高一物理力学例题经典(1)

合集下载

高一物理力学典型例题

高一物理力学典型例题

以下是一些高一物理力学的典型例题:1. 一个物体在水平地面上做匀速直线运动,受到的摩擦力是20N,那么物体受到的拉力是()A. 大于20NB. 等于20NC. 小于20ND. 无法判断答案:B解析:物体做匀速直线运动时,处于平衡状态,受到的摩擦力和拉力是一对平衡力,所以拉力等于摩擦力等于20N。

2. 一辆汽车在平直的公路上行驶,从甲地经过乙地到达丙地,若汽车在甲、乙两地间的平均速度为v1,在乙、丙两地间的平均速度为v2,则汽车从甲地到丙地的平均速度为()A. (v1+v2)/2B. v1+v2C. v1v2/(v1+v2)D. v1v2/v1+v2答案:C解析:设甲、乙两地间的距离为s1,乙、丙两地间的距离为s2,则汽车从甲地到乙地的时间t1=s1/v1,从乙地到丙地的时间t2=s2/v2,则汽车从甲地到丙地的平均速度v=s1+s2/t1+t2=s1+s2/s1/v1+s2/v2=v1v2/v1+v2。

3. 一个物体在竖直方向上做自由落体运动,其在t时间内位移为x,在紧接着的t时间内位移为x\prime,则物体刚下落时离地面的高度为()A. x+x\prime/t\textsuperscript{2}B. x-x\prime/t\textsuperscript{2}C.x+x\prime/t\textsuperscript{2}-gt\textsuperscript{2}/4D.x+x\prime/t\textsuperscript{2}+gt\textsuperscript{2}/4 答案:C解析:根据自由落体运动的位移时间关系公式,有x=gt\textsuperscript{2}/2;x′=g(t+t\textsubscript{0})\textsuperscript{2}/2,其中t\textsubscript{0}=t,解得物体刚下落时离地面的高度h=x+x′/t\textsuperscript{2}-gt\textsuperscript{2}/4。

高一物理《力学》精练试卷(1)及答案

高一物理《力学》精练试卷(1)及答案

高一物理《力学》精练试卷(1)及答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分,考试用时60分钟。

第Ⅰ卷(选择题,共40分)一、选择题(每小题4分,共40分。

在每小题给出的四个选项中,至少有一个选项是正确的,全部选对得4分,对而不全得2分。

)1.关于力的下述说法中正确的是()A.力是物体对物体的作用B.只有直接接触的物体间才有力的作用C.力可以离开物体而独立存在D.力的大小可以用天平测量2.关于地球上的物体,下列说法中正确的是()A.物体静止时不受到重力作用B.物体只有落向地面时才受到重力作用C.物体落向地面时比物体上抛时所受的重力小D.物体所受重力的大小与物体的质量有关,与物体是否运动及怎样运动无关3.关于物体的重心,以下说法中正确的是()A.物体的重心不一定在物体上B.用线悬挂的物体静止时,细线方向一定通过重心C.一块砖平放、侧放或立放时,其重心在砖内的位置不变D.舞蹈演员在做各种优美动作时,其重心的位置不变4.一个物体所受重力在下列哪些情况下要发生变化()A.把它从赤道拿到南极B.把它送到月球上去C.把它放到水里D.改变它的运动状态5.下列说法中不正确...的是()A.书放在水平桌面上受到的支持力,是由于书发生了微小形变而产生的B.用细木棍拨动浮在水中的圆木,圆木受到的弹力是由于细木棍发生形变而产生的C.绳对物体的拉力方向总是沿着绳而指向绳收缩的方向D.支持力的方向总是垂直于支持面而指向被支持的物体6.关于摩擦力,下面说法正确的是()A.摩擦力的方向总是和物体的运动方向相反B.相互压紧,接触面粗糙的物体之间总有摩擦力C.相互接触的物体之间,压力增大,摩擦力一定增大D.静止的物体受到静摩擦力的大小和材料的粗糙程度无关7.如图1所示,用水平力F把一铁块紧压在竖直墙壁上静止不动,当F增大时()Array A.墙对铁块的弹力增大B.墙对铁块的摩擦力增大C.墙对铁块的摩擦力不变D.墙与铁块间的摩擦力减小8.两个力的合力F为50N,其中一个力F1为30N,那么另一个力F2的大小可能是()A.10N B.15N C.80N D.85N9.关于分力和合力,以下说法不正确...的是()A.合力的大小,小于任何一个分力是可能的B.如果一个力的作用效果其它几个力的效果相同,则这个力就是其它几个力的合力C.合力的大小一定大于任何一个分力D .合力可能是几个力的代数和10.如图2所示,在“验证力的平行四边形定则”这一实验中,两弹簧秤现在的夹角为90º,使b 弹簧秤从图示位置开始沿箭头方向缓慢转动,在这过程中,保持O 点的位置和a 弹簧秤的拉伸方向不变,则在整个过程中,关于a 、b 两弹簧秤示数的变化情况是( )A .a 示数增大,b 示数减小B .a 示数减小,b 示数增大C .a 示数减小,b 示数先增大后减小D .a 示数减小,b 示数先减小后增大第Ⅱ卷(非选择题,共60分)二、填空题(每小题4分,共24分。

高中物理力学动量经典大题例题

高中物理力学动量经典大题例题

(每日一练)高中物理力学动量经典大题例题单选题1、在光滑的水平轨道上放置一门质量为m1的旧式炮车(不包含炮弹质量),炮弹的质量为m2,当炮车沿与水平方向成θ角发射炮弹时,炮弹相对炮口的速度为v0,则炮车后退的速度为()A.m2v0cosθm1B.m1v0cosθm2C.m2v0cosθm1+m2D.m1v0cosθm1+m2答案:C解析:炮弹离开炮口时,炮弹和炮车组成的系统在水平方向不受外力,则系统在水平方向动量守恒。

设炮车后退的速度大小为v,则炮弹对地的水平速度大小为v0cosθ−v,取炮车后退的方向为正,对炮弹和炮车组成系统为研究,根据水平方向动量守恒有:0=m1v−m2(v0cosθ−v)解得v=m2v0cosθm1+m2故ABD错误,C正确;故选C。

2、一个不稳定的原子核质量为M,处于静止状态。

放出一个质量为m的粒子后反冲,已知原子核反冲的动能为E0,则放出的粒子的动能为()A.(M−m)E0m B.mME0C.mM−mE0D.MM−mE0答案:A解析:核反应过程系统动量守恒,以放出粒子的速度方向为正方向,由动量守恒定律得p粒子−p原子核=0原子核的动能E0=p原子核22(M−m)粒子的动能E=p粒子22m解得E=(M−m)E0m故A正确,BCD错误。

故选A。

3、下列关于反冲现象的说法中,正确的是()A.抛出物体的质量要小于剩下物体的质量才能发生反冲B.若抛出物体A的质量大于剩下物体B的质量,则B受的反冲力大于A所受的反冲力C.反冲现象中,牛顿第三定律适用,但牛顿第二定律不适用D.对抛出部分和剩余部分,牛顿第二定律都适用答案:D解析:A.反冲现象中并没有确定两部分物体之间的质量关系,选项A错误;B.在反冲现象中,两部分物体之间的作用力是一对作用力与反作用力,由牛顿第三定律可知,它们大小相等、方向相反,选项B错误;CD.在反冲现象中,一部分物体受到的另一部分物体的作用力产生了该部分的加速度,使该部分的速度增大,在此过程中,对每一部分,牛顿第二定律都适用,选项C错误,选项D正确。

高一必修一物理经典力学典型例题(有答案,含解析)

高一必修一物理经典力学典型例题(有答案,含解析)

高一必修一物理经典力学典型例题1.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6 m,始终以v0=6m/s的速度顺时针运动。

一个质量m=1 kg的物块从距斜面底端高度h1=5.4m的A点由静止滑下,物块通过B点时速度的大小不变。

物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面在距地面一定高度处,g取10m/s2。

(sin37°=0.6,cos37°=0.8)(1)求物块由A点运动到C点的时间;(2)求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D。

2.如图,倾斜的传送带向下匀加速运转,传送带与其上的物体保持相对静止。

那么关于传送带与物体间静摩擦力的方向,以下判断正确的是A.物体所受摩擦力为零B.物体所受摩擦力方向沿传送带向上C.物体所受摩擦力方向沿传送带向下D.上述三种情况都有可能出现3.(2018·江西师大附中)如图是工厂流水生产线包装线示意图,质量均为m=2.5 kg、长度均为l=0.36 m的产品在光滑水平工作台AB上紧靠在一起排列成直线(不粘连),以v0=0.6 m/s 的速度向水平传送带运动,设当每个产品有一半长度滑上传送带时,该产品即刻受到恒定摩擦力F f=μmg而做匀加速运动,当产品与传送带间没有相对滑动时,相邻产品首尾间距离保持2l(如图)被依次送入自动包装机C进行包装。

观察到前一个产品速度达到传送带速度时,下一个产品刚好有一半滑上传送带而开始做匀加速运动。

取g=10 m/s2。

试求:(1)传送带的运行速度v;(2)产品与传送带间的动摩擦因数μ:(3)满载工作时与空载时相比,传送带驱动电动机增加的功率∆P;(4)为提高工作效率,工作人员把传送带速度调成v'=2.4 m/s,已知产品送入自动包装机前已匀速运动,求第(3)问中的∆P′?第(3)问中在相当长时间内的等效∆P′′?4.如图所示,传送带AB段是水平的,长20 m,传送带上各点相对地面的速度大小是2 m/s,某物块与传送带间的动摩擦因数为0.1。

高一物理力的知识点经典例题

高一物理力的知识点经典例题

高一物理力的知识点经典例题一、运动学知识点经典例题1. 啤酒瓶扔给地上后破碎的原因是什么?请给出计算过程并解答。

答:啤酒瓶扔给地上破碎的原因是由于啤酒瓶受到了重力的作用,而且在撞击时受到了冲击力的作用。

啤酒瓶的破碎与冲击力的大小有关。

2. 一辆汽车以10 m/s的速度沿直路行驶,经过10秒后速度变为15 m/s。

求汽车的加速度。

答:汽车的加速度可以通过速度的变化量除以时间来计算。

即:加速度 = (终止速度 - 初始速度) / 时间= (15 m/s - 10 m/s) / 10 s= 0.5 m/s²3. 一个自由下落的物体,从高处掉落,经过3秒后速度达到30 m/s。

求物体下落的高度。

答:物体下落的高度可以通过运用自由落体运动的公式计算。

即:下落高度 = 初始速度 * 时间 + 1/2 * 加速度 * 时间²= 0 + 1/2 * 9.8 m/s² * (3 s)²= 1/2 * 9.8 m/s² * 9 s²= 44.1 m二、力学知识点经典例题4. 一个质量为5 kg的物体受到一个10 N的力,求物体的加速度。

答:物体的加速度可以通过运用牛顿第二定律 F = m * a 计算。

即:10 N = 5 kg * aa = 10 N / 5 kg= 2 m/s²5. 一个物体质量为2 kg,受到一个5 N的力,计算物体的加速度。

答:根据牛顿第二定律 F = m * a,可得:5 N = 2 kg * aa = 5 N / 2 kg= 2.5 m/s²6. 如果一个物体的质量为3 kg,受到一个10 N的力,并且重力为15 N,请问物体的加速度是多少?答:考虑重力的影响后,物体的净受力为F = 10 N - 15 N = -5 N。

根据牛顿第二定律 F = m * a,可得:-5 N = 3 kg * aa = -5 N / 3 kg≈ -1.67 m/s²三、能量知识点经典例题7. 一个物体质量为2 kg,高度为5 m,求物体的重力势能。

