北师大版数学[中考总复习:函数综合--知识点整理及重点题型梳理](基础)

合集下载

北师大版初中数学中考考点知识点梳理总结

北师大版初中数学中考考点知识点梳理总结

北师大版初中数学中考考点知识点梳理总结一、整数与有理数1.整数的加减法、乘除法和混合运算2.有理数的加减法、乘除法和混合运算3.绝对值的概念和运算4.有理数的比较和大小关系5.有理数的分数表示和分数的加减乘除运算二、代数方程与方程应用1.一元一次方程的解法和问题应用2.一元一次不等式的解法和问题应用3.二元一次方程组的解、解法和问题应用4.二元一次方程组的应用问题与探究5.平方根的定义、性质和运算6.一元二次方程的解法和问题应用7.一元二次不等式的解法和问题应用8.计数原理与概率初步9.函数概念与初步应用三、平面图形与空间图形1.点、线、角的性质与判断2.直线、平行线与垂直线的相互关系3.相交线、平行线和夹角的性质4.三角形的分类、性质和判定方法5.直角三角形的性质与判定6.三角形的面积计算与应用7.直角坐标系的建立与坐标计算8.平移、旋转和翻折的变换问题9.空间几何图形与展开图形的相互关系四、数列与函数1.等差数列与等比数列的概念和性质2.数列的通项和前n项和的计算3.等差数列的应用问题与探究4.函数的概念和函数关系的性质5.函数的图像与函数的性质分析6.线性函数与比例函数的概念和性质7.函数的增减性与最值问题8.函数的综合运用和问题解决五、统计与概率1.数据收集与整理的方法2.统计图的绘制和分析3.数据的平均数与中位数的计算与比较4.概率的基本概念和计算方法5.事件的包含关系和互斥关系6.随机事件的概率计算和应用总结起来,北师大版初中数学中考考点知识点主要包括整数与有理数、代数方程与方程应用、平面图形与空间图形、数列与函数以及统计与概率等五个部分。

其中,每个部分又有相应的子知识点。

掌握这些知识点,对于初中数学中考是非常重要的。

(完整版)学生初中数学函数专题复习北师大版知识精讲

(完整版)学生初中数学函数专题复习北师大版知识精讲

初三数学函数专题复习北师大版(一)一次函数1. 定义:在定义中应注意的问题y =kx +b 中,k 、b 为常数,且k ≠0,x 的指数一定为1。

2. 图象及其性质 (1)形状:直线()时,随的增大而增大,直线一定过一、三象限时,随的增大而减小,直线一定过二、四象限200k y x k y x ><⎧⎨⎪⎩⎪()若直线::3111222l y k x b l y k x b =+=+ 当时,;当时,与交于,点。

k k l l b b b l l b 121212120===//()(4)当b>0时直线与y 轴交于原点上方;当b<0时,直线与y 轴交于原点的下方。

(5)当b=0时,y =kx (k ≠0)为正比例函数,其图象是一过原点的直线。

(6)二元一次方程组与一次函数的关系:两一次函数图象的交点的坐标即为所对应方程组的解。

3. 应用:要点是(1)会通过图象得信息;(2)能根据题目中所给的信息写出表达式。

【例题分析】例1. 已知一次函数y =kx +2的图象过第一、二、三象限且与x 、y 轴分别交于A 、B 两点,O 为原点,若ΔAOB 的面积为2,求此一次函数的表达式。

例2. 小明用的练习本可以在甲商店买,也可以在乙店买,已知两店的标价都是每本1元,但甲店的优惠条件是:购买10本以上从第11本开始按标价的70%卖,乙店的优惠条件是:从第1本开始就按标价的85%卖。

(1)小明买练习本若干本(多于10)设购买x 本,在甲店买付款数为y 1元,在乙店买付款数为y 2元,请分别写出在两家店购练习本的付款数与练习本数之间的函数关系式; (2)小明买20本到哪个商店购买更合算? (3)小明现有24元钱,最多可买多少本?(二)反比例函数 1. 定义:应注意的问题:中()是不为的常数;()的指数一定为“”y kxk x =-1021 2. 图象及其性质: (1)形状:双曲线()对称性:是中心对称图形,对称中心是原点是轴对称图形,对称轴是直线和212()()y x y x==-⎧⎨⎪⎩⎪()时两支曲线分别位于一、三象限且每一象限内随的增大而减小时两支曲线分别位于二、四象限且每一象限内随的增大而增大300k y x k y x ><⎧⎨⎪⎩⎪(4)过图象上任一点作x 轴与y 轴的垂线与坐标轴构成的矩形面积为|k|。

北师大版中考复习二次函数总结及典型题

北师大版中考复习二次函数总结及典型题

二次函数一、二次函数的定义例1、已知函数y=m -1x m2 +1+5x -3是二次函数,求m 的值.若函数y=m 2+2m -7x 2+4x+5是x 的二次函数,则m 的取值范围为 . 二、五点作图法的应用 例2. 已知抛物线y x x =-+123522, 1用配方法求它的顶点坐标和对称轴并用五点法作图2若该抛物线与x 轴的两个交点为A 、B,求线段AB 的长. 1、抛物线1822-+-=x x y 的顶点坐标为 A-2,7 B-2,-25 C2,7 D2,-92、抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线 A .1x =B .1x =-C .3x =-D .3x =3、把二次函数3412+--=x x y 用配方法化成()k h x a y +-=2的形式 三、a b c ,,及b ac 24-的符号确定例3. 已知抛物线y ax bx c =++2如图,试确定:1a b c ,,及b ac 24-的符号;2a b c ++与a b c -+的符号.1、已知二次函数2y ax bx c =++0a ≠的图象如图所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有A .1个B .2个C .3个D .4个2、已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中所有正确结论的序号是11 1-Ox yA .①②B . ①③④C .①②③⑤D .①②③④⑤3、二次函数c bx ax y ++=2的图象如图所示,则下列关系式中错误..的是 A .a <0 B .c >0C .ac b 42->0D .c b a ++>04、图12为二次函数2y ax bx c =++的图象,给出下列说法:①0ab <;②方程20ax bx c ++=的根为1213x x =-=,;③0a b c ++>;④当1x >时,y 随x 值的增大而增大;⑤当0y >时,13x -<<.其中,正确的说法有 .请写出所有正确说法的序号5、已知=次函数y =ax 2+bx+c 的图象如图.则下列5个代数式:ac,a+b+c,4a -2b+c,2a+b,2a -b 中,其值大于0的个数为 A .2B 3C 、4D 、5四、二次函数解析式的确定 例4. 求二次函数解析式: 1抛物线过0,2,1,1,3,5; 2顶点M-1,2,且过N2,1;3已知抛物线过A1,0和B4,0两点,交y 轴于C 点且BC =5,求该二次函数的解析式.练习:根据下列条件求x 的二次函数的解析式(1)当x=3时,y 最小值=-1,且图象过0,7(2)图象过点0,-21,2且对称轴为直线x=错误! (3)图象经过0,11,03,0五、二次函数与x 轴、y 轴的交点二次函数与一元二次方程的关系例5、 已知抛物线y =x 2-2x-8,1求证:该抛物线与x 轴一定有两个交点;2若该抛物线与x 轴的两个交点为A 、B,且它的顶点为P,求△ABP 的面积xO1 -1、二次函数y=x2-2x-3图象与x轴交点之间的距离为2、如图所示,二次函数y=x2-4x+3的图象交x轴于A、B两点, 交y 轴于点C, 则△ABC的面积为B.43、若二次函数y=m+5x2+2m+1x+m的图象全部在x轴的上方,则m 的取值范围是六、直线与二次函数的问题例6已知:二次函数为y=x2-x+m,1写出它的图像的开口方向,对称轴及顶点坐标;2m为何值时,顶点在x轴上方,3若抛物线与y轴交于A,过A作AB∥x轴交抛物线于另一点B,当S△AOB=4时,求此二次函数的解析式.1、抛物线y=x2+7x+3与直线y=2x+9的交点坐标为 .2、直线y=7x+1与抛物线y=x2+3x+5的图象有个交点.例7 已知x的二次函数y=x2-mx+212m+与y=x2-mx-222m+,这两个二次函数的图像中的一条与x轴交于A,B两个不同的点.1试判断哪个二次函数的图像经过A,B两点;2若A点坐标为-1,0,试求B点坐标;3在2的条件下,对于经过A,B两点的二次函数,当x取何值时,y的值随x•值的增大而减小练习如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是-1,2.1求点B的坐标;2求过点A、O、B的抛物线的表达式;3连接AB,在2中的抛物线上求出点P,使得S△ABP =S△ABO.例8 已知:m,n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图像经过点Am,0,B0,n,如图所示.1求这个抛物线的解析式;2设1中的抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和△BCD的面积;3P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC•把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.七、用二次函数解决最值问题例9 某产品每件成本10元,试销阶段每件产品的销售价x元•与产品的日销售量y件之间的关系如下表:x 元152030…y件252010…若日销售量y是销售价x的一次函数.1求出日销售量y件与销售价x元的函数关系式;2要使每日的销售利润最大,每件产品的销售价应定为多少元•此时每日销售利润是多少元例3.你知道吗平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线.如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为 4 m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m、2.5 m处.绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m,则学生丁的身高为建立的平面直角坐标系如右图所示A.1.5 m B.1.625 mC.1.66 m D.1.67 m八、二次函数应用一经济策略性1.某商店购进一批单价为16元的日用品,销售一段时间后,为了获得更多的利润,商店决定提高销售价格.经检验发现,若按每件20元的价格销售时,每月能卖360件若按每件25元的价格销售时,每月能卖210件.假定每月销售件数y件是价格X的一次函数.1试求y与x的之间的关系式.2在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润,每月的最大利润是多少总利润=总收入-总成本2.有一种螃蟹,从海上捕获后不放养最多只能活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元,据测算,以后每千克活蟹的市场价每天可上升1元,但是放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元. 1设X 天后每千克活蟹的市场价为P 元,写出PX 的函数关系式.2如果放养X 天后将活蟹一次性出售,并记1000千克蟹的销售额为Q 元,写出QX 的函数关系式.2该经销商将这批蟹放养多少天后出售,可获最大利润利润=销售总额—收购成本—费用,最大利润是多少自我检测一. 选择题.1. 用配方法将12322x x ++化成()a x b c ++2的形式A. ()123522x +-B. 1232542x +⎛⎝ ⎫⎭⎪- C. ()12322x ++ D.()12372x +- 2. 对于函数y ax a =<20(),下面说法正确的是A. 在定义域内,y 随x 增大而增大B. 在定义域内,y 随x 增大而减小C. 在()-∞,0内,y 随x 增大而增大D. 在()0,+∞内,y 随x 增大而增大 3. 已知a b c <<>000,,,那么y ax bx c =++2的图象4. 已知点-1,33,3在抛物线y ax bx c =++2上,则抛物线的对称轴是A. x a b=-B. x =2C. x =3D. x =15. 一次函数y ax b =+和二次函数y ax bx c =++2在同一坐标系内的图象6. 函数y x x =-++33322的最大值为 A. 94B. -32C. 32D. 不存在二. 填空题.7. ()()y m x m x m =++-++11321是二次函数,则m =____________.8. 抛物线y x x =--52222的开口向_____,对称轴是________,顶点坐标是_______. 9. 抛物线y ax bx c =++2的顶点是2,3,且过点3,1,则a =___,b =___,c =______. 10. 函数y x x =---123522图象沿y 轴向下平移2个单位,再沿x 轴向右平移3个单位,得到函数________的图象. 三. 解答题.抛物线()()y x m x m m =-++-+-222243,m 为非负整数,它的图象与x 轴交于A 和B,A 在原点左边,B 在原点右边. 1求这个抛物线解析式.2一次函数y kx b =+的图象过A 点与这个抛物线交于C,且S ABC ∆=10,求一次函数解析式.◆强化训练 一、填空题1.右图是二次函数y 1=ax 2+bx+c 和一次函数y 2=mx+n 的图像,•观察图像写出y 2≥y 1时,x 的取值范围_______.2.已知抛物线y=a 2+bx+c 经过点A -2,7,B6,7,C3,-8,•则该抛物线上纵坐标为-8的另一点的坐标是_______.3.已知二次函数y=-x 2+2x+c 2的对称轴和x 轴相交于点m,0,则m 的值为______. 4.若二次函数y=x 2-4x+c 的图像与x 轴没有交点,其中c 为整数,•则c=_______只要求写出一个.5.已知抛物线y=ax 2+bx+c 经过点1,2与-1,4,则a+c•的值是______.6.甲,乙两人进行羽毛球比赛,甲发出一十分关键的球,出手点为P,羽毛球飞行的水平距离sm 与其距地面高度hm 之间的关系式为h=-112s 2+23s+32.如下左图所示,•已知球网AB 距原点5m,乙用线段CD 表示扣球的最大高度为94m,设乙的起跳点C 的横坐标为m,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m•的取值范围是______.7.二次函数y=x 2-2x -3与x 轴两交点之间的距离为______.8.兰州市“安居工程”新建成的一批楼房都是8层高,•房子的价格y 元/m 2随楼层数x 楼的变化而变化x=1,2,3,4,5,6,7,8,已知点x,y•都在一个二次函数的图像上如上右图,则6楼房子的价格为_____元/m 2. 二、选择题9.二次函数y=ax 2+bx+c 的图像如图所示,•则下列关系式不正确的是A .a<0B .abc>0C .a+b+c<0D .b 2-4ac>0第9题 第12题 第15题10.已知二次函数y=ax 2+bx+c 的图像过点A1,2,B3,2,C5,7.若点M -2,y 1,N -1,y 2,K8,y 3也在二次函数y=ax 2+bx+c 的图像上,则下列结论中正确的是 A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 3<y 1<y 2 D .y 1<y 3<y 211.抛物线y=ax2+bx+ca≠0的对称轴是x=2,且经过点P3,0,则a+b+c的值为A.-1 B.0 C.1 D.212.如图所示,抛物线的函数表达式是A.y=x2-x+2 B.y=-x2-x+2 C.y=x2+x+2 D.y=-x2+x+213.抛物线y=-2x2-4x-5经过平移得到y=-2x2,平移方法是A.向左平移1个单位,再向下平移3个单位 B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位 D.向右平移1个单位,再向上平移3个单位14.已知二次函数y=x2+bx+3,当x=-1时,y取得最小值,则这个二次函数图像的顶点在A.第一象限 B.第二象限 C.第三象限 D.第四象限15.抛物线y=ax2+2ax+a2+2的一部分图像如图所示,那么该抛物线在y轴右侧与x轴交点的坐标是,0 B.1,0 C.2,0 D.3,0A.1216.在同一直角坐标系中,函数y=mx+m和y=-mx2+2x+2m是常数,•且m≠0的图像可能是三、解答题17.如图所示,已知抛物线y=ax2+4ax+ta>0交x轴A,B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为-1,0.1求抛物线的对称轴及点A的坐标;2过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP•是什么四边形并证明你的结论;3连接CA与抛物线的对称轴交于点D,当∠APD=∠ACP时,求抛物线的解析式.18.如图所示,m,n是方程x2-6x+5=0的两个实数根,且m<n,•抛物线y=-x2+bx+c的图像经过点Am,0,B0,n.1求这个抛物线的解析式;2设1中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和△BCD 的面积;3P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于点H,若直线BC•把△PCH分成面积之比为2:3的两部分,请求出点P的坐标.19.某地计划开凿一条单向行驶从正中通过的隧道,•其截面是抛物线拱形ACB,而且能通过最宽3m,最高3.5m的厢式货车.按规定,•机动车通过隧道时车身距隧道壁的水平距离和铅直距离最小都是0.5m.•为设计这条能使上述厢式货车恰好完全通过的隧道,在图纸上以直线AB为x轴,线段AB的垂直平分线为y轴,•建立如图所示的直角坐标系,求抛物线拱形的表达式,隧道的跨度AB和拱高OC.20.已知一个二次函数的图像过如图所示三点.1求抛物线的对称轴;2平行于x轴的直线L的解析式为y=254,抛物线与x轴交于A,B两点.•在抛物线的对称轴上找点P,使BP的长等于直线L与x轴间的距离.求点P的坐标.21.如图5-76所示,二次函数y=ax2+bx+ca≠0的图像与x•轴交于A,B两点,其中A点坐标为-1,0,点C0,5,D1,8在抛物线上,M为抛物线的顶点.1求抛物线的解析式;2求△MCB的面积.22.如图所示,过y轴上一点A0,1作AC平行于x轴,交抛物线y=x2x≥0于点B,交抛物线y=12x2x≥0于点C;过点C作CD平行于y轴,交抛物线y=x2于点D;过点D作DE平行于x轴,交抛物线y=14x2于点E.1求AB:BC;2判断O,B,E三点是否在同一直线上如果在,写出直线解析式;如果不在,请说明理由.。

