平行,∵第三次折叠,是把平角折成两个相等的角,∴是90°,与前两次折痕垂直.∴折痕与折痕之间平行或垂直.故选:C.【点评】本题利用平行公理和垂直定义求解,需要熟练掌握.【例题5】(2022春•昭阳区校级月考)如图,把三角尺的直角顶点放在直线b上.若∠1=50°,则当∠2=时,a∥b.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°=40°,当∠2=40°时,∠2=∠3,得出a∥b即可.【解答】解:当∠2=40°时,a∥b;理由如下:如图所示:∵∠1=50°,∴∠3=180°﹣90°﹣50°=40°,当∠2=40°时,∠2=∠3,∴a∥b.故答案为:40°.【点评】本题考查了平行线的判定方法、平角的定义;熟记同位角相等,两直线平行是解决问题的关键.【变式5-1】(2022春•洞头区期中)如图,在下列给出的条件中,能判定DF∥BC的是()A.∠B=∠3B.∠1=∠4C.∠1=∠B D.∠B+∠2=180°【分析】根据平行线的判定定理求解即可.【解答】解:∵∠B=∠3,∴AB∥EF,故A不符合题意;∵∠1=∠4,∴AB∥EF,故B不符合题意;∵∠1=∠B,∴DF∥BC,故C符合题意;∵∠B+∠2=180°,∴AB∥EF,故D不符合题意;故选:C.【点评】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.【变式5-2】(2023秋•淮阳区校级期末)如图,木条a,b,c在同一平面内,经测量∠1=115°,要使木条a∥b,则∠2的度数应为()A.65°B.75°C.115°D.165°【分析】根据邻补角互补和平行线的判定定理求解即可.【解答】解:∠2的度数应为65°.证明:如图,∵∠1=115°,∴∠3=180°﹣115°=65°,∵∠2=65°,∴∠2=∠3,∴a∥b.故选:A.【点评】本题考查邻补角互补,平行线的判定.熟练掌握平行线的判定定理是解题关键.【变式5-3】(2023秋•泾阳县期末)如图,直线AB、CD分别与EF相交于点G、H,已知∠1=70°,∠2=70°,试说明:AB∥CD.【分析】根据对顶角相等得出∠1=∠AGH,进而根据∠2=∠AGH,即可得证.【解答】解:∵∠1=∠AGH,∠1=∠2=70°,∴∠2=∠AGH,∴AB∥CD.【点评】本题考查了对顶角相等,同位角相等两直线平行,熟练掌握平行线的判定定理是解题的关键.【变式5-4】(2023秋•泰和县期末)如图,CE平分∠ACD,若∠1=30°,∠2=60°,求证:AB∥CD.【分析】根据平行线的判定,依据角平分线的定义即可解决问题.【解答】证明:∵CE平分∠ACD,∠1=30°,∴∠ACD=2∠1=60°(角平分线定义),∵∠2=60°,(已知),∴∠2=∠ACD(等量代换),∴AB∥CD(同位角相等两直线平行).【点评】本题主要考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式5-5】(2023春•樟树市期中)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.求证:CF∥AB.【分析】根据CF平分∠DCE以及∠DCE=90°即可得出∠FCE=45°,再根据三角形ABC为等腰直角三角形,即可得出∠ABC=∠FCE=45°,利用“同位角相等,两直线平行”即可证出结论.【解答】证明:∵CF平分∠DCE,∠DCE=90°,∴∠FCE=12∠DCE=45°.∵△ABC为等腰直角三角形,∴∠ABC=45°,∴∠ABC=∠FCE,∴CF∥AB.【点评】本题考查了平行线的判定,解题的关键是找出∠ABC=∠FCE=45°.本题属于基础题,难度不大,解决该题型题目时,找出相等(或互补)的角的关键.【变式5-6】(2023秋•靖边县期末)如图,AF与BD相交于点C,∠B=∠ACB,且CD平分∠ECF.试说明:AB∥CE.【分析】根据角平分线的定义结合对顶角得到∠ECD=∠ACB,则可证明∠B=∠ECD,根据平行线的判定即可证明AB∥CE.【解答】证明:因为CD平分∠ECF,所以∠ECD=∠FCD(角平分线的定义).因为∠ACB=∠FCD(对顶角相等),所以∠ECD=∠ACB(等量代换).因为∠B=∠ACB,。

2019-2020学年七年级下数学《平行公理及推论》练习题 (43)

2019-2020学年七年级下数学《平行公理及推论》练习题 (43)

2019-2020学年七年级下数学《平行公理及推论》练习题
1.下列四种说法:
①过一点有且只有一条直线与已知直线平行;
②在同一平面内,两条不相交的线段是平行线段;
③相等的角是对顶角;
④在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交.
其中,错误的是①②③(填序号).
【分析】根据平行公理、对顶角定义、平行线逐个判断即可.
【解答】解:∵过直线外一点有且只有一条直线与已知直线平行,∴①错误;
∵在同一平面内,两条不相交的线段可能在一条直线上,说两线段是平行线段不对,∴
②错误;
∵相等的角不一定是对顶角,∴③错误;
∵在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交,正确,∴
④正确;
故答案为:①②③.
【点评】本题考查了平行公理、对顶角定义、平行线等知识点,能熟记平行公理、对顶角定义、平行线的内容是解此题的关键.
1。

北师大版七年级下册数学《平行公理及推论》同步练习(含答案)

北师大版七年级下册数学《平行公理及推论》同步练习(含答案)

平行公理及推论一 、选择题1.如图所示,两直线AB CD 、平行,则l 23456∠+∠+∠+∠+∠+∠= ( )A .630︒B .720︒C .800︒D .900︒二 、填空题2.如图,CD BE ∥,则231∠+∠-∠的度数等于 .3.如图,已知AE BD ∥,1=130230∠︒∠=︒,,则C ∠= .4.已知:如图所示,AB CD ∥,1=110∠︒,2120∠=︒,则α∠=____5.如图,已知AB DE ∥,80ABC ∠=︒,140CDE ∠=︒,则BCD ∠= .三 、解答题65HG 4321DCF EB A321ED C BA 21ED CB Aα21D C E BA EDCB A6.已知,如图360B BED D ∠+∠+∠=︒.求证:AB CD ∥.7.(1)如图⑴,已知1n MA NA ∥,探索1A ∠、2A ∠、…、n A ∠,1B ∠、2B ∠、…、1n B -∠之间的关系.(2)如图⑵,已知14MA NA ∥,探索1A ∠、2A ∠、3A ∠、4A ∠,1B ∠、2B ∠之间的关系.(3)如图⑶,已知1n MA NA ∥,探索1A ∠、2A ∠、…、n A ∠之间的关系.8.请你分析下面的题目,从中总结规律,填写在空格上,并选择一道题目具体书写证明.(1)如图⑴,已知:AB CD ∥,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分AME ∠,CNE ∠.求证:MG NH ∥.从本题我能得到的结论是: .(2)如图⑵,已知:AB CD ∥,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分BMF ∠, CNE ∠.求证:MG NH ∥.从本题我能得到的结论是: .(3)如图⑶,已知:AB CD ∥,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分AMF ∠, CNE ∠,相交与点O .求证:MG NH ⊥. 从本题我能得到的结论是: . (4)如图⑷,已知:AB ,CD 相交于O ,OF 平分AOC ∠,OE 平分BOD ∠.求证:F ,O ,E 三点共线.从本题我能得到的结论EDCBA是: .平行公理及推论答案解析一 、选择题1.D;分别过E F C H ,,,点做AB 的平行线,再求各个角度的和.选D二 、填空题2.180︒3.20︒4.50;如图所示,过点E 作AB 的平行线EF ,则1324180∠+∠=∠+∠=︒,∵1110∠=︒,2120∠=︒ ∴34360110120130∠+∠=︒-︒-︒=︒,∴α∠=18013050︒-︒=︒ 5.40︒三 、解答题6.过E 作EF AB ∥则180B BEF ∠+∠=︒,∵360B BED D ∠+∠+∠=︒,即360B BEF FED D ∠+∠+∠+∠=︒ ∴180FED D ∠+∠=︒ ∴EF CD ∥ ∴AB CD ∥.7.(1)12121n n A A A B B B -∠+∠++∠=∠+∠++∠;(向右凸出的角的和=向左凸出的角的和,1A ∠,n A ∠均为锐角) (2)123412180A A A A B B ∠+∠+∠+∠=∠+∠+;注意和第⑴问的区别; (3)123(1)180n A A A A n ∠+∠+∠++∠=-⨯.总结方法思想,巧作平行线.8.(1) 两直线平行,同位角的角平分线平行.43α21D CFE BA F EDCBA(2)证明:∵AB ∥CD ,∴BMF CNE ∠=∠ 又∵MG ,NH 分别平分BMF ∠,CNE ∠∴1122GMF BMF CNE HNM ∠=∠=∠=∠,∴MG ∥NH从本题我能得到的结论是: 两直线平行,内错角的角平分线平行. (3)证明:∵AB ∥CD ,∴180AMF CNE ∠+∠= 又∵MG ,NH 分别平分AMF ∠,CNE ∠ ∴119022GMF HNE AMF CNE ∠+∠=∠+∠=∴18090MON GMF HNE ∠=-∠-∠=,∴MG ⊥NH从本题我能得到的结论是: 两直线平行,同旁内角的角平分线垂直. (4)证明:∵AB ,CD 相交于O ,∴AOC BOD ∠=∠ ∵OF 平分AOC ∠,OE 平分BOD ∠ ∴12AOF AOC ∠=∠,12DOE BOD ∠=∠∵180AOC AOD ∠+∠=,∴180AOF AOD DOE ∠+∠+∠=即F ,O ,E 三点共线 从本题我能得到的结论是: 对顶角的平分线,在一条直线上. 要证明三点共线 ,我们可以通过证明这三点所成的角为180.。