高中物理人教版必修一力学例题及解析

高中物理人教版必修一力学例题及解析

力学一、选择题:1.关于重力的说法,正确的是()A.重力就是地球对物体的吸引力B.只有静止的物体才受到重力C.同一物体在地球上无论怎样运动都受到重力D.重力是由于物体受到地球的吸引而产生的思路解析:重力是由于物体受到地球的吸引而产生的,地球对物体的吸引力产生两个效果:一个效果是吸引力的一部分使物体绕地球转动;另一个效果即另一部分力才是重力,也就是说重力通常只是吸引力的一部分.重力只决定于地球对物体的作用,而与物体的运动状态无关,也与物体是否受到其他的力的作用无关.答案:CD2.下列说法正确的是()A.马拉车前进,马先对车施力,车后对马施力,否则车就不能前进B.因为力是物体对物体的作用,所以相互作用的物体一定接触C.作用在物体上的力,不论作用点在什么位置,产生的效果均相同D.某施力物体同时也一定是受力物体思路解析:对于A选项,马与车之间的作用无先后关系.对于B选项,力的作用可以接触,如弹力、拉力等,也可以不接触,如重力、磁力等;对于C选项,力的作用效果,决定于大小、方向和作用点.对于D选项,施力的同时,必须受力,这是由力的相互性决定的.答案:D3.下列说法中正确的是()A.射出枪口的子弹,能打到很远的距离,是因为子弹离开枪口后受到一个推力作用B.甲用力把乙推倒说明甲对乙有力的作用,乙对甲没有力的作用C.只有有生命或有动力的物体才会施力,无生命或无动力的物体只会受到力,不会施力D.任何一个物体,一定既是受力物体,也是施力物体思路解析:子弹在枪管内受到火药爆炸产生的强大推力,使子弹离开枪口时有很大的速度,但子弹离开枪口后,只受重力和空气阻力作用,并没有一个所谓的推力,因为不可能找到这个所谓的推力的施力物体,故不存在,A错.物体间的作用力总是相互的,甲推乙的同时,乙也推甲,故B错.不论物体是否有生命或是否有动力,它们受到别的物体的作用时,都会施力,马拉车时,车也拉马,故C错.自然界中的物体都是相互联系的,每一个物体既受到力的作用,也对周围的物体施以力的作用,所以每一个物体既是受力物体又是施力物体,故D正确.答案:D4.下列说法正确的是()A.力是由施力物体产生,被受力物体所接受的B.由磁铁间有相互作用力可知,力可以离开物体而独立存在C.一个力必定联系着两个物体,其中任意一个物体既是受力物体又是施力物体D.一个受力物体可以对应着一个以上的施力物体思路解析:力是物体与物体之间的相互作用,不是由哪个物体产生的;磁铁间的相互作用亦即磁场间的相互作用,磁场离不开磁铁,即磁力离不开磁铁,也就是离不开物体;力既有施力物体又有受力物体,这是由力的相互性决定的;一个物体可受多个力,因此有多个施力物体,因此,AB错,CD正确.答案:CD5.铅球放在水平地面上处于静止状态,下列关于铅球和地面受力的叙述正确的是()A.地面受到向下的弹力是因为地面发生了弹性形变;铅球坚硬没发生形变B.地面受到向下的弹力是因为地面发生了弹性形变;铅球受到向上的弹力,是因为铅球也发生了形变C.地面受到向下的弹力是因为铅球发生了弹性形变;铅球受到向上的弹力,是因为地面发生了形变D.铅球对地面的压力即为铅球的重力思路解析:两个物体之间有弹力,它们必定相互接触且发生了形变,地面受到向下的弹力是因为铅球发生了形变,故A、B错.铅球对地面的压力的受力物体是地面而不是铅球,D错.只有C项正确.答案:C6.有关矢量和标量的说法中正确的是()A.凡是既有大小又有方向的物理量都叫矢量B.矢量的大小可直接相加,矢量的方向应遵守平行四边形定则C.速度是矢量,但速度不能按平行四边形定则求合速度,因为物体不能同时向两个方向运动D.只用大小就可以完整描述的物理量是标量思路解析:矢量的合成符合平行四边形定则,包括矢量的大小和方向.答案:AD7.关于弹力的下列说法中,正确的是()①相互接触的物体间必有弹力的作用②通常所说的压力、拉力、支持力等都是接触力,它们在本质上都是由电磁力引起的③弹力的方向总是与接触面垂直④所有物体弹力的大小都与物体的弹性形变的大小成正比A.①②B.①③C.②③D.②④思路解析:本题考查弹力的产生条件、弹力的方向及大小的决定因素,相互接触的物体间不一定有弹性形变,故①错.弹力的大小一般随形变的增大而增大,但不一定成正比,故④错.本题正确的选项是C.答案:C8.关于滑动摩擦力,下列说法正确的是()A.物体与支持面之间的动摩擦因数越大,滑动摩擦力也越大B.物体对支持面的压力越大,滑动摩擦力也越大C.滑动摩擦力的方向一定与物体相对滑动的方向相反D.滑动摩擦力的方向一定与物体运动的方向相反思路解析:滑动摩擦力的大小取决于接触面间的动摩擦因数和垂直于接触面的压力,故AB选项错误.滑动摩擦力的方向与物体相对运动方向相反,故D 错.C项正确. 答案:C9.如图4-1所示,木块A 放在水平的长木板上,长木板放在光滑的水平桌面上.木块与水平的弹簧秤相连,弹簧秤的右端固定.若用水平向左的恒力拉动长木板以速度v 匀速运动,弹簧秤的示数为F T .则( )图4-1A.木块A 受到的静摩擦力等于F TB.木块A 受到的滑动摩擦力等于F TC.若用恒力以2v 的速度匀速向左拉动长木板,弹簧秤的示数为F TD.若用恒力以2v 的速度匀速向左拉动长木板,弹簧秤的示数为2F T思路解析:A 受到的滑动摩擦力取决于A 对木板的压力及A 与木板间的动摩擦因数,与木板运动的速度无关,选项BC 正确. 答案:BC10.关于弹簧的劲度系数k ,下列说法正确的是( ) A.与弹簧所受的拉力大小有关,拉力越大,k 值越大 B.由弹簧本身决定,与弹簧所受的拉力大小及形变无关 C.与弹簧发生的形变大小有关,形变越大,k 值越大D.与弹簧本身的特性、所受拉力的大小、形变大小都无关思路解析:劲度系数由弹簧本身的属性决定,故D 错.弹簧的形变量越大,受作用力越大,但k 不变,故AC 错,选项B 正确. 答案:B11.如图4-2所示,有黑白两条毛巾交替折叠地放在地面上,在白毛巾的中部用线与墙壁连接着,黑毛巾的中部用线拉住,设线均水平,欲将黑白毛巾分离开来,若每条毛巾的质量均为m ,毛巾之间及其跟地面间的动摩擦因数均为μ,则将黑毛巾匀速拉出需加的水平拉力为( )图4-2A.2μmgB.4μmgC.6μmgD.5μmg答案:设白毛巾上半部和下半部分别为1和3,黑毛巾的上下半部分别为2和4,那么两毛巾叠折时必有四个接触面,存在四个滑动摩擦力. 1和2接触面间的滑动摩擦力 F 1=μF N12=21μmg 2和3接触面间的滑动摩擦力 F 2=μF N23=μ(21mg+21mg)=μmg3和4接触面的滑动摩擦力 F 3=μF N34=μ(21mg+21mg+21mg)=23μmg 4和地面的滑动摩擦力 F 4=μF N =μ(21mg+21mg+21mg+21mg)=2μmg 则F=F 1+F 2+F 3+F 4=5μmg.答案:D12.在图5-1中,要将力F 沿两条虚线分解成两个力,则A 、B 、C 、D 四个图中,可以分解的是( )图5-1思路解析:我们在分解力的时候两个分力应作为平行四边形的两个邻边,合力应作为平行四边形的对角线,所以,应选A。

高一必修一物理经典力学典型例题(有答案,含解析)

高一必修一物理经典力学典型例题(有答案,含解析)

高一必修一物理经典力学典型例题1.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6 m,始终以v0=6m/s的速度顺时针运动。

一个质量m=1 kg的物块从距斜面底端高度h1=5.4m的A点由静止滑下,物块通过B点时速度的大小不变。

物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面在距地面一定高度处,g取10m/s2。

(sin37°=0.6,cos37°=0.8)(1)求物块由A点运动到C点的时间;(2)求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D。

2.如图,倾斜的传送带向下匀加速运转,传送带与其上的物体保持相对静止。

那么关于传送带与物体间静摩擦力的方向,以下判断正确的是A.物体所受摩擦力为零B.物体所受摩擦力方向沿传送带向上C.物体所受摩擦力方向沿传送带向下D.上述三种情况都有可能出现3.(2018·江西师大附中)如图是工厂流水生产线包装线示意图,质量均为m=2.5 kg、长度均为l=0.36 m的产品在光滑水平工作台AB上紧靠在一起排列成直线(不粘连),以v0=0.6 m/s 的速度向水平传送带运动,设当每个产品有一半长度滑上传送带时,该产品即刻受到恒定摩擦力F f=μmg而做匀加速运动,当产品与传送带间没有相对滑动时,相邻产品首尾间距离保持2l(如图)被依次送入自动包装机C进行包装。

观察到前一个产品速度达到传送带速度时,下一个产品刚好有一半滑上传送带而开始做匀加速运动。

取g=10 m/s2。

试求:(1)传送带的运行速度v;(2)产品与传送带间的动摩擦因数μ:(3)满载工作时与空载时相比,传送带驱动电动机增加的功率∆P;(4)为提高工作效率,工作人员把传送带速度调成v'=2.4 m/s,已知产品送入自动包装机前已匀速运动,求第(3)问中的∆P′?第(3)问中在相当长时间内的等效∆P′′?4.如图所示,传送带AB段是水平的,长20 m,传送带上各点相对地面的速度大小是2 m/s,某物块与传送带间的动摩擦因数为0.1。

高一物理必修一力学复习题

高一物理必修一力学复习题

经典力学练习题 1一、选择题(每题至少有一个选项正确)1.如图,重力大小为G的木块静止在水平地面上,对它施加一竖直向上且逐渐增大的力F,若F总小于G,下列说法中正确的是A.木块对地面的压力随F增大而减小B.木块对地面的压力就是木块的重力C.地面对木块的支持力的大小等于木块的重力大小D.2.如图,a 4cm 。

在A.弹簧aB.弹簧aC.弹簧aD.弹簧a3.的作用,已A.B.C.D.4.f1 ,匀速5.如图,一木块放在水平桌面上,在水平方向共受到三个力,即F1、F2和桌面的摩擦力作用,木块处于静止状态。

其中F1=10N,F2=2N,方向如图所示。

现撤去力F1,则A木块受摩擦力为8N,方向向左B木块受摩擦力为6N,方向向左C木块受摩擦力为2N,方向向右D木块所受合力为2N,方向向右6.如图所示,物体A和B一起沿斜面匀速下滑,则物体A受到的力是A.重力,B对A的支持力B.重力,B对A的支持力、下滑力C.重力,B对A的支持力、摩擦力D.重力,B对A的支持力、摩擦力、下滑力7 .质量为m的木块在置于桌面上的木板上滑行,木板静止,它的质量M=3m。

已知木块与木板间、木板与桌面A、μmg8 力作A 于A、B物体、B 物体对CA.1N、C.0、1N9 .A .B .C .D .10.11AB.木箱对地面的压力与地面对木箱的支持力是一对平衡力C.木箱对地面的压力与地面对木箱的支持力是一对作用力与反作用力D.木箱对地面的压力与木箱受到的重力是一对平衡力12.关于作用力和反作用力,下列说法中错误的是A.我们可以把物体间相互作用的任何一个力叫做作用力,另一个力叫做反作用力B.若作用力是摩擦力,则反作用力也一定是摩擦力C.作用力与反作用力一定是同时产生、同时消失的FFD.作用力与反作用力大小相等,方向相反,作用在一条直线上,因此可能成为一对平衡力13跳高运动员从地面跳起, 这是由于A、运动员给地面的压力等于运动员受的重力B、地面给运动员的支持力大于运动员给地面的压力C、地面给运动员的支持力大于运动员受的重力D、地面给运动员的支持力等于运动员给地面的压力14.如图2所示,A、B两物体在水平力F的作用下共同以加速度a向右移动,则在A、BA.1对C.3对三15能将A16的斜面上。

高一物理力学经典例题

高一物理力学经典例题

高一物理力学经典例题1. 一维运动中的速度与加速度计算题目描述一辆汽车以恒定速度v行驶了t时间,在某一时刻该车突然加速a,然后以加速度a行驶了一个时间间隔t1,最后以减速度b减速到停止。

求汽车以恒定速度v行驶的距离和总时间。

解答设汽车以恒定速度v行驶的距离为S1,加速度为a行驶的距离为S2,减速度为b行驶的距离为S3,总时间为T。

根据物理学中的基本关系式:速度v = 距离S / 时间t,我们可以得到以下关系:- 恒定速度v行驶的距离S1 = v × t - 初速度为v,加速度为a,时间间隔为t1时的位移S2 = v × t1 + 0.5 × a × t1² - 以减速度b减速到停止的位移S3 = 0.5 × b × (T - t -t1)² - 总时间T = t + t1 + (T - t - t1)代入上述方程,我们可以解得答案。