北师大初中数学中考总复习:平面直角坐标系与一次函数、反比例函数--知识讲解(基础)-精品

北师大初中数学中考总复习:平面直角坐标系与一次函数、反比例函数--知识讲解(基础)-精品

中考总复习:平面直角坐标系与一次函数、反比例函数--知识讲解(基础)【考纲要求】⒈结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想;⒉会确定函数自变量的取值范围,即能用三种方法表示函数,又能恰当地选择图象去描述两个变量之间的关系;⒊理解正比例函数、反比例函数和一次函数的概念,会画他们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决有关的实际问题.【知识网络】【考点梳理】考点一、平面直角坐标系1.平面直角坐标系平面内两条有公共原点且互相垂直的数轴构成了平面直角坐标系,坐标平面内一点对应的有序实数对叫做这点的坐标.在平面内建立了直角坐标系,就可以把“形”(平面内的点)和“数”(有序实数对)紧密结合起来.2.各象限内点的坐标的特点、坐标轴上点的坐标的特点点P(x,y)在第一象限0,0y x ;点P(x,y)在第二象限0,0y x ;点P(x,y)在第三象限0,0y x ;点P(x,y)在第四象限0,0yx ;点P(x,y)在x 轴上0y,x 为任意实数;点P(x,y)在y 轴上0x ,y 为任意实数;点P(x,y)既在x 轴上,又在y 轴上x ,y 同时为零,即点P 坐标为(0,0).3.两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上x 与y 相等;点P(x,y)在第二、四象限夹角平分线上x 与y 互为相反数.4.和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同;位于平行于y 轴的直线上的各点的横坐标相同.5.关于x 轴、y 轴或原点对称的点的坐标的特征点P 与点p ′关于x 轴对称横坐标相等,纵坐标互为相反数;点P 与点p ′关于y 轴对称纵坐标相等,横坐标互为相反数;点P 与点p ′关于原点对称横、纵坐标均互为相反数.6.点P(x,y)到坐标轴及原点的距离(1)点P(x,y)到x 轴的距离等于y ;(2)点P(x,y)到y 轴的距离等于x ;(3)点P(x,y)到原点的距离等于22yx.要点诠释:(1)注意:x 轴和y 轴上的点,不属于任何象限;(2)平面内点的坐标是有序实数对,当b a 时,(a ,b )和(b ,a )是两个不同点的坐标.考点二、函数1.函数的概念设在某个变化过程中有两个变量x 、y,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它相对应,那么就说y 是x 的函数,x 叫做自变量. 2.自变量的取值范围对于实际问题,自变量取值必须使实际问题有意义.对于纯数学问题,自变量取值应保证数学式子有意义. 3.表示方法⑴解析法;⑵列表法;⑶图象法.4.画函数图象(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.要点诠释:(1)在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量;(2)确定自变量取值范围的原则:①使代数式有意义;②使实际问题有意义.考点三、几种基本函数(定义→图象→性质)1.正比例函数及其图象性质(1)正比例函数:如果y=kx(k 是常数,k ≠0),那么y 叫做x 的正比例函数.(2)正比例函数y=kx ( k ≠0)的图象:过(0,0),(1,K )两点的一条直线.(3)正比例函数y=kx (k ≠0)的性质①当k >0时,图象经过第一、三象限,y 随x 的增大而增大;②当k <0时,图象经过第二、四象限,y 随x 的增大而减小 .2.一次函数及其图象性质(1)一次函数:如果y=kx+b(k,b是常数,k ≠0),那么y 叫做x 的一次函数.(2)一次函数y=kx+b (k ≠0)的图象(3)一次函数y=kx+b (k ≠0)的图象的性质一次函数y =kx +b 的图象是经过(0,b )点和)0,(kb 点的一条直线.①当k>0时,y 随x 的增大而增大;②当k<0时,y 随x 的增大而减小.要点诠释:(1)当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例;(2)确定一个正比例函数,就是要确定正比例函数定义式kx y (k0)中的常数k.确定一个一次函数,需要确定一次函数定义式b kx y (k0)中的常数k 和b.解这类问题的一般方法是待定系数法.3.反比例函数及其图象性质(1)定义:一般地,形如xk y (k 为常数,o k )的函数称为反比例函数.三种形式:k y x(k ≠0)或kxy 1(k ≠0)或xy=k(k ≠0).(2)反比例函数解析式的特征:①等号左边是函数y ,等号右边是一个分式.分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1;②比例系数0k;③自变量x 的取值为一切非零实数;④函数y 的取值是一切非零实数.(3)反比例函数的图象①图象的画法:描点法列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数);描点(由小到大的顺序);连线(从左到右光滑的曲线).②反比例函数的图象是双曲线,xk y(k 为常数,0k)中自变量0x ,函数值0y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交.③反比例函数的图象是轴对称图形(对称轴是x y和x y )和中心对称图形(对称中心是坐标原点). ④反比例函数xky(0k )中比例系数k 的几何意义是:过双曲线xk y(0k )上任意点引x 轴、y 轴的垂线,所得矩形面积为k .(4)反比例函数性质:反比例函数)0(k xk yk 的符号k>0k<0图像性质①x 的取值范围是x 0,y 的取值范围是y0;②当k>0时,函数图像的两个分支分别在第一、三象限.在每个象限内,y 随x 的增大而减小.①x 的取值范围是x 0,y 的取值范围是y0;②当k<0时,函数图像的两个分支分别在第二、四象限.在每个象限内,y 随x 的增大而增大.(5)反比例函数解析式的确定:利用待定系数法(只需一对对应值或图象上一个点的坐标即可求出k )(6)“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数xk y中的两个变量必成反比例关系.要点诠释:(1)用待定系数法求解析式(列方程[组]求解);(2)利用一次(正比例)函数、反比例函数的图象求不等式的解集.【典型例题】类型一、坐标平面有关的计算1.已知点A(a ,-5),B(8,b),根据下列要求确定a ,b 的值.(1)A ,B 两点关于y 轴对称; (2)A ,B 两点关于原点对称; (3)AB ∥x 轴;(4)A,B 两点都在一、三象限的角平分线上.【思路点拨】(1)关于y 轴对称,y 不变,x 变为相反数;(2)关于原点对称,x 变为相反数,y 变为相反数;(3)AB ∥x 轴,即两点的纵坐标不变即可;(4)在一、三象限两坐标轴夹角的平分线上的点的横纵坐标相等,即可得出a ,b .【答案与解析】(1)点A(a ,-5),B(8,b)两点关于y 轴对称,则a =-8且b =-5. (2)点A(a ,-5),B(8,b)两点关于原点对称,则a =-8且b =5.(3)AB ∥x 轴,则a ≠8且b =-5.(4)A,B 两点都在一、三象限的角平分线上,则a =-5且b =8.【总结升华】运用对称点的坐标之间的关系是解答本题的关键.在一、三象限角平分线上的点的横纵坐标相等,在二、四象限角平分线上的点的横纵坐标互为相反数.举一反三:【变式】已知点A 的坐标为(-2,-1). (1)如果B 为x 轴上一点,且10AB ,求B 点的坐标;(2)如果C 为y 轴上的一点,并且C 到原点的距离为3,求线段AC 的长;(3)如果D 为函数y =2x-1图象上一点,5AD ,求D 点的坐标.(1)设B(x ,0),由勾股定理得22(2)(01)10AB x .解得x 1=-5,x 2=1.经检验x 1=-5,x 2=1均为原方程的解.∴ B 点的坐标为(-5,0)或(1,0).(2)设C(0,y),∵ OC =3,∴ C 点的坐标为(0,3)或(0,-3).∴由勾股定理得22(2)(31)25AC ;或22AC .(3)设D(x ,2x-1),AD =5,由勾股定理得22(2)(211)5x x .解得115x ,21x .经检验,115x ,21x 均为原方程的解.∴ D 点的坐标为(15,35)或(-1,-3).2.已知某一函数图象如图所示.(1)求自变量x 的取值范围和函数y 的取值范围;(2)求当x =0时,y 的对应值; (3)求当y =0时,x 的对应值; (4)当x 为何值时,函数值最大; (5)当x 为何值时,函数值最小; (6)当y 随x 的增大而增大时,求x 的取值范围; (7)当y 随x 的增大而减小时,求x 的取值范围.【思路点拨】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论. 【答案与解析】 (1)x 的取值范围是-4≤x ≤4,y 的取值范围是-2≤y ≤4; (2)当x =0时,y =3;(3)当y =0时,x =-3或-1或4; (4)当x =1时,y 的最大值为4; (5)当x =-2时,y 的最小值为-2; (6)当-2≤x ≤1时,y 随x 的增大而增大;(7)当-4≤x ≤-2或1≤x ≤4时,y 随x 的增大而减小.【总结升华】本题主要是培养学生的识图能力.【变式1】下图是韩老师早晨出门散步时,离家的距离y与时间x的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是( )【答案】理解题意,读图获取信息是关键,由图可知某段时间内韩老师离家距离是常数,联想到韩老师是在家为圆心的弧上散步,分析四个选项知D项符合题意.答案:D【变式2】下列图形中的曲线不表示y是x的函数的是( ).【答案】C.类型二、一次函数3.(2015?盘锦)盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b 折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x (人)之间的函数关系如图所示.(1)a= ,b= ;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?【思路点拨】(1)根据函数图象,用购票款数除以定价的款数,计算即可求出a的值;用第11人到20人的购票款数除以定价的款数,计算即可求出b的值;(2)利用待定系数法求正比例函数解析式求出y1,分x≤10与x>10,利用待定系数法求一次函数解析式求出y2与x的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50﹣n),然后分0≤n≤10与n>10两种情况,根据(2)的函数关系式列出方程求解即可.【答案与解析】解:(1)由y1图象上点(10,480),得到10人的费用为480元,∴a=×10=6;由y2图象上点(10,800)和(20,1440),得到20人中后10人费用为640元,∴b=×10=8;(2)设y1=k1x,∵函数图象经过点(0,0)和(10,480),∴10k1=480,∴k1=48,∴y1=48x;0≤x≤10时,设y2=k2x,∵函数图象经过点(0,0)和(10,800),∴10k2=800,∴k2=80,∴y2=80x,x>10时,设y2=kx+b,∵函数图象经过点(10,800)和(20,1440),∴,∴,∴y2=64x+160;∴y2=;(3)设B团有n人,则A团的人数为(50﹣n),当0≤n≤10时,80n+48×(50﹣n)=3040,解得n=20(不符合题意舍去),当n>10时,800+64×(n﹣10)+48×(50﹣n)=3040,解得n=30,则50﹣n=50﹣30=20.答:A团有20人,B团有30人.【总结升华】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,准确识图获取必要的信息并理解打折的意义是解题的关键,(3)要注意分情况讨论.举一反三:【变式1】(1)直线y=2x+1向下平移2个单位,再向右平移2个单位后的直线的解析式是_____ ___.(2)直线y=2x+1关于x轴对称的直线的解析式是___ _____;直线y=2x+l关于y轴对称的直线的解析式是___ ______;直线y=2x+1关于原点对称的直线的解析式是____ _____.(3)如图所示,已知点C为直线y=x上在第一象限内一点,直线y=2x+1交y轴于点A,交x轴于B,将直线AB平移后经过(3,4)点,则平移后的直线的解析式是__ ______.【答案】(1)y=2x-5;(2)y=-2x-1,y=-2x+1,y=2x-1;(3)y=2x-2.【变式2】某地夏天旱情严重.该地10号、15号的人日均用水量的变化情况如图所示.若该地10号、15号的人均用水量分别为18千克和15千克,并一直按此趋势直线下降.当人日均用水量低于10千克时,政府将向当地居民送水.那么政府应开始送水的号数为( )A.23 B.24 C.25 D.26【答案】解析:设图中直线解析式为y=kx+b,将(10,18),(15,15)代入解析式得1018, 1515, k bk b解得3,524,kb∴3245y x.由题意知,324105x,解得1233x,∴送水号数应为24.答案:B类型三、反比例函数4.(2015?安顺)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数m yx的图象交于A(2,3)、B(﹣3,n)两点.(1)求一次函数和反比例函数的解析式;(2)若P是y轴上一点,且满足△PAB的面积是5,直接写出OP的长.【思路点拨】(1)用待定系数法即可确定出反比例函数解析式;再将B坐标代入反比例解析式中求出n的值,确定出B坐标,根据A与B坐标即可确定出一次函数解析式;(2)如图所示,对于一次函数解析式,令x=0求出y的值,确定出C坐标,得到OC的长,三角形ABP 面积由三角形ACP面积与三角形BCP面积之和求出,由已知的面积求出PC的长,即可求出OP的长.【答案与解析】解:(1)∵反比例函数myx的图象经过点A(2,3),∴m=6.∴反比例函数的解析式是y=,∵B点(﹣3,n)在反比例函数y=的图象上,∴n=﹣2,∴B(﹣3,﹣2),∵一次函数y=kx+b 的图象经过A (2,3)、B (﹣3,﹣2)两点,∴,解得:,∴一次函数的解析式是y=x+1;(2)对于一次函数y=x+1,令x=0求出y=1,即C (0,1),OC=1,根据题意得:S △ABP =PC ×2+PC ×3=5,解得:PC=2,则OP=OC+CP=1+2=3或OP=CP ﹣OC=2﹣1=1.【总结升华】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,坐标与图形性质,以及三角形的面积求法,熟练掌握待定系数法是解本题的关键.举一反三:【变式】已知正比例函数y kx (k 为常数,0k)的图象与反比例函数5k y x (k 为常数,0k )的图象有一个交点的横坐标是2.(1)求两个函数图象的交点坐标;(2)若点11()A x y ,,22()B x y ,是反比例函数5k y x 图象上的两点,且12x x ,试比较12y y ,的大小.【答案】(1)由题意,得522k k ,解得1k .所以正比例函数的表达式为y x ,反比例函数的表达式为4y x .解4x x ,得2x .由y x ,得2y .所以两函数图象交点的坐标为(2,2),(22),.(2)因为反比例函数4y x 的图象分别在第一、三象限内,y 的值随x 值的增大而减小,所以当120x x 时,12y y .当120x x 时,12y y .当120x x 时,因为1140y x ,2240y x ,所以12y y .类型四、函数综合应用5.如图,直线b x y (b >0)与双曲线x k y (k >0)在第一象限的一支相交于A 、B 两点,与坐标轴交于C 、D 两点,P 是双曲线上一点,且PD PO . (1)试用k 、b 表示C 、P 两点的坐标;(2)若△POD 的面积等于1,试求双曲线在第一象限的一支的函数解析式;(3)若△OAB 的面积等于34,试求△COA 与△BOD 的面积之和.【思路点拨】(1)根据直线的解析式求得点D 的坐标,再根据等腰三角形的性质即可求得点P 的横坐标,进而根据双曲线的解析式求得点P 的纵坐标;(2)①要求双曲线的解析式,只需求得xy 值,显然根据△POD 的面积等于1,即可求解;②由①中的解析式可以进一步求得点B 的纵坐标,从而求得直线的解析式,然后求得点B 的坐标,即可计算△COA 与△BOD 的面积之和.【答案与解析】(1)C (0,b ),D (b ,0)∵PO =PD∴22b OD x P,b k y P 2∴P (2b,b k2)(2)∵1POD S,有1221b k b ,化简得:k =1 ∴x y 1(x >0)(3)设A (1x ,1y ),B (2x ,2y ),由AOB COD BOD COA S S S S得:34212121221b by bx ,又b x y 22得38)(221b b x b bx ,即38)(12x x b 得,再由x y b x y1得012bx x ,从而b x x 21,121x x ,从而推出0)12)(4)(4(2b b b ,所以4b . 故348BOD COA S S 【总结升华】利用面积建立方程求解析式中的字母参数是常用方法.求两函数图像的交点坐标,即解由它们的解析式组成的方程组. 举一反三:【变式1】如图所示是一次函数y 1=kx+b 和反比例函数2m y x 的图象,观察图象写出y 1>y 2时x 的取值范围________.【答案】利用图象比较函数值大小时,要看对于同一个自变量的取值,哪个函数图象在上面,哪个函数的函数值就大,当y 1>y 2时,-2<x <0或x >3.答案:-2<x <0或x >3【变式2】已知函数232(21)m y m x ,m 为何值时, (1)y是x 的正比例函数,且y 随x 的增大而增大? (2)函数的图象是位于第二、四象限的双曲线? 【答案】(1)要符合题意,m 需满足2210,32 1.m m 解得1,21.mm ∴ m =1.(2)欲符合题意,m 需满足2210,32 1.m m 解得1,23.3m m ∴33m .6.已知直线11:n n l y x n n (n 是不为零的自然数).当n =1时,直线1:21l y x 与x 轴和y 轴分别交于点A 1和B 1,设△A 1OB 1(其中O 是平面直角坐标系的原点)的面积为S 1;当n =2时,直线231:22l y x 与x 轴和y 轴分别交于点A 2和B 2,设△A 2OB 2的面积为S 2,…,依此类推,直线n l 与x 轴和y 轴分别交于点A n 和B n ,设△A n OB n 的面积为S n .(1)求11A OB △的面积S 1;(2)求S 1+S 2+S 3+…+S 6的面积.【思路点拨】此题是一道规律探索性题目,先根据函数解析式的通项公式得出每一个函数解析式,画出图象,总结出规律,便可解答.【答案与解析】解:直线1:21l y x ,∴11OB ,112OA .(1)111111112224S OB OA .(2)由11n y x n n 得,A 12123611A (0),(0,).n+1n 11,,n+1n 1111,2n n+12(1)11,,212223111121222323426711111()21223346711(1)273.7n n n n n n OB B OA OB S n n S S S S S S △,【总结升华】借助直觉思维或对问题的整体把握运用归纳、概括、推理等思想获得合理的猜测.。