平行线的判定及性质 例题及练习

平行线的判定及性质 例题及练习

平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。

七年级数学下册平行公理及推论随堂练习题

七年级数学下册平行公理及推论随堂练习题

七年级数学下册平行公理及推论随堂练习题一、单选题1. 过一点画已知直线的平行线( )A. 有且只有一条B. 有两条C. 不存在D. 不存在或只有一条2. 如图,若AB∥CD,CD∥EF,则AB与EF的位置关系是( )A. 平行B. 延长后才平行C. 垂直D. 难以确定3. 如图,过C点作线段AB的平行线,下列说法正确的是( )A. 不能作B. 只能作一条C. 能作两条D. 能作无数条4. 下列四种说法:①对顶角相等;②两点之间直线最短;③经过直线外一点有且只有一条直线与已知直线平行;④直线外一点与直线上各点连接的所有线段中,垂线段最短.其中正确的是( )A. ④B. ①④C. ③④D. ①③④5. 下列说法正确的是( )A. 同位角相等B. 在同一平面内,如果a⊥b,b⊥c,则a⊥cC. 相等的角是对顶角D. 在同一平面内,如果a∥b,b∥c,则a∥c6. 已知∠AOB,P是任意一点,过点P画一条直线与OA平行,则这样的直线( )A. 有且仅有一条B. 有两条C. 不存在D. 有一条或不存在二、填空题7. 工人师傅在架设电线时,为了检验三条电线是否互相平行只检查了其中两条是否与第三条平行即可,这样做的道理是____.8. 如图,MC∥AB,NC∥AB,则点M,C,N在同一条直线上,理由是____.9. 过直线外一点,有____条直线与已知直线平行或者垂直.10. 四条直线a,b,c,d互不重合,如果a∥b,b∥c,c∥d,那么直线a,d的位置关系为____.七年级数学下册平行公理及推论随堂练习题答案和解析1. 【答案】D2. 【答案】A【解析】射线、线段、直线平行是等价的,实质都是直线平行,根据平行于同一直线的两直线平行即可得出答案.3. 【答案】B【解析】作线段AB的平行线,即作它所在直线的平行线,根据"经过直线外一点有且只有一条直线与这条直线平行"可知只能作一条,故B正确.4. 【答案】D【解析】根据对顶角的性质、线段的性质、平行公理、垂线段的性质进行解答即可.解:①对顶角相等,说法正确;②两点之间线段最短,原说法错误;③经过直线外一点有且只有一条直线与已知直线平行,说法正确;④直线外一点与直线上各点连接的所有线段中,垂线段最短,说法正确.故选:D.5. 【答案】D【解析】根据平行线的性质和判定以及对顶角的定义进行判断.解:A、只有在两直线平行这一前提下,同位角才相等,故A选项错误;B、在同一平面内,如果a⊥b,b⊥c,则a//c,故B选项错误;C、相等的角不一定是对顶角,因为对顶角还有位置限制,故C选项错误;D、由平行公理的推论知,如果两条直线都和第三条直线平行,那么这两条直线也互相平行,故D选项正确.故选:D.6. 【答案】D分点P在OA上和不在OA上两种情况,根据平行公理解答即可.解:①若点P在直线OA上,则不能画出与OA平行的直线,②若点P不在直线OA上,则过点P有且只有一条直线与OA平行,所以,这样的直线有一条或不存在.故选:D.7. 【答案】平行于同一条直线的两条直线互相平行【解析】解:∵平行于同一条直线的两条直线互相平行,∴为了检验三条电线是否互相平行只检查了其中两条是否与第三条平行即可.故答案为:平行于同一条直线的两条直线互相平行.根据平行线的判定定理即可得出结论.本题考查的是平行线的判定,熟知平行于同一条直线的两条直线互相平行是解答此题的关键.8. 【答案】经过直线外一点,有且只有一条直线与这条直线平行【解析】直接利用平行公理:经过直线外一点,有且只有一条直线与这条直线平行,得出即可.解:∵MC∥AB,NC∥AB,∴点M,C,N在同一条直线上,理由是:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:经过直线外一点,有且只有一条直线与这条直线平行.9. 【答案】1【解析】根据平行的公理或者垂直的性质可知.解:过直线外一点,有1条直线与已知直线平行或者垂直.10. 【答案】a∥d【解析】由于a∥b,b∥c,根据平行公理的推论得到a∥c,而c∥d,所以a∥d.解:∵a∥b,b∥c,∴a∥c,又∵c∥d,。

人教版七年级数学下册平行线的判定同步练习题(含解析)

人教版七年级数学下册平行线的判定同步练习题(含解析)

人教版七年级数学下册平行线的判定同步练习题(含解析)人教版七年级数学下册平行线的判定同步练习题(含解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图所示,点E在线段AC的延长线上,下列条件中能判断的是(?)A.∠3=∠AB.∠1=∠2C.∠D=∠DCED.∠D+∠ACD=180°2.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,,则∠E的度数是(?)A.30°B.40°C.60°D.70°3.如图,直线a,b被直线c所截,下列条件不能判定直线a 与b平行的是()A.∠1=∠3B.∠2+∠3=180°C.∠1=∠4D.∠1+∠4=180°4.如图,点E在AC的延长线上,下列条件能判断ABCD的是(?)A.∠3=∠4B.∠D=∠DCEC.∠D+∠ACD=180°D.∠1=∠25.如图,下面条件不能判断的是(?)A.B.C.D.6.如图,要使,则需要添加的条件是(?)A .B.C.D.二、填空题7.如图,请你添加一个条件________,使AB∥CD.8.两条平行直线被第三条直线所截,内错角相等.简称:两直线平行,内错角_________.如图,因为a∥b (已知),所以∠1=_____(两直线平行,内错角相等). 9.如图所示,在下列条件中,不能判断的有___________.①.?②.③.?④.10.a、b、c是直线,且a∥b,b⊥c,则a与c的位置关系是________.11.如图,已知∠1=30°,∠2或∠3满足条件_________,则a∥b.三、解答题12.如图,在△ABC中,AD是BC边上的中线,F,E分别是AD及其延长线上的点.(1)如果CFBE,说明:△BDE≌△CDF;(2)若CF,BE是△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为E、F,请猜想BF与CE的位置关系?并说明理由.13.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠A BC=∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)______(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是______(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.14.下列推理是否正确?为什么?(1)如图,∵,∴;(2)如图,∵,∴;(3)如图,∵,∴;(4)如图,∵,∴.15.如图,将绕点B顺时针旋转60度得到,点C的对应点E 恰好落在AB的延长线上,连接AD.(1)求证:;(2)若AB=4,BC=1,求A,C两点旋转所经过的路径长之和.16.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2(1)求角F的度数与DH的长;(2)求证:.17.如图,在四边形中,与有怎样的位置关系?为什么?与呢?18.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC//DE.19.请补全证明过程及推理依据.已知:如图,BC//ED,BD平分∠ABC,EF平分∠AED.求证:BD∥EF.证明:∵BD平分∠ABC,EF平分∠AED,∴∠1=∠AED,∠2=∠ABC(______________)∵BC∥ED(________)∴∠AED=________(________________)∴∠AED=∠ABC∴∠1=________∴BD∥EF(________________).参考答案:1.B【分析】根据平行线的判定条件逐一判断即可.【详解】A.由∠3=∠A无法判断,故A不符合题意;B.由∠1=∠2能判断,故B符合题意;C.由∠D=∠DCE可以判断,不能判断,故C不符合题意;D.∠D+∠ACD=180°可以判断,不能判断,故D不符合题意.故选:B.【点睛】本题主要考查平行线的判定,熟知平行线的判定条件,是解题的关键.2.A【分析】过点作,先根据平行线的性质可得,再根据平行公理推论、平行线的性质可得,然后根据角的和差即可得.【详解】解:如图,过点作,,,,,,,,,故选:A.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键.3.D【分析】同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.【详解】解:(同位角相等,两直线平行),故A不符合题意;∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;(同位角相等,两直线平行)故C不符合题意;∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,所以不能判定故D符合题意;故选D【点睛】本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.4.D【分析】根据平行线的判定条件逐一判断即可.【详解】解:A、由∠3=∠4,可以利用内错角相等,两直线平行得到,不能得到,不符合题意;B、由∠D=∠DCE,可以利用内错角相等,两直线平行得到,不能得到,不符合题意;C、由∠D+∠ACD=180°,可以利用内错角相等,两直线平行得到,不能得到,不符合题意;D、由∠1=∠2,可以利用内错角相等,两直线平行得到得到,符合题意;故选D.【点睛】本题主要考查了平行线的判定,熟知内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,两直线平行是解题的关键.5.B【分析】根据平行线的判定条件逐一判断即可.【详解】解:A、由∠1=∠2,可以判断(内错角相等,两直线平行),故此选项不符合题意;B、由∠1+∠3=180°,可以判断(同旁内角互补,两直线平行),不能判断,故此选项符合题意;C、由,可以判断(同位角相等,两直线平行),故此选项不符合题意;D、由,可以判断(同旁内角互补,两直线平行),故此选项不符合题意;故选B.【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.6.A【分析】依据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,即可得到添加的条件.【详解】解:A.∵∠A=∠CBE,∴AD∥BC,符合题意;B.由∠A=∠C无法得到AD∥BC,不符合题意;C.由∠C=∠CBE,只能得到AB∥CD,无法得到AD∥BC,不符合题意;D.由∠A+∠D =180°,只能得到AB∥CD,无法得到AD∥BC,不符合题意;故选:A.【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.7.∠1=∠5.【分析】根据平行线的判定进行解答,可以考虑同位角相等,或内错角相等,或同旁内角互补.【详解】添加∠1=∠5∵∠1=∠5,∴AB∥CD.故答案为∠1=∠5【点睛】本题属于开放题,主要考查了平行线的判定,解决问题的关键是掌握平行线的判定方法.8.相等 ∠2【解析】略9.②③##③②【分析】根据平行线的判定进行解答即可得.【详解】解:①∵,∴(内错角相等,两直线平行),说法正确,不符合题意;②∵和既不是同位角,也不是内错角,∴不能根据判定,说法错误,符合题意;③∵为同位角,∴不一定平行,符合题意;④∵,∴(同旁内角互补,两直线平行),说法正确,不符合题意;故答案为:②③.【点睛】本题考查了平行线的判定,解题的关键是熟记并理解平行线的判定.10.互相垂直【详解】且a∥b,b⊥c,a⊥c.故答案为互相垂直.11.∠2=150°或∠3=30°【解析】略12.(1)见解析(2)BFCE,证明见解析【分析】(1)根据已知条件,通过两角及其夹边对应相等即可证明△BDE≌△CDF;(2)先证CFBE,利用(1)中结论得△BDE≌△CDF,推出,利用SAS证明△BDF≌△CDE,推出,利用内错角相等,两直线平行,可得BFCE.(1)证明:∵CFBE,∴∠FCD﹦∠EBD.∵AD是BC边上的中线,∴.在△BDE和△CDF中,,∴△BDE≌△CDF.(2)解:BFCE.理由如下:如图,连接BF,CE.∵ C F⊥AD于F,BE⊥AD于E,∴CFBE.由(1)的结论可知△BDE≌△CDF,∴.∵AD是BC边上的中线,∴BD =CD.在△B DF和△CDE中,,∴△BDF≌△CDE.∴,∴BFCE.【点睛】本题考查全等三角形的判定与性质,平行线的性质与判定,三角形中线的定义等,熟练掌握全等三角形的判定方法、平行线的性质定理和判定定理是解题的关键.13.(1)①,SSS(2)见解析【分析】(1)根据SSS即可证明△ABC≌?DEF,即可解决问题;(2)根据全等三角形的性质可得可得∠A=∠EDF,再根据平行线的判定即可解决问题.(1)解:在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,选取的条件为①,判定△ABC≌△DEF的依据是SSS.(注意:只需选一个条件,多选不得分)故答案为:①,SSS;(2)证明:∵△ABC ≌△DEF.∴∠A=∠EDF,∴AB∥DE.【点睛】本题考查了平行线的性质和全等三角形的性质,和判定定理,能熟记全等三角形的判定定理是解此题的关键.14.(1)正确;理由见解析;(2)不正确;理由见解析;(3)正确;理由见解析;(4)正确;理由见解析.【分析】(1)是被所截形成的同位角,再利用同位角相等,两直线平行可判断;(2)是被所截形成的同旁内角,再利用同旁内角互补,两直线平行可判断;(3)是被所截形成的内错角,再利用内错角相等,两直线平行可判断;(4)是被所截形成的同旁内角,再利用同旁内角互补,两直线平行可判断;【详解】解:(1)正确,理由:同位角相等,两直线平行;(2)不正确,因为由“”只能推出“”,推不出“”;(3)正确,理由:内错角相等,两直线平行;(4)正确,理由:同旁内角互补,两直线平行.【点睛】本题考查的是平行线的判定,掌握“平行线的判定方法”是解题的关键.15.(1)见解析;(2)【分析】(1)先利用旋转的性质证明△ABD为等边三角形,则可证,即再根据平行线的判定证明即可.(2)利用弧长公式分别计算路径,相加即可求解.【详解】(1)证明:由旋转性质得:是等边三角形所以∴;(2)依题意得:AB=BD=4,BC=BE=1,所以A,C两点经过的路径长之和为.【点睛】本题考查了旋转的性质、等边三角形的判定与性质、平行线的判定、弧长公式等知识,熟练掌握这些知识点之间的联系及弧长公式是解答的关键.16.(1)35°;6(2)见解析【分析】(1)根据三角形内角和定理求出∠ACB,根据全等三角形的性质得出AB=DE,∠F=∠ACB,即可得出答案;(2)根据全等三角形的性质得出∠B=∠DEF,再根据平行线的判定即可证得结论.(1)解:∵∠A=85°,∠B=60°,∴∠ACB=180°-∠A-∠B=180°-85°-60°=35°,∵△ABC≌△DEF,AB=8,∴∠F=∠ACB=35°,DE=AB=8,∵EH=2,∴DH=DE-EH=8-2=6;(2)证明:∵△ABC≌△DEF,∴∠B=∠DEF,∴.【点睛】本题考查了全等三角形的性质,三角形的内角和定理,平行线的判定的应用,解此题的关键是能根据全等三角形的性质得出AB=DE,∠B=∠DEF,∠ACB=∠F,注意:全等三角形的对应边相等,对应角相等.17.,见解析【分析】四边形ABCD内角和360°,即,因为,所以,所以,同理.【详解】四边形ABCD内角和360°同理可得:【点睛】本题主要考查了四边形内角和以及平行线的判定,掌握该性质判定是解题的关键.18.见解析【分析】由BE平分∠ABC,可得∠1=∠3,再利用等量代换可得到一对内错角相等,即∠2=∠3,即可证明结论.【详解】证明:∵BE平分∠ABC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴B C//DE.【点睛】本题主要利用了角平分线的性质以及内错角相等、两直线平行等知识点,灵活运用平行线的判定定理成为解答本题的关键.19.角平分线的定义;已知;∠ABC;两直线平行,同位角相等;∠2;同位角相等,两直线平行【分析】根据角平分线的定义得出∠1=∠AED,∠2=∠ABC,根据平行线的性质定理得出∠AED=∠ABC,求出∠1=∠2,再根据平行线的判定定理推出即可.【详解】证明:∵BD平分∠ABC,EF平分∠AED,∴∠1=∠AED,∠2=∠ABC(角平分线的定义)∵BC∥ED(已知)∴∠AED=∠ABC(两直线平行,同位角相等)∴∠AED=∠ABC∴∠1=∠2 ∴BD∥EF(同位角相等,两直线平行).故答案为:角平分线的定义;已知;∠ABC;两直线平行,同位角相等;∠2;同位角相等,两直线平行.【点睛】本题考查了角平分线的定义,平行线的性质定理和判定定理等知识点,能熟记平行线的性质定理和判定定理是解此题的关键.答案第1页,共2页答案第1页,共2页试卷第1页,共3页试卷第1页,共3页。