2. 牛顿第二定律与力的计算题目描述一个质量为m的物体,受到一个恒定的水平力F作用,获得了加速度a。

根据牛顿第二定律,计算物体所受的力F。

解答根据牛顿第二定律 F = ma,我们可以计算物体所受的力F。

给定质量m和加速度a,代入上述公式即可得到答案。

3. 竖直上抛运动中的最大高度和落地时间计算题目描述一个物体以初速度v0竖直向上抛出,经过一段时间后落回原点。

已知重力加速度g,求物体的最大高度和落地时间。

对于竖直上抛运动,我们可以利用运动学中的关系式来计算最大高度和落地时间。

1.计算最大高度:–最大高度h = (v0²) / (2g)2.计算落地时间:–首先计算上升时间t1 = v0 / g–再计算下降时间t2 = 2t1–最后计算落地时间t = t1 + t2代入已知的初速度v0和重力加速度g,即可计算出最大高度和落地时间。

4. 斜抛运动中的最大高度和飞行时间计算题目描述一个物体以初速度v0与水平面成角度θ斜抛出,求物体的最大高度和飞行时间。

高中物理力学专题经典练习题(附答案)

高中物理力学专题经典练习题(附答案)

高中物理力学专题经典练习题(附答案)以下是一些经典的高中物理力学专题练题,每个问题都附有详细的答案。

这些练题覆盖了力学中的不同概念和应用,旨在帮助你巩固你的物理研究。

请仔细阅读每个问题,并尝试独立解答。

如果你遇到困难,可以参考答案来帮助你理解解题思路和方法。

1. 力与运动题目:一个小球以4 m/s的速度以水平方向投出,落地的时间为2 s。

求小球的水平位移以及竖直位移。

答案:小球的水平位移为8 m,竖直位移为-19.6 m。

2. 动能与功题目:一辆质量为1000 kg的汽车以10 m/s的速度行驶,求汽车的动能。

如果汽车行驶的过程中受到总共2000 N的摩擦力,求摩擦力所做的功。

答案:汽车的动能为 J,摩擦力所做的功为 J。

3. 万有引力题目:太阳的质量约为2 × 10^30 kg,地球的质量约为6 × 10^24 kg,太阳与地球之间的距离约为1.5 × 10^11 m。

求地球受到的太阳引力大小。

答案:地球受到的太阳引力大小约为3.53 × 10^22 N。

4. 动量守恒题目:一个质量为2 kg的小球以5 m/s的速度水平碰撞到一个静止的质量为3 kg的小球,碰撞后两个小球分别以2 m/s和4 m/s的速度分别向左和向右运动。

求碰撞前后两个小球的总动量是否守恒。

答案:碰撞前后两个小球的总动量守恒。

以上是一部分高中物理力学专题的经典练习题及答案。

希望通过这些练习题的练习,你能更好地理解与掌握物理力学的基本概念和应用。

保持坚持和刻苦学习的态度,相信你能取得优秀的成绩!。

高一物理必修1典型例题(经典)

高一物理必修1典型例题(经典)

高一物理必修1典型例题例l. 在下图甲中时间轴上标出第2s 末,第5s 末和第2s ,第4s ,并说明它们表示的是时间还是时刻。

甲乙例2. 关于位移和路程,下列说法中正确的是A. 在某一段时间内质点运动的位移为零,该质点不一定是静止的B. 在某一段时间内质点运动的路程为零,该质点一定是静止的C. 在直线运动中,质点位移的大小一定等于其路程D. 在曲线运动中,质点位移的大小一定小于其路程例3. 从高为5m 处以某一初速度竖直向下抛出一个小球,在与地面相碰后弹起,上升到高为2m 处被接住,则在这段过程中A. 小球的位移为3m ,方向竖直向下,路程为7mB. 小球的位移为7m ,方向竖直向上,路程为7mC. 小球的位移为3m ,方向竖直向下,路程为3mD. 小球的位移为7m ,方向竖直向上,路程为3m 例4. 判断下列关于速度的说法,正确的是A. 速度是表示物体运动快慢的物理量,它既有大小,又有方向。

B. 平均速度就是速度的平均值,它只有大小没有方向。

C. 汽车以速度1v 经过某一路标,子弹以速度2v 从枪口射出,1v 和2v 均指平均速度。

D. 运动物体经过某一时刻(或某一位置)的速度,叫瞬时速度,它是矢量。

例5. 一个物体做直线运动,前一半时间的平均速度为1v ,后一半时间的平均速度为2v ,则全程的平均速度为多少?如果前一半位移的平均速度为1v ,后一半位移的平均速度为2v ,全程的平均速度又为多少?例6. 打点计时器在纸带上的点迹,直接记录了 A. 物体运动的时间B. 物体在不同时刻的位置C. 物体在不同时间内的位移D. 物体在不同时刻的速度例7. 如图所示,打点计时器所用电源的频率为50Hz ,某次实验中得到的一条纸带,用毫米刻度尺测量的情况如图所示,纸带在A 、C 间的平均速度为 m /s ,在A 、D 间的平均速度为 m /s ,B 点的瞬时速度更接近于 m /s 。

例8. 关于加速度,下列说法中正确的是 A. 速度变化越大,加速度一定越大B. 速度变化所用时间越短,加速度一定越大C. 速度变化越快,加速度一定越大D. 速度为零,加速度一定为零例9. 如图所示是某矿井中的升降机由井底到井口运动的图象,试根据图象分析各段的运动情况,并计算各段的加速度。

(完整版)高一物理力学典型例题

(完整版)高一物理力学典型例题

高中物理力学典型例题1、如图1-1所示,长为5米的细绳的两端分别系于竖立在地面上相距为4米的两杆顶端A、B。

绳上挂一个光滑的轻质挂钩。

它钩着一个重为12牛的物体。

平衡时,绳中张力T=____分析与解:本题为三力平衡问题。

其基本思路为:选对象、分析力、画力图、列方程。

对平衡问题,根据题目所给条件,往往可采用不同的方法,如正交分解法、相似三角形等。

所以,本题有多种解法。

解法一:选挂钩为研究对象,其受力如图1-2所示,设细绳与水平夹角为α,由平衡条件可知:2TSinα=F,其中F=12牛,将绳延长,由图中几何条件得:Sinα=3/5,则代入上式可得T=10牛。

解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T)的合力F’与F大小相等方向相反。

以两个拉力为邻边所作的平行四边形为菱形。

如图1-2所示,其中力的三角形△OEG与△ADC相似,则:得:牛。

想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化?(提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。

)2、如图2-1所示,轻质长绳水平地跨在相距为2L的两个小定滑轮A、B上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相等。

在轻绳两端C、D分别施加竖直向下的恒力F=mg。

先托住物块,使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持C、D两端的拉力F不变。

(1)当物块下落距离h为多大时,物块的加速度为零?(2)在物块下落上述距离的过程中,克服C端恒力F做功W为多少?(3)求物块下落过程中的最大速度Vm和最大距离H?分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角逐渐减小。

因为绳子对物块的拉力大小不变,恒等于F,所以随着两绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力逐渐减小,向下加速度逐渐减小。

当物块的合外力为零时,速度达到最大值。

之后,因为两绳间夹角继续减小,物块所受合外力竖直向上,且逐渐增大,物块将作加速度逐渐增大的减速运动。

高一物理力学典型例题

高一物理力学典型例题

高一物理力学典型例题摘要:1.力的概念和分类2.牛顿三定律3.动能和势能4.机械能守恒定律5.动量守恒定律6.摩擦力和滑动摩擦力7.受力分析和解题方法8.实际应用举例正文:一、力的概念和分类力是物体之间相互作用的结果,可以改变物体的形状和运动状态。

力可分为接触力和非接触力两类。

接触力如推、拉、挤等,非接触力如磁力、电场力等。

二、牛顿三定律1.第一定律:物体在没有受到外力作用时,保持静止或匀速直线运动。

2.第二定律:物体所受合外力等于物体质量与加速度的乘积,即F=ma。

3.第三定律:任何两个互相作用的物体,作用力和反作用力大小相等、方向相反。

三、动能和势能1.动能:物体由于运动而具有的能量,公式为E_k=1/2mv^2。

2.势能:物体由于位置而具有的能量,公式为E_p=mgh。

四、机械能守恒定律在只有重力和弹力做功的系统中,物体的机械能(动能+势能)保持不变。

五、动量守恒定律在一个封闭系统中,物体之间的相互作用力满足动量守恒定律,即总动量保持不变。

六、摩擦力和滑动摩擦力1.摩擦力:两个互相接触的物体在相对运动时,接触面产生的阻碍相对运动的力。

2.滑动摩擦力:物体在滑动过程中,接触面产生的阻碍滑动的力。

七、受力分析和解题方法1.受力分析:分析物体在某一状态下所受到的所有力的合力。

2.解题方法:运用牛顿三定律、动能定理、机械能守恒定律等定律求解物理问题。

八、实际应用举例1.汽车运动:应用牛顿定律分析汽车的加速、减速和转弯等现象。

2.桥梁工程:利用力学原理分析桥梁结构的稳定性和强度。

3.电子产品散热:利用热力学原理设计散热系统,提高电子产品性能。

通过掌握高一物理力学的知识,同学们可以更好地理解物体之间的相互作用,并在实际问题中运用所学知识解决问题。

高一物理力学的知识点例题

高一物理力学的知识点例题

高一物理力学的知识点例题在高中物理中,力学是最基础也是最重要的一部分,它是研究物体受力和运动的科学。

在高一学习物理的过程中,除了理解各种物理概念外,更重要的是能够灵活运用这些知识解决实际问题。

本文将通过一些例题来讨论高一物理力学的知识点,并提供解题思路和方法。

1. 牛顿第一定律和牛顿第二定律问题:质量为5kg的物体放置在光滑的水平面上,一个10N的水平拉力作用于该物体,求物体的加速度。

解析:根据牛顿第二定律,F=ma。

已知力F=10N,质量m=5kg,代入公式可以得到加速度a=F/m=10/5=2m/s²。

2. 重力和斜面问题问题:一个质量为2kg的物体放置在一个倾角为30°的光滑斜面上,求物体沿斜面下滑时的加速度。

解析:由图可知,物体受到斜面的支持力N和重力Fg的合力沿斜面下滑。

根据斜坡的形状,我们可以将重力分解为垂直向下的分力Fgcosθ和平行于斜面的分力Fgsinθ。

由于斜面上无摩擦力,所以物体受到的平行于斜面的合力只有Fgsinθ,根据牛顿第二定律可以得到该合力与物体的加速度之间的关系:Fgsinθ=ma。

代入已知数据,可得加速度a=g*sinθ=9.8*sin30°=4.9m/s²。

3. 力的合成问题:一个物体受到一个60N的力和一个80N的力,这两个力作用的方向分别为东和北,求物体所受合力及合力的方向。

解析:利用力的合成原理,我们可以将这两个力合成为一个合力。

首先,根据实际情况可以将60N的力分解为东西方向的分力和南北方向的分力,分别为60cos45°和60sin45°。

再将80N的力分解为东西方向的分力和南北方向的分力,分别为80cos45°和80sin45°。

然后,将同一方向的两个分力相加,得到合力在东西方向上的分力为(80cos45°+60cos45°)N,在南北方向上的分力为(80sin45°+60sin45°)N。

高一物理经典例题60道

高一物理经典例题60道

高一物理经典例题60道一、运动的描述例题1:一个物体做直线运动,其位移随时间变化的关系为x = 4t - 2t^2(x的单位为m,t 的单位为s)。

求:(1)物体的初速度和加速度;(2) t = 3s时物体的速度;(3)物体在t = 1s到t = 3s内的位移。

解析:1. 已知位移公式x=v_0t+(1)/(2)at^2,与x = 4t-2t^2对比可得:- 初速度v_0=4m/s;- 加速度a=- 4m/s^2。

2. 根据速度公式v = v_0+at,当t = 3s时,v=4+( - 4)×3=-8m/s。

3. 当t = 1s时,x_1=4×1-2×1^2=2m;当t = 3s时,x_3=4×3-2×3^2=-6m。

- 则t = 1s到t = 3s内的位移Δ x=x_3-x_1=-6 - 2=-8m。

例题2:一质点沿直线Ox方向做变速运动,它离开O点的距离x随时间t变化的关系为x=(5 + 2t^3)m。

求:(1)该质点在t = 0到t = 2s内的平均速度;(2)该质点在t = 2s到t = 3s内的平均速度。

解析:1. 当t = 0时,x_0=5m;当t = 2s时,x_2=5 + 2×2^3=21m。

- 则t = 0到t = 2s内的平均速度¯v_1=frac{x_2-x_0}{t_2-t_0}=(21 -5)/(2)=8m/s。

2. 当t = 3s时,x_3=5+2×3^3=59m。

- 则t = 2s到t = 3s内的平均速度¯v_2=frac{x_3-x_2}{t_3-t_2}=(59 -21)/(1)=38m/s。

二、匀变速直线运动的研究例题3:一辆汽车以v_0=10m/s的速度在平直公路上匀速行驶,刹车后经2s速度变为6m/s。

求:(1)刹车后2s内前进的距离;(2)刹车过程中的加速度;(3)刹车后前进9m所用的时间;(4)刹车后8s内前进的距离。

物理力学经典例题

物理力学经典例题

物理力学经典例题例题1. 一个质量为m的物体,以速度v沿着水平方向运动,撞到一个质量为M的静止物体,两者发生完全弹性碰撞,求碰撞后两个物体的速度。

解:根据动量守恒和能量守恒定律,可以得到以下方程组:mv = mv1' + Mv2'1/2mv^2 = 1/2mv1'^2 + 1/2Mv2'^2其中,v1'和v2'分别为碰撞后两个物体的速度。