初中数学中考复习知识点总结(北师大)

初中数学中考复习知识点总结(北师大)

中考数学复习计划一、第一轮复习(3-4周)1、第一轮复习的形式:“梳理知识脉络,构建知识体系”----理解为主,做题为辅(1)目的:过三关①过记忆关必须做到:在准确理解的基础上,牢记所有的基本概念(定义)、公式、定理,推论(性质,法则)等。

②过基本方法关需要做到:以基本题型为纲,理解并掌握中学数学中的基本解题方法,例如:配方法,因式分解法,换元法,判别式法(韦达定理),待定系数法,构造法,反证法等。

③过基本技能关。

应该做到:无论是对典型题、基本题,还是对综合题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法。

(2)宗旨:知识系统化在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。

①数与代数分为3个大单元:数与式、方程与不等式、函数。

②空间和图形分为3个大单元:几何基本概念(线与角),平面图形,立体图形③统计与概率分为2个大单元:统计与概率2、第一轮复习应注意的问题(1)必须扎扎实实夯实基础中考试题按难:中:易=1:2:7的比例,基础分占总分的70%,因此必须对基础数学知识做到“准确理解”和“熟练掌握”,在应用基础知识时能做到熟练、正确和迅速。

(2)必须深钻教材,不能脱离课本按中考试卷的设计原则,基础题都是送分的题,有不少基础题都是课本上的原题或改造。

(3)掌握基础知识,一定要从理解角度出发数学知识的学习,必须要建立逻辑思维能力,基础知识只有理解透了,才可以举一反三、触类旁通。

相对而言,“题海战术”在这个阶段是不适用的。

1、第二轮复习的形式:“突出重点,综合提高”----练习专题化,专题规律化(1)目的:融会贯通考纲上的所有知识点①进行专题化训练将所有考纲上要求的知识点分为为多个专题,按专题进行复习,进行有针对性的、典型性、层次性、切中要害的强化练习。

②突出重点,难点和热点的内容在专题训练的基础上,要突出重点,抓住热点,突破难点。

按照中考的出题规律,每年的重点、难点和热点内容都大同小异,。

北师大九年级数学中考专题复习二次函数复习(23PPT)

北师大九年级数学中考专题复习二次函数复习(23PPT)
二次函数 复习课
二次函数知识点导航:
1、二次函数的定义 2、二次函数的图像及性质 3、求二次函数的解析式 4、a,b,c及相关符号的确定 5、抛物线的平移 6、二次函数与一元二次方程的关系 7、二次函数的综合应用
1、二次函数的定义
定义: y=ax² + bx + c ( a 、 b 、 c 是常数, a ≠ 0 ) 定义要点:①a ≠ 0
若抛物线y=ax2+bx+c与x轴有交点,则
b2 – 4ac ≥0 (a≠0)
练习 1、一元二次方程 3 x2+x-10=0的两个根是
x1= -2 ,x2=5/3, 那么二次函数 y= 3 x2+x-10与x轴的交点坐标是____.
2、如果关于x的一元二次方程 x2-2x+m=0有两 个相等的实数根,则m=____,此时抛物线 y=x2-2x+m与x轴有____个交点.
练习:根据下列条件,求二次函数的解析式。 (1)图象经过(0,0), (1,-2) , (2,2) 三点;
(2)图象的顶点(2,3), 且经过点(3,1) ;
(3)图象经过(0,0), (12,0) ,且最高点 的纵坐标是3 。
例2、已知二次函数y=ax2+bx+c的最大值是2, 图象顶点在直线y=x+1上,并且图象经过点(3, -6)。求a、b、c。
②最高次数为2 ③代数式一定是整式 • 练习:
当m_______时,函数y=(m+1)χ m2 m- 2χ+1 是二次函数?
2、二次函数的图像及性质
y
y
0
x
0
x
抛物线 顶点坐标 对称轴
y=ax2+bx+c(a>0)

北师大初中数学中考总复习:函数综合--知识讲解(基础)

北师大初中数学中考总复习:函数综合--知识讲解(基础)

中考总复习:函数综合—知识讲解(基础)【考纲要求】1.平面直角坐标系的有关知识平面直角坐标系中各象限和坐标轴上的点的坐标的特征,求点关于坐标轴、坐标原点的对称点的坐标,求线段的长度,几何图形的面积,求某些点的坐标等;2.函数的有关概念求函数自变量的取值范围,求函数值、函数的图象、函数的表示方法;3.函数的图象和性质常见的题目是确定图象的位置,利用函数的图象确定某些字母的取值,利用函数的性质解决某些问题.利用数形结合思想来说明函数值的变化趋势,又能反过来判定函数图象的位置;4.函数的解析式求函数的解析式,求抛物线的顶点坐标、对称轴方程,利用函数的解析式来求某些字母或代数式的值.一次函数、反比例函数和二次函数常与一元一次方程、一元二次方程、三角形的面积、边角关系、圆的切线、圆的有关线段组成综合题.【知识网络】【考点梳理】考点一、平面直角坐标系 1.相关概念(1)平面直角坐标系 (2)象限 (3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标 (1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标 (3)平行于坐标轴的直线上的点的坐标 (4)关于x 轴、y 轴、原点对称的点的坐标 4.距离(1)平面上一点到x 轴、y 轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离 (3)平面上任意两点间的距离 5.坐标方法的简单应用(1)利用坐标表示地理位置 (2)利用坐标表示平移 要点诠释:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y ; (2)点P(x,y)到y 轴的距离等于x ; (3)点P(x,y)到原点的距离等于22y x .考点二、函数及其图象 1.变量与常量 2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象 要点诠释:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.考点三、一次函数1.正比例函数的意义2.一次函数的意义3.正比例函数与一次函数的性质4. 一次函数的图象与二元一次方程组的关系5.利用一次函数解决实际问题 要点诠释:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k ;确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b.解这类问题的一般方法是待定系数法.考点四、反比例函数1.反比例函数的概念2.反比例函数的图象及性质3.利用反比例函数解决实际问题 要点诠释:反比例函数中反比例系数的几何意义,如下图,过反比例函数)0(≠=k xky 图像上任一点),(y x P 作x 轴、y 轴的垂线PM ,PN ,垂足为M 、N ,则所得的矩形PMON 的面积S=PM ∙PN=xy x y =∙.,y xk=∴||k S k xy ==,.考点五、二次函数 1.二次函数的概念2.二次函数的图象及性质3.二次函数与一元二次方程的关系4.利用二次函数解决实际问题 要点诠释:1、两点间距离公式(当遇到没有思路的问题时,可用此方法拓展思路,以寻求解题方法) 如图:点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则AB 间的距离,即线段AB 的长度为()()221221y y x x -+-.2、函数平移规律:左加右减、上加下减.考点六、函数的应用1.一次函数的实际应用2. 反比例函数的实际应用3. 二次函数的实际应用要点诠释:分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论.在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型.【典型例题】类型一、用函数的概念与性质解题1.已知一次函数y=(3a-2)x+(1-b),求字母a, b的取值范围,使得:(1)y随x的增大而增大;(2)函数图象与y轴的交点在x轴的下方;(3)函数的图象过第一、二、四象限.【思路点拨】(1)y=kx+b (k≠0)的图象,当k>0时,y随x的增大而增大;(2)当b<0时,函数图象与y轴的交点在x轴的下方;(3)当k<0, b>0时时,函数的图象过第一、二、四象限.【答案与解析】解:a、b的取值范围应分别满足:(1)由一次函数y=kx+b(k≠0)的性质可知:当k>0时,函数值y随x的增大而增大,即3a-2>0,∴23a>, 且b取任何实数.(2)函数图象与y轴的交点为(0,1-b),∵交点在x轴的下方,∴ ,即a≠, b >1.(3)函数图象过第一、二、四象限,则必须满足 .【总结升华】下面是y=kx(k≠0), y=kx+b (k≠0)的图象的特点和性质的示意图,如图1,当k >0时,y 随x 的增大而增大;当b >0时,图象过一、二、三象限,当b=0时,是正比例函数,当b <0时,图象过一、三、四象限;当y=x 时,图象过一、三象限,且是它的角平分线.由于常数k 、b 不同,可得到不同的函数,k 决定直线与x 轴夹角的大小,b 决定直线与y 轴交点的位置,由k 定向,由b 定点.同样,如图2,是k <0的各种情况,请你指出它们的图象的特点和性质.举一反三:【变式】作出函数y=x, 2x y x=,2()y x =的图象,它们是不是同一个函数?【答案】 函数2()y x =的自变量x 的取值范围是x≥0;函数2x y x=在x≠0时,就是函数y=x ;而x=0不在函数2x y x=的自变量x 的取值范围之内.由此,作图如下:可见它们不是同一个函数. 类型二、函数图象及性质2.已知:(1)m 为何值时,它是一次函数.(2)当它是一次函数时,画出草图,指出它的图象经过哪几个象限?y 是随x 的增大而增大还是减小? (3)当图象不过原点时,求出该图象与坐标轴交点间的距离,及图象与两轴所围成的三角形面积. 【思路点拨】一次函数应满足:一次项(或自变量)的指数为1,系数不为0. 【答案与解析】(1)依题意:,解得m=1或m=4.∴当m=1或m=4时,它是一次函数.(2)当m=4时,函数为y=2x ,是正比例函数,图象过一,三象限, y 随x 的增大而增大.当m=1时,函数为y=-x-3,直线过二,三,四象限,y 随x 的增大而减小.(3)直线y=-x-3不过原点,它与x 轴交点为A(-3,0), 与y 轴交点为B(0,-3),..∴直线y=-x-3与两轴交点间的距离为,与两轴围成的三角形面积为.【总结升华】(1)某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0.(2)判断函数的增减性,关键是确定直线y=kx+b (k ≠0)中k 、b 的符号.(3)直线y=kx+b (k ≠0)与两轴的交点坐标可运用x 轴、y 轴上的点的特征来求,当直线y=kx+b (k ≠0)上的点在x 轴上时,令y=0,则,交点为;当直线y=kx+b (k ≠0)上的点在y 轴上时,令x=0,则y=b ,即交点为(0,b).举一反三:【变式】已知关于x 的方程2(3)40x m x m --+-=.(1)求证:方程总有两个实数根;(2)若方程有一个根大于4且小于8,求m 的取值范围;(3)设抛物线2(3)4y x m x m =--+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值. 【答案】证明:(1)22224(3)4(4)1025(5)b ac m m m m m ∆=-=---=-+=-≥0,所以方程总有两个实数根.解:(2)由(1)2(5)m ∆=-,根据求根公式可知,方程的两根为:23(5)2m m x -±-= 即11x =,24x m =-,由题意,有448m <-<,即812m <<.(3)易知,抛物线2(3)4y x m x m =--+-与y 轴交点为M (0,4m -),由(2)可知抛物线与x 轴的交点为(1,0)和(4m -,0),它们关于直线y x =-的对称点分别为(0,1-)和(0, 4m -), 由题意,可得14m -=-或44m m -=-,所以3m =或4m =.3.抛物线y=x 2+bx+c 图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x 2﹣2x﹣3,则b 、c 的值为( )A .b=2,c=2B .b=2,c=0C .b=﹣2,c=﹣1D .b=﹣3,c=2 【思路点拨】易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式,展开即可得到b ,c 的值. 【答案】B . 【解析】解:由题意得新抛物线的顶点为(1,﹣4), ∴原抛物线的顶点为(﹣1,﹣1),设原抛物线的解析式为y=(x ﹣h )2+k 代入得:y=(x+1)2﹣1=x 2+2x , ∴b=2,c=0. 故选B .【总结升华】抛物线的平移不改变二次项系数的值;讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.4.若一次函数y=kx+1的图象与反比例函数1y x=的图象没有公共点,则实数k 的取值范围是 . 【思路点拨】因为反比例函数1y x = 的图象在第一、三象限,故一次函数y=kx+1中,k <0,将解方程组 11y kx y x =+⎧⎪⎨=⎪⎩转化成关于x 的一元二次方程,当两函数图象没有公共点时,只需△<0即可. 【答案】1-4k <.【解析】由反比例函数的性质可知,1y x=的图象在第一、三象限, ∴当一次函数y=kx+1与反比例函数图象无交点时,k <0,解方程组11y kx y x =+⎧⎪⎨=⎪⎩,得kx 2+x-1=0, 当两函数图象没有公共点时,△<0,即1+4k <0, 解得1-4k <,∴两函数图象无公共点时,1-4k <. 故答案为:1-4k <. 【总结升华】本题考查了反比例函数与一次函数的交点问题.关键是转化成关于x 的一元二次方程,再确定k 的取值范围.类型三、函数综合题5.(2015春•姜堰市校级月考)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,对称轴是直线x=﹣,有下列结论:①ab >0;②a+b+c <0;③b+2c <0;其中正确结论的个数是( )A .0B . 1C . 2D .3 【思路点拨】根据开口方向、对称轴、抛物线与y 轴的交点,确定a 、b 、c 的符号,根据对称轴和图象确定y >0或y <0时,x 的范围,确定代数式的符号. 【答案】C . 【解析】解:①∵开口向下,∴a<0,对称轴在y 轴的左侧,b <0,∴①正确; ②当x=1时,y <0,∴a+b+c<0,②正确; ③﹣=﹣,2a=3b ,x=﹣1时,y >0,a ﹣b+c >0,b+2c >0③错误;故选:C .【总结升华】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.举一反三:【变式】二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A. B. C. D.【答案】由抛物线的图象可知,横坐标为1的点,即(1,a+b+c)在第四象限,因此a+b+c<0;∴双曲线的图象在第二、四象限;由于抛物线开口向上,所以a>0;对称轴x=>0,所以b<0;抛物线与x轴有两个交点,故b2﹣4ac>0;∴直线y=bx+b2﹣4ac经过第一、二、四象限.故选D.类型四、函数的应用6.(2015•舟山)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?【思路点拨】(1)把y=420代入y=30x+120,解方程即可求得;(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W 与x的关系式,再根据一次函数的增减性和二次函数的增减性解答;(3)根据(2)得出m+1=13,根据利润等于订购价减去成本价得出提价a与利润w的关系式,再根据题意列出不等式求解即可.【答案】解:(1)设李明第n天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x≤9时,p=4.1;当9≤x≤15时,设P=kx+b,把点(9,4.1),(15,4.7)代入得,,解得,∴p=0.1x+3.2,①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w最大=513(元);②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,∵x是整数,∴当x=9时,w最大=714(元);③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,∵a=﹣3<0,∴当x=﹣=12时,w最大=768(元);综上,当x=12时,w有最大值,最大值为768.(3)由(2)可知m=12,m+1=13,设第13天提价a元,由题意得,w13=(6+a﹣p)(30x+120)=510(a+1.5),∴510(a+1.5)﹣768≥48,解得a=0.1.答:第13天每只粽子至少应提价0.1元.【总结升华】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.举一反三:【变式】抛物线2y ax bx c =++,a >0,c <0,2360a b c ++=.(1)求证:1023b a +>; (2)抛物线经过点1(,)2P m ,Q (1,)n . ① 判断mn 的符号; ② 抛物线与x 轴的两个交点分别为点A 1(,0)x ,点B 2(,0)x (A 在B 左侧),请说明116x <,2112x <<. 【答案】(1)证明:∵ 2360a b c ++=, ∴12362366b a b c c a a a a++==-=-. ∵ a >0,c <0,∴ 0c a <,0c a->. ∴ 1023b a +>.(2)解:∵ 抛物线经过点P 1(,)2m ,点Q (1,)n , ∴ 11 ,42 .a b c m a b c n ⎧++=⎪⎨⎪++=⎩① ∵ 2360a b c ++=,a >0,c <0,∴ 223a b c +=-,223a b c =--. ∴ 1112111()42424312b c m a b c a a a a +=++=+=+-=-<0. 2(2)33a a n a b c a c c c =++=+--+=->0.∴ 0mn <.② 由a >0知抛物线2y ax bx c =++开口向上.∵ 0m <,0n >,∴ 点P 1(,)2m 和点Q (1,)n 分别位于x 轴下方和x 轴上方.∵ 点A ,B 的坐标分别为A 1(,0)x ,B 2(,0)x (点A 在点B 左侧), ∴ 由抛物线2y ax bx c =++的示意图可知,对称轴右侧的点B 的横坐标2x 满足2112x <<. ∵ 抛物线的对称轴为直线2b x a =-,由抛物线的对称性可1222x x b a +=-,由(1)知123b a -<, ∴ 12123x x +<. ∴ 12221332x x <-<-,即116x <.。