人教版七年级下册数学《平行线及其判定》期末复习讲义(含知识点和习题)

人教版七年级下册数学《平行线及其判定》期末复习讲义(含知识点和习题)

第五章《相交线与平行线》期末复习讲义5.2平行线及其判定【知识回顾】一.平行线1.定义:在同一平面内,__________的两条直线叫做平行线2.要点剖析(1):平行线的特征:在同一平面内;是直线;没有公共点。

(2)在同一平面内,不重合的两条直线的位置关系只有相交和平行两种,重合的直线视为一条直线。

(3)平行线是指的两条直线的位置关系,两条射线或线段平行,是指的它们所在的直线平行。

二.平行线的画法1.“一落”把三角尺的一边落在已知直线上2.“二靠”用直尺紧靠三角尺的另一边3.“三推”把三角尺沿着直尺推到三角尺的一边刚好过已知点的位置4.“四画”沿三角尺过已知点的边画直线三.平行公理及其推论1.平行公理:经过直线外一点,_________一条直线与这条直线平行2.平行公理的推论:如果两条直线都与_________直线平行,那么这两条直线也互相平行四.平行线的判定1.同位角相等,两直线_________2.内错角相等,两直线_________3.同旁内角互补,两直线___________4.在同一平面内,垂直于_______________的两条直线互相平行题型拓展题型1 平行公理及其推论的应用例1:1.如图,取一张长方形的硬纸板ABCD,将硬纸板ABCD对折使CD与AB重合,EF 为折痕.把长方形ABEF平放在桌面上,另一个面CDEF无论怎么改变位置,总有CD∥AB存在,你知道为什么吗?例2:2.如图,取一张长方形的硬纸片ABCD对折,MN是折痕,把ABNM平摊在桌面上,另一个面CDMN不论怎样改变位置,总有MN∥∥.因此∥.题型2 综合运用各种判定方法判定两条直线平行例1:3.如图,∠1=47°,∠2=133°,∠D=47°,那么BC与DE平行吗?AB与CD呢?为什么?例2:4.阅读下面的推理过程,在括号内填上推理的依据,如图:因为∠1+∠2=180°,∠2+∠4=180°(已知)所以∠1=∠4,()所以a∥c.()又因为∠2+∠3=180°(已知)∠3=∠6()所以∠2+∠6=180°,()所以a∥b.()所以b∥c.()题型3 平行线判定的开放探究题例1:5.如图,∠A=60°,∠1=60°,∠2=120°,猜想图中哪些直线平行,并证明.例2:6.如图,直线a,b被c所截,∠1=50°,若要a∥b,则需增加条件(填图中某角的度数);依据是.题型4 平行线的判定在实际生活中的应用例1:7.如图所示,给你两块同样的三角板和一根直尺(直尺比桌子长),请你设计一个方案,检验桌子的相对边缘线是否平行?例2:8.在铺设铁轨时,两条直轨必须是互相平行的,如图,已经知道∠2是直角,那么再度量图中已标出的哪个角,就可以判断两条直线是否平行?为什么?课后提高训练9.下列说法错误的是()A.平行于同一条直线的两直线平行B.两直线平行,同旁内角互补C.对顶角相等D.同位角相等10.如图,下面哪个条件不能判断AC∥EF的是()A.∠1=∠2B.∠4=∠C C.∠1+∠3=180°D.∠3+∠C=180°11.如图,平面内有五条直线l1、l2、l3、l4、l5,根据所标角度,下列说法正确的是()A.l1∥l2B.l2∥l3C.l1∥l3D.l4∥l512.如图,在下列条件中,能判断AB∥CD的是()A.∠1=∠4B.∠BAD=∠BCDC.∠BAD+∠ADC=180°D.∠2=∠313.如图所示,下列推理正确的是()A.∵∠1=∠4(已知)∴AB∥CD(内错角相等,两直线平行)B.∵∠2=∠3(已知)∴AE∥DF(内错角相等,两直线平行)C.∵∠1=∠3(已知)∴AB∥DF(内错角相等,两直线平行)D.∵∠2=∠2(已知)∴AE∥DC(内错角相等,两直线平行)14.下列说法中正确的个数为()①过一点有且只有一条直线与已知直线垂直②两条直线被第三条直线所截,同位角相等③经过两点有一条直线,并且只有一条直线④在同一平面内,不重合的两条直线不是平行就是相交A.1个B.2个C.3个D.4个15.如图,下列能判定AB∥CD的条件有(填序号)①∠B+∠BCD=180°;②∠2=∠3;③∠1=∠4;④∠B=∠5;⑤∠D=∠5.16.如图,要使BE∥DF,需补充一个条件,你认为这个条件应该是(填一个条件即可).17.一副三角板按如图所示叠放在一起,其中点C、D重合,若固三角板定ABC,改变三角板AED的位置(其中A点位置始终不变),当∠CAD=时,ED∥AC.18.如图,直线a、b被直线c所截,现给出的下列四个条件:①∠4=∠7;②∠2=∠5;③∠2+∠3=180°;④∠2=∠7.其中能判定a∥b的条件的序号是.19.已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥CD.20.如图,若∠1=42°,∠2=53°,∠3=85°,则直线l1与l2平行吗?判断并说明理由.21.如图,已知CD⊥AD于点D,DA⊥AB于点A,∠1=∠2,试说明DF∥AE.解:因为CD⊥AD(已知),所以∠CDA=90°().同理∠DAB=90°.所以∠CDA=∠DAB=90°().即∠1+∠3=∠2+∠4=90°.因为∠1=∠2(已知),所以∠3=∠4().所以DF∥AE().22.完成下列证明过程,并在括号内填上依据.如图,点E在AB上,点F在CD上,∠1=∠2,∠B=∠C,求证AB∥CD.证明:∵∠1=∠2(已知),∠1=∠4(),∴∠2=∠4(等量代换),∴().∴∠3=∠C().又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD().参考答案与解析1.解:∵四边形FECD是矩形,∴CD∥EF;又∵四边形ABEF是矩形,∴AB∥EF,∴CD∥AB.2.解:∵长方形的硬纸片ABCD对折,MN是折痕,∴MN∥AB,MN∥CD,即MN∥AB∥CD,∴AB∥CD(平行于同一直线的两条直线互相平行).故各空依次填AB、CD、AB、CD.3.解:BC∥DE,AB∥CD.理由如下:∵∠1=47°,∠2=133°,而∠ABC=∠1=47°,∴∠ABC+∠2=180°,∴AB∥CD;∵∠2=133°,∴∠BCD=180°﹣133°=47°,而∠D=47°,∴∠BCD=∠D,∴BC∥DE.4.解:因为∠1+∠2=180°,∠2+∠4=180°(已知),所以∠1=∠4,(同角的补角相等)所以a∥c.(内错角相等,两直线平行)又因为∠2+∠3=180°(已知)∠3=∠6(对顶角相等)所以∠2+∠6=180°,(等量代换)所以a∥b.(同旁内角互补,两直线平行)所以b∥c.(平行于同一条直线的两条直线平行).故答案为:同角的补角相等;内错角相等,两直线平行;对顶角相等;等量代换;同旁内角互补,两直线平行;平行于同一条直线的两条直线平行.5.解:如图,∵∠A=60°,∠1=60°,∴∠A=∠1,∴DE∥AC.又∵∠A=60°,∠2=120°,∴∠A+∠2=180°,∴EF∥AB.6.解:∵∠3=50°,1=50°,∴∠1=∠3,∴a∥b(同位角相等,两直线平行).故答案为:∠3=50°;同位角相等;两直线平行.7.解:(1)将直尺放在桌面上,使其与桌面一组对边相交;(2)将三角板一边贴近直尺,斜边贴近桌面边缘;(3)使另一个三角形同样方法放置,如果相符合说明对边平行,原理如图所示,若∠1=∠2则a∥b,再检查另一组对边是否平行.8.解:①通过度量∠3的度数,若满足∠2+∠3=180°,根据同旁内角互补,两直线平行,就可以验证这个结论;②通过度量∠4的度数,若满足∠2=∠4,根据同位角相等,两直线平行,就可以验证这个结论;③通过度量∠5的度数,若满足∠2=∠5,根据内错角相等,两直线平行,就可以验证这个结论.9. D10.C11.D12.C13.B14.B15.解:选项①中∵∠B+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),所以正确;选项②中,∵∠2=∠3,∴AD∥BC(内错角相等,两直线平行),所以错误;选项③中,∵∠1=∠4,∴AB∥CD(内错角相等,两直线平行),所以正确;选项④中,∵∠B=∠5,∴AB∥CD(同位角相等,两直线平行),所以正确;选项⑤中,∠D=∠5,∴AD∥BC(内错角相等,两直线平行),所以错误;故答案为:①③④.16.解:添加条件为:∠D=∠COE.理由如下:∵∠D=∠COE,∴BE∥DE(同位角相等,两直线平行).故答案为:∠D=∠COE(答案不唯一).17.解:如图所示:当ED∥AC时,∠CAD=∠D=30°;如图所示,当ED∥AC时,∠E=∠EAC=60°,∴∠CAD=60°+90°=150°;故答案为:30°或150°.18.解:当∠4=∠7时,a∥b,故①正确;当∠2=∠5时,无法证明a∥b,故②错误;当∠2+∠3=180°时,无法证明a∥b,故③错误;当∠2=∠7时,a∥b,故④正确;故答案为:①④.19.证明:∵∠A=∠C=120°,∠AEF=∠CEF=60°,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴AB∥EF,CD∥EF,∴AB∥CD.20.解:直线l1与l2平行,理由:∵∠1=∠4,∠2=∠5,∠1=42°,∠2=53°,∴∠4=42°,∠5=53°,又∵∠3=85°,∴∠3+∠5=85°+53°=138°,∴∠3+∠5+∠4=138°+42°=180°,∴l1∥l2(同旁内角互补,两直线平行).21.解:因为CD⊥AD(已知),所以∠CDA=90°(垂直的定义),同理∠DAB=90°.所以∠CDA=∠DAB=90°(等量代换),即∠1+∠3=∠2+∠4=90°.因为∠1=∠2(已知),所以∠3=∠4(等式的性质1),所以DF∥AE(内错角相等,两直线平行).22.证明:∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=∠4(等量代换),∴CE∥BF(同位角相等,两直线平行).∴∠3=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:对顶角相等;CE∥BF;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行.。