解方程组可以得到:v1' = (m - M)/(m + M) * vv2' = 2m/(m + M) * v例题2. 一个质量为m的物体,以速度v沿着水平方向运动,撞到一个质量为M的静止物体,两者发生完全非弹性碰撞,求碰撞后两个物体的速度。

解:在完全非弹性碰撞中,两个物体合并成一个物体,质量为m+M,速度为v'。

根据动量守恒定律,可以得到以下方程:mv = (m + M)v'解方程可以得到:v' = m/(m + M) * v例题3. 一个质量为m的物体,以速度v沿着水平方向运动,撞到一个质量为M的静止物体,两者发生完全非弹性碰撞,碰撞后两个物体沿着一条直线运动,求碰撞后两个物体的速度。

解:在完全非弹性碰撞中,两个物体合并成一个物体,质量为m+M,速度为v'。

根据动量守恒定律和能量守恒定律,可以得到以下方程组:mv = (m + M)v'1/2mv^2 = 1/2(m + M)v'^2解方程组可以得到:v' = v/2v1' = v/2v2' = 0其中,v1'和v2'分别为碰撞后两个物体的速度。

高一物理力学例题经典

高一物理力学例题经典

高一物理力学例题经典例题1 有一小孩掉进河里后抱住了一根圆木随水向下飘流,有三条船A、B、C在正对河岸P点的地方同时与圆木相遇,但三条船上的船员都没有注意到圆木上的小孩.A、B 两船逆水上行,C船顺水下行.相对水的速度,B船是A船的1.2倍,C船是B船的1.2倍. 当三条船离开P点行驶30分钟的时候, 船员们从收音机里听到圆木上有小孩需要救助的消息,三条船都立即调转船头,驶向圆木.在离P点6千米的地方,小孩被船员救起. 试回答三条船到达小孩和圆木的先后次序如何?_____.解:以流水为参照物.小孩和原木是静止的.船A上行时速度和下行时速度大小相等,船B也是这样,船C也是这样.船A、B、C 同时从小孩所处的位置向上游和下游行驶,速度不同,在30 分钟内行驶了不同的路程s1、s2、s3;在接下去的30分钟内, 三条船分别沿反方向行驶路程s1、s2、s3,回到小孩所处的位置.答:三条船同时到达小孩和原木.例题2 一列一字形队伍长120m,匀速前进. 通讯员以恒定的速率由队尾跑到队首,又跑回队尾,在此期间,队伍前进了288m. 求通讯员跑动的速率v是队伍前进的速率u的多少倍.分析:顺利解答本题的关键是, 找出通讯员的运动跟队首或队尾的运动的联系.解:设通讯员从队尾跑到队首所用的时间为t1, 从队首跑到队尾所用的时间为t2,那么u(t1+t2)=288 (1)在t1时间内,通讯员跑动的路程比队首移动的路程多120m:vt1-ut1=120 (2)在t2时间内,通讯员跑动的路程加上队尾移动的路程等于120m:vt2+ut2=120 (3)从(2)式中得出t1的表达式,从(3)式中得出t2的表达式,代入(1)式, 可算出:v=1.5u例题3 一物体作匀变速直线运动,某时刻速度的大小为4m/s, 1s后速度的大小变为10m/s.在这1s内(A)位移的大小可能小于4m(B)位移的大小可能大于10m(C)加速度的大小可能小于4m/s2(D)加速度的大小可能小于10m/s2 (1996年高考全国卷试题)解:取初速度方向为正方向,则v0=4m/s,v t=10m/s或-10m/s.由 s=v t=(v0+v t)t/2,得 s=7m或-3m所以位移的大小为7m或3m.选项(A)正确,(B)错误.由 a=(v t-v0)/t得 a=6m/s2或-14m/s2所以加速度的大小为6m/s2或14m/s2,选项(C)错误,(D)正确.总之,本题选(A)(D).例题4 在三楼的阳台上 ,一人伸出阳台的手上拿着一只小球, 小球下面由细绳挂着另一个小球.放手,让两小球自由下落,两小球相继落地的时间差为t.又站在四层楼的阳台上,同样放手让小球自由下落,两小球相继落地的时间差为t',则(A)t<t' (B)t=t' (C)t>t'解:从三楼阳台外自由下落,下面的小球着地时,两球具有的速度为v,从四楼阳台外自由下落,下面的小球着地时, 两球具有的速度为v',显然v<v'.下面的小球着地后,上面的小球以较小的初速度v和较大的初速度v',继续作加速度为g的匀加速运动, 发生一定的位移(等于绳长),所需的时间显然是不同的:t>t'.选项(C)正确.例题5 一质点由静止从A点出发,先作匀加速直线运动,加速度大小为a,后做匀减速直线运动,加速度大小为3a,速度为零时到达B 点.A、B间距离为s.求质点运动过程中的最大速度.解:设质点第一阶段做匀加速运动的的时间为t1,末速度为 v, 这就是运动过程中的最大速度;设第二阶段做匀减速运动的时间为t2.那么第一阶段的位移为vt1/2,第二阶段的位移为vt2/2, 两者之和应为全程位移: vt1/2+vt2=s (1)又根据加速度的定义式,有t1=v/a (2)t2=v/(3a) (3)将(2)(3)两式代入(1)式:v2/(2a)+v2/(6a)=s所以 v=(3as/2)1/2例题6 两辆完全相同的汽车 ,沿水平直路一前一后匀速行驶, 速度均为v0,若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车.已知前车在刹车过程中所行驶的路程为s,若要保证两车在上述情况下不相撞,则两车在匀速行驶时保持的距离至少应为(A)s (B)2s (C)3s (D)4s(1992年高考全国卷试题)解:汽车从开始刹车到停下这个期间,平均速度为v0/2.在前车开始刹车到停下这段时间内,后车以速度v0匀速行驶, 行驶的距离应为s的两倍,即为2s.从前车开始刹车到两车都停下,前车的位移为s;后车的位移为 (2s+s)=3s.设前车刹车前(匀速行驶期间)两车的距离为l,为使两车不相撞,应满足:l+s≥3s所以l≥2s本题选(B)例题7 某人离公共汽车尾部20m,以速度v向汽车匀速跑过去, 与此同时汽车以1m/s2的加速度启动,作匀加速直线运动.试问, 此人的速度v分别为下列数值时,能否追上汽车?如果能, 要用多长时间?如果不能,则他与汽车之间的最小距离是多少?(1)v=4m/s; (2)v=6m/s; (3)v=7m/s.思路:假设人不管是否在某一时刻追上了汽车,一直以速度v朝前跑,得出汽车跟人的距离y随时间t变化的函数式. 然后考察对于正值t,y是否可能取零,如果是的,那么能追上,如果不能,那么不能追上.解:假设人不管是否在某一时刻追上了汽车,一直以速度v朝前跑.在时间t内,人的位移等于vt;汽车的位移等于(1/2)at2=0.5t2.经过时间t时,汽车尾部跟人之间,距离为y=20+0.5t2-vt即 y=20+0.5(t2-2vt+v2)-0.5v2即 y=0.5(t-v)2+20-0.5v2 (*)上式中,y取正值时,表示汽车尾部在人前方y米,y取负值时,表示汽车的尾部在人后面│y│米(前面已假设人即使追上了汽车,也一直朝前跑).(甲)把v=4代入(*)式得y=0.5( t-4)2+12 (1)y恒大于零,y最小值为12.(乙)把v=6代入(*)式得y=0.5( t-6)2+2 (2)y恒大于零,y最小值为2.(丙)把v=7代入(*)式得y=0.5( t-7)2-4.5 (3)容易得出,当t=4,10时,y=0,这表示,如果人一直朝前跑, 那么经过4s时,人与汽车尾部平齐,经过10s时, 人又一次与汽车的尾部平齐.结论:(1)如v=4m/s,则人追不上汽车, 人跟汽车之间的最小距离为 12m.(2)如v=6m/s,则人追不上汽车, 人跟汽车之间的最小距离为 2m.(3)如v=7m/s,则人经过4s追上汽车.例题8 杂技演员表演一手抛接三球的游戏时, 三个球都抛过一次后,每一时刻手中最多只有一个球. 如果每只球上升的最大高度都为1.25m,那么每隔多长时间抛出一个球?g取10m/s2.(A)0.33s (B)0.33s到0.50s(C)0.50s (D)1.0s解:每个球做一次竖直上抛运动的时间是t=2(2h/g)1/2=2(2×1.25/10) 1/2=1.0s球从这一次被抛出到下一次被抛出,完成一个周期性运动, 设周期为T.如果每个球在手中停留的时间趋于零,那么T=t=1.0s;如果手中总停留着一个球,一个球停留的时间是t',那么T=t+t' ,且 t'=(1/3)T那么 T=(3/2)t=1.5s.以上考虑的是两个极端情况.实际上1.0s<T<1.5s在T时间内抛出三个球,每隔T/3的时间抛出一个球:0.33s<T/3<0.5s ,选项(B)正确.请读者考虑:如果每秒钟抛出三个球,那么应使每个球上升多高?(答案:0.56m到1.25m)例题9 小球A从地面上方H高处自由下落,同时在A的正下方,小球B从地面以初速度v竖直上抛.不计空气阻力.要使A、B 发生下述碰撞,v、H应满足什么条件?(甲)在B上升到最高点时相碰;(乙)在B上升的过程中相碰;(丙)在时间T内在空中相碰;(丁)经过时间T时在空中相碰.解:设经过时间t在地面上方h高处相碰.则从开始运动到相碰, 小球A发生的位移大小为(H-h),小球B发生的位移大小为h,则:( H-h)=(1/2)gt2h=vt-(1/2)gt2由以上两式得 t=H/v (1)时间t应小于B球在空中运动的时间:t<2v/g (2)由(1)(2)得 2v2>gH (3)(甲)在最高点相碰:t=v/g (4)由(1)(4)得 v2=gH (5)所以v、H应满足(5)式.(乙)时间t应小于B球上升时间:t<v/g (6)由(1)(6)得 v2>gH (7)所以v、H应满足(7)式.(丙) t≤T (8)由(1)(8)得H≤vT (9)所以v、H应满足(3)(9)两式.(丁) t=T (10)由(1)(10)得 H=vT (11)所以v、H应同时满足(3)(11)两式.讨论: (11)代入(3):v>gT/2 (12)问题(丁)又可这样回答:v、H应满足(11)(12)两式.从(11)得出v=H/T,代入(3)或(12)可得H>gT2/2 (13)问题(丁)还可这样回答:v、H应满足(11)(13)两式.第三章牛顿运动定律例题1 某人在地面上最多能举起32Kg的重物,那么在以2m/s匀加速下降的电梯中,他最多能举起多少Kg的重物?g取10m/s2.解:此人能施加的向上的举力大小为F=m1g=32×10N=320N在匀加速下降的电梯中,设某人用举力F举起了质量为m2的物体.物体的加速度向下,所以合外力也向下. 对这个物体应用牛顿第二定律:m2g-F=m2a即 m2=F/(g-a)把举力大小F=320N,重力加速度大小g=10m/s2,物体加速度大小a =2m/s2代入上式,得m2=40Kg他最多能举起40Kg的物体.例题2 一个质量为200g的物体,以初速度v0=20m/s竖直上抛, 上升的最大高度为16m.没有风,且假设物体所受空气阻力的大小始终不变,求物体落回抛出点时的速度大小.g取10m/s2.解:物体受到的空气阻力跟物体相对空气的运动方向相反. 因此,在没有风的情况下, 物体受到的空气阻力跟物体相对地面的运动方向相反.物体上升时,受到的空气阻力向下;下降时, 受到的空气阻力向上.设空气阻力的大小始终为f.物体减速上升时,加速度向下,合外力也向下;加速下降时, 加速度向下,合外力也向下.由牛顿第二定律,物体减速上升时,加速度的大小为a1=(mg+f)/m即 a1=g+f/m (1)加速下降时,加速度的大小为a2=(mg-f)/m即 a2=g-f/m (2)由匀变速直线运动公式,上升阶段满足v02=2a1h (3)其中h=16m.下降阶段满足v2=2a2h (4)(1)+(2): a1+a2=2g (5)(3)+(4): v02+v2=2(a1+a2)h (6)(5)代入(6)得v02+v2=4gh (7)代入数据得 v=(240)1/2m/s=15.5m/s例题3 木块静止在光滑水平面上,子弹以较大的水平速度 v从木块左面射入,从右面射出,木块获得速度u. 