北师大初中数学中考总复习:函数综合--知识讲解(基础)【精品】.doc

北师大初中数学中考总复习:函数综合--知识讲解(基础)【精品】.doc

中考总复习:函数综合—知识讲解(基础)【考纲要求】1.平面直角坐标系的有关知识平面直角坐标系中各象限和坐标轴上的点的坐标的特征,求点关于坐标轴、坐标原点的对称点的坐标,求线段的长度,几何图形的面积,求某些点的坐标等;2.函数的有关概念求函数自变量的取值范围,求函数值、函数的图象、函数的表示方法;3.函数的图象和性质常见的题目是确定图象的位置,利用函数的图象确定某些字母的取值,利用函数的性质解决某些问题.利用数形结合思想来说明函数值的变化趋势,又能反过来判定函数图象的位置;4.函数的解析式求函数的解析式,求抛物线的顶点坐标、对称轴方程,利用函数的解析式来求某些字母或代数式的值.一次函数、反比例函数和二次函数常与一元一次方程、一元二次方程、三角形的面积、边角关系、圆的切线、圆的有关线段组成综合题.【知识网络】【考点梳理】考点一、平面直角坐标系1.相关概念(1)平面直角坐标系 (2)象限 (3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标 (1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标 (3)平行于坐标轴的直线上的点的坐标 (4)关于x 轴、y 轴、原点对称的点的坐标 4.距离(1)平面上一点到x 轴、y 轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离 (3)平面上任意两点间的距离 5.坐标方法的简单应用(1)利用坐标表示地理位置 (2)利用坐标表示平移 要点诠释:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y ; (2)点P(x,y)到y 轴的距离等于x ; (3)点P(x,y)到原点的距离等于22y x +.考点二、函数及其图象 1.变量与常量 2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象 要点诠释:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.考点三、一次函数1.正比例函数的意义2.一次函数的意义3.正比例函数与一次函数的性质4. 一次函数的图象与二元一次方程组的关系5.利用一次函数解决实际问题 要点诠释:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k ;确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b.解这类问题的一般方法是待定系数法.考点四、反比例函数 1.反比例函数的概念2.反比例函数的图象及性质3.利用反比例函数解决实际问题 要点诠释:反比例函数中反比例系数的几何意义,如下图,过反比例函数)0(≠=k xky 图像上任一点),(y x P 作x 轴、y 轴的垂线PM ,PN ,垂足为M 、N ,则所得的矩形PMON 的面积S=PM ∙PN=xy x y =∙.,y xk=∴||k S k xy ==,.考点五、二次函数 1.二次函数的概念2.二次函数的图象及性质3.二次函数与一元二次方程的关系4.利用二次函数解决实际问题 要点诠释:1、两点间距离公式(当遇到没有思路的问题时,可用此方法拓展思路,以寻求解题方法) 如图:点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则AB 间的距离,即线段AB 的长度为()()221221y y x x -+-.2、函数平移规律:左加右减、上加下减.考点六、函数的应用 1.一次函数的实际应用 2. 反比例函数的实际应用 3. 二次函数的实际应用 要点诠释:分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论.在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型.【典型例题】类型一、用函数的概念与性质解题1. 已知一次函数y=(3a-2)x+(1-b),求字母a, b 的取值范围,使得: (1)y 随x 的增大而增大;(2)函数图象与y 轴的交点在x 轴的下方;(3)函数的图象过第一、二、四象限. 【思路点拨】(1)y=kx+b (k≠0)的图象,当k >0时,y 随x 的增大而增大;(2)当b <0时,函数图象与y 轴的交点在x 轴的下方; (3)当k <0, b >0时时,函数的图象过第一、二、四象限.【答案与解析】解:a 、b 的取值范围应分别满足:(1)由一次函数y=kx+b(k≠0)的性质可知: 当k >0时,函数值y 随x 的增大而增大,即3a-2>0, ∴23a >, 且b 取任何实数.(2)函数图象与y 轴的交点为(0,1-b ), ∵ 交点在x 轴的下方,∴,即a≠, b >1.(3)函数图象过第一、二、四象限,则必须满足 .【总结升华】下面是y=kx(k≠0), y=kx+b (k≠0)的图象的特点和性质的示意图,如图1,当k >0时,y 随x 的增大而增大;当b >0时,图象过一、二、三象限,当b=0时,是正比例函数,当b <0时,图象过一、三、四象限;当y=x 时,图象过一、三象限,且是它的角平分线.由于常数k 、b 不同,可得到不同的函数,k 决定直线与x 轴夹角的大小,b 决定直线与y 轴交点的位置,由k 定向,由b 定点.同样,如图2,是k <0的各种情况,请你指出它们的图象的特点和性质.举一反三:【变式】作出函数y=x, 2x y x=,2y =的图象,它们是不是同一个函数?【答案】 函数2y =的自变量x 的取值范围是x≥0;函数2x y x=在x≠0时,就是函数y=x ;而x=0不在函数2xyx的自变量x的取值范围之内.由此,作图如下:可见它们不是同一个函数.类型二、函数图象及性质2.已知:(1)m为何值时,它是一次函数.(2)当它是一次函数时,画出草图,指出它的图象经过哪几个象限?y是随x的增大而增大还是减小?(3)当图象不过原点时,求出该图象与坐标轴交点间的距离,及图象与两轴所围成的三角形面积. 【思路点拨】一次函数应满足:一次项(或自变量)的指数为1,系数不为0.【答案与解析】(1)依题意:,解得m=1或m=4.∴当m=1或m=4时,它是一次函数.(2)当m=4时,函数为y=2x,是正比例函数,图象过一,三象限,y随x的增大而增大.当m=1时,函数为y=-x-3,直线过二,三,四象限,y随x的增大而减小.(3)直线y=-x-3不过原点,它与x轴交点为A(-3,0),与y轴交点为B(0,-3),..∴直线y=-x-3与两轴交点间的距离为,与两轴围成的三角形面积为.【总结升华】(1)某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0.(2)判断函数的增减性,关键是确定直线y=kx+b(k≠0)中k、b的符号.(3)直线y=kx+b(k≠0)与两轴的交点坐标可运用x轴、y轴上的点的特征来求,当直线y=kx+b (k≠0)上的点在x轴上时,令y=0,则,交点为;当直线y=kx+b(k≠0)上的点在y轴上时,令x=0,则y=b,即交点为(0,b).举一反三:【变式】已知关于x 的方程2(3)40x m x m --+-=.(1)求证:方程总有两个实数根;(2)若方程有一个根大于4且小于8,求m 的取值范围; (3)设抛物线2(3)4y x m x m =--+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值. 【答案】证明:(1)22224(3)4(4)1025(5)b ac m m m m m ∆=-=---=-+=-≥0,所以方程总有两个实数根.解:(2)由(1)2(5)m ∆=-,根据求根公式可知,方程的两根为:x = 即11x =,24x m =-,由题意,有448m <-<,即812m <<.(3)易知,抛物线2(3)4y x m x m =--+-与y 轴交点为M (0,4m -),由(2)可知抛物线与x 轴的交点为(1,0)和(4m -,0),它们关于直线y x =-的对称点分别为(0,1-)和(0, 4m -), 由题意,可得14m -=-或44m m -=-,所以3m =或4m =.3.抛物线y=x 2+bx+c 图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x 2﹣2x ﹣3,则b 、c 的值为( )A .b=2,c=2B .b=2,c=0C .b=﹣2,c=﹣1D .b=﹣3,c=2 【思路点拨】易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式,展开即可得到b ,c 的值. 【答案】B . 【解析】解:由题意得新抛物线的顶点为(1,﹣4), ∴原抛物线的顶点为(﹣1,﹣1),设原抛物线的解析式为y=(x ﹣h )2+k 代入得:y=(x+1)2﹣1=x 2+2x , ∴b=2,c=0. 故选B .【总结升华】抛物线的平移不改变二次项系数的值;讨论两个二次函数的图象的平移问题,只需看顶点坐标是4【答案】-4k <.本题考查了反比例函数与一次函数的交点问题.关键是转化成关于x 的一元二次方程,再确定k 的取值范围.类型三、函数综合题5.(2015春•姜堰市校级月考)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,对称轴是直线x=﹣,有下列结论:①ab >0;②a+b+c <0;③b+2c <0;其中正确结论的个数是( )A .0B . 1C . 2D .3 【思路点拨】根据开口方向、对称轴、抛物线与y 轴的交点,确定a 、b 、c 的符号,根据对称轴和图象确定y >0或y <0时,x 的范围,确定代数式的符号. 【答案】C . 【解析】解:①∵开口向下,∴a<0,对称轴在y 轴的左侧,b <0,∴①正确; ②当x=1时,y <0,∴a+b+c<0,②正确; ③﹣=﹣,2a=3b ,x=﹣1时,y >0,a ﹣b+c >0,b+2c >0③错误;故选:C . 【总结升华】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式. 举一反三:【变式】二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A. B. C. D.【答案】由抛物线的图象可知,横坐标为1的点,即(1,a+b+c)在第四象限,因此a+b+c<0;∴双曲线的图象在第二、四象限;由于抛物线开口向上,所以a>0;对称轴x=>0,所以b<0;抛物线与x轴有两个交点,故b2﹣4ac>0;∴直线y=bx+b2﹣4ac经过第一、二、四象限.故选D.类型四、函数的应用6.(2015•舟山)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?【思路点拨】(1)把y=420代入y=30x+120,解方程即可求得;(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答;(3)根据(2)得出m+1=13,根据利润等于订购价减去成本价得出提价a 与利润w 的关系式,再根据题意列出不等式求解即可. 【答案】 解:(1)设李明第n 天生产的粽子数量为420只, 由题意可知:30n+120=420, 解得n=10.答:第10天生产的粽子数量为420只. (2)由图象得,当0≤x≤9时,p=4.1; 当9≤x≤15时,设P=kx+b , 把点(9,4.1),(15,4.7)代入得,,解得,∴p=0.1x+3.2,①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w 最大=513(元); ②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228, ∵x 是整数,∴当x=9时,w 最大=714(元);③9<x≤15时,w=(6﹣0.1x ﹣3.2)×(30x+120)=﹣3x 2+72x+336, ∵a=﹣3<0, ∴当x=﹣=12时,w 最大=768(元);综上,当x=12时,w 有最大值,最大值为768.(3)由(2)可知m=12,m+1=13,设第13天提价a 元,由题意得,w 13=(6+a ﹣p )(30x+120)=510(a+1.5), ∴510(a+1.5)﹣768≥48,解得a=0.1. 答:第13天每只粽子至少应提价0.1元. 【总结升华】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式. 举一反三:【变式】抛物线2y ax bx c =++,a >0,c <0,2360a b c ++=.(1)求证:1023b a +>; (2)抛物线经过点1(,)2P m ,Q (1,)n .① 判断mn 的符号;② 抛物线与x 轴的两个交点分别为点A 1(,0)x ,点B 2(,0)x (A 在B 左侧),请说明116x <,2112x <<. 【答案】(1)证明:∵ 2360a b c ++=,∴12362366b a b c c a a a a ++==-=-. ∵ a >0,c <0,∴ 0c a <,0ca ->.∴ 1023b a +>.(2)解:∵ 抛物线经过点P 1(,)2m ,点Q (1,)n ,∴ 11 ,42.a b c m a b c n ⎧++=⎪⎨⎪++=⎩① ∵ 2360a b c ++=,a >0,c <0,∴ 223a b c +=-,223ab c =--.∴ 1112111()42424312b c m a b c a a a a +=++=+=+-=-<0.2(2)33a an a b c a c c c =++=+--+=->0.∴ 0mn <.② 由a >0知抛物线2y ax bx c =++开口向上.∵ 0m <,0n >,∴ 点P 1(,)2m 和点Q (1,)n 分别位于x 轴下方和x 轴上方.∵ 点A ,B 的坐标分别为A 1(,0)x ,B 2(,0)x (点A 在点B 左侧),∴ 由抛物线2y ax bx c =++的示意图可知,对称轴右侧的点B 的横坐标2x 满足2112x <<. ∵ 抛物线的对称轴为直线2b x a =-,由抛物线的对称性可1222x x b a +=-,由(1)知123b a -<,∴ 12123x x +<.∴ 12221332x x <-<-,即116x <.。