七年级数学下册 专题 第6讲 平行线重点、考点知识总结及练习

七年级数学下册 专题 第6讲 平行线重点、考点知识总结及练习

专题第6讲平行线知识点1 平行公理及推论1. 在同一平面内,不重合的两条直线只有两种位置关系:相交和平行.直线a与直线b不相交时,直线a与b互相平行,记作a∥b.2. 平行公理:经过直线外一点,有且只有一条直线与已知直线平行.平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 【典例】1.如图,直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与(1)中所作的直线平行吗?【解析】解:(1)由平行公理可知,过直线a外的一点B画直线a的平行线,有且只有一条直线与直线a平行;(2)过点C画直线a的平行线,它与(1)中所作的直线平行.理由如下:如图,∵b∥a,c∥a,∴c∥b.【方法总结】本题考查了平行公理及其推论.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.在公理中,要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.平行公理的推论是判定两直线平行的一种常用方法,要牢固掌握.【随堂练习】1.下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)在同一平面内,两条直线的位置关系只有相交,平行两种;(4)不相交的两条直线叫做平行线.A.1个B.2个C.3个D.4个【解答】解:(1)在同一平面内,过直线外一点一点有且只有一条直线与已知直线平行,原来的说法错误;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直,原来的说法错误;(3)在同一平面内,两条直线的位置关系只有相交,平行两种是正确的;(4)在同一平面内,不相交的两条直线叫做平行线,原来的说法错误.故说法中错误的个数是3个.故选:C.2.请你动手试试,过一条直线外的一点作这条直线的平行线,能作几条?由此能得出一个什么数学结论.____________________________.【解答】解:过一条直线外的一点作这条直线的平行线,能做1条,理由是:过直线外一点有且只有一条直线与这条直线平行.故答案为:能做一条,过直线外一点有且只有一条直线与这条直线平行.知识点2 平行线的判定1. 平行线的判定方法:判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.如图1,∵∠4=∠2,∴a∥b.判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.如图2,∵∠4=∠5,∴a∥b.判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.如图3,∵∠4+∠1=180°,∴a∥b.2. 重要结论:在同一平面内,垂直于同一条直线的两条直线互相平行.注意:条件“同一平面”不能缺少,否则结论不成立.【典例】1.如图,BE平分∠ABD,DE平分∠BDC,且∠E为直角,AB与CD平行吗?试说明理由.【解析】解:AB∥CD.理由:∵BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义),∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换).∵∠E为直角,即∠E=90°(已知),∴∠α+∠β=90°(直角三角形的两个锐角互余),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补,两直线平行).【方法总结】首先根据角平分线的定义可得∠ABD=2∠α,∠BDC=2∠β,根据等量代换可得∠ABD+∠BDC=2(∠α+∠β).由∠E为直角可得∠α+∠β=90°,进而得到∠ABD+∠BDC=180°,然后根据“同旁内角互补,两直线平行”可得答案.此题主要考查了平行线的判定,关键是掌握角平分线的定义和平行线的判定方法.【随堂练习】1.完成下面的证明,括号内填根据.如图,直线a、b、c被直线l所截,量得∠1=65°,∠2=115°,∠3=65°.求证:a∥b证明:∠1=65°,∠3=65°∴_______∴___________________∵∠2=115°,∠3=65°∴____________∴___________________∴a∥b【解答】证明:∵∠1=65°,∠3=65°∴∠1=∠3,∴a∥c(同位角相等,两直线平行),∵∠2=115°,∠3=65°∴∠2+∠3=180°,∴b∥c(同旁内角相等,两直线平行)∴a∥b(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)故答案为:∠1=∠3;a∥c(同位角相等,两直线平行);∠2+∠3=180°;b ∥c(同旁内角相等,两直线平行).2.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.【解答】解:∵BE平分∠ABD,DE平分∠BDC(已知),∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义),∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=180°,∴AB∥CD(同旁内角互补,两直线平行).3.如图,已知∠1=30°,∠B=60°,AB⊥AC,将证明AD∥BC的过程填写完整.证明:∵AB⊥AC∴∠_____=____°(______)∵∠1=30°∴∠BAD=∠_____+∠___=_____°又∵∠B=60°∴∠BAD+∠B=_____°∴AD∥BC(______________)【解答】证明:∵AB⊥AC∴∠BAC=90°(垂直定义)∵∠1=30°∴∠BAD=∠BAC+∠1=120°又∵∠B=60°∴∠BAD+∠B=180°∴AD∥BC(同旁内角互补,两直线平行)故答案为:BAC,90,垂直定义,BAC,1,120,180,同旁内角互补,两直线平行.知识点3 平行线的性质平行线的性质:性质1 两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.如图1,∵a∥b,∴∠4=∠2.性质2 两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.如图2,∵a∥b,∴∠4=∠5.性质3 两条平行线被第三条直线所截,同旁内角互补.简单说成:同旁内角互补,两直线平行.如图3,∵a∥b,∴∠4+∠1=180°.【典例】1.如图1,对于直线MN同侧的两个点A,B,若直线MN上的点P满足∠APM=∠BPN,则称点P为A,B在直线MN上的反射点.已知如图2,MN∥HG,AP∥BQ,点P为A,B在直线MN上的反射点,判断点B是否为P,Q在直线HG上的反射点,并说明理由.【解析】解:点B是P,Q在直线HG上的反射点,理由:∵点P为A,B在直线MN上的反射点,∴∠APM=∠BPQ,又∵HG∥MN,∴∠APM=∠BAP,∠BPQ=∠PBA,∴∠PAB=∠PBA,又∵AP∥BQ,∴∠PAB=∠QBG,∴∠PBA=∠QBG,∴点B是P,Q在直线HG上的反射点.【方法总结】依据点P为A,B在直线MN上的反射点,即可得到∠APM=∠BPQ,再根据平行线的性质,即可得到∠PAB=∠PBA,经过等量代换可得∠PBA=∠QBG,所以点B是P,Q在直线HG 上的反射点.本题是新定义题,正确理解“反射点”的概念和特征,并熟练应用平行线的性质是解题的关键.【随堂练习】1.如图,已知AB∥CD,点E在AC的右侧,∠BAE,∠DCE的平分线相交于点F.探索∠AEC与∠AFC之间的等量关系,并证明你的结论.【解答】解:∠AEC=2∠AFC.理由:如图,分别过E,F作EG∥AB,FH∥AB,则EG∥CD,FH∥CD,∴∠AEG=∠BAE,∠CEG=∠DCE,∴∠AEC=∠AEG+∠CEG=∠BAE+∠DCE,同理可得∠AFC=∠BAF+∠DCF,∵∠BAE,∠DCE的平分线相交于点F,∴∠BAE=2∠BAF,∠DCE=2∠DCF,∴∠AEC=2(∠BAF+∠DCF)=2∠AFC.2.课上教师呈现一个问题:已知:如图1,AB∥CD,EF⊥AB于点O,FG交CD于点P,当∠1=30°时,求∠EFG的度数.甲、乙、丙三位同学用不同的方法添加辅助线解决问题,如图:甲同学辅助线的做法和分析思路如下:辅助线:过点F作MN∥CD.分析思路:①欲求∠EFG的度数,由图可知只需转化为求∠2和∠3的度数之和;②由辅助线作图可知,∠2=∠1,从而由已知∠1的度数可得∠2的度数;③由AB∥CD,MN∥CD推出AB∥MN,由此可推出∠3=∠4;④由已知EF⊥AB,可得∠4=90°,所以可得∠3的度数;⑤从而可求∠EFG的度数.(1)请你根据乙同学所画的图形,描述辅助线的做法,并写出相应的分析思路.辅助线:_________________分析思路:(2)请你根据丙同学所画的图形,求∠EFG的度数.【解答】解:(1)辅助线:过点P作PN∥EF交AB于点N.分析思路:①欲求∠EFG的度数,由辅助线作图可知,∠EFG=∠NPG,因此,只需转化为求∠NPG的度数;②欲求∠NPG的度数,由图可知只需转化为求∠1和∠2的度数和;③又已知∠1的度数,所以只需求出∠2的度数;④由已知EF⊥AB,可得∠4=90°;⑤由PN∥EF,可推出∠3=∠4;AB∥CD可推出∠2=∠3,由此可推∠2=∠4,所以可得∠2的度数;⑥从而可以求出∠EFG的度数.(2)如图,过点O作ON∥FG,∵ON∥FG,∴∠EFG=∠EON∠1=∠ONC=30°,∵AB∥CD,∴∠ONC=∠BON=30°,∵EF⊥AB,∴∠EOB=90°,∴∠EFG=∠EON=∠EOB+∠BON=90°+30°=120°.3.问题情境:(1)如图1,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC度数.小颖同学的解题思路是:如图2,过点P作PE∥AB,请你接着完成解答问题迁移:(2)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.试判断∠CPD、∠α、∠β之间有何数量关系?(提示:过点P作PE∥AD),请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你猜想∠CPD、∠α、∠β之间的数量关系.