设子弹对木块的作用力与速度无关.如v增大 ,则u(A)增大 (B)减小 (C)不变.思路:首先通过考察子弹相对木块的运动, 判断子弹穿行于木块的时间,与子弹的入射速度v有怎样的关系.解:子弹对木块的作用力向前,木块对子弹的作用力向后,这一对作用力是恒定的,在它们的作用下,子弹向前作匀减速直线运动, 木块向前作初速度为零的匀加速直线运动.子弹相对木块作匀加速运动.在子弹对木块的作用力与速度无关这个前提下,增大v以后,子弹匀减速运动的加速度仍为原来的值,木块作匀加速运动的加速度也仍为原来的值,从而子弹相对木块的加速度仍为原来的值.增大v以后,子弹穿行于木块期间,子弹相对木块运动的位移仍等于木块的长度.子弹相对木块运动的初速度等于v,增大v, 意味着增大子弹相对木块运动的初速度.所以增大v以后,子弹穿行于木块的时间减少.在较少的时间内,木块作初速度为零的匀加速运动, 获得的末速度u就较小.选项(B)正确.例题4 如图3-2所示,斜面的倾角为α.质量分别为m1、m2的两木块A、B,用细绳连接.它们与斜面之间的动摩擦因数μ相同 .现在A上施加一个沿斜面向上的拉力F,使A、B一起向上作匀加速运动.求证细绳上的拉力与μ和α无关.解:设A、B一起运动的加速度为a,对A、B组成的整体应用牛顿第二定律可得:F-(m1+m2)gsinα-μ(m1+m2)gcosα=(m1+m2)a即 F=(m1+m2)gsinα+μ(m1+m2)gcosα+(m1+m2)a (1)设细绳上的拉力大小为T,对B应用牛顿第二定律可得:T-m2gsinα-μm2gcosα=m2a即 T=m2gsinα+μm2gcosα+m2a (2)(1)式除以(2)式得F/T=(m1+m2)/m2 (3)由(3)式可见,细绳上的拉力决定于拉力F以及两个木块的质量, 与动摩擦因数μ以及斜面的倾角α无关.例题5 如图3-3所示,自由下落的小球,从它接触到竖直放置的轻弹簧开始,到弹簧被压缩到最短的过程中,(A)合力逐渐变小(B)合力先变小后变大(C)速度逐渐变小(D)速度先变小后变大解:小球刚接触到弹簧时,弹簧处于自然状态,弹簧对小球的作用力为零,小球受到的合力等于它受到的重力.在最初一段时间内,小球以自由落体运动的末速度为初速度,继续向下做加速运动. 小球向下运动一段适当的位移时(弹簧被压缩适当的长度时),小球弹簧对小球的向上的支持力大小正好等于重力,这时小球的合外力为零.由于小球已经具有了一定的速度,所以还要向下运动.弹簧被压缩的长度增加时,支持力也增大,支持力超过重力,合力向上, 所以从合外力为零的时刻以后向下的运动是减速运动.向下的减速运动进行到速度减为零为止.速度减为零时,弹簧被压缩到最短.再以后,小球向上运动,弹簧的长度增加.综上所述,小球从接触到弹簧开始, 到弹簧被压缩到最短的过程中,小球的合外力先是向下,逐渐减小,然后向上,逐渐增大;小球先作加速运动,然后作减速运动.选项(B)正确.例题6 如图3-4所示,在水平拉力F的作用下,物体A向右运动, 同时物体B匀速上升.可以判断(A)物体A的运动是匀速运动(B)绳子对物体A的拉力逐渐减小(C)水平地面对物体A的支持力逐渐增大(D)水平地面对物体A的摩擦力逐渐减小解:物体A的速度u跟物体B的速度v满足:v=ucosθ在v保持不变的情况下,u随着θ的变化而变化:物体A的运动不是匀速运动.由物体B匀速运动,可知绳子对物体B的拉力保持不变. 绳子对物体A的拉力T的大小总等于绳子对B的拉力,也是不变的.物体A的受力情况如图3-5所示,将 T沿水平方向和竖直方向分解为T x、T y,随着θ的减小,T x逐渐增大,T y逐渐减小.作用于物体A的T y、支持力N、重力G,三者满足:T y+N=GN随着Ty的减小而增大.根据f=μN水平地面对物体A的滑动摩擦力f随着N的增大而增大综上所述,选项(C)正确.例题7 一质点自倾角为α的斜面上方P点沿光滑的斜槽PB从静止开始下滑,如图3-6所示,为使质点在最短的时间内从P点到达斜面,则斜槽与竖直方向的夹角β应等于______.解:如图3-6作PC垂直于斜面,垂足为C.则∠CPA=α,∠CPB=α- β.应用牛顿第二定律可得,质点从斜面上下滑时,加速度为a=gcosβ应用匀变速直线运动公式可得PB=(1/2)at2即 t2=2PB/a=2[PC/cos(α-β)]/(gcosβ)即 t2=2PC/[gcos(α-β)cosβ]当α-β=β ,即β=α/2 时 ,t2取最小值,t取最小值,质点在最短的时间内从P点到达斜面.例题8 图3-7中A为电磁铁,C为胶木秤盘,A和C(包括支架)的总质量为M,B为铁片,质量为m,整个装置用轻绳悬挂于O点. 当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F的大小为( ).(A)F=Mg (B)Mg<F<(M+m)g(C)F=(M+m)g (D)F>(M+m)g (1992年高考上海卷试题)解:铁片离开秤盘时, 电磁铁对它的向上的拉力一定大于地球对它的重力mg.铁片在上升中,逐渐靠近电磁铁,电磁铁对它向上的吸引力逐渐增加,仍大于mg.根据牛顿牛顿第三定律,铁片对电磁铁向下的吸引力, 电磁铁对铁片的吸引力大小相等,大于mg.A和C组成的系统,受力平衡:绳子施加的拉力,等于系统的重力,与铁片对电磁铁向下的吸引力之和,大于(Mg+mg).选项(D)正确.例题9 把一个质量m=4Kg的长方体木块,分割成两个三棱柱形木块A和B,角α=30°,然后再对到一起,放在光滑的水平面上, 如图3-8所示.用大小为8N的水平力F沿图示方向推A, A、B 组成的长方体保持原来的形状,沿力的作用方向平动.(1)求A对B的作用力.(2)求A对B的静摩擦力.解:(1)A和B的加速度a,都是沿F方向.B的加速度是A对B的作用力Q产生的.所以,Q的方向跟F的方向相同,如图3-9所示.对A、B组成的系统应用牛顿第二定律:a=F/m=(8/4)m/s2=2m/s2对B应用牛顿第二定律:Q=(m/2)a=2×2N=4N(2)A对B的作用力Q是A对B的压力N和静摩擦力f的合力( 也可以说,Q可以分解为N和f),如图3-10(俯视图)所示.静摩擦力的大小为f=Q/2=2N例题10 如图3-11所示,A和B质量相等均为m,A与B之间的动摩擦因数为μ1,静摩擦因数为μ2,B与地面之间的动摩擦因数为μ3.原来在水平拉力F的作用下,A和B彼此相对静止 ,相对地面匀速运动(图3-11(a).撤消F后,A和B彼此保持相对静止,相对地面匀减速运动(图3-11(b).则A、B相对地面匀减速运动的过程中,A、B 之间的摩擦力的大小为(A)μ1mg (B)μ2mg (C)μ3mg (D)F/2解:B与地面之间的压力支持力大小始终等于A、B两个物体的总重力,因此地面对B的滑动摩擦力的大小始终为f=μ3(2mg)A、B匀速运动时,受力平衡:F=fA、B一起以加速度a做减速运动时,对于A、B组成的系统来说,地面对B的滑动摩擦力f就是合外力,等于(2ma);对于A来说,B对A的静摩擦力f1就是合力,等于(ma).于是f1=f/2综合以上三式得:f1=μ3mg和 f1=F/2本题选(C)(D).说明:因为A、B没有相对运动,所以A、B之间的动摩擦因数μ1用不到;因为B对A的静摩擦力不一定是最大静摩擦力,所以A、B 之间的静摩擦因数μ2用不到.例题11 如图3-12所示,质量为mA、mB的两个物体A和B 用跨过光滑滑轮的细绳相连.A沿倾角为θ的斜面向下加速下滑.A、B两物体加速度的大小相同,等于a.楔形物体C的下表面是光滑的.求台阶对C水平方向的作用力的大小.解:如图3-13,将物体A的加速度 a沿水平方向和竖直方向分解, 水平分加速度为ax=acosθ;物体B的加速度是向上的,没有水平分量;滑轮质心的加速度为零.在水平方向上,对由A、B、C以及滑轮,组成的系统,应用质点组牛顿第二定律,有F=m A a x.由以上两式得F=m A acosθ .例题12 如图3-14所示,三个质量相同,形状相同的楔形物体, 放在水平地面上.另有三个质量相同的小物体, 分别从斜面顶端沿斜面下滑.由于小物体跟斜面间的动摩擦因数不同, 第一个小物体匀加速下滑;第二个物体匀速下滑; 第三个小物体以一定的初速度匀减速下滑. 三个楔形物体都保持静止,水平面对它们的支持力分别为N1、N2、N3,则(A)N1=N2=N3 (B)N1<N2<N3 (C)N1>N2>N3解:楔形物体和小物体组成的系统受到的外力是: 水面地面对楔形物体的支持力,地球对楔形物体和小物体的重力, 以及水平地面施加于楔形物体的沿着接触面的静摩擦力.小物体匀加速下滑时,加速度沿斜面向下, 将加速度向水平方向和竖直方向分解时,竖直方向的分加速度是向下的. 根据质点组牛顿第二定律,竖直方向的作用力的合力向下,所以支持力N 1小于两者的重力之和.小物体匀速下滑时,加速度为零.支持力N 2等于两者的重力之和.小物体减速下滑时,加速度沿斜面向上, 将加速度沿水平方向和竖直方向分解时,竖直方向的分加速度向上. 根据质点组牛顿第二定律,竖直方向作用力的合力向上,支持力N 3大于两者的重力之和.本题选(B).例题13 如图3-15,光滑水平面上有一块木板,质量为M=4Kg, 长为L=1.4m.木板右端放着一个小滑块,小滑块质量为m=1Kg, 尺寸远小于L,与木板之间的动摩擦因数为μ=0.4.原来它们都静止,现在大小为F=28N的水平力向右拉木板,使滑块从木板左端掉下, 此力作用时间至少为多长?解:根据题意,水平力作用一段时间后,滑块会从左端掉下. 这暗示我们,水平力开始作用期间,木板向右的加速度较大,速度较大, 滑块向右的加速度较小,速度较小.在滑块尚未滑到木板左端时,如水平力停止作用,那么在一段时间内,木板向右的速度仍大于滑块,那么此后经一段时间滑块有可能从左端掉下,那时, 木板向右的速度应大于等于木板向右的速度.由此可知,水平力作用适当的一段时间t1后, 木板向右的速度比滑块向右的速度大,大适当的数值,然后撤去水平力,当两者的速度正好相等时,滑块从木板左端掉下.t 1就是水平力作用的最短时间.向右的水平力F开始作用后,木板除受到这个力外,还受到向左的滑块施加的滑动摩擦力f=μmg=4N木板的加速度向右,大小为(F-f)/M=6m/s2滑块受到向右的滑动摩擦力,加速度向右,大小为f/m=4m/s2经时间t1时,撤去水平力F.此后滑块的加速度仍向右,大小仍为f/m=4m/s2.木板在向左的滑动摩擦力作用下,加速度向左,大小为f/M=1m/s2木板相对于滑块始终向右运动,滑块相对于木板始终向左运动.下面以木板为参照物,考察滑块在木板上的运动(图3-16). 滑块第一阶段作初速度为零的匀加速运动,末速度的大小记为v,第二阶段作匀减速运动,末速度为零.第一阶段,加速度的大小为a1=6-4=2m/s第二阶段,加速度的大小为a2=4+1=5m/s2根据匀变速直线运动公式,有v=a1t1即 v=2t1 (1)v=a2t2=5t2即 v=5t2 (2)L=(v/2)(t1+t2) 即 2.8=v(t1+t2) (3)由(1)(2(3)得 t1=1s使滑块从木板左端掉下,水平力F作用时间至少为1s.例题14 如图3-17所示,A、B两个光滑的梯形木块质量均为m, 紧挨着并排放在光滑水平面上.倾角θ=60°.欲使A、B在水平推力F 作用下,一起加速运动(两者无相对滑动),F不能超过多少?解:A受力情况如图3-18所示.A、B之间没有相对滑动, 意味着两者的加速度相同,都是沿水平方向,设大小为a.对A应用牛顿第二定律:Ncosθ+P= mg (1)F-Nsinθ= ma (2)对A、B组成的系统应用牛顿第二定律:F=(m+m)a (3)又 N>0 (4)P≥0 (5)a>0 (6)由(2)(3)两式得2F-2Nsinθ= F即 N=F/(2sinθ) (7)将(7)代入(1)得P=mg-(Fctgθ)/2 (8)mg-Fcosθ/(2sinθ)≥0F≤2mgtg60°F≤2×31/2mg欲使A、B在水平推力F作用下,一起加速运动(两者无相对滑动), F 不能超过2×31/2mg.