函数(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

函数(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题4.1函数(知识梳理与考点分类讲解)【知识点1】函数的定义1.函数的定义一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量.说明:(1)在函数中定义的两个变量x,y是有主次之分的,变量x的变化是主动的,称之为自变量,而变量y是随x的变化而变化的,是被动的,称之为因变量(即自变量的函数);(2)函数不是数,函数的实质是两个变量的对应关系.2.判断一个关系是否是函数关系的方法一看是否在一个变化过程中;二看是否存在两个变量;三看对于变量每取一个确定的值,另一个变量是否都有唯一确定的值与其对应,以上三者(简称“三要素”)缺一不可.特别提醒:函数的定义中包括了对应值的存在性唯一性两重薏思,即对自变量的每一个确定的值函数有且只有一个值与之对应对自变量x的不同值y的值可以相同,如函数2y x ,当x=1和x=-1时,y的对应值者是L 【知识点2】函数的三种表示方法1.函数的三种表示方法表示方法定义优点缺点列表示通过列出自变量的值与对应函数值的表格表示函数关系的方法叫做列表法一目了然,对表格中已有自变量的每一个值,可直接查出与它对应的函数值列出的对应值是有限的,而且在表格中也不容易看出自变量与函数的变化规律关系式法用数学式子表示函数关系的方法叫做关系式法.其中的等式叫做函数关系式能准确地反映整个变化过程中自变量与数值的对应关系从函数关系式很难直观看出函数的变化规律,而且有些函数不能用关系式法表示出来图象法用图象表示两个变量间的函数关系的方法叫做图象法直观、形象地反映出函数关系变化的趋势和某些性质从自变量的值常常难以找到对应函数的准确值2.列函数关系式根据实际问题列函数关系式的方法类似于列方程解应用题,只要找出自变量与函数值之间存在的等量关系,列出等式即可.但要整理成用含自变量的代数式表示函数值的形式.【考点一】利用函数的概念判断两变量的函数关系【例1】(2023·上海·八年级假期作业)下列各式中,y 是否是x 的函数?为什么?(1)23y x =;(2)23y x =.【答案】(1)是,理由见分析;(2)不是,理由见分析【分析】根据函数的概念进行求解即可:对于两个变量,对于其中一个变量x 的任意取值(取值范围内),另一个变量y 都有唯一的值与之对应,那么y 就是x 的函数.(1)解:∵在23y x =中,对于任意的x 的值,y 都有唯一的值与之对应,∴y 是x 的函数;(2)解:∵在23y x =中,对于任意一个正数x 的值,y 都有两个值与之对应,∴y 不是x 的函数;【点拨】本题主要考查了函数的定义,熟知函数的定义是解题的关键.【举一反三】【变式1】(2023秋·安徽合肥·八年级合肥38中校考阶段练习)下列各曲线中,能表示y 是x 的函数的是()A .B .C .D .【答案】D【分析】根据函数的概念即可解答.解:由函数的定义:在一个变化过程中有两个变量x 与y ,对于x 的每一个确定的值,y 都有唯一的值与其对应,那么就说y 是x 的函数.则只有D 选项符合题意故选:D .【点拨】题主要考查了函数的概念,在一个变化过程中有两个变量x 与y ,对于x 的每一个确定的值,y 都有唯一本的值与其对应,那么就说y 是x 的函数.【变式2】(2023·山东德州·二模)下列关于两个变量关系的四种表述中,正确的是.(填序号即可)①圆的周长C 是半径r 的函数;②表达式y =y 是x 的函数;③如表中,n 是m 的函数;m 3-2-1-123n2-3-6-632④如图中,曲线表示y 是x 的函数.【答案】①②③【分析】根据函数的定义与函数的表示方法逐一分析即可得到答案.解:①圆的周长C 是半径r 的函数;表述正确,故①符合题意;②表达式y =y 是x 的函数;表述正确,故②符合题意;③由表格信息可得:对应m 的每一个值,n 都有唯一的值与之对应,故③符合题意;在④中的曲线,当0x >时的每一个值,y 都有两个值与之对应,故④不符合题意;故答案为:①②③【点拨】本题考查的是函数的定义,函数的表示方法,理解函数定义与表示方法是解本题的关键.【考点二】函数的解析式★★自变量★★因变量【例2】(2022秋·八年级课时练习)在一次实验中,老师把一根弹簧秤的上端固定,在其下端悬挂物体,测得弹簧秤的长度()cm y 随所挂物体的质量x ()kg 变化关系的图象如下:(1)根据图象信息补全表格:x /kg 012345y /cm810121416(2)写出所挂物体质量在0至5kg 时弹簧秤长度y ()cm 与所挂物体质量()kg x 的关系式;(3)结合图象,写出弹簧秤长度是怎样随悬挂物体质量的变化而变化的.【答案】(1)18;(2)=2+8y x ;(3)当0≤x ≤5时,所挂重物每增加1千克,弹簧增长2cm ;当挂重物不小于5千克时,弹簧的长度均为18cm .【分析】(1)根据表格可知,发现所挂重物每增加1千克,弹簧增长2cm ,据此解答即可;(2)根据弹簧的长度等于弹簧原来的长度+弹簧伸长的长度列出关系式;(3)结合图象解答即可.解:(1)由题意可知,当x =5时,y =16+2=18,故答案为:18;(2)根据表格可知:所挂重物每增加1千克,弹簧增长2cm ,根据弹簧的长度=弹簧原来的长度+弹簧伸长的长度可知当所挂物体的重量为x 千克时,弹簧长度y =2x +8(0≤x ≤5);(3)由图象可知,当0≤x ≤5时,所挂重物每增加1千克,弹簧增长2cm ;当挂重物不小于5千克时,弹簧的长度均为18cm .【点拨】本题主要考查得是列函数关系式,解答本题需要同学们明确弹簧的长度=弹簧原来的长度+弹簧伸长的长度,根据表格发现所挂重物每增加1千克,弹簧增长2cm 是解题的关键.【举一反三】【变式1】(2021春·海南海口·八年级北京大学附属中学海口学校校考期中)在函数y 变量x 的取值范围是()A .x ≥1B .x ≠2C .x ≥2D .x ≥1且x ≠2【答案】D【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解:根据二次根式的意义可知:x -1≥0,即x ≥1,根据分式的意义可知:x -2≠0,即x ≠2,∴x ≥1且x ≠2.故选:D .【点拨】本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.【变式2】(2022春·河北邯郸·八年级校考阶段练习)如图,长为32米,宽为20米的长方形地面上,修筑宽度均为x 米的两条互相垂直的小路(图中阴影部分),其余部分作耕地,如果将两条小路铺上地砖,选用地砖的价格是60元/米2.(1)写出买地砖需要的钱数y (元)与x (米)的函数关系式为(不要求写自变量的取值范围);(2)当3x =时,地砖的费用为元.【答案】2312060y x x =-8820【分析】(1)先求出小路的面积,然后根据买地砖需要的钱数=小路的面积⨯每平方米地砖的价格,进行计算即可解答;(2)把3x =代入(1)中所求的关系式进行计算即可解答.解:(1)由题意得:两条小路的面积为:223220(52)x x x x x +-=-米2,2260(52)312060y x x x x ∴=⨯-=-,故答案为:2312060y x x =-;(2)当3x =时,2312060312036098820x x -=⨯-⨯=(元),答:当3x =时,地砖的费用为8820元.【点拨】本题考查了函数关系式,根据题目的已知条件结合图形求出小路的面积是解题的关键.【考点三】利用函数的三种表达方式解决问题【例3】(2023春·山东烟台·六年级统考期末)在一次实验中,马达同学把一根弹簧的上端固定,在其下端悬挂物体,测得的弹簧长度(cm)y 随所挂物体的质量(kg)x 变化关系的图象如下:(1)上表反映的变化过程中的两个变量,哪个是自变量?哪个是因变量?(2)根据以上图象补全表格:所挂物体质量/kg x 012345弹簧长度/cmy 8101214(3)由图象可知,弹簧能承受的所挂物体的最大质量是多少千克?(4)在弹簧承受范围内,请直接用含有x 的代数式表示y .【答案】(1)图中反映的是弹簧的长度随所挂物体质量之间的变化关系,其中所挂物体的质量是自变量,弹簧的长度是因变量;(2)16,18;(3)5千克;(4)()2805y x x =+≤≤【分析】(1)根据变量常量的定义结合题意进行判断即可;(2)根据图象填写表格即可;(3)根据图象得出结论;(4)根据图象可知所挂物体质量每增加1千克,弹簧伸长2厘米,据此解答即可.解:(1)图中反映的是弹簧的长度随所挂物体质量之间的变化关系,其中所挂物体的质量是自变量,弹簧的长度是因变量;(2)由图象得:所挂物体质量/kg x 012345弹簧长度/cm y 81012141618故答案为:16,18;(3)由图象可知,弹簧能承受的所挂物体的最大质量是5千克.(4)∵所挂物体质量每增加1千克,弹簧伸长2厘米,∴()2805y x x =+≤≤.【点拨】本题考查函数的表示方法,理解表格中弹簧的长度随所挂物体质量之间的变化关系是正确判断的关键.【举一反三】【变式1】(2023春·四川达州·七年级统考期末)李强一家自驾车到离家500km 的九寨沟旅游,出发前将油箱加满油.下表记录了轿车行驶的路程(km)x 与油箱剩余油量(L)y 之间的部分数据:轿车行驶的路程/km x 0100200300400…油箱剩余油量/L y 5042342618…下列说法不正确的是()A .该车的油箱容量为50LB .该车每行驶100km 耗油8LC .油箱剩余油量(L)y 与行驶的路程(km)x 之间的关系式为508y x =-D .当李强一家到达九寨沟时,油箱中剩余10L 油【答案】C【分析】根据表格中信息逐一判断即可.解:A 、由表格知:行驶路程为0km 时,油箱余油量为50L ,故A 正确,不符合题意;B 、0100km -时,耗油量为-=50428L ;100——200km 时,耗油量为37298L -=;故B 正确,不符合题意;C 、有表格知:该车每行驶50km 耗油4L ,则45050y x =-,故C 错误,符合题意;D 、当500x =时,()45050010L 50y =-⨯=,故D 正确,不符合题意.故选:C .【点拨】本题主要考查了函数的表示方法,明确题意、正确从表格中获取信息是解题的关键.【变式2】(2020秋·八年级单元测试)等腰三角形ABC 周长为24,底边BC 长为y ,腰AB 长为x ,则y 关于x 的函数解析式及定义域是.【答案】()242612y x x =-<<【分析】根据三角形的周长为24可得出2x+y=24,变形后即可得出y=-2x+24;根据三角形的边长大于0以及两腰之和大于底边,即可得出关于x 的一元一次不等式组,解之即可得出自变量x 的取值范围.解:根据题意得:2x+y=24,∴y=-2x+24,∵x 、x 、y 为三角形的边,∴22242240x x x -+-+⎧⎨⎩>>,∴6<x <12.故答案为:()242612y x x =-<<.【点拨】本题考查了一次函数的应用、等腰三角形的性质、三角形三边关系以及三角形的周长,解题的关键是:(1)根据三角形的周长为20找出y 关于x 的函数解析式;(2)由三角形的边长为正值结合两腰之和大于底边,列出关于x 的一元一次不等式组.【考点四】实际问题中列函数的表达式【例4】(2023秋·全国·八年级专题练习)某超市最近销售蓝莓,根据以往的销售经验,每天的售价与销售量之间有如下关系:每千克售价(元)6059585756……30每天销售量(千克)5055606570……200(1)表格中的自变量是__________,因变量是__________.(2)设当售价从每千克60元下降了x 元时,每天销售量为y 千克,直接写出y 与x 之间的关系式;(3)如果周六的销售量是170千克,那这天的售价是每千克多少元?(4)如果蓝莓的成本价是30元/千克,某天的售价定为40元/千克,当天的销售利润是多少?【答案】(1)每千克售价,每天销量;(2)550y x =+;(3)36元;(4)1500元【分析】(1)根据表格内容可求解此题;(2)由題意根据每千克售价每下降1元每天销售量就增加5千克进行求解;(3)将170y =代入(2)题结果并进行计算;(4)根据当天的销售利润等于每千克的利润乘以销售的千克数进行代入计算.(1)解:由题意得,自变量是每千克售价,因变量是每天销量,故答案为:每千克售价,每天销量;(2)解:由题意得售价每下降1元销售量就增大5千克,∴当售价从每千克60元下降了x 元时,每天销售量为550y x =+即y 与x 之间的关系式为550y x =+;(3)解:当170y =时,170550x =+,解得:24x =,∴602436-=,即这天的售价是每千克36元;(4)解:由(2)题结果可得,当604020x =-=时,52050150y =⨯+=,∴()40301501500-⨯=(元)答:这天的销售利润是1500元.【点拨】此题考查了运用函数解决实际问题的能力,关键是能准确理解题目间数量关系,并运用函数知识进行求解.【举一反三】【变式1】(2023春·河北邯郸·八年级统考期末)已知两个变量x 和y ,它们之间的三组对应值如下表所示:x 2-02y311-那么y 关于x 的函数解析式可能是()A .1y x =-+B .21y x x =++C .y =13x +D .2y x=-【答案】A【分析】根据函数的定义以及函数图象上点的坐标特征逐项进行判断即可.解:A .表格中的三组x y 、的对应值均满足1y x =-+,因此选项A 符合题意;B .表格中01x y ==,满足21y x x =++,但23x y =-=,与21x y ==-,不满足21y x x =++,因此选项B 不符合题意;C .表格中的三组x y 、的对应值均不满足13y x =+,因此选项C 不符合题意;D .表格中的三组x y 、的对应值均不满足2y x =-,因此选项D 不符合题意;故选:A .【点拨】本题考查函数关系式,理解函数的定义以及函数图象上点的坐标特征是正确解答的前提.【变式2】(2023秋·全国·八年级专题练习)甲同学的饭卡原有208元,在学校消费为周一到周五,平均每天消费35元,他的卡内余额y (元)与在校天数()05x x ≤≤之间的关系式为.【答案】20835y x=-【分析】用208减去x 天内的消费,即可确定函数关系式.解:依题意,他的卡内余额y (元)与在校天数()05x x ≤≤之间的关系式为20835y x =-,故答案为:20835y x =-.【点拨】本题考查了函数关系式,理解题意列出关系式是解题的关键.【考点五】动点问题中列函数的表达式【例5】(2023春·湖南长沙·八年级统考期末)已知点()8,0A 及在第一象限的动点(),P x y ,且10x y +=.设OPA 的面积为S .(1)求S 关于x 的函数解析式;(2)求x 的取值范围,并根据x 的取值范围求出S 的取值范围;(3)当12S =时,求P 点坐标.【答案】(1)=-+S 4x 40;(2)010x <<,040S <<;(3)(7,3)【分析】(1)根据OPA ∆的面积S 等于1·2y OP P 可得出S 关于x 的函数解析式;(2)由点P 在第一象限,可得点P 的横纵坐标均大于0,则可得关于x 的不等式,解得x 的取值范围即可.(3)先根据(1)中S 关于x 的函数解析式及12S =,得出点P 的横坐标,再将其代入10x y +=,则可解得点P 的纵坐标.(1)解:由10x y +=得10y x =-,P 点在第一象限,点A 坐标(8,0),∴11·8(10)44022S OA Py x x ==⨯⨯-=-+,S ∴关于x 的函数解析式为=-+S 4x 40.(2)解:P 在第一象限,∴1000x x ->⎧⎨>⎩,x ∴的取值范围为010x <<.则S 的取值范围为040S <<.(3)解:440S x =-+ ,∴当12S =时,44012x -+=,7x ∴=,710y += ,3y ∴=,P ∴点的坐标为(7,3).【点拨】本题主要考查了求函数关系式,求自变量的取值范围,解题的关键是运用数形结合和三角形的面积公式进行计算.【举一反三】【变式1】(2023春·八年级课时练习)如图所示,在ABC 中,已知16BC =,高10AD =,动点Q 由C 点沿CB 向B 点移动(不与点B 重合).设CQ 的长为x ,ACQ 的面积为S ,则S 与x 之间的函数关系式为()A .805S x =-(016x <<)B .5S x =(016x <<)C .10S x =(016x <<)D .580S x =+(016x <<)【答案】B 【分析】根据三角形的面积公式即可得到S 与x 之间的函数关系式.解:∵12ACQ S CQ AD =⋅ ∴11052S x x =⨯=∴S 与x 之间的函数关系式为5S x =(016x <<).故选:B【点拨】本题考查列函数解析式,理解题意,列出函数解析式,写出自变量的取值范围是解题的关键.【变式2】(2022秋·辽宁沈阳·八年级沈阳市实验学校校考期中)如图,在正方形ABCD 中,4AB =,动点M 从点A 出发,以每秒1个单位长度的速度沿线段AB 运动,同时动点N 从点A 出发,以每秒2个单位长度的速度沿线段AD 运动,当点N 运动到点D 时,点M ,N 同时停止运动,设AMN 的面积为y ,运动时间为x (s ),请写出y 与x 之间函数关系式.【答案】()202y x x =<≤【分析】根据点N 的运动情况,写出y 和x 之间的函数关系式即可.解:当点N 在AD 运动时,∵4AB =,∴02x <≤,∵动点M 以每秒1个单位长度的速度沿线段AB 运动,动点N 以每秒2个单位长度的速度沿线段AD 运动,∴AM x =,2AN x =,∴2122y x x x =⋅=,故答案为:()202y x x =<≤.【点拨】本题是运动型综合题,考查了函数表达式、正方形的性质、三角形的面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.【考点六】分段函数的表达式【例6】(2022秋·黑龙江大庆·七年级校考开学考试)某市自来水公司为鼓励单位节约用水,额定某单位每月计划内用水3000吨.计划内用水每吨收费1.5元,超额部分按每吨2.4元收费.(1)写出这个单位每月消费y (元)与用水量x (吨)之间的函数关系式;(2)若该单位1、2月份分别用水3200吨和2800吨,水费各为多少?【答案】(1) 1.5(03000)2.42700(3000)x x y x x <≤⎧=⎨->⎩(2)该单位1、2月份分别用水3200吨和2800吨,水费分别为4980元和4200元【分析】(1)根据题意,分03000x <≤时,3000x >时,分别列出函数关系式,即可求解;(2)将3200,2800x =分别代入(1)的关系式,即可求解.解:(1)当03000x <≤时, 1.5y x =;当3000x >时,()3000 1.53000 2.4 2.42700y x x =⨯+-⨯=-,∴y 与x 之间的函数关系式为 1.5(03000)2.42700(3000)x x y x x <≤⎧=⎨->⎩;(2)∵32003000>,∴ 2.4320027004980y =⨯-=(元),∵28003000<∴ 1.528004200y =⨯=(元),答:该单位1、2月份分别用水3200吨和2800吨,水费分别为4980元和4200元.【点拨】本题考查了列函数关系式,求函数值,根据题意分别列出函数关系式解题的关键.【举一反三】【变式1】(2022秋·福建漳州·八年级校考期中)某商店11月11日举行促销优惠活动,当天到店购买商品,有以下两种优惠方案,方案一:用168元购买会员卡后,则购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9折优惠.已知小敏不是该商店的会员,设她所购买商品总价格为x 元,实际支付费用为y 元.(1)若小敏不购买会员卡,则y 与x 之间的函数关系式是________;若小敏购买会员卡,则y 与x 之间的函数关系式是________;(2)小敏准备购买的商品总价格为1080元,请问她选用哪种方案较为合算?【答案】(1)0.9y x =;0.8168y x =+;(2)选用方案一较为合算【分析】(1)根据所购买商品的价格和折扣直接计算出实际应付的钱;(2)分别求出两种不同方案的实际支付费用,再比较,即可.(1)解:小敏不购买会员卡,y 与x 之间的函数关系式是0.9y x =;小敏购买会员卡,y 与x 之间的函数关系式是0.8168y x =+;故答案为:0.9y x =;0.8168y x =+(2)解:方案一:实际支付费用为0.91080972y =⨯=元;方案二:实际支付费用为0.810801681032y =⨯+=元,∵1032972>,∴小敏选用方案一较为合算.【点拨】本题考查的是列函数关系式,明确题意,准确列出函数关系式是解题的关键.【变式2】(2023春·广东茂名·七年级校考阶段练习)小明用的练习本可以到甲超市购买,也可以到乙超市购买.已知两超市的标价都是每本1元,但甲超市的优惠条件是购买10本或少于10本按标价卖,10本以上,从第11本开始按标价的70%卖.乙超市的优惠条件是从第1本开始就按标价的85%卖.(1)当小明要买28本时,到哪家超市购买较省钱?(2)写出甲超市中,收款y 甲(元)与购买本数x (本)的关系式.(3)小明现有24元钱,最多可买多少本练习本?【答案】(1)甲家超市买收费省钱;(2)()100.73(10)x x y x x ⎧≤=⎨+>⎩甲;(3)拿24元钱最多可以买30本练习本(在甲超市购买)【分析】(1)根据甲超市所需要的费用=前10本的总费用+后18本的总费用70%⨯得出甲所需要的费用,根据乙超市所需要的费用=28本的总费用85%⨯得出乙所需要的费用,然后进行比较大小得出答案;(2)甲超市所需要的费用=前10本的总费用+超出10本的总费用70%⨯得出函数解析式;(3)首先求出乙的函数解析式,然后分别求出甲和乙超市分别能买到几本练习本,从而得出答案.(1)解:买28本时,在甲超市购买需用10118170%22.6⨯+⨯⨯=(元),在乙超市购买需用28185%23.8⨯⨯=(元),22.623.8<,所以买28本到甲家超市买收费省钱;(2)解:()10y x x =≤甲101(10)170%0.73(10)y x x x =⨯+-⨯⨯=+>甲;答:()100.73(10)x x y x x ⎧≤=⎨+>⎩甲;(3)解:由题知乙超市收款y 乙(元)与购买本数x (本)间的关系式为.17185%20乙=⨯⨯=y x x 所以当24y =甲时,240.73x =+甲,解得:30x =甲;当24y =乙时,172420x =乙,28x ≈乙.所以拿24元钱最多可以买30本练习本(在甲超市购买).【点拨】此题考查了一次函数关系式及一元一次方程等知识;求出总价y 甲与购买本数()10x x >的关系式是解题的关键.。