【解答】解:(1)过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=180°﹣∠A=50°,∠CPE=180°﹣∠C=60°,∴∠APC=50°+60°=110°;(2)∠CPD=∠α+∠β,理由如下:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)当P在BA延长线时,∠CPD=∠β﹣∠α;理由:如图4,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α;当P在BO之间时,∠CPD=∠α﹣∠β.理由:如图5,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE﹣∠CPE=∠α﹣∠β.知识点4 平行线的判定与性质的综合运用两直线平行⇔同位角相等.两直线平行⇔内错角相等.同旁内角互补⇔两直线平行.“⇔”叫做“等价于”,即由左边能推出右边,由右边也能推出左边.【典例】1.如图,已知∠1=∠2,∠3=∠4,∠5=∠A,试说明:BE∥CF.【解析】解:如图,∵∠3=∠4(已知),∴AE∥BC(内错角相等,两直线平行),∴∠EDC=∠5(两直线平行,内错角相等).∵∠5=∠A(已知),∴∠EDC=∠A(等量代换),∴DC∥AB(同位角相等,两直线平行),∴∠5+∠ABC=180°(两直线平行,同旁内角互补),即∠5+∠2+∠3=180°.∵∠1=∠2(已知),∴∠5+∠1+∠3=180°(等量代换),即∠BCF+∠3=180°,∴BE∥CF(同旁内角互补,两直线平行).2.学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1、l2内部,探究∠A,∠APB,∠B的关系.小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB=____________________.(2)如图2,若AC∥BD,点P在AC、BD外部,∠A,∠B,∠APB的数量关系是否发生变化?(3)已知:如图3,三角形ABC,试说明:∠A+∠B+∠C=180°.【解析】解:(1)如图1,过P作PE∥l1,∵l1∥l2,∴PE∥l1∥l2,∴∠APE=∠A,∠BPE=∠B,∴∠APB=∠APE+∠BPE=∠A+∠B,故答案为:∠A+∠B.(2)如图2,过点P作PE∥AC,则∠A=∠1.∵AC∥BD,∴PE∥BD,∴∠B=∠EPB.∵∠APB=∠BPE﹣∠1,∴∠APB=∠B﹣∠A;(3)如图3,过点A作MN∥BC,则∠B=∠1,∠C=∠2.∵∠BAC+∠1+∠2=180°,∴∠BAC+∠B+∠C=180°.【方法总结】平行线的判定是由角的关系得到两直线平行,平形线的性质是由两直线平行得到角之间的关系,他们都可以作为说理的依据.其他常见的说理依据有:已知、等量代换、对顶角相等、等角的余角相等、等角的补角相等、平行于同一条直线的两条直线互相平行、三角形的内角和等于180°等.【随堂练习】1.如图,DE⊥AB,∠1=∠A,∠2+∠3=180°,试判断CF与AB的位置关系,并说明理由.【解答】解:CF⊥AB,理由如下:∵∠1=∠A(已知)∴AC∥FG(同位角相等,两直线平行)∴∠2=∠ACF(两直线平行,内错角相等)∴∠2+∠3=180°(已知)∴∠ACF+∠3=180°∴DE∥CF(同旁内角互补,两直线平行)∴∠DEF=∠1+∠2∵DE⊥AB∴∠1+∠2=90°∴CF⊥AB2.如图1,直线AG与直线BH和DI分别相交于点A和点G,点C为DI上一点,且CE⊥AG,垂足为点E,∠DCE﹣∠HAE=90°.(1)求证:BH∥DI.(2)如图2:直线AF交DC于,AM平分∠EAF,AN平分∠BAE,证明:∠AFG =2∠MAN.【解答】证明:(1)因为∠DCE+∠ECG=180°,∠CEG+∠CGA+∠ECG=180°,所以∠DCE=∠CEG+∠CGA因为CD⊥AG所以∠DCE﹣∠CGA=∠CEG=90°又因为∠DCE﹣∠HAE=90°所以∠CGA=∠HAE所以BH∥DI(2)因为AM平分∠EAF AN平分∠BAE所以∠EAM=∠F AM∠EAN=∠BAN又因为∠MAN=∠EAN﹣∠EAM所以∠MAN=∠BAN﹣∠F AM又因为∠BAN=∠BAF+∠F AN∠F AM=∠MAN+∠F AN所以∠MAN=∠BAF﹣∠MAN所以∠BAF=2∠MAN又所以BH∥DI所以∠AFG=∠BAF所以∠AFG=2∠MAN.知识点5 命题、定理、证明1. 命题:判断一件事情的语句叫做命题.数学中的命题常可以写成“如果……那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.2. 真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题.假命题:题设成立时,不能保证结论一定成立,这样的命题叫做假命题.3. 定理:经过推理证实的真命题叫做定理.判断一个命题正确性的推理过程叫做证明.4. 判断一个命题是真命题,需要进行证明;判断一个命题是假命题,只要举出一个例子(反例),它符合命题的题设,但不满足结论就可以了.【典例】1.判断下列命题是真命题还是假命题.如果是真命题,请证明,如果是假命题,请举出反例.(1)两个锐角的和是钝角;(2)在同一平面内,垂直于同一条直线的两条直线互相平行.【解析】解:(1)“两个锐角的和是钝角位”是假命题,如30°和40°的和为70°;(2)“在同一平面内,垂直于同一条直线的两条直线互相平行”为真命题.已知:如图,在同一平面内,直线b⊥a,直线c⊥a.证明:如图,∵b⊥a,c⊥a,∴∠1=90°,∠2=90°,∴∠1=∠2,∴b∥c.【方法总结】要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.(1)任意找两个锐角,使它们的和为锐角或直角即可;(2)写出已知、求证,作出图形,利用平行线的判定即可证明命题为真命题.【随堂练习】1.已知:三条不同的直线a、b、c在同一平面内:①a∥b;②a⊥c;③b⊥c;④a⊥b.请你用①②③④所给出的其中两个事项作为条件,其中一个事项作为结论(用如果…那么…的形式,写出命题,例如:如果a⊥c、b⊥c、那么a∥b).(1)写出一个真命题,并证明它的正确性;(2)写出一个假命题,并举出反例.【解答】解:(1)如果a⊥c、b⊥c、那么a∥b;理由:如图,∵a⊥c、b⊥c,∴∠1=90°,∠2=90°,∴∠1=∠2,∴a∥b.(2)如果a⊥c、b⊥c、那么a⊥b;反例:见上图,如果a⊥c、b⊥c、那么a∥b.2.如图,有三个论断:①∠1=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.【解答】已知:∠1=∠2,∠B=∠C求证:∠A=∠D证明:∵∠1=∠3又∵∠1=∠2∴∠3=∠2∴EC∥BF∴∠AEC=∠B又∵∠B=∠C∴∠AEC=∠C∴AB∥CD∴∠A=∠D综合运用1.“垂直于同一直线的两直线平行”的题设:_______________________________________,结论:___________________________.【答案】两条直线都垂直于同一条直线这两条直线互相平行【解析】解:把命题可以写成“如果…那么…”,则如果后面为题设,那么后面为结论.“垂直于同一直线的两直线平行”改写成为“如果…那么…”的形式为:如果两条直线都垂直于同一条直线,那么这两条直线互相平行.题设:两条直线都垂直于同一条直线;结论为:这两条直线互相平行.故答案为:两条直线都垂直于同一条直线这两条直线互相平行2.如图,已知长方形ABCD,将△BCD沿对角线BD折叠,记点C的对应点为C',若∠ADC'=24°,则∠BDC的度数为______________.【答案】57°【解析】解:如图,设AD与BC′交于点E.∵四边形ABCD是矩形,∴∠C=90°,AD∥BC,∠ADC=90°,∴∠3=∠4,∠1=∠2+∠4.∵△BDC′是由△BDC翻折得到,∴∠2=∠4,∠C=∠C′=90°,∠BDC=∠BDC′∴∠2=∠3,∵∠ADC′=24°,∴∠1=90°﹣∠EDC′=66°,∵∠1=∠2+∠4=2∠2,×66°=33°,∴∠2=∠3=12∴∠BDC=∠D-∠3=90°-33°=57°.故答案为57°.3.在同一平面内三条直线交点有多少个?甲:同一平面三直线相交交点的个数为0个,因为a∥b∥c,如图(1)所示.乙:同一平面内三条直线交点个数只有1个,因为a,b,c交于同一点O,如图(2)所示.以上说法谁对谁错?为什么?【解析】解:甲、乙说法都不对,都少了三种情况.a∥b,c与a,b相交如图(1);a,b,c两两相交如图(2),所以三条直线互不重合,交点有0个或1个或2个或3个,共四种情况.4.如图,如果CD∥AB,CE∥AB,那么C,D,E三点是否共线?你能说明理由吗?【解析】解:C,D,E三点共线.理由:因为过直线AB外一点C有且只有一条直线与AB平行,直线CD、DE都经过点C 且与AB平行,所以直线CD、DE重合,所以点C、D、E三点共线.5.如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,AC与BD平行吗?AE与BF平行吗?【解析】解:因为∠1=35°,∠2=35°(已知),所以∠1=∠2.所以AC∥BD(同位角相等,两直线平行).又因为AC⊥AE(已知),所以∠EAC=90°(垂直的定义).所以∠EAB=∠EAC+∠1=125°.同理可得,∠FBG=∠FBD+∠2=125°.所以∠EAB=∠FBG(等量代换).所以AE∥BF(同位角相等,两直线平行).6.判断下列命题是真命题还是假命题;如果是假命题,请举一个反例.(1)两个锐角的和是锐角;(2)若a>b,则a2>b2;【解析】解:(1)假命题.反例为:两个锐角分别为40°,60°,它们的和为100°,为钝角;(2)假命题.反例为:a=1,b=﹣3,但是a2=1<b2=9.7.如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE 平分∠FGD,若∠EFG=90°,∠E=35°,求∠EFB的度数.【解析】解:∵∠EFG=90°,∠E=35°,∴∠FGH=180°-∠EFG-∠E=180°-90°-35°=55°.∵GE平分∠FGD,∴∠FHG=∠HGD=55°.∵AB∥CD,∴∠FHG=∠HGD =55°.∴∠FHE=180°-∠FHG=180°-55°=125°.在△EFH中,∠EFB=180°-∠FHE-∠E=180°-125°-35°20°.8.如图,已知:AB∥CD,∠1=∠2,∠3=∠4,求证:(1)∠4=∠DAC;(2)AD∥BE.【解析】证明:(1):∵AB∥CD,∴∠4=∠BAF(两直线平行,同位角相等).∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等式的性质),即∠BAF=∠DAC,∴∠4=∠DAC,(2)∵∠4=∠DAC,∠3=∠4,∴∠3=∠DAC,∴AD∥BE(内错角相等,两直线平行).。