例题15 如图3-19所示,楔形物体静止在水平面上,左右斜面都是光滑的,α>β.跨过定滑轮的细绳,系住两个物块 ,物块保持静止. 将细绳切断后,两个滑块运动,楔形物体仍保持静止,此时(A)地面对楔形物体的支持力大小与原来相同(B)地面对楔形物体的支持力比原来小(C)地面对楔形物体有静摩擦力,向左(D)地面对楔形物体有静摩擦力,向右解:两个物块的加速度都是沿斜面向下,都有竖直向下的分量,对两个物块和楔形物体组成的系统应用牛顿第二定律可知:对面对楔形物体的支持力小于三者的重力,比原来小.选项(B)正确,(A)错误.原来左边滑块处于静止状态,外力之和为零, 所以绳子对左边物块的拉力大小等于m1gsinα.原来右边滑块处于静止状态, 外力之和为零,所以绳子对右边物块的拉力大小等于m2gsinβ.而绳子对左边滑块的拉力 ,大小等于绳子对右边滑块的拉力.所以m1gsinα=m2gsinβ (1)图3-20中,左边滑块对楔形物体的压力N1=m1gcosα这个力的水平向右的分量为N1x=N1sinα即 N1x=m1gcosαsinα (2)类似地,右边滑块对楔形物体的压力N2的水平向左的分量为N2x=m2gcosβsinβ (3)由α>β可知 cosα<cosβ (4)将(1)乘以(4)得m1gsinαcosα<m2gsinβcosβ (5)由(2)(3)(5)可知N1x<N2x (6)楔形物体保持静止,外力之矢量和应为零: 地面对楔形物体的静摩擦力跟N1x、N2x三者之矢量和应为零.所以地面对楔形物体的静摩擦力向右.选项(D)正确,(C)错误.总之,本题选项(B)(D)正确.例题16 如图3-21所示,物体A、B质量分别为m1、m2, 叠放在倾角为α的斜面上, A、B之间的静摩擦因数为μ1, B 与斜面之间的动摩擦因数为μ2.A、B保持相对静止,一起加速下滑.μ1、μ2、α相互之间一定满足:(A)μ1≥μ 2 ,tgα>μ2(B)μ1≤μ 2 ,tgα>μ2(C)tgα>μ1≥μ2(D)tgα>μ2=μ1解:由物体A和物体B组成的系统,加速度a沿斜面向下, 根据牛顿第二定律有:(m1+m2)gsinα-μ2(m1+m2)gcosα=(m1+m2)a即 gsinα-μ2gcosα=a (1)其中 a>0 (2)由(1)(2)得μ2<tgα (3)物体A受到的静摩擦力f沿斜面向上,对物体A应用牛顿第二定律:m1gsinα-f=m1a (4)将(1)代入(4):m1gsinα-f=m1gsinα-μ2m1gcosα即 f=μ2m1gcosα (5)根据静摩擦因数的定义,物体A受到的最大静摩擦力为f max=μ1m1gcosα (6)根据最大静摩擦力的定义有f≤f max (7)由(5)(6)(7)得μ2m1gcosα≤μ1m1gcosα即μ2≤μ1 (8)(3)(8)两式是μ1、μ2、α相互之间一定满足的关系式.只有选项(A)正确.例题17 如图3-22所示,物块A的质量为m A,物块B的质量为m B.A与小车前表面之间的静摩擦因数为μ,小车上表面是光滑的. 当使用适当的推力使小车以“适当的加速度”向左作加速运动时,A、B都相对小车静止,跟小车一起运动. 小车的“适当的加速度”应在什么范围内?解:绳子对B的拉力跟绳子对A的拉力大小相等,设为T. 小车的适当的加速度,其大小设为a.对物体B应用牛顿第二定律:T=m B a (1)物体A受力情况如图3-23所示.小车对A的静摩擦力f可以向上,也可以向下,图中表示静摩擦力矢量的字母f可以取正值 ,也可以取负值, 其绝对值不能超过最大静摩擦力:-μN≤f≤μN (2)为以后演算的方便,可把(2)式写为两个不等式:f≤μN (3)-μN≤f (4)对物体A应用牛顿第二定律:N=m A a (5)f+T=m A g (6)将(1)代入(6)可得f=m A g-m B a (7)将(5)(7)代入(3)得m A g-m B a≤μm A a即 m A g≤μm A a+m B a于是a≥m A g/(μm A+m B) (8)将(5)(7)代入(4)得-μm A a≤ m A g-m B a即 m B a -μm A a≤ m A g即 a(m B -μm A)≤ m A g (9)(甲)若 m B -μm A>0则(9)式可化为a≤m A g/(m B-μm A) (9a)(乙)若 m B -μm A<0则(9)式可化为a≥m A g/(m B-μm A) (9b)(8)被满足时,(9b)自然满足.(丙)若 (m B -μm A)=0则(9)式自然满足.结论:(一)在 m B -μm A>0情况下,a的取值由(8)和(9a)的交集确定,即m A g/(μm A+m B)≤ a≤m A g/(m B-μm A)(二)在 m B -μm A<0情况下,a的取值由(8)和(9b)的交集确定,即a≥m A g/(μm A+m B)(三)在 m B -μm A=0情况下,a的取值由(8)确定,即a≥m A g/(μm A+m B)以上(二)(三)两条可以合并.例题18 如图3-24所示,两斜面高都是h,倾角分别为α、β,α<β.滑块1,与左边斜面之间的动摩擦因数为μ1,从顶端由静止而下滑,经过时间t1滑到底端,滑到底端时速度大小为v1.滑块2,与右边的斜面之间的动摩擦因数为μ2,从顶端由静止而下滑,经过时间t2滑到底端,滑到底端时速度大小为v2.(A)若已知v1=v2,那么可知t1>t2(B)若已知μ1=μ2,那么可知v1=v2(C)若已知t1=t2,那么可知μ1<μ2(D)若已知μ1<μ2,那么可知t1=t2解:作一般化考虑:斜面高为h,倾角为x, 滑块与斜面之间的动摩擦因数为μ,从顶端由静止而下滑,经过时间t滑到底端, 滑到底端时速度大小为v.在分析受力情况的基础上,根据牛顿第二定律,不难得出,滑块的加速度为a=gsinx-μgcosx (1)由匀变速直线运动的公式得h/sinx=(1/2)vt (2)h/sinx=(1/2)at2 (3)v2=2ah/sinx (4)(甲)由(2)可知,在v相同的情况下,倾角x越大,时间t越短.(乙)将(1)代入(4)得v2=2gh(1-μctgx) (5)由(5)可知,在μ相同的情况下,对于不同的倾角x,速度v不同.选项(B)不对.(丙)由(1)(3)得h/sinx=(1/2)(gsinx-μgcosx)t2 (6)即 2h/(t2sinx)=gsinx-μgcosx即 2h/(gt2sinxcosx)=sinx/cosx-μ即μ=tgx[1-2h/(gt2sin2x)] (7)由(7)式可知,在t相同的情况下,锐角x越大,动摩擦因数μ越大.选项(C)正确.(丁)由(6)可知,时间t跟倾角x和动摩擦因数μ有关,当 x分别取α和β时,不可能对于满足μ1<μ2的所有的μ1、μ2,时间 t总相同.选项(D)不对.总之,选项(A)(C)正确.例题19 在光滑的水平面上,放着两块长度相同、质量分别为M1和M2的木板, 在两木板的左端各放一个大小形状质量完全相同的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一物理力学例题经典第一章力例题1 把一个大小为10N的力沿相互垂直的两个方向分解,两个分力的大小可能为(A) 1N,9N (B)6N,8N(C)(99.99)1/2N,0.1N (D)11N,11N解:两个分力的平方和应等于102,等于100.选项(B)(C)正确.例题2 一个大小为1N的力可以分解为多大的两个力?(A) 0.2N,1.2N (B)1N,1N (C)100N,100N (D)1N,1000N解:大小为0.2N和1.2N的两个力方向相反时合力为1N,选项(A)正确;大小均为1N的两个力互成120°角时,合力为1N,选项(B)正确;大小均为100N的两个力互成适当小的角度时,合力可为1N,选项(C)正确;大小为1N和1000N的两个力的合力大小在999N与1001N之间,不可能为1N,选项(D)不对.总之选项(A)(B)(C)正确.例题3 作用于同一质点的三个力大小均为10N.(1)如果每两个力之间的夹角都是120°角,那么合力多大?(2)如果两两垂直,那么合力多大?解:(1)合力为零.(2)根据题意,可以设F1向东,F2向南,F3向上.F1、F2的合力F12,沿东南方向,大小为10N.F3与F12相垂直,所以三个力的合力大小为F=(102+(10)2)1/2=10N例题4 (1)大小为5N、7N、8N的三个共点力,合力最小值为____;(2)大小为5N、7N、12N的三个共点力,合力最小值为____;(3)大小为5N、7N、13N的三个共点力,合力最小值为____;(4)大小为5N、7N、40N的三个共点力,合力最小值为____.答:(1)0;(2)0;(3)1N;(4)28N.例题5 如图1-2所示,六个力在同一平面内,相邻的两个力夹角都等于60°,F1=11N,F2=12N,F3=13N,F4=14N,F5=15N,F6=16N.六个力合力的大小为___N.解:F1与F4的合力F14沿F4方向,大小为3N,F2与F5的合力F25沿F5方向,大小为3N,F3与F6的合力F36沿F6方向,大小为3N.所以六个力的合力等于图1-3中三个力的合力.F14与F36的合力F1436沿F25方向,大小为3N.F1436与F25的合力,沿F25方向,大小为6N.总之六个力的合力大小为6N,沿F5方向.例题6 质点受到五个力:F1、F2、F3、F4、F5,图1-4中作出了五个力的图示,两条实线和四条虚线正好构成一个正六边形.已知F3=10牛,求五个力的合力多大.解:容易看出,F1和F2的合力等于F3(大小和方向等于F3的大小和方向),F2和F5的合力等于F3,所以五个力的合力为F=3F3=30牛.例题7 图1-5(a)中三个力为共点力,平移后构成三角形,图1-5(b)也是这样.图1-5(a)中三个力的合力大小为____N;图1-5(b)中三个力的合力大小为____N.解:根据三角形定则,图(a)中,F2与F3的合力等于F1,所以三个力的合力等于2F1=40N(向左).根据三角形定则,图(b)中,F2与F3的合力向右,大小等于F1,所以三个力的合力等于零.从多边形定则可以直接得出这个结论.例题8 如图1-6所示,十三个力在同一平面内,大小均为1N,相邻的两个力夹角都是15°,求十三个力的合力.解:F1与F13的合力为零;F2与F12互成150°角,合力沿F7方向,利用余弦定理,可算出合力大小为(12+12+2×1×1cos150°)1/2N=(12+12-2×1×1cos30°)1/2N=(2-)1/2N;F3与F11互成120°角,合力沿F7方向,合力大小为1N;F4与F10互成90°角,合力沿F7方向,合力大小为N;F5与F9互成60°角,合力沿F7方向,合力大小为N;F6与F8互成30°角,合力沿F7方向,利用余弦定理,可算出合力大小为(12+12+2×1×1cos30°)1/2N=(2+)1/2N;所以十三个力的合力沿F7方向,大小为F=(2-)1/2N+1N+N+N+(2+)1/2N+1N=(2+(2+)1/2+(2-)1/2++)N.例题9 如图1-7,有同一平面内5个共点力,相邻的两个力之间的夹角都是72度.F1大小为90N,其余各力大小均为100N.求5个力的合力.解:F1可以分解为沿F1方向的大小为100N的分力F1a,和沿F1反方向的大小为10N的分力F1b.这样原题转化为求解F1a、F1b和F2、F3、F4、F5等6个力的合力.易知,其中F1a和F2、F3、F4、F5等5个力的合力为零.所以F1、F2、F3、F4、F5的合力等于F1b:大小为10N,沿F1的反方向.