九年级数学中考总复习三:函数一北师大版

九年级数学中考总复习三:函数一北师大版

中考总复习三:函数(一)函数这部分是代数的重点内容,也是中考重要的考点,复习中既要注意夯实基础,融会贯通,又要注重与其他知识的综合提高.在总复习中分了三部分:平面直角坐标系;一次函数和反比例函数;二次函数.本讲主要针对于前两个部分。

一、平面直角坐标系(一)学习要求1.认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标;理解特殊位置的点的坐标特征.2.能在方格纸上建立适当的直角坐标系,描述物体的位置;会由点的特殊位置,求相关字母的范围;会求已知点到坐标轴的距离.3.在同一平面直角坐标系中,会用点的坐标刻画点的移动;能灵活运用不同的方式确定物体的位置.(二)考点分析1.用坐标描述点的位置;2.不同象限及坐标轴的点的坐标特点;3.结合几何变换的作图、求解.(三)例题分析1.在平面直角坐标系中,已知点M(,),根据下列条件分别求出点M的坐标:(1)若点M在x轴上,则点M的坐标为___________;(2)若点M在第二、四象限的角平分线上,则点M的坐标为___________;(3)若点M在第一象限,并且a为整数,则点M的坐标为___________;(4)若点M在双曲线上,则点M的坐标为___________;(5)若点P(3,−2)满足MP//x轴,则点M的坐标为___________;(6)若点N(3,b),满足:①M、N关于x轴对称,则点M的坐标为___________;②M、N关于原点对称,则点M的坐标为___________;③M、N关于直线对称,则点M的坐标为___________.解:(1)(4,0)本小题考查坐标轴上点的坐标特点;(2)(-4,4)本小题考查象限角平分线上点的坐标特点;(3)(2,1)本小题考查各象限内点的坐标特点;(4)(2,1)本小题考查函数图象上点的坐标与解析式的关系;(5)(8,-2)本小题考查平行坐标轴的直线上点的坐标特点;(6)①(3,)②(-3,)③(1,)本小题考查关于坐标轴和原点对称点的坐标特点。

北师大初中数学中考总复习:函数综合--知识讲解(提高)【推荐】.doc

北师大初中数学中考总复习:函数综合--知识讲解(提高)【推荐】.doc

中考总复习:函数综合—知识讲解(提高)【考纲要求】1.平面直角坐标系的有关知识平面直角坐标系中各象限和坐标轴上的点的坐标的特征,求点关于坐标轴、坐标原点的对称点的坐标,求线段的长度,几何图形的面积,求某些点的坐标等.2.函数的有关概念求函数自变量的取值范围,求函数值、函数的图象、函数的表示方法.3.函数的图象和性质常见的题目是确定图象的位置,利用函数的图象确定某些字母的取值,利用函数的性质解决某些问题.利用数形结合思想来说明函数值的变化趋势,又能反过来判定函数图象的位置.4.函数的解析式求函数的解析式,求抛物线的顶点坐标、对称轴方程,利用函数的解析式来求某些字母或代数式的值.一次函数、反比例函数和二次函数常与一元一次方程、一元二次方程、三角形的面积、边角关系、圆的切线、圆的有关线段组成综合题.【知识网络】【考点梳理】考点一、平面直角坐标系1.相关概念(1)平面直角坐标系(2)象限(3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标(1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标(3)平行于坐标轴的直线上的点的坐标(4)关于x 轴、y 轴、原点对称的点的坐标4.距离(1)平面上一点到x 轴、y 轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离(3)平面上任意两点间的距离5.坐标方法的简单应用(1)利用坐标表示地理位置(2)利用坐标表示平移要点诠释:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y ;(2)点P(x,y)到y 轴的距离等于x ;(3)点P(x,y)到原点的距离等于22y x +.考点二、函数及其图象1.变量与常量2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象要点诠释:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.考点三、一次函数1.正比例函数的意义2.一次函数的意义3.正比例函数与一次函数的性质4. 一次函数的图象与二元一次方程组的关系5.利用一次函数解决实际问题要点诠释:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k ;确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b.解这类问题的一般方法是待定系数法.考点四、反比例函数1.反比例函数的概念2.反比例函数的图象及性质3.利用反比例函数解决实际问题要点诠释:反比例函数中反比例系数的几何意义,如下图,过反比例函数)0(≠=k xk y 图像上任一点),(y x P 作x 轴、y 轴的垂线PM ,PN ,垂足为M 、N ,则所得的矩形PMON 的面积S=PM ∙PN=xy x y =∙. ,y xk = ∴||k S k xy ==,.考点五、二次函数1.二次函数的概念2.二次函数的图象及性质3.二次函数与一元二次方程的关系4.利用二次函数解决实际问题要点诠释:1、两点间距离公式(当遇到没有思路的问题时,可用此方法拓展思路,以寻求解题方法)如图:点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则AB 间的距离,即线段AB 的长度为()()221221y y x x -+-.2、函数平移规律:左加右减、上加下减.3、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当ab x 2-=时,ab ac y 442-=最值. 如果自变量的取值范围是21x x x ≤≤,那么,首先要看ab 2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=ab 2-时,a b ac y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小.4、抛物线的对称变换①关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---. ②关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++. ③关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-.④关于顶点对称 2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. ⑤关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-. 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称图象的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.考点六、函数的应用1.一次函数的实际应用2. 反比例函数的实际应用3. 二次函数的实际应用要点诠释:分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论.在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型.【典型例题】类型一、用函数的概念与性质解题1.在平面直角坐标系中,点A 的坐标是(4,0),点P 是第一象限内的直线y=6-x 上的点,O是坐标原点(如图所示):(1)P 点坐标设为(x, y) ,写出ΔOPA 的面积S 的关系式;(2)S 与y 具有怎样的函数关系,写出这函数中自变量y 的取值范围;(3)S 与x 具有怎样的函数关系?写出自变量x 的取值范围;(4)如果把x 看作S 的函数时,求这个函数解析式,并写出这函数中自变量取值范围;(5)当S=10时,求P 的坐标;(6)在直线y=6-x 上,求一点P ,使ΔPOA 是以OA 为底的等腰三角形.【思路点拨】本例的第(1)问是“SΔOPA”与“y”的对应关系,呈现正比例函数关系,y是自变量;第(3)问是“S”与“x”的对应关系,呈现一次函数关系,x是自变量;第(4)问是“x”与“S”的对应关系,呈现一次函数关系,S是自变量,不要被是什么字母所迷惑,而是要从“对应关系”这个本质去考虑,分清哪个是函数,哪个是自变量.【答案与解析】解:(1)过P点作x轴的垂线,交于Q,SΔOPA=|OA|·|PQ|=×4×y=2y.(2)S与y成正比例函数,即S=2y,自变量y的取值范围是0<y<6.(3)∵ y=6-x, ∴ S=2y=2(6-x)=12-2x,∴ S=-2x+12成为一次函数关系,自变量x的取值范围是0<x<6.(4)∵把x看作S的函数,∴将S=-2x+12变形为:x=,即这个函数的解析式为:x=-+6.自变量S的取值范围是:0<S<12.(5)当S=10时,代入(3)、(4)得:x=-+6=-+6=1, S=2y, 10=2y, ∴ y=5,∴ P点的坐标为(1,5).(6)以OA为底的等腰ΔOPA中,∵ OA=4,∴OA的中点为2,∴x=2,∵ y=6-x, ∴y=4. 即P点坐标为(2,4).【总结升华】数学从对运动的研究中引出了基本的函数概念,函数的本质就是对应,函数关系就是变量之间的对应关系,是一种特殊的对应关系. 函数的概念中,有两个变量,要分清对应关系,哪一个字母是函数,哪一个是自变量.比如“把x看作S的函数”时,对应关系为用S表示x,其中S是自变量,x是函数.举一反三:2x+4x+k-1=0有实数根,k为正整数.【变式】已知关于x的一元二次方程2(1)求k的值;y=2x+4x+k-1的图象向下平移8个单位,(2)当此方程有两个非零的整数根时,将关于x的二次函数2求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线1y =x+b(b <k)2与此图象有两公共点时,b 的取值范围.【答案】解:(1)由题意得,)1(816--=∆k ≥0 .∴k ≤3 . k 为正整数,∴k =1,2,3.(2) 当1k =时,方程22410x x k ++-=有一个根为零;当2k =时,方程22410x x k ++-=无整数根;当3k =时,方程22410x x k ++-=有两个非零的整数根.综上所述,1k =和2k =不合题意,舍去;3k =符合题意.当3k =时,二次函数为2242y x x =++,把它的图象向下平移8个单位得到的图象的解析式为2246y x x =+-.(3)设二次函数2246y x x =+-的图象与x 轴交于A 、B两点,则(3,0),(1,0)A B -.依题意翻折后的图象如图所示. 当直线12y x b =+经过A 点时,可得32b =;当直线12y x b =+经过B 点时,可得12b =-. 由图象可知,符合题意的b (3)b <的取值范围为1322b -<<.2.如图,在矩形ABCD 中,AB=3,BC=4,点P 在BC 边上运动,连结DP ,过点A 作AE ⊥DP ,垂足为E ,设DP=x ,AE=y ,则能反映y 与x 之间函数关系的大致图象是( )(A) (B) (C) (D)【思路点拨】本题应利用△APD 的面积的不同表示方法求得y 与x 的函数关系;或由△ADE ∽△DPC 得到 y 与x 的函数关系.【答案】C ;【解析】这是一个动点问题.很容易由△ADE ∽△DPC 得到AE AD =CD DP ,从而得出表达式12y x=; 也可连结PA ,由APD ABCD 1=S 2S △矩形得到表达式12y x=,排除(A)、(B). 因为点P 在BC 边上运动,当点P 与点C 重合时,DP 与边DC 重合,此时DP 最短,x=3;当点P 与点B 重合时,DP 与对角线BD 重合,此时DP 最长,x=5,即x 的临界值是3和5.又因为当x 取3和5时,线段AE 的长可具体求出,因此x 的取值范围是3≤x ≤5.正确答案选(C).【总结升华】解决动点问题的常用策略是“以静制动,动静结合”.找准特殊点,是求出临界值的关键.动态问题也是中考试题中的常见题型,要引起重视.举一反三:【变式】小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车.车修好后,因怕耽误上课,他比修车前加快骑车速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合这个同学行驶情况的图象大致是( ).【答案】A 表示小明一直在停下来修车,而没继续向前走,B 表示没有停下来修车,相反速度骑的比原来更慢,D 表示修车时又向回走了一段路才修好后又加快速度去学校.选项C 符合题意.类型二、函数的综合题3.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB=90°,BC=5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y=2x -6上时,线段BC 扫过的面积为( )A .4B .8C .16 D.y 值,解函数转化的一元一次方程求出x值,利用横坐标之差计算平移的距离;以及平行四边形面积公式.【答案】C ;【解析】将△ABC 沿x 轴向右平移,当点C 落在直线y=2x -6上时即当y=4时,解得x=5,所以平移的距离为5-1=4,又知BC 4=, 所以平行四边形面积=底×高=4×4=16.【总结升华】运用数形结合、平移变换、动静变化的数学思想方法是解此题的关键,综合性较强. 举一反三:【变式】在坐标系中,二次函数2(3)3(0)y mx m x m =+-->的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A 的坐标;(2)当45ABC ∠=︒时,求m 的值;(3)已知一次函数y kx b =+,点P (n ,0)是x 轴上的一个动点,在(2)的条件下,过点P 垂直于x 轴的直线交这个一次函数的图象于点M ,交二次函数2(3)3(0)y mx m x m =+-->的图象于N . 若只有当22n -<<时,点M 位于点N 的上方,求这个一次函数的解析式.【答案】(1)∵点A 、B 是二次函数()332--+=x m mx y (0>m )的图象与x 轴交点,∴令0=y ,即()332--+=x m mx y .解得:11-=x ,mx 32=. 又∵点A 在点B 左侧且0>m ,∴点A 的坐标为(-1,0).(2)由(1)可知点B 的坐标为(m3,0) ∵二次函数与y 轴交于点C ,∴点C 的坐标为(0,-3).∵∠ABC=45°,∴m3=3. ∴m =1.(3)由(2)得,二次函数解析式为322--=x x y .依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为-2和2,由此可得交点坐标为(-2,5)和(2,-3).将交点坐标分别代入一次函数解析式b kx y +=中,∴一次函数的解析式为12+-=x y .4.(2015•湖北模拟)函数y=和y=在第一象限内的图象如图,点P 是y=的图象上一动点,PC⊥x 轴于点C ,交y=的图象于点B .给出如下结论:①△ODB 与△OCA 的面积相等;②PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化;④CA=AP .其中所有正确结论的序号是( ),52=+-b k 得 ,32-=+b k 解得 .b 1=.k 2-=A.①②③B.②③④C.①③④D.①②④【思路点拨】由于A、B是反比函数y=上的点,可得出S△OBD=S△OAC=,故①正确;当P的横纵坐标相等时PA=PB,故②错误;根据反比例函数系数k的几何意义可求出四边形PAOB的面积为定值,故③正确;连接PO,根据底面相同的三角形面积的比等于高的比即可得出结论.【答案】C.【解析】解:∵A、B是反比函数y=上的点,∴S△OBD=S△OAC=,故①正确;当P的横纵坐标相等时PA=PB,故②错误;∵P是y=的图象上一动点,∴S矩形PDOC=4,∴S四边形PAOB=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣﹣=3,故③正确;连接OP,===4,∴AC=PC,PA=PC,∴=3,∴AC=AP;故④正确;综上所述,正确的结论有①③④.故选C.【总结升华】本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键.举一反三:【变式】如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于点E,且E是BC中点;动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是().. .【答案】B 解:根据题意得:当点P 在ED 上运动时,S=BC•PE=2t;当点P 在DA 上运动时,此时S=8;当点P 在线段AB 上运动时,S=BC (AB+AD+DE ﹣t )=5﹣t ;结合选项所给的函数图象,可得B 选项符合.故选B .类型三、函数与几何综合题5.如图,将—矩形OABC 放在直角坐际系中,O 为坐标原点.点A 在y 轴正半轴上.点E 是边AB 上的—个动点(不与点A 、B 重合),过点E 的反比例函数(0)k y x x=>的图象与边BC 交于点F. (1)若△OAE、△OCF 的而积分别为S 1、S 2.且S 1+S 2=2,求k 的值; (2)若OA=2.0C=4.问当点E 运动到什么位置时,四边形OAEF 的面积最大.其最大值为多少?【思路点拨】(1)设E (1x , 1k x ),F (2x ,2k x ),1x >0,2x >0,根据三角形的面积公式得到S 1=S 2= 2k , 利用S 1+S 2=2即可求出k .(2)设E(2k ,2), F(4,4k ),利用S 四边形OAEF =S 矩形OABC -S △BEF -S △OCF =()214516k --+,根据二次函数的最值即可得到当点E 运动到AB 的中点时,四边形OAEF 的面积最大,最大值是5.【答案与解析】解:(1)∵点E 、F 在函数(0)k y x x=>的图象上, ∴设E (1x , 1k x ),F (2x ,2k x ),1x >0,2x >0,∴S 1=11122k k x x ⋅⋅=,S 2=22122k k x x ⋅⋅=. ∵S 1+S 2=2,∴ 222k k +=.∴2k =. (2)∵四边形OABC 为矩形,OA=2,OC=4,∴设 E(2k ,2), F(4,4k ). ∴BE=4-2k ,BF=2-4k . ∴S △BEF = 21142422416k k k k ⎛⎫⎛⎫⋅-⋅-=-+ ⎪ ⎪⎝⎭⎝⎭,S △OCF = 14242k k ⋅⋅=,S 矩形OABC =2×4=8, ∴S 四边形OAEF =S 矩形OABC -S △BEF -S △OCF = 8-(21416k k -+)-214162k k -++ =()214516k --+. ∴当k =4时,S 四边形OAEF=5.∴AE=2.∴当点E 运动到AB 的中点时,四边形OAEF 的面积最大,最大值是5.【总结升华】本题属于反比例函数综合题,考查曲线图上点的坐标与方程的关系,二次函数的最值.6.(2015•宿迁)如图,在平面直角坐标系中,已知点A (8,1),B (0,﹣3),反比例函数 y=(x >0)的图象经过点A ,动直线x=t (0<t <8)与反比例函数的图象交于点M ,与直线AB 交于 点N .(1)求k 的值;(2)求△BMN 面积的最大值;(3)若MA⊥AB,求t 的值.【思路点拨】(1)把点A 坐标代入y=(x >0),即可求出k 的值;(2)先求出直线AB 的解析式,设M (t ,),N (t ,t ﹣3),则MN=﹣t+3,由三角形的面积公式得出△BMN 的面积是t 的二次函数,即可得出面积的最大值;(3)求出直线AM 的解析式,由反比例函数解析式和直线AM 的解析式组成方程组,解方程组求出M 的坐标,即可得出结果.【答案与解析】解:(1)把点A (8,1)代入反比例函数y=(x >0)得:k=1×8=8,y=,∴k=8;(2)设直线AB 的解析式为:y=kx+b ,根据题意得:,解得:k=,b=﹣3,∴直线AB的解析式为:y=x﹣3;设M(t,),N(t,t﹣3),则MN=﹣t+3,∴△BMN的面积S=(﹣t+3)t=﹣t2+t+4=﹣(t﹣3)2+,∴△BMN的面积S是t的二次函数,∵﹣<0,∴S有最大值,当t=3时,△BMN的面积的最大值为;(3)∵MA⊥AB,∴设直线MA的解析式为:y=﹣2x+c,把点A(8,1)代入得:c=17,∴直线AM的解析式为:y=﹣2x+17,解方程组得:或(舍去),∴M的坐标为(,16),∴t=.【总结升华】本题是反比例函数综合题目,考查了用待定系数法求反比例函数和一次函数的解析式、二次函数的最值问题、垂线的性质等知识;本题难度较大,综合性强.7.如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线y=﹣x2+bx+c经过坐标原点O和x轴上另一点E(4,0)(1)当x取何值时,该抛物线取最大值?该抛物线的最大值是多少?(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).①当t=时,判断点P是否在直线ME上,并说明理由;②以P、N、C、D为顶点的多边形面积是否可能为5?若有可能,求出此时N点的坐标;若无可能,请说明理由.【思路点拨】(1)根据O、E的坐标即可确定抛物线的解析式,进而求出其顶点坐标,即可得出所求的结论;(2)①当t=时,OA=AP=,由此可求出P点的坐标,将其代入抛物线的解析式中进行验证即可;②此题要分成两种情况讨论:(i)PN=0时,即t=0或t=3时,以P、N、C、D为顶点的多边形是△PCD,以CD为底AD长为高即可求出其面积;(ii)P N≠0时,即0<t<3时,以P、N、C、D为顶点的多边形是梯形PNCD,根据抛物线的解析式可表示出N点的纵坐标,从而得出PN的长,根据梯形的面积公式即可求出此时S、t的函数关系式,令S=5,可得到关于t的方程,若方程有解,根据求得的t值即可确定N点的坐标,若方程无解,则说明以P、N、C、D为顶点的多边形的面积不可能为5.【答案与解析】解:(1)因抛物线y=﹣x2+bx+c经过坐标原点O(0,0)和点E(4,0),故可得c=0,b=4,所以抛物线的解析式为y=﹣x2+4x,由y=﹣x2+4x,y=﹣(x﹣2)2+4,得当x=2时,该抛物线的最大值是4;(2)①点P不在直线ME上;已知M点的坐标为(2,4),E点的坐标为(4,0),设直线ME的关系式为y=kx+b;于是得,解得所以直线ME的关系式为y=﹣2x+8;由已知条件易得,当t=时,OA=AP=,P(,)∵P点的坐标不满足直线ME的关系式y=﹣2x+8;∴当t=时,点P不在直线ME上;②以P、N、C、D为顶点的多边形面积可能为5∵点A在x轴的非负半轴上,且N在抛物线上,∴OA=AP=t;∴点P、N的坐标分别为(t,t)、(t,﹣t2+4t)∴AN=﹣t2+4t(0≤t≤3),∴AN﹣AP=(﹣t2+4t)﹣t=﹣t2+3t=t(3﹣t)≥0,∴PN=﹣t2+3t(ⅰ)当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD,∴S=DC•AD=×3×2=3;(ⅱ)当PN≠0时,以点P,N,C,D为顶点的多边形是四边形∵PN∥CD,AD⊥CD,∴S=(CD+PN)•AD=[3+(﹣t2+3t)]×2=﹣t2+3t+3当﹣t2+3t+3=5时,解得t=1、2而1、2都在0≤t≤3范围内,故以P、N、C、D为顶点的多边形面积为5综上所述,当t=1、2时,以点P,N,C,D为顶点的多边形面积为5,当t=1时,此时N点的坐标(1,3)当t=2时,此时N点的坐标(2,4).【总结升华】本题是二次函数的综合题型,其中涉及的知识点有抛物线的顶点坐标的求法、图形的面积求法以及二次函数的应用.在求有关动点问题时要注意分析题意分情况讨论结果.说明:(ⅱ)中的关系式,当t=0和t=3时也适合,(故在阅卷时没有(ⅰ),只有(ⅱ)也可以,不扣分)。