人教版七年级下知识点试题精选-平行公理及推论

人教版七年级下知识点试题精选-平行公理及推论

七年级下册平行公理及推论一.选择题(共20小题)1.下列说法正确的个数()(1)在同一平面内,两条直线的位置关系只有两种:相交和平行.(2)过一点有一条直线平行于已知直线.(3)有且只有一条直线垂直于已知直线.(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.(5)平面上三条直线相交,最多能够形成3对对顶角.(6)如果两条直线都与第三条直线垂直,那么这两条直线互相平行.(7)两条相交直线构成的角中,互为邻补角的最多有4对.A.1个 B.2个 C.3个 D.4个2.下列说法正确的是()A.过一点有且只有一条直线与已知直线平行B.垂直于同一条直线的两条直线平行C.有理数与数轴上的点一一对应D.垂线段最短3.下面各语句中,正确的是()A.相等的角是对顶角B.过一点有且只有一条直线与已知直线平行C.直线外一点到该直线的垂线段叫点到直线的距离D.同角或等角的余角相等4.下列说法正确的是()A.不相交的两条直线是平行线B.在同一平面内,两条平行的直线有且只有一个交点C.在同一平面内,两条直线的位置关系只有平行和相交两种D.过一点有且只有一条直线与已知直线平行5.下列说法中,正确的个数为()(1)过一点有无数条直线与已知直线平行(2)如果a∥b,a∥c,那么b∥c(3)如果两线段不相交,那么它们就平行(4)如果两直线不相交,那么它们就平行A.1个 B.2个 C.3个 D.4个6.下列推理中,错误的是()A.因为AB⊥EF,EF⊥CD,所以AB⊥CDB.因为∠α=∠β,∠β=∠γ,所以∠α=∠γC.因为a∥b,b∥c,所以a∥cD.因为AB=CD,CD=EF,所以AB=EF7.若直线l1∥l,l2∥l,则()A.l1∥l2B.l l⊥l2C.l1与l2相交D.以上都不对8.直线a、b、c中,a∥b,b∥c,则直线a与直线c的关系是()A.相交B.平行C.垂直D.不确定9.下列选项中正确的是()A.相等的角是对顶角B.两直线平行,同旁内角相等C.直线外一点到这条直线的垂线段,叫点到直线的距离D.经过直线外一点,有且只有一条直线与这条直线平行10.小明与小刚在讨论数学问题时,有如下对话:小明:在同一平面内,过一点A有且只有一条直线与已知直线m平行.小刚:在同一平面内,过一点A有且只有一条直线与已知直线m垂直.你认为小明与小刚谁说的是正确的?()A.小明正确B.小刚正确C.小明与小刚都正确D.都不正确11.下列说法中可能错误的是()A.过直线外一点有且只有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线垂直C.两条直线相交,有且只有一个交点D.若两条直线相交成直角,则这两条直线互相垂直12.下列语句中,正确的是()A.两点之间的线段叫做两点之间的距离B.如果一点到一条线段的两端点的距离相等,那么这点叫线段的中点C.经过直线外一点,有且只有一条直线与这条直线平行D.过直线外一点作已知直线的垂线,这点与垂足之间的线段叫点到直线的距离13.下列说法错误的是()A.过直线外一点有且仅有一条直线与它平行B.在同一平面内,不同的两条直线只有一个交点C.经过一点有且只有一条直线与已知直线垂直D.经过两点有且只有一条直线14.如果两条不同的直线都和第三条直线平行,那么这两条直线的位置关系是()A.平行B.相交C.平行或相交D.互相垂直15.给出下列说法:①对顶角相等;②等角的补角相等;③两点之间所有连线中,线段最短;④过任意一点P,都能画一条直线与已知直线平行.其中正确说法的个数是()A.1 B.2 C.3 D.416.下面推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c17.下列说法:①若a与c相交,则a与b相交;②若a∥b,b∥c,那么a∥c;③过一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种.其中错误的有()A.3个 B.2个 C.1个 D.0个18.如图,过点A画直线L的平行线,能画()A.两条以上B.2条 C.1条 D.0条19.下列说法错误的是()A.在同一平面内,没有公共点的两条直线是平行线B.如果两条直线都与第三条直线平行,那么这两条直线也互相平行C.经过直线外一点有且只有一条直线与该直线平行D.在同一平面内,不相交的两条线段是平行线20.下列结论中,不正确的是()A.两点确定一条直线B.等角的余角相等C.过一点有且只有一条直线与已知直线平行D.两点之间,线段最短二.填空题(共20小题)21.设l1,l2,l3为同一平面内三条不同直线,若l1⊥l2,l2⊥l3,则l1与l3的位置关系是.22.经过一点,有且只有一条直线与已知直线平行.23.(1)如图,因为直线AB、CD相交于点P,AB∥EF,所以CD不平行于EF();(2)因为直线a∥b,b∥c,所以a∥c().24.若AB∥CD,HG∥CD,则有∥∥.25.直线a、b、c在同一平面内,(1)如果a⊥b,b⊥c,那么a∥c;(2)如果a ∥b,b∥c,那么a∥c;(3)如果a∥b,b⊥c,那么a⊥c;(4)如果a与b相交,b与c相交,那么a与c相交;在上述四种说法中,正确的有个.26.因为AB∥CD,EF∥AB,根据,所以.27.已知直线l及l外一点P,若过点P画直线与l平行,那么这样的直线有条.28.在同一平面内有四条直线a,b,c,d,已知:a∥d,b∥c,b∥d,则a和c 的位置关系是.29.如图,直线AB,CD表示一条公路的两边,且AB∥CD,点E为直线AB,CD 外一点,现过点E作边CD的平行线,只需过点E作的平行线即可,其理由是.30.在同一平面内,与已知直线a平行的直线有条;而经过直线外一点P,与已知直线a平行的直线有且只有条.31.在同一平面内,已知直线a、b、c,且a∥b,b⊥c,那么直线a和c的位置关系是.32.对于同一平面内的三条不同直线a、b、c,若a∥b,b∥c,则直线a、c的位置关系是.33.直线L同侧有A、B、C三点,若A、B两点确定的直线L1与B、C两点确定的直线L2都与L平行,则A、B、C三点共线,其理论依据是.34.如果a∥b,b∥c,那么a c.35.若点P为直线AB外一点,则过点P且平行于AB的直线有条.36.如果直线a∥b,b∥c,那么直线a与c的位置关系是.37.若AB∥CD,AB∥EF,则∥,理由是.38.已知A,B,C三点及直线EF,过B点作AB∥EF,过B点作BC∥EF,那么A,B,C三点一定在同一条直线上,依据是.39.已知直线a∥b,b∥c,则直线a、c的位置关系是.40.若直线a∥b,b∥c,则.三.解答题(共10小题)41.直线a∥b,b∥c,直线d与a相交于点A.(1)判断a与c的位置关系,并说明理由;(2)判断c与d的位置关系,并说明理由.42.在同一平面内,直线l的同侧有A、B、C三点,如果AB∥l,BC∥l,那么A、B、C三点是否在同一直线上?为什么?43.如图,已知OA∥CD,OB∥CD,那么∠AOB是平角,为什么?44.如图所示,AB∥DC,在AD上取一点E,过E作EF∥AB交BC于F,试说明EF与DC的位置关系,并解释原因.45.如图,直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?46.如图,AD∥BC,E为AB上任一点,过E点作EF∥AD交DC于F.问EF与BC的位置关系怎样,为什么?47.判断题(正确的画“√”,错误的画“×”)(1)a、b、c是直线,且a∥b,b∥c,则a∥c.(2)a、b、c是直线,且a⊥b,b⊥c,则a⊥c..48.如图,AB∥CD,E为AC的中点,(1)请过E作线段EF,且使EF∥AB,EF与BD相交于F;(2)请回答:EF与CD平行吗?为什么?49.a,b,c不在同一平面内,a∥b,b∥c,那么a∥c是真命题吗?50.探索与发现:(1)若直线a1⊥a2,a2∥a3,则直线a1与a3的位置关系是,请说明理由.(2)若直线a1⊥a2,a2∥a3,a3⊥a4,则直线a1与a4的位置关系是(直接填结论,不需要证明)(3)现在有2011条直线a1,a2,a3,…,a2011,且有a1⊥a2,a2∥a3,a3⊥a4,a4∥a5…,请你探索直线a1与a2011的位置关系.七年级下册平行公理及推论参考答案与试题解析一.选择题(共20小题)1.下列说法正确的个数()(1)在同一平面内,两条直线的位置关系只有两种:相交和平行.(2)过一点有一条直线平行于已知直线.(3)有且只有一条直线垂直于已知直线.(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.(5)平面上三条直线相交,最多能够形成3对对顶角.(6)如果两条直线都与第三条直线垂直,那么这两条直线互相平行.(7)两条相交直线构成的角中,互为邻补角的最多有4对.A.1个 B.2个 C.3个 D.4个【分析】根据直线平行、相交的定义及平行公理和推论对各选项分析判断后利用排除法求解.【解答】解:(1)在同一平面内,两条直线的位置关系只有两种:相交和平行,说法正确.(2)过一点有一条直线平行于已知直线,说法错误,应该是过直线外一点有一条直线平行于已知直线.(3)有且只有一条直线垂直于已知直线,说法错误,应该是同一平面内有且只有一条直线垂直于已知直线.(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离,说法错误,应该是从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.(5)平面上三条直线相交,最多能够形成3对对顶角.说法错误,应该是6对.(6)如果两条直线都与第三条直线垂直,那么这两条直线互相平行,说法错误,应该是在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行.(7)两条相交直线构成的角中,互为邻补角的最多有4对,说法正确.故选:B.【点评】本题是对概念和公理的考查,准确记忆是解答本题的关键.2.下列说法正确的是()A.过一点有且只有一条直线与已知直线平行B.垂直于同一条直线的两条直线平行C.有理数与数轴上的点一一对应D.垂线段最短【分析】根据平行公理以及垂线的性质定理即可作出判断.【解答】解:A、过直线外一点有且只有一条直线与已知直线平行,故选项错误;B、在同一平面内垂直于同一条直线的两条直线平行,故该选项错误;C、实数与数轴上的点一一对应,故选项错误;D、从直线外一点到这条直线上各点所连的线段中,垂直线段最短,故该选项正确.故选D.【点评】本题考查了平行公理以及垂线的性质定理,正确理解定理是关键.3.下面各语句中,正确的是()A.相等的角是对顶角B.过一点有且只有一条直线与已知直线平行C.直线外一点到该直线的垂线段叫点到直线的距离D.同角或等角的余角相等【分析】A、根据对顶角的定义进行判断;B、根据平行公理进行判断;C、根据点到直线的距离的定义进行判断;D、根据余角的性质进行判断.【解答】解:A、相等的角不一定是对顶角,故本选项错误;B、经过直线外一点,有且只有一条直线与这条直线平行,故本选项错误;C、直线外一点到直线的垂线段的长度,叫做点到直线的距离,故本选项错误;D、同角或等角的余角相等,故本选项正确.故选D.【点评】本题考查了对顶角的定义,平行公理,点到直线的距离的定义,余角的性质,是基础知识,比较简单.4.下列说法正确的是()A.不相交的两条直线是平行线B.在同一平面内,两条平行的直线有且只有一个交点C.在同一平面内,两条直线的位置关系只有平行和相交两种D.过一点有且只有一条直线与已知直线平行【分析】根据平行线的定义和平行公理及推论,对每个选项进行判断.【解答】解:A、不相交的两条直线是平行线,错误,应强调在同一平面内.B、在同一平面内,两条平行的直线有且只有一个交点,错误,在同一平面内,两条平行的直线没有交点.C、正确.D、过一点有且只有一条直线与已知直线平行,错误,过直线外一点有且只有一条直线与已知直线平行.故选C.【点评】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.5.下列说法中,正确的个数为()(1)过一点有无数条直线与已知直线平行(2)如果a∥b,a∥c,那么b∥c(3)如果两线段不相交,那么它们就平行(4)如果两直线不相交,那么它们就平行A.1个 B.2个 C.3个 D.4个【分析】根据平行线的定义、公理及推论判断.