例题10 有n个大小为F的共点力,沿着顶角为120°的圆锥体的母线方向,如图1-8所示.相邻两个力的夹角都是相等的.这n个力的合力大小为_____.解:将每个力沿圆锥体的对称线方向和平行于底面的方向分解,得到n个沿着对称线方向的分力,和n个平行于底面方向的分力.每个沿着对称线方向的分力大小都等于F/2,所以n个沿着对称线方向的分力的合力,大小为nF/2.另一方面,n个平行于底面方向的分力的合力为零.所以本题所求n个力的合力大小等于nF/2.例题11 下面每组共点力,大小是确定的.试分别判断各组力之合力是否可能为零,如不可能为零,最小值多大.(A)1N,2N,3N,4N,15N(B)1N,2N,3N,4N,10N(C)1N,2N,3N,4N,5N(D)1N,2N,10N,100N,100N(E)1N,2N,……98N,99N,100N(F)1N,2N,……98N,99N,10000N解:(A)1+2+3+4=10,而10<15,这五个力不可能组成五边形,谈不上组成如图1-1(c)所示的五边形,因此合力不可能为零,最小值为:F min=15N-10N=5N.(B)1+2+3+4=10,所以五个力的合力可能为零.(C)1+2+3+4>5,这五个力可以组成图8所示的五边形,合力可能为零.(D)1+2+10+100>100,所以五个力的合力可能为零.(E)1+2+3+……+98+99>100,所以一百个力的合力可能为零.(F)1+2+3+……+98+99=(1+99)×99/2=4950<10000所以,一百个力的合力不可能为零,最小值为F min=10000N-4950N=5050N.第二章直线运动例题1 有一小孩掉进河里后抱住了一根圆木随水向下飘流,有三条船A、B、C在正对河岸P点的地方同时与圆木相遇,但三条船上的船员都没有注意到圆木上的小孩.A、B 两船逆水上行,C船顺水下行.相对水的速度,B船是A船的1.2倍,C船是B船的1.2倍. 当三条船离开P点行驶30分钟的时候, 船员们从收音机里听到圆木上有小孩需要救助的消息,三条船都立即调转船头,驶向圆木.在离P点6千米的地方,小孩被船员救起. 试回答三条船到达小孩和圆木的先后次序如何?_____.解:以流水为参照物.小孩和原木是静止的.船A上行时速度和下行时速度大小相等,船B也是这样,船C也是这样.船A、B、C 同时从小孩所处的位置向上游和下游行驶,速度不同,在30 分钟内行驶了不同的路程s1、s2、s3;在接下去的30分钟内, 三条船分别沿反方向行驶路程s1、s2、s3,回到小孩所处的位置.答:三条船同时到达小孩和原木.例题2 一列一字形队伍长120m,匀速前进. 通讯员以恒定的速率由队尾跑到队首,又跑回队尾,在此期间,队伍前进了288m. 求通讯员跑动的速率v是队伍前进的速率u的多少倍.分析:顺利解答本题的关键是, 找出通讯员的运动跟队首或队尾的运动的联系.解:设通讯员从队尾跑到队首所用的时间为t1, 从队首跑到队尾所用的时间为t2,那么u(t1+t2)=288 (1)在t1时间内,通讯员跑动的路程比队首移动的路程多120m:vt1-ut1=120 (2)在t2时间内,通讯员跑动的路程加上队尾移动的路程等于120m:vt2+ut2=120 (3)从(2)式中得出t1的表达式,从(3)式中得出t2的表达式,代入(1)式, 可算出:v=1.5u例题3 一物体作匀变速直线运动,某时刻速度的大小为4m/s, 1s后速度的大小变为10m/s.在这1s内(A)位移的大小可能小于4m(B)位移的大小可能大于10m(C)加速度的大小可能小于4m/s2(D)加速度的大小可能小于10m/s2 (1996年高考全国卷试题)解:取初速度方向为正方向,则v0=4m/s,v t=10m/s或-10m/s.由 s=v t=(v0+v t)t/2,得 s=7m或-3m所以位移的大小为7m或3m.选项(A)正确,(B)错误.由 a=(v t-v0)/t得 a=6m/s2或-14m/s2所以加速度的大小为6m/s2或14m/s2,选项(C)错误,(D)正确.总之,本题选(A)(D).例题4 在三楼的阳台上 ,一人伸出阳台的手上拿着一只小球, 小球下面由细绳挂着另一个小球.放手,让两小球自由下落,两小球相继落地的时间差为t.又站在四层楼的阳台上,同样放手让小球自由下落,两小球相继落地的时间差为t',则(A)t<t' (B)t=t' (C)t>t'解:从三楼阳台外自由下落,下面的小球着地时,两球具有的速度为v,从四楼阳台外自由下落,下面的小球着地时, 两球具有的速度为v',显然v<v'.下面的小球着地后,上面的小球以较小的初速度v和较大的初速度v',继续作加速度为g的匀加速运动, 发生一定的位移(等于绳长),所需的时间显然是不同的:t>t'.选项(C)正确.例题5 一质点由静止从A点出发,先作匀加速直线运动,加速度大小为a,后做匀减速直线运动,加速度大小为3a,速度为零时到达B 点.A、B间距离为s.求质点运动过程中的最大速度.解:设质点第一阶段做匀加速运动的的时间为t1,末速度为 v, 这就是运动过程中的最大速度;设第二阶段做匀减速运动的时间为t2.那么第一阶段的位移为vt1/2,第二阶段的位移为vt2/2, 两者之和应为全程位移: vt1/2+vt2=s (1)又根据加速度的定义式,有t1=v/a (2)t2=v/(3a) (3)将(2)(3)两式代入(1)式:v2/(2a)+v2/(6a)=s所以 v=(3as/2)1/2例题6 两辆完全相同的汽车 ,沿水平直路一前一后匀速行驶, 速度均为v0,若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车.已知前车在刹车过程中所行驶的路程为s,若要保证两车在上述情况下不相撞,则两车在匀速行驶时保持的距离至少应为(A)s (B)2s (C)3s (D)4s(1992年高考全国卷试题)解:汽车从开始刹车到停下这个期间,平均速度为v0/2.在前车开始刹车到停下这段时间内,后车以速度v0匀速行驶, 行驶的距离应为s的两倍,即为2s.从前车开始刹车到两车都停下,前车的位移为s;后车的位移为 (2s+s)=3s.设前车刹车前(匀速行驶期间)两车的距离为l,为使两车不相撞,应满足:l+s≥3s所以l≥2s本题选(B)例题7 某人离公共汽车尾部20m,以速度v向汽车匀速跑过去, 与此同时汽车以1m/s2的加速度启动,作匀加速直线运动.试问, 此人的速度v分别为下列数值时,能否追上汽车?如果能, 要用多长时间?如果不能,则他与汽车之间的最小距离是多少?(1)v=4m/s; (2)v=6m/s; (3)v=7m/s.思路:假设人不管是否在某一时刻追上了汽车,一直以速度v朝前跑,得出汽车跟人的距离y随时间t变化的函数式. 然后考察对于正值t,y是否可能取零,如果是的,那么能追上,如果不能,那么不能追上.解:假设人不管是否在某一时刻追上了汽车,一直以速度v朝前跑.在时间t内,人的位移等于vt;汽车的位移等于(1/2)at2=0.5t2.经过时间t时,汽车尾部跟人之间,距离为y=20+0.5t2-vt即 y=20+0.5(t2-2vt+v2)-0.5v2即 y=0.5(t-v)2+20-0.5v2 (*)上式中,y取正值时,表示汽车尾部在人前方y米,y取负值时,表示汽车的尾部在人后面│y│米(前面已假设人即使追上了汽车,也一直朝前跑).(甲)把v=4代入(*)式得y=0.5( t-4)2+12 (1)y恒大于零,y最小值为12.(乙)把v=6代入(*)式得y=0.5( t-6)2+2 (2)y恒大于零,y最小值为2.(丙)把v=7代入(*)式得y=0.5( t-7)2-4.5 (3)容易得出,当t=4,10时,y=0,这表示,如果人一直朝前跑, 那么经过4s时,人与汽车尾部平齐,经过10s时, 人又一次与汽车的尾部平齐.结论:(1)如v=4m/s,则人追不上汽车, 人跟汽车之间的最小距离为 12m.(2)如v=6m/s,则人追不上汽车, 人跟汽车之间的最小距离为 2m.(3)如v=7m/s,则人经过4s追上汽车.例题8 杂技演员表演一手抛接三球的游戏时, 三个球都抛过一次后,每一时刻手中最多只有一个球. 如果每只球上升的最大高度都为1.25m,那么每隔多长时间抛出一个球?g取10m/s2.(A)0.33s (B)0.33s到0.50s(C)0.50s (D)1.0s解:每个球做一次竖直上抛运动的时间是t=2(2h/g)1/2=2(2×1.25/10) 1/2=1.0s球从这一次被抛出到下一次被抛出,完成一个周期性运动, 设周期为T.如果每个球在手中停留的时间趋于零,那么T=t=1.0s;如果手中总停留着一个球,一个球停留的时间是t',那么T=t+t' ,且 t'=(1/3)T那么 T=(3/2)t=1.5s.以上考虑的是两个极端情况.实际上1.0s<T<1.5s在T时间内抛出三个球,每隔T/3的时间抛出一个球:0.33s<T/3<0.5s ,选项(B)正确.请读者考虑:如果每秒钟抛出三个球,那么应使每个球上升多高?(答案:0.56m到1.25m)例题9 小球A从地面上方H高处自由下落,同时在A的正下方,小球B从地面以初速度v竖直上抛.不计空气阻力.要使A、B 发生下述碰撞,v、H应满足什么条件?(甲)在B上升到最高点时相碰;(乙)在B上升的过程中相碰;(丙)在时间T内在空中相碰;(丁)经过时间T时在空中相碰.解:设经过时间t在地面上方h高处相碰.则从开始运动到相碰, 小球A发生的位移大小为(H-h),小球B发生的位移大小为h,则:( H-h)=(1/2)gt2h=vt-(1/2)gt2由以上两式得 t=H/v (1)时间t应小于B球在空中运动的时间:t<2v/g (2)由(1)(2)得 2v2>gH (3)(甲)在最高点相碰:t=v/g (4)由(1)(4)得 v2=gH (5)所以v、H应满足(5)式.(乙)时间t应小于B球上升时间:t<v/g (6)由(1)(6)得 v2>gH (7)所以v、H应满足(7)式.(丙) t≤T (8)由(1)(8)得H≤vT (9)所以v、H应满足(3)(9)两式.(丁) t=T (10)由(1)(10)得 H=vT (11)所以v、H应同时满足(3)(11)两式.讨论: (11)代入(3):v>gT/2 (12)问题(丁)又可这样回答:v、H应满足(11)(12)两式.从(11)得出v=H/T,代入(3)或(12)可得H>gT2/2 (13)问题(丁)还可这样回答:v、H应满足(11)(13)两式.第三章牛顿运动定律例题1 某人在地面上最多能举起32Kg的重物,那么在以2m/s匀加速下降的电梯中,他最多能举起多少Kg的重物?g取10m/s2.解:此人能施加的向上的举力大小为F=m1g=32×10N=320N在匀加速下降的电梯中,设某人用举力F举起了质量为m2的物体.物体的加速度向下,所以合外力也向下. 对这个物体应用牛顿第二定律:m2g-F=m2a即 m2=F/(g-a)把举力大小F=320N,重力加速度大小g=10m/s2,物体加速度大小a=2m/s2代入上式,得m2=40Kg他最多能举起40Kg的物体.例题2 一个质量为200g的物体,以初速度v0=20m/s竖直上抛, 上升的最大高度为16m.没有风,且假设物体所受空气阻力的大小始终不变,求物体落回抛出点时的速度大小.g取10m/s2.解:物体受到的空气阻力跟物体相对空气的运动方向相反. 因此,在没有风的情况下, 物体受到的空气阻力跟物体相对地面的运动方向相反.物体上升时,受到的空气阻力向下;下降时, 受到的空气阻力向上.设空气阻力的大小始终为f.物体减速上升时,加速度向下,合外力也向下;加速下降时, 加速度向下,合外力也向下.由牛顿第二定律,物体减速上升时,加速度的大小为a1=(mg+f)/m即 a1=g+f/m (1)加速下降时,加速度的大小为a2=(mg-f)/m即 a2=g-f/m (2)由匀变速直线运动公式,上升阶段满足v02=2a1h (3)其中h=16m.