北师大一次函数复习讲义(知识点、经典典例题、中考真题)

北师大一次函数复习讲义(知识点、经典典例题、中考真题)

北师大一次函数复习讲义知识点1、一次函数的意义知识点:一次函数:若两个变量x 、y 间的关系式可以表示成b kx y +=(k 、b 为常数,0≠k )的形式,称y 是x 的一次函数。

正比例函数:形如kx y =(0≠k )的函数,称y 是x 的正比例函数,此时也可说y 与x 成正比例,正比例函数是一次函数,但一次函数并不一定是正比例函数 习题练习1、下列函数(1)y=3πx ;(2)y=8x-6;(3)1y x =;(4)1y 8x 2=-;(5)2y 541x x =-+中,是一次函数的有( )A 、4个B 、3个C 、2个D 、1个2、当k_____________时,()2323y k x x =-++-是一次函数;3、当m_____________时,()21345m y m xx +=-+-是一次函数; 4、当m_____________时,()21445m y m x x +=-+-是一次函数;知识点2、求一次函数的解析式知识点:确定正比例函数kx y =的解析式:只须一个条件,求出待定系数k 即可. 确定一次函数b kx y +=的解析式:只须二个条件,求出待定系数k 、b 即可. A 、设——设出一次函数解析式,即b kx y +=;B 、代——把已知条件代入b kx y +=中,得到关于k 、b 的方程(组);C 、求——解方程(组),求k 、b ;D 、写——写出一次函数解析式.常见题型归类第一种情况:不已知函数类型(不可用待定系数法),通过寻找题目中隐含的自变量和函数变量之间的数量关系,建立函数解析式。

(见前面函数解析式的确定) 第二种情况:已知函数是一次函数(直接或间接),采用待定系数法。

(已知是一次函数或已知解析式形式y kx b =+或已知函数图象是直线都是直接或间接已知了一次函数) 一、定义型 一次函数的定义:形如y kx b =+,k 、b 为常数,且k≠0。

二. 平移型 两条直线1l:11y k x b =+;2l :22y k x b =+。

北师大版初中数学中考考点梳理

北师大版初中数学中考考点梳理

北师大版初中数学知识点梳理北师大版初中数学知识点梳理,按照中考一轮复习的顺序整理的,知识点很全面,适合所有采用北师大版教材的地区,稍作改动后,也可适用于人教版或其他版本教材的地区。

供大家参考学习!第一章实数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1(2)有特定意义的数,如圆周率π,或化简后含有π的数,如等;(3)有特定结构的数,如…等;(4)某些三角函数,如sin60o等考点二、实数的倒数、相反数和绝对值(3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根(3—10分)1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a2、算术平方根正数a的正的平方根叫做a正数和零的算术平方根都只有一个,零的算术平方根是零。

a(a0)-a(a<0)a≥03、立方根如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

考点四、科学记数法和近似数(3—6分)1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

北师大版八年级上册数学[一次函数全章复习与巩固(基础版)知识点整理及重点题型梳理]

北师大版八年级上册数学[一次函数全章复习与巩固(基础版)知识点整理及重点题型梳理]