【解答】解:(1)过直线外一点有且只有一条直线与已知直线平行,故错误;(2)根据平行公理的推论,正确;(3)线段的长度是有限的,不相交也不一定平行,故错误;(4)应该是“在同一平面内”,故错误.正确的只有一个,故选A.【点评】掌握平行线的定义、公理及推论,并具有一定的判断能力,举反例也是一种方法.6.下列推理中,错误的是()A.因为AB⊥EF,EF⊥CD,所以AB⊥CDB.因为∠α=∠β,∠β=∠γ,所以∠α=∠γC.因为a∥b,b∥c,所以a∥cD.因为AB=CD,CD=EF,所以AB=EF【分析】根据相关的定义或定理判断.【解答】解:A、AB⊥EF,EF⊥CD,答案不确定,有多个答案,AB可能与CD平行,也可能垂直,在空间中也可能异面等,故A选项错误;B、由∠α=∠β,∠β=∠γ,根据角的等量代换可知,∠α=∠γ,故B选项正确;C、由a∥b,b∥c,根据平行线的平行的传递性可知a∥c,故C选项正确;D、根据线段长度的等量代换可知AB=EF,易知D选项正确;综上所述,答案选A.【点评】主要考查学生对平行公理及推论的运用,注意等量代换的应用.7.若直线l1∥l,l2∥l,则()A.l1∥l2B.l l⊥l2C.l1与l2相交D.以上都不对【分析】根据平行于同一直线的两直线互相平行解答.【解答】解:∵l1∥l,l2∥l,∴l1∥l2.故选A.【点评】本题主要考查直线的平行公理.8.直线a、b、c中,a∥b,b∥c,则直线a与直线c的关系是()A.相交B.平行C.垂直D.不确定【分析】根据如果两条直线都和第三条直线平行,那么这两条直线也互相平行.【解答】解:由于直线a、b都与直线c平行,依据平行公理的推论,可推出a ∥b,故选B.【点评】本题考查的重点是平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线平行.9.下列选项中正确的是()A.相等的角是对顶角B.两直线平行,同旁内角相等C.直线外一点到这条直线的垂线段,叫点到直线的距离D.经过直线外一点,有且只有一条直线与这条直线平行【分析】根据对顶角的性质、平行线的性质、点到直线的距离概念、平行线的公理逐个进行判断,可知D正确.【解答】解:A中,只能说对顶角相等,而不是相等的角都是对顶角,错误;B中,两直线平行,同旁内角互补,而不是相等,错误;C中,距离应是垂线段的长度,而不是线段本身,错误;D中,这是平行公理,正确.故选D.【点评】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.10.小明与小刚在讨论数学问题时,有如下对话:小明:在同一平面内,过一点A有且只有一条直线与已知直线m平行.小刚:在同一平面内,过一点A有且只有一条直线与已知直线m垂直.你认为小明与小刚谁说的是正确的?()A.小明正确B.小刚正确C.小明与小刚都正确D.都不正确【分析】在同一平面内,由于过直线外一点有且只有一条直线与已知直线平行,过直线外或直线上一点有且只有一条直线与已知直线垂直,由此即可判定小明与小刚谁说的是正确的.【解答】解:∵过直线外一点有且只有一条直线与已知直线平行,过直线外或直线上一点有且只有一条直线与已知直线垂直,而小明:过一点A有且只有一条直线与已知直线m平行,不知道A是否在直线m外,故说法错误;小刚:过一点A有且只有一条直线与已知直线m垂直,无论A在直线外还是直线上都有且只有一条直线与已知直线m垂直,故说法正确.∴小刚说的是正确的.故选B.【点评】本题考查的重点是平行公理和垂线的性质,解题时主要抓住点A与直线m的位置关系即可解决问题.11.下列说法中可能错误的是()A.过直线外一点有且只有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线垂直C.两条直线相交,有且只有一个交点D.若两条直线相交成直角,则这两条直线互相垂直【分析】根据平行公理和相交线、垂线的定义利用排除法求解.【解答】解:A、过直线外一点有且只有一条直线与已知直线平行,故本选项正确;B、应该是同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项错误;C、两条直线相交,有且只有一个交点,故本选项正确;D、若两条直线相交成直角,则这两条直线互相垂直,直线垂直的定义,故本选项正确.故选B.【点评】本题主要考查公理定义,熟练记忆公理和定义是学好数学的关键.12.下列语句中,正确的是()A.两点之间的线段叫做两点之间的距离B.如果一点到一条线段的两端点的距离相等,那么这点叫线段的中点C.经过直线外一点,有且只有一条直线与这条直线平行D.过直线外一点作已知直线的垂线,这点与垂足之间的线段叫点到直线的距离【分析】根据两点间的距离的定义,线段中点的定义,平行公理,以及点到直线的距离的定义对各选项分析判断后利用排除法求解.【解答】解:A、应为两点之间的线段的长度叫做两点之间的距离,故本选项错误;B、应为如果线段上一点到这条线段的两端点的距离相等,那么这点叫线段的中点,故本选项错误;C、经过直线外一点,有且只有一条直线与这条直线平行,故本选项正确;D、应为过直线外一点作已知直线的垂线,这点与垂足之间的线段的长度叫点到直线的距离,故本选项错误.故选C.【点评】本题考查了平行公理,两点间的距离的定义,点到直线的距离的定义,是基础题,熟记概念是解题的关键.13.下列说法错误的是()A.过直线外一点有且仅有一条直线与它平行B.在同一平面内,不同的两条直线只有一个交点C.经过一点有且只有一条直线与已知直线垂直D.经过两点有且只有一条直线【分析】直接利用平行公理以及其推论和垂线的定义分析得出即可.【解答】解:A、过直线外一点有且仅有一条直线与它平行,正确,不合题意;B、在同一平面内,不同的两条直线最多只有一个交点,正确,不合题意;C、应为:在同一平面内,经过一点有且只有一条直线与已知直线垂直,故错误,符合题意;D、经过两点有且只有一条直线,正确,不合题意.故选:C.【点评】此题主要考查了平行公理及推论和垂线的定义,正确把握相关定义是解题关键.14.如果两条不同的直线都和第三条直线平行,那么这两条直线的位置关系是()A.平行B.相交C.平行或相交D.互相垂直【分析】直接根据平行公理即可得出结论.【解答】解:∵两条不同的直线都和第三条直线平行,∴这两条直线平行.故选A.【点评】本题考查的是平行公理及推论,熟知如果两条直线都与第三条直线平行,那么这两条直线也互相平行是解答此题的关键.15.给出下列说法:①对顶角相等;②等角的补角相等;③两点之间所有连线中,线段最短;④过任意一点P,都能画一条直线与已知直线平行.其中正确说法的个数是()A.1 B.2 C.3 D.4【分析】根据对顶角相等,补角的性质,线段的性质以及平行公理对各小题分析判断即可得解.【解答】解:①对顶角相等,正确;②等角的补角相等,正确;③两点之间所有连线中,线段最短,正确;④应为过直线外任意一点P,都能画一条直线与已知直线平行,综上所述,说法正确的有①②③共3个.故选C.【点评】本题考查了平行公理,线段的性质,余角和补角的性质,对顶角相等的性质,熟记各性质是解题的关键.16.下面推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c【分析】根据平行公理的推论“如果两条直线都和第三条直线平行,那么这两条直线平行“进行分析,得出正确答案.【解答】解:A、a、c都和b平行,应该推出的是a∥c,而非c∥d,故错误;B、没有两条直线都和第三条直线平行,推不出平行,故错误;C、b、c都和a平行,可推出是b∥c,故正确;D、a、c与不同的直线平行,无法推出两者也平行.故选C.【点评】本题考查的重点是平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线平行.17.下列说法:①若a与c相交,则a与b相交;②若a∥b,b∥c,那么a∥c;③过一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种.其中错误的有()A.3个 B.2个 C.1个 D.0个【分析】利用同一个平面内,两条直线的位置关系解答.【解答】解:①若a与c相交,则a与b不一定相交;故错误;②若a∥b,b∥c,那么a∥c;故正确;③在同一平面内,过一点有且只有一条直线与已知直线平行;故错误;④在同一平面内,两条直线的位置关系有平行、相交、两种;故错误.故选A.【点评】本题考查了平行公理及推论,相交线、平行线的定义,熟记熟记公理、定理对学好几何比较关键.18.如图,过点A画直线L的平行线,能画()A.两条以上B.2条 C.1条 D.0条【分析】经过直线外一点,有且只有一条直线与这条直线平行.【解答】解:因为经过直线外一点,有且只有一条直线与这条直线平行.所以如图,过点A画直线L的平行线,能画1条.故选:C.【点评】本题考查了平行公理及推论.平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.19.下列说法错误的是()A.在同一平面内,没有公共点的两条直线是平行线B.如果两条直线都与第三条直线平行,那么这两条直线也互相平行C.经过直线外一点有且只有一条直线与该直线平行D.在同一平面内,不相交的两条线段是平行线【分析】分别利用平行公理以及平行线的判定与性质分别分析得出答案.【解答】解:A、在同一平面内,没有公共点的两条直线是平行线,正确,不合题意;B、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确,不合题意;C、经过直线外一点有且只有一条直线与该直线平行,正确,不合题意;D、在同一平面内,不相交的两条线段是平行线,错误,符合题意.故选:D.【点评】此题主要考查了平行公理以及平行线的判定与性质,正确把握相关定理是解题关键.20.下列结论中,不正确的是()A.两点确定一条直线B.等角的余角相等C.过一点有且只有一条直线与已知直线平行D.两点之间,线段最短【分析】根据平行公理,直线的性质,线段的性质以及余角和补角的性质对各选项分析判断即可得解.【解答】解:A、两点确定一条直线,正确,故本选项错误;B、等角的余角相等,正确,故本选项错误;C、应为过直线外一点有且只有一条直线与已知直线平行,故本选项正确;D、两点之间,线段最短,正确,故本选项错误.故选C.【点评】本题主要考查了平行公理和及推论,直线和线段的性质,以及余角和补角的性质,是基础题,熟记相关性质是解题的关键.二.填空题(共20小题)21.设l1,l2,l3为同一平面内三条不同直线,若l1⊥l2,l2⊥l3,则l1与l3的位置关系是l1∥l3.【分析】根据在同一平面内,两条直线都与同一条直线垂直,则这两直线平行作答.【解答】解:∵在同一平面内,l1⊥l2,l2⊥l3,∴l1∥l3,即l1与l3的位置关系是平行,故答案为:l1∥l3.【点评】本题考查了平行线的判定,解题时利用了:在同一平面内,两条直线都与同一条直线垂直,则这两直线平行.22.经过直线外一点,有且只有一条直线与已知直线平行.【分析】根据平行公理解答.【解答】解:经过直线外一点,有且只有一条直线与已知直线平行.故答案为:直线外.【点评】本题考查了平行公理,是基础题,熟记公理是解题的关键.23.(1)如图,因为直线AB、CD相交于点P,AB∥EF,所以CD不平行于EF(经过直线外一点,有且只有一条直线与这条直线平行);(2)因为直线a∥b,b∥c,所以a∥c(平行于同一直线的两条直线平行).【分析】(1)利用经过直线外一点,有且只有一条直线与这条直线平行,进而得出答案;(2)利用平行于同一直线的两条直线平行进而得出答案.【解答】解:(1)如图,因为直线AB、CD相交于点P,AB∥EF,所以CD不平于EF(经过直线外一点,有且只有一条直线与这条直线平行);故答案为:经过直线外一点,有且只有一条直线与这条直线平行.(2)因为直线a∥b,b∥c,所以a∥c(平行于同一直线的两条直线平行).故答案为:平行于同一直线的两条直线平行.【点评】此题主要考查了平行公理与推论,正确把握相关定理是解题关键.24.若AB∥CD,HG∥CD,则有AB∥CD∥HG.【分析】根据平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线平行;可知AB∥CD∥HG.【解答】解:∵AB∥CD,HG∥CD∴AB∥CD∥HG.故答案为AB∥CD∥HG.【点评】本题考查了平行公理推论.。