下降阶段满足v2=2a2h (4)(1)+(2): a1+a2=2g (5)(3)+(4): v02+v2=2(a1+a2)h (6)(5)代入(6)得v02+v2=4gh (7)代入数据得 v=(240)1/2m/s=15.5m/s例题3 木块静止在光滑水平面上,子弹以较大的水平速度 v从木块左面射入,从右面射出,木块获得速度u. 设子弹对木块的作用力与速度无关.如v增大 ,则u(A)增大 (B)减小 (C)不变.思路:首先通过考察子弹相对木块的运动, 判断子弹穿行于木块的时间,与子弹的入射速度v有怎样的关系.解:子弹对木块的作用力向前,木块对子弹的作用力向后,这一对作用力是恒定的,在它们的作用下,子弹向前作匀减速直线运动, 木块向前作初速度为零的匀加速直线运动.子弹相对木块作匀加速运动.在子弹对木块的作用力与速度无关这个前提下,增大v以后,子弹匀减速运动的加速度仍为原来的值,木块作匀加速运动的加速度也仍为原来的值,从而子弹相对木块的加速度仍为原来的值.增大v以后,子弹穿行于木块期间,子弹相对木块运动的位移仍等于木块的长度.子弹相对木块运动的初速度等于v,增大v, 意味着增大子弹相对木块运动的初速度.所以增大v以后,子弹穿行于木块的时间减少.在较少的时间内,木块作初速度为零的匀加速运动, 获得的末速度u就较小.选项(B)正确.例题4 如图3-2所示,斜面的倾角为α.质量分别为m1、m2的两木块A、B,用细绳连接.它们与斜面之间的动摩擦因数μ相同 .现在A上施加一个沿斜面向上的拉力F,使A、B一起向上作匀加速运动.求证细绳上的拉力与μ和α无关.解:设A、B一起运动的加速度为a,对A、B组成的整体应用牛顿第二定律可得:F-(m1+m2)gsinα-μ(m1+m2)gcosα=(m1+m2)a即 F=(m1+m2)gsinα+μ(m1+m2)gcosα+(m1+m2)a (1)设细绳上的拉力大小为T,对B应用牛顿第二定律可得:T-m2gsinα-μm2gcosα=m2a即 T=m2gsinα+μm2gcosα+m2a (2)(1)式除以(2)式得F/T=(m1+m2)/m2 (3)由(3)式可见,细绳上的拉力决定于拉力F以及两个木块的质量, 与动摩擦因数μ以及斜面的倾角α无关.例题5 如图3-3所示,自由下落的小球,从它接触到竖直放置的轻弹簧开始,到弹簧被压缩到最短的过程中,(A)合力逐渐变小(B)合力先变小后变大(C)速度逐渐变小(D)速度先变小后变大解:小球刚接触到弹簧时,弹簧处于自然状态,弹簧对小球的作用力为零,小球受到的合力等于它受到的重力.在最初一段时间内,小球以自由落体运动的末速度为初速度,继续向下做加速运动. 小球向下运动一段适当的位移时(弹簧被压缩适当的长度时),小球弹簧对小球的向上的支持力大小正好等于重力,这时小球的合外力为零.由于小球已经具有了一定的速度,所以还要向下运动.弹簧被压缩的长度增加时,支持力也增大,支持力超过重力,合力向上, 所以从合外力为零的时刻以后向下的运动是减速运动.向下的减速运动进行到速度减为零为止.速度减为零时,弹簧被压缩到最短.再以后,小球向上运动,弹簧的长度增加.综上所述,小球从接触到弹簧开始, 到弹簧被压缩到最短的过程中,小球的合外力先是向下,逐渐减小,然后向上,逐渐增大;小球先作加速运动,然后作减速运动.选项(B)正确.例题6 如图3-4所示,在水平拉力F的作用下,物体A向右运动, 同时物体B匀速上升.可以判断(A)物体A的运动是匀速运动(B)绳子对物体A的拉力逐渐减小(C)水平地面对物体A的支持力逐渐增大(D)水平地面对物体A的摩擦力逐渐减小解:物体A的速度u跟物体B的速度v满足:v=ucosθ在v保持不变的情况下,u随着θ的变化而变化:物体A的运动不是匀速运动.由物体B匀速运动,可知绳子对物体B的拉力保持不变. 绳子对物体A的拉力T的大小总等于绳子对B的拉力,也是不变的.物体A的受力情况如图3-5所示,将 T沿水平方向和竖直方向分解为T x、T y,随着θ的减小,T x逐渐增大,T y逐渐减小.作用于物体A的T y、支持力N、重力G,三者满足:T y+N=GN随着Ty的减小而增大.根据f=μN水平地面对物体A的滑动摩擦力f随着N的增大而增大综上所述,选项(C)正确.例题7 一质点自倾角为α的斜面上方P点沿光滑的斜槽PB从静止开始下滑,如图3-6所示,为使质点在最短的时间内从P点到达斜面, 则斜槽与竖直方向的夹角β应等于______.解:如图3-6作PC垂直于斜面,垂足为C.则∠CPA=α,∠CPB=α- β.应用牛顿第二定律可得,质点从斜面上下滑时,加速度为a=gcosβ应用匀变速直线运动公式可得PB=(1/2)at2即 t2=2PB/a=2[PC/cos(α-β)]/(gcosβ)即 t2=2PC/[gcos(α-β)cosβ]当α-β=β ,即β=α/2 时 ,t2取最小值,t取最小值,质点在最短的时间内从P点到达斜面.例题8 图3-7中A为电磁铁,C为胶木秤盘,A和C(包括支架)的总质量为M,B为铁片,质量为m,整个装置用轻绳悬挂于O点. 当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F的大小为( ).(A)F=Mg (B)Mg<F<(M+m)g(C)F=(M+m)g (D)F>(M+m)g (1992年高考上海卷试题)解:铁片离开秤盘时, 电磁铁对它的向上的拉力一定大于地球对它的重力mg.铁片在上升中,逐渐靠近电磁铁,电磁铁对它向上的吸引力逐渐增加,仍大于mg.根据牛顿牛顿第三定律,铁片对电磁铁向下的吸引力, 电磁铁对铁片的吸引力大小相等,大于mg.A和C组成的系统,受力平衡:绳子施加的拉力,等于系统的重力,与铁片对电磁铁向下的吸引力之和,大于(Mg+mg).选项(D)正确.例题9 把一个质量m=4Kg的长方体木块,分割成两个三棱柱形木块A和B,角α=30°,然后再对到一起,放在光滑的水平面上, 如图3-8所示.用大小为8N的水平力F沿图示方向推A, A、B 组成的长方体保持原来的形状,沿力的作用方向平动.(1)求A对B的作用力.(2)求A对B的静摩擦力.解:(1)A和B的加速度a,都是沿F方向.B的加速度是A对B的作用力Q产生的.所以,Q的方向跟F的方向相同,如图3-9所示.对A、B组成的系统应用牛顿第二定律:a=F/m=(8/4)m/s2=2m/s2对B应用牛顿第二定律:Q=(m/2)a=2×2N=4N(2)A对B的作用力Q是A对B的压力N和静摩擦力f的合力( 也可以说,Q可以分解为N和f),如图3-10(俯视图)所示.静摩擦力的大小为f=Q/2=2N例题10 如图3-11所示,A和B质量相等均为m,A与B之间的动摩擦因数为μ1,静摩擦因数为μ2,B与地面之间的动摩擦因数为μ3.原来在水平拉力F的作用下,A和B彼此相对静止 ,相对地面匀速运动(图3-11(a).撤消F后,A和B彼此保持相对静止,相对地面匀减速运动(图3-11(b).则A、B相对地面匀减速运动的过程中,A、B 之间的摩擦力的大小为(A)μ1mg (B)μ2mg (C)μ3mg (D)F/2解:B与地面之间的压力支持力大小始终等于A、B两个物体的总重力,因此地面对B的滑动摩擦力的大小始终为f=μ3(2mg)A、B匀速运动时,受力平衡:F=fA、B一起以加速度a做减速运动时,对于A、B组成的系统来说,地面对B的滑动摩擦力f就是合外力,等于(2ma);对于A来说,B对A的静摩擦力f1就是合力,等于(ma).于是f1=f/2综合以上三式得:f1=μ3mg和 f1=F/2本题选(C)(D).说明:因为A、B没有相对运动,所以A、B之间的动摩擦因数μ1用不到;因为B对A的静摩擦力不一定是最大静摩擦力,所以A、B 之间的静摩擦因数μ2用不到.例题11 如图3-12所示,质量为mA、mB的两个物体A和B 用跨过光滑滑轮的细绳相连.A沿倾角为θ的斜面向下加速下滑.A、B两物体加速度的大小相同,等于a.楔形物体C的下表面是光滑的.求台阶对C水平方向的作用力的大小.解:如图3-13,将物体A的加速度 a沿水平方向和竖直方向分解, 水平分加速度为ax=acosθ;物体B的加速度是向上的,没有水平分量;滑轮质心的加速度为零.在水平方向上,对由A、B、C以及滑轮,组成的系统,应用质点组牛顿第二定律,有F=m A a x.由以上两式得F=m A acosθ .例题12 如图3-14所示,三个质量相同,形状相同的楔形物体, 放在水平地面上.另有三个质量相同的小物体, 分别从斜面顶端沿斜面下滑.由于小物体跟斜面间的动摩擦因数不同, 第一个小物体匀加速下滑;第二个物体匀速下滑; 第三个小物体以一定的初速度匀减速下滑. 三个楔形物体都保持静止,水平面对它们的支持力分别为N1、N2、N3,则(A)N1=N2=N3 (B)N1<N2<N3 (C)N1>N2>N3解:楔形物体和小物体组成的系统受到的外力是: 水面地面对楔形物体的支持力,地球对楔形物体和小物体的重力, 以及水平地面施加于楔形物体的沿着接触面的静摩擦力.小物体匀加速下滑时,加速度沿斜面向下, 将加速度向水平方向和竖直方向分解时,竖直方向的分加速度是向下的. 根据质点组牛顿第二定律,竖直方向的作用力的合力向下,所以支持力N 1小于两者的重力之和.小物体匀速下滑时,加速度为零.支持力N 2等于两者的重力之和.小物体减速下滑时,加速度沿斜面向上, 将加速度沿水平方向和竖直方向分解时,竖直方向的分加速度向上. 根据质点组牛顿第二定律,竖直方向作用力的合力向上,支持力N 3大于两者的重力之和.本题选(B).例题13 如图3-15,光滑水平面上有一块木板,质量为M=4Kg, 长为L=1.4m.木板右端放着一个小滑块,小滑块质量为m=1Kg, 尺寸远小于L,与木板之间的动摩擦因数为μ=0.4.原来它们都静止,现在大小为F=28N的水平力向右拉木板,使滑块从木板左端掉下, 此力作用时间至少为多长?解:根据题意,水平力作用一段时间后,滑块会从左端掉下. 这暗示我们,水平力开始作用期间,木板向右的加速度较大,速度较大, 滑块向右的加速度较小,速度较小.在滑块尚未滑到木板左端时,如水平力停止作用,那么在一段时间内,木板向右的速度仍大于滑块,那么此后经一段时间滑块有可能从左端掉下,那时, 木板向右的速度应大于等于木板向右的速度.由此可知,水平力作用适当的一段时间t1后, 木板向右的速度比滑块向右的速度大,大适当的数值,然后撤去水平力,当两者的速度正好相等时,滑块从木板左端掉下.t 1就是水平力作用的最短时间.向右的水平力F开始作用后,木板除受到这个力外,还受到向左的滑块施加的滑动摩擦力f=μmg=4N木板的加速度向右,大小为(F-f)/M=6m/s2滑块受到向右的滑动摩擦力,加速度向右,大小为f/m=4m/s2经时间t1时,撤去水平力F.此后滑块的加速度仍向右,大小仍为f/m=4m/s2.木板在向左的滑动摩擦力作用下,加速度向左,大小为f/M=1m/s2木板相对于滑块始终向右运动,滑块相对于木板始终向左运动.下面以木板为参照物,考察滑块在木板上的运动(图3-16). 滑块第一阶段作初速度为零的匀加速运动,末速度的大小记为v,第二阶段作匀减速运动,末速度为零.第一阶段,加速度的大小为a1=6-4=2m/s第二阶段,加速度的大小为a2=4+1=5m/s2根据匀变速直线运动公式,有v=a1t1即 v=2t1 (1)v=a2t2=5t2即 v=5t2 (2)L=(v/2)(t1+t2) 即 2.8=v(t1+t2) (3)由(1)(2(3)得 t1=1s使滑块从木板左端掉下,水平力F作用时间至少为1s.例题14 如图3-17所示,A、B两个光滑的梯形木块质量均为m, 紧挨着并排放在光滑水平面上.倾角θ=60°.欲使A、B在水平推力F 作用下,一起加速运动(两者无相对滑动),F不能超过多少?。

相关文档
最新文档