北师大版八年级上册数学重难点突破知识点梳理及重点题型巩固练习一次函数全章复习与巩固(基础)【学习目标】 1.了解常量、变量和函数的概念,了解函数的三种表示方法(列表法、解析式法和图象法),能利用图象数形结合地分析简单的函数关系.2.理解正比例函数和一次函数的概念,会画它们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决简单实际问题.3.通过讨论一次函数与方程(组)及不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程(组)及不等式等内容的再认识. 4. 通过讨论选择最佳方案的问题,提高综合运用所学函数知识分析和解决实际问题的能力.要点一、函数的相关概念 一般地,在一个变化过程中. 如果有两个变量 x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是x 的函数. y 是x 的函数,如果当x =a 时y =b ,那么b 叫做当自变量为a 时的函数值. 函数的表示方法有三种:解析式法,列表法,图象法. 要点二、一次函数的相关概念一次函数的一般形式为y kx b =+,其中k 、b 是常数,k ≠0.特别地,当b =0时,一次函数y kx b =+即y kx =(k ≠0),是正比例函数.要点三、一次函数的图象及性质 1、函数的图象如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 要点诠释:直线y kx b =+可以看作由直线y kx =平移|b |个单位长度而得到(当b >0时,向上平移;当b <0时,向下平移).说明通过平移,函数y kx b =+与函数y kx =的图象之间可以相互转化.2、一次函数性质及图象特征掌握一次函数的图象及性质(对比正比例函数的图象和性质)要点诠释:理解k 、b 对一次函数y kx b =+的图象和性质的影响:(1)k 决定直线y kx b =+从左向右的趋势(及倾斜角α的大小——倾斜程度),b 决定它与y 轴交点的位置,k 、b 一起决定直线y kx b =+经过的象限.(2)两条直线1l :11y k x b =+和2l :22y k x b =+的位置关系可由其系数确定:12k k ≠⇔1l 与2l 相交;12k k =,且12b b ≠⇔1l 与2l 平行; 12k k =,且12b b =⇔1l 与2l 重合;(3)直线与一次函数图象的联系与区别一次函数的图象是一条直线;特殊的直线x a =、直线y b =不是一次函数的图象.【典型例题】类型一、函数的概念1、下列说法正确的是:( )A.变量,x y 满足23x y +=,则y 是x 的函数;B.变量,x y 满足x y =||,则y 是x 的函数;C.变量,x y 满足x y =2,则y 是x 的函数; D.变量,x y 满足221y x -=,则y 是x 的函数.【答案】A ;【解析】B 、C 、D 三个选项,对于一个确定的x 的值,都有两个y 值和它对应,不满足单值对应的条件,所以不是函数.【总结升华】理解函数的概念,关键是函数与自变量之间是单值对应关系,自变量的值确定后,函数值是唯一确定的. 举一反三:【变式】如图的四个图象中,不表示某一函数图象的是( )【答案】B ;2、求函数的自变量的取值范围.【思路点拨】要使函数有意义,需或解这个不等式组即可.【答案与解析】 解:要使函数有意义,则x 要符合:2101x x -≥- 即:或解方程组得自变量取值是或.【总结升华】自变量的取值范围是使函数有意义的x 的集合. 举一反三:【变式】求出下列函数中自变量x 的取值范围(1)01x y x =+(2)|2|23-+=x x y(3)y =【答案】解:(1)要使01x y x =+有意义,需010x x ≠⎧⎨+≠⎩,解得x ≠0且x ≠-1;(2)要使|2|23-+=x x y 有意义,需32020x x +≥⎧⎨-≠⎩,解得223x x ≥-≠且;(3)要使y =230320x x -≥⎧⎨-≥⎩,解得32x =.类型二、一次函数的解析式3、已知y 与2x -成正比例关系,且其图象过点(3,3),试确定y 与x 的函数关系,并画出其图象.【思路点拨】y 与2x -成正比例关系,即(2)y k x =-,将点(3,3)代入求得函数关系式.【答案与解析】解:设(2)y k x =-,由于图象过点(3,3)知3k =,故3(2)36y x x =-=-. 其图象为过点(2,0)与(0,-6)的一条直线(如图所示).【总结升华】y 与x 成正比例满足关系式y kx =,y 与x -2成正比例满足关系式(2)y k x =-,注意区别.举一反三:【变式】直线y kx b =+平行于直线21y x =-,且与x 轴交于点(2,0),求这条直线的解析式. 【答案】解:∵直线y kx b =+平行于直线21y x =- ∴2k =∵与x 轴交于点(2,0) ∴①将k =2代入①,得4b =-∴此直线解析式为24y x =-. 类型三、一次函数的图象和性质4、已知正比例函数y kx =(k ≠0)的函数值y 随x 的增大而减小,则一次函数y x k =+的图象大致是图中的( ).【答案】B ;【解析】∵y 随x 的增大而减小,∴ k <0.∵y x k =+中x 的系数为1>0,k <0, ∴经过一、三、四象限,故选B . 【总结升华】本题综合考查正比例函数和一次函数图象和性质,k >0时,函数值随自变量x 的增大而增大. 举一反三:【变式】 已知正比例函数()21y m x =-的图象上两点A(1x , 1y ), B(2x ,2y ),当 12x x <时, 有12y y >, 那么m 的取值范围是( ) A . 12m <B .12m >C . 2m <D .0m > 【答案】 A ;提示:由题意y 随着x 的增大而减小,所以210m -<,选A 答案.类型四、一次函数与方程(组)、不等式5、如图,平面直角坐标系中画出了函数y kx b =+的图象. (1)根据图象,求k 和b 的值.(2)在图中画出函数22y x =-+的图象.(3)求x 的取值范围,使函数y kx b =+的函数值大于函数22y x =-+的函数值.【思路点拨】(3)画出函数图象后比较,要使函数y kx b =+的函数值大于函数22y x =-+的函数值,需y kx b =+的图象在22y x =-+图象的上方. 【答案与解析】解:(1)∵直线y kx b =+经过点(-2,0),(0,2).∴解得∴2y x =+.(2)22y x =-+经过(0,2),(1,0),图象如图所示.(3)当y kx b =+的函数值大于22y x =-+的函数值时,也就是222x x +>-+,解得x >0,•即x 的取值范围为x >0.【总结升华】函数图象在上方函数值比函数图象在下方函数值大. 举一反三: 【变式】(2015•武汉校级模拟)已知一次函数y=kx+b 的图象经过点(3,5)与(﹣4,﹣9). (1)求这个一次函数的解析式;(2)求关于x 的不等式kx+b≤5的解集.【答案】解:∵一次函数y=kx+b 的图象经过点点(3,5)与(﹣4,﹣9),∴,解得∴函数解析式为:y=2x ﹣1; (2)∵k=2>0,∴y 随x 的增大而增大,把y=5代入y=2x ﹣1解得,x=3, ∴当x≤3时,函数y≤5,故不等式kx+b≤5的解集为x≤3.类型五、一次函数的应用6、(2015•黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元?【答案与解析】解:(1)设每吨水的政府补贴优惠价为a元,市场调节价为b元.根据题意得,解得:.答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元.(2)∵当0≤x≤12时,y=x;当x>12时,y=12+(x﹣12)×2.5=2.5x﹣18,∴所求函数关系式为:y=.(3)∵x=26>12,∴把x=26代入y=2.5x﹣18,得:y=2.5×26﹣18=47(元).答:小英家三月份应交水费47元.【总结升华】本题考查了一次函数的应用,题目还考查了二元一次方程组的解法,特别是在求一次函数的解析式时,此函数是一个分段函数,同时应注意自变量的取值范围.举一反三:【变式】一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以以0.20元的价格返回报社,在一个月内(以30天计算),有20天每天可卖出100份,其余10天,每天可卖出60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为,每月所获得的利润为.(1)写出与之间的函数关系式,并指出自变量的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?【答案】解:(1).类型六、一次函数综合7、如图所示,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过A 、B 两点,直线1l 、2l 交于点C . (1)求点D 的坐标; (2)求直线2l 的解析表达式; (3)求△ADC 的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,请直接写出点P 的坐标.【答案与解析】解: (1)由33y x =-+,当y =0,得33x -+=0,得x =l .∴ D(1,0).(2)设直线2l 的解析表达式为y kx b =+,由图象知,4x =,0y =;3x =,32y =-. 将这两组值代入,得方程组40,33.2k b k b +=⎧⎪⎨+=-⎪⎩解得3,26.k b ⎧=⎪⎨⎪=-⎩∴ 直线2l 的解析表达式为362y x =-. (3)∵ 点C 是直线1l 与2l 的交点,于是有33,36.2y x y x =-+⎧⎪⎨=-⎪⎩ 解得2,3.x y =⎧⎨=-⎩ ∴ C(2,-3).∴△ADC的AD边上的高为3.∵ OD=1,OA=4,∴ AD=3.∴ADC 19 3|3|22S=⨯⨯-=△.(4)P(6,3).【总结升华】这是一道一次函数图象与性质的综合应用问题,求直线的函数解析式,一般运用待定系数法,但运用过程中,又要具体问题具体分析;求底边在坐标轴上三角形的面积的关键是探求该三角形的高.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:函数综合—知识讲解(基础)【考纲要求】1.平面直角坐标系的有关知识平面直角坐标系中各象限和坐标轴上的点的坐标的特征,求点关于坐标轴、坐标原点的对称点的坐标,求线段的长度,几何图形的面积,求某些点的坐标等;2.函数的有关概念求函数自变量的取值范围,求函数值、函数的图象、函数的表示方法;3.函数的图象和性质常见的题目是确定图象的位置,利用函数的图象确定某些字母的取值,利用函数的性质解决某些问题.利用数形结合思想来说明函数值的变化趋势,又能反过来判定函数图象的位置;4.函数的解析式求函数的解析式,求抛物线的顶点坐标、对称轴方程,利用函数的解析式来求某些字母或代数式的值.一次函数、反比例函数和二次函数常与一元一次方程、一元二次方程、三角形的面积、边角关系、圆的切线、圆的有关线段组成综合题.【知识网络】【考点梳理】考点一、平面直角坐标系1.相关概念(1)平面直角坐标系(2)象限(3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标(1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标(3)平行于坐标轴的直线上的点的坐标(4)关于x轴、y轴、原点对称的点的坐标4.距离(1)平面上一点到x轴、y轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离(3)平面上任意两点间的距离5.坐标方法的简单应用(1)利用坐标表示地理位置(2)利用坐标表示平移要点诠释:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y ;(2)点P(x,y)到y 轴的距离等于x ;(3)点P(x,y)到原点的距离等于22y x +.考点二、函数及其图象1.变量与常量2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象要点诠释:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.考点三、一次函数1.正比例函数的意义2.一次函数的意义3.正比例函数与一次函数的性质4. 一次函数的图象与二元一次方程组的关系5.利用一次函数解决实际问题要点诠释:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k ;确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b.解这类问题的一般方法是待定系数法.考点四、反比例函数1.反比例函数的概念2.反比例函数的图象及性质3.利用反比例函数解决实际问题要点诠释:反比例函数中反比例系数的几何意义,如下图,过反比例函数)0(≠=k xk y 图像上任一点),(y x P 作x 轴、y 轴的垂线PM ,PN ,垂足为M 、N ,则所得的矩形PMON 的面积S=PM ∙PN=xy x y =∙. ,y xk = ∴||k S k xy ==,.考点五、二次函数1.二次函数的概念2.二次函数的图象及性质3.二次函数与一元二次方程的关系4.利用二次函数解决实际问题要点诠释:1、两点间距离公式(当遇到没有思路的问题时,可用此方法拓展思路,以寻求解题方法)如图:点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则AB 间的距离,即线段AB 的长度为()()221221y y x x -+-.2、函数平移规律:左加右减、上加下减.考点六、函数的应用1.一次函数的实际应用2. 反比例函数的实际应用3. 二次函数的实际应用要点诠释:分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论.在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型.【典型例题】类型一、用函数的概念与性质解题1.已知一次函数y=(3a-2)x+(1-b),求字母a, b的取值范围,使得:(1)y随x的增大而增大;(2)函数图象与y轴的交点在x轴的下方;(3)函数的图象过第一、二、四象限.【思路点拨】(1)y=kx+b (k≠0)的图象,当k>0时,y随x的增大而增大;(2)当b<0时,函数图象与y轴的交点在x轴的下方;(3)当k<0, b>0时时,函数的图象过第一、二、四象限. 【答案与解析】解:a、b的取值范围应分别满足:(1)由一次函数y=kx+b(k≠0)的性质可知:当k>0时,函数值y随x的增大而增大,即3a-2>0,∴23a>, 且b取任何实数.(2)函数图象与y轴的交点为(0,1-b),∵交点在x轴的下方,∴,即a≠, b>1.(3)函数图象过第一、二、四象限,则必须满足 .【总结升华】下面是y=kx(k≠0), y=kx+b (k≠0)的图象的特点和性质的示意图,如图1,当k>0时,y随x的增大而增大;当b>0时,图象过一、二、三象限,当b=0时,是正比例函数,当b<0时,图象过一、三、四象限;当y=x时,图象过一、三象限,且是它的角平分线.由于常数k、b不同,可得到不同的函数,k决定直线与x轴夹角的大小,b 决定直线与y轴交点的位置,由k定向,由b定点.同样,如图2,是k<0的各种情况,请你指出它们的图象的特点和性质.举一反三:【变式】作出函数y=x, 2x y x=,2y =的图象,它们是不是同一个函数?【答案】 函数2y =的自变量x 的取值范围是x≥0;函数2x y x =在x≠0时,就是函数y=x ;而x=0不在函数2x y x=的自变量x 的取值范围之内. 由此,作图如下:可见它们不是同一个函数.类型二、函数图象及性质2.已知: (1)m 为何值时,它是一次函数.(2)当它是一次函数时,画出草图,指出它的图象经过哪几个象限?y 是随x 的增大而增大还是减小?(3)当图象不过原点时,求出该图象与坐标轴交点间的距离,及图象与两轴所围成的三角形面积.【思路点拨】一次函数应满足:一次项(或自变量)的指数为1,系数不为0.【答案与解析】(1)依题意:,解得m=1或m=4.∴当m=1或m=4时,它是一次函数.(2)当m=4时,函数为y=2x ,是正比例函数,图象过一,三象限,y 随x 的增大而增大. 当m=1时,函数为y=-x-3,直线过二,三,四象限,y 随x 的增大而减小.(3)直线y=-x-3不过原点,它与x 轴交点为A(-3,0),与y 轴交点为B(0,-3),..∴直线y=-x-3与两轴交点间的距离为,与两轴围成的三角形面积为. 【总结升华】(1)某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0.(2)判断函数的增减性,关键是确定直线y=kx+b (k ≠0)中k 、b 的符号.(3)直线y=kx+b (k ≠0)与两轴的交点坐标可运用x 轴、y 轴上的点的特征来求,当直线y=kx+b (k ≠0)上的点在x 轴上时,令y=0,则,交点为;当直线y=kx+b (k ≠0)上的点在y 轴上时,令x=0,则y=b ,即交点为(0,b).举一反三:【变式】已知关于x 的方程2(3)40x m x m --+-=.(1)求证:方程总有两个实数根;(2)若方程有一个根大于4且小于8,求m 的取值范围;(3)设抛物线2(3)4y x m x m =--+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.【答案】证明:(1)22224(3)4(4)1025(5)b ac m m m m m ∆=-=---=-+=-≥0,所以方程总有两个实数根. 解:(2)由(1)2(5)m ∆=-,根据求根公式可知,方程的两根为:x = 即11x =,24x m =-, 由题意,有448m <-<,即812m <<.(3)易知,抛物线2(3)4y x m x m =--+-与y 轴交点为M (0,4m -),由(2)可知抛物线与x 轴的交点为(1,0)和(4m -,0),它们关于直线y x =-的对称点分别为(0,1-)和(0, 4m -), 由题意,可得14m -=-或44m m -=-,所以3m =或4m =.3.抛物线y=x 2+bx+c 图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x 2﹣2x ﹣3,则b 、c 的值为( )A .b=2,c=2B .b=2,c=0C .b=﹣2,c=﹣1D .b=﹣3,c=2【思路点拨】易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式,展开即可得到b ,c 的值.【答案】B .【解析】解:由题意得新抛物线的顶点为(1,﹣4),∴原抛物线的顶点为(﹣1,﹣1),设原抛物线的解析式为y=(x ﹣h )2+k 代入得:y=(x+1)2﹣1=x 2+2x ,∴b=2,c=0.故选B .【总结升华】抛物线的平移不改变二次项系数的值;讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可. 4【答案】-k <.【总结升华】本题考查了反比例函数与一次函数的交点问题.关键是转化成关于x的一元二次方程,再确定k的取值范围.类型三、函数综合题5.(2015春•姜堰市校级月考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣,有下列结论:①ab>0;②a+b+c<0;③b+2c<0;其中正确结论的个数是()A.0 B.1C.2D.3【思路点拨】根据开口方向、对称轴、抛物线与y轴的交点,确定a、b、c的符号,根据对称轴和图象确定y>0或y <0时,x的范围,确定代数式的符号.【答案】C.【解析】解:①∵开口向下,∴a<0,对称轴在y轴的左侧,b<0,∴①正确;②当x=1时,y<0,∴a+b+c<0,②正确;③﹣=﹣,2a=3b,x=﹣1时,y>0,a﹣b+c>0,b+2c>0③错误;故选:C.【总结升华】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.举一反三:【变式】二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A. B. C. D.【答案】由抛物线的图象可知,横坐标为1的点,即(1,a+b+c)在第四象限,因此a+b+c<0;∴双曲线的图象在第二、四象限;由于抛物线开口向上,所以a>0;对称轴x=>0,所以b<0;抛物线与x轴有两个交点,故b2﹣4ac>0;∴直线y=bx+b2﹣4ac经过第一、二、四象限.故选D.类型四、函数的应用6.(2015•舟山)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?【思路点拨】(1)把y=420代入y=30x+120,解方程即可求得;(2)根据图象求得成本p 与x 之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W 与x 的关系式,再根据一次函数的增减性和二次函数的增减性解答;(3)根据(2)得出m+1=13,根据利润等于订购价减去成本价得出提价a 与利润w 的关系式,再根据题意列出不等式求解即可.【答案】解:(1)设李明第n 天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x≤9时,p=4.1;当9≤x≤15时,设P=kx+b ,把点(9,4.1),(15,4.7)代入得,, 解得, ∴p=0.1x+3.2,①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w 最大=513(元);②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,∵x 是整数,∴当x=9时,w 最大=714(元);③9<x≤15时,w=(6﹣0.1x ﹣3.2)×(30x+120)=﹣3x 2+72x+336,∵a=﹣3<0,∴当x=﹣=12时,w 最大=768(元);综上,当x=12时,w 有最大值,最大值为768.(3)由(2)可知m=12,m+1=13,设第13天提价a 元,由题意得,w 13=(6+a ﹣p )(30x+120)=510(a+1.5),∴510(a+1.5)﹣768≥48,解得a=0.1.答:第13天每只粽子至少应提价0.1元.【总结升华】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.举一反三:【变式】抛物线2y ax bx c =++,a >0,c <0,2360a b c ++=.(1)求证:1023b a +>; (2)抛物线经过点1(,)2P m ,Q (1,)n . ① 判断mn 的符号; ② 抛物线与x 轴的两个交点分别为点A 1(,0)x ,点B 2(,0)x (A 在B 左侧),请说明116x <,2112x <<.【答案】(1)证明:∵ 2360a b c ++=,∴12362366b a b c c a a a a++==-=-. ∵ a >0,c <0,∴ 0c a <,0c a->. ∴ 1023b a +>.(2)解:∵ 抛物线经过点P 1(,)2m ,点Q (1,)n , ∴ 11 ,42 .a b c m a b c n ⎧++=⎪⎨⎪++=⎩① ∵ 2360a b c ++=,a >0,c <0,∴ 223a b c +=-,223a b c =--. ∴ 1112111()42424312b c m a b c a a a a +=++=+=+-=-<0. 2(2)33a a n abc a c c c =++=+--+=->0. ∴ 0mn <. ② 由a >0知抛物线2y ax bx c =++开口向上.∵ 0m <,0n >,∴ 点P 1(,)2m 和点Q (1,)n 分别位于x 轴下方和x 轴上方.∵ 点A ,B 的坐标分别为A 1(,0)x ,B 2(,0)x (点A 在点B 左侧),∴ 由抛物线2y ax bx c =++的示意图可知,对称轴右侧的点B 的横坐标2x 满足2112x <<. ∵ 抛物线的对称轴为直线2b x a =-,由抛物线的对称性可1222x x b a +=-,由(1)知123b a -<, ∴ 12123x x +<. ∴ 12221332x x <-<-,即116x <.。

相关文档
最新文档