2019-2020学年七年级下数学《平行公理及推论》练习题 (38)

2019-2020学年七年级下数学《平行公理及推论》练习题 (38)

2019-2020学年七年级下数学《平行公理及推论》练习题
1.下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行.⑤点到直线的距离是指这点到这条直线的垂线段.其中正确的有()
A.1个B.2个C.3个D.4个.
【分析】根据相关的定义或定理判断.
【解答】解:①两点确定一条直线,故说法正确;
②同一平面内,两条直线不平行必相交,故原说法错误;
③同一平面内,过一点有且只有一条直线与已知直线垂直,故原说法错误;
④过直线外一点有且只有一条直线与已知直线平行,故原说法错误;
⑤点到直线的距离是指这点到这条直线的垂线段的长度,故原说法错误.
故只有一个说法正确.
故选:A.
【点评】本题主要考查学生对各种概念公理的理解及掌握程度,是应熟记的内容.
1。

七年级下数学《平行公理及推论》练习题 (29)

七年级下数学《平行公理及推论》练习题 (29)

七年级下数学《平行公理及推论》练习题
1.下列说法错误的是()
A.在同一平面内,过直线外一点有且仅有一条直线与它平行
B.在同一平面内,不同的两条直线只有一个交点
C.经过一点有且只有一条直线与已知直线垂直
D.经过两点有且只有一条直线
【分析】直接利用平行公理以及其推论和垂线的定义分析得出即可.
【解答】解:A、在同一平面内,过直线外一点有且仅有一条直线与它平行,正确,不合题意;
B、在同一平面内,不同的两条直线最多只有一个交点,正确,不合题意;
C、应为:在同一平面内,经过一点有且只有一条直线与已知直线垂直,故错误,符合题
意;
D、经过两点有且只有一条直线,正确,不合题意.
故选:C.
【点评】此题主要考查了平行公理及推论和垂线的定义,正确把握相关定义是解题关键.
1。

2019-2020学年七年级下数学《平行公理及推论》练习题 (32)

2019-2020学年七年级下数学《平行公理及推论》练习题 (32)

2019-2020学年七年级下数学《平行公理及推论》练习题
1.若直线a∥b、b∥c,则直线a与c的位置关系是()
A.a⊥c B.a∥c C.a∥c或a⊥c D.不能确定
【分析】平行于同一直线的两直线平行,依此便可作答.
【解答】解:∵a∥b,b∥c,
∴a∥c.
故选:B.
【点评】本题主要考查了平行线的一些基础知识,能够熟练掌握.
33.在同一平面内三条不同的直线a、b、c,其中a⊥b,a⊥c,则直线b与直线c的关系是()
A.相交B.平行C.垂直D.不确定
【分析】根据平行线的性质:垂直于同一直线的两条直线互相平行可知直线b与直线c 的关系是平行.
【解答】解:∵a⊥b,a⊥c
∴a∥c.
故选:B.
【点评】本题主要考查了平行线的性质:垂直于同一直线的两条直线互相平行.
1。

2019-2020学年七年级下数学《平行公理及推论》练习题 (38)

2019-2020学年七年级下数学《平行公理及推论》练习题 (38)

2019-2020学年七年级下数学《平行公理及推论》练习题
1.在同一平面内有三条直线,如果其中有两条且只有两条相互平行,那么它们有2个交点.
【分析】根据同一平面内直线的位置关系得到第三条直线与另两平行直线相交,再根据直线平行和直线相交的定义即可得到交点的个数.
【解答】解:∵在同一平面内有三条直线,如果其中有两条且只有两条相互平行,∴第三条直线与另两平行直线相交,
∴它们共有2个交点.
故答案为2.
【点评】本题考查了直线平行的定义:没有公共点的两条直线是平行直线.也考查了同一平面内两直线的位置关系有:平行,相交.
1。

七年级下数学《平行公理及推论》练习题 (39)

七年级下数学《平行公理及推论》练习题 (39)

七年级下数学《平行公理及推论》练习题
1.如图,MC∥AB,NC∥AB,则点M,C,N在同一条直线上,理由是经过直线外一点,有且只有一条直线与这条直线平行.
【分析】直接利用平行公理:经过直线外一点,有且只有一条直线与这条直线平行,得出即可.
【解答】解:∵MC∥AB,NC∥AB,∴点M,C,N在同一条直线上,
理由是:经过直线外一点,有且只有一条直线与这条直线平行.
故答案为:经过直线外一点,有且只有一条直线与这条直线平行.
【点评】此题主要考查了平行公理,熟练掌握平行公理是解题关键.
1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下数学《平行公理及推论》练习题
1.下列说法正确的是()
A.和已知直线垂直的直线有且只有一条
B.过一点有一条直线平行于已知直线
C.两点之间,直线最短
D.在同一平面内过一点有且只有一条直线垂直于已知直线
【分析】根据平行公理,两点之间线段最短的性质,垂线的性质对各选项分析判断后利用排除法求解.
【解答】解:A、应为:在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;
B、应为:过一点有且只有一条直线平行于已知直线,故本选项错误;
C、应为:两点之间,线段最短,故本选项错误;
D、在同一平面内过一点有且只有一条直线垂直于已知直线,故本选项正确.
故选:D.
【点评】本题考查了平行公理,线段的性质,垂线的性质,是基础题,熟记公理与性质是解题的关键.
1。

相关文档
最新文档