医学成像第四章:放射性核素成像
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核医学的方法
在进行脏器显像和/或功能测定时,医生根 据检查目的,给病人口服或静脉注射某种放 射性示踪剂,使之进入人体后参与体内特定 器官组织的循环和代谢,并不断地放出射线。
这样我们就可在体外用各种专用探测仪器追 踪探查,以数字、图像、曲线或照片的形式 显示出病人体内脏器的形态和功能。
核医学的特点
放射性核素成像
放射性核素成像的主要特点是 能同时提供脏器或组织的形态与功能 信息。如将含有131I 的制剂引体内后, 由于甲状腺对碘具有自然的亲合性, 就可以在体外观察甲状腺摄碘的功能。 一般来说,在疾病形成过程中,脏器 或组织功能上的变化要早于其形态上 的变化,因此放射性核素成像在临床 中有特殊重要的意义。
=
+ γ射线
例如: γ衰变 α衰变、β衰变、核裂变过程中伴随γ射线的产生
11
核衰变
核衰变主要由以下几种
α 衰变
反应式:ZA X
Y A 4
Z 2
Q
α射线由α粒子构成,α粒子实际上是氦原子核
4 2
He
Y为子核,Q表示衰变时从核内放出的能量----衰变能 - 衰变
反应式:ZA X
Y A
Z 1
Q
粒子实际上是电子,这种衰变是由于放射性核
1.放射性核素成像的物理基础
1:同位素 指具有相同质子数(原子序数)但具有不同
中子数的核数。一般分为两种,一是同位素 性质比较稳定(没有放射性),一是具有放 射性。
2:衰变 指核素自发的发生结构和能量状态的改变,
放射出α、β、γ射线并转变成另一种核素的 过程。
1.放射性核素成像的物理基础
γ射线的产生:原子核衰变产生γ射线
放射性核素的原子核数目减少到原来的一半所需 要的时间。
T1/ 2
ln 2
核衰变的规律
生物半衰期(Tb) 指生物体内的放射性核素由于生物代谢从体内
排出一半所需要的时间。
有效半衰期(Teff) 指放射性核素由于放射性衰变和生物代谢过程
共同作用,减少到原来的一半所需要的时间。
满足关系:λeff =λ+λb
性质:
同X—Ray一致,但是二者的来源不一样,X线是原子核外 发射出来的射线,而γ射线是原子核内发射出来的射线。
核衰变的规律
对于给定的处在一定状态的放射性核素,核衰变 进行的速度和核素存在的物理、化学状态无关,
而是自发的按照一定规律进行。
N N0 *et
其中:λ为衰变常数
物理半衰期 T1/2
特点:Baidu Nhomakorabea
可同时记录脏器内各个部份的射线,以快速形成一 帧器官的静态平面图像
可观察脏器的动态功能及其变化 既是显像仪又是功能仪
该系统由准直器、 闪烁晶体、光电倍增管 陈列、位置计算电路、 脉冲高度分析器与装置 组成。准直器的作用是 人体内向外辐射的γ射击 线能准确地投射到闪烁 晶体的位置上以构成闪 烁图像。
放射性核素成像
20世纪30年代后期,人们借助 131I开始研究甲状腺疾病,这是放射性 同位素在医学领域中最早的应用。50 年代,放射性核素的成像设备开始问世。 先是同位素扫描仪,后是γ照相机。70 年代中开始研究发射型CT,可获得人 体断面的图像。1978年第一台商品化 的单光子CT问世,正电子CT也在80年 代形成了商品化仪器。
ECT
SPECT PET
放射性核素成像
将某种放射性同位素标记在药物 上并引入体内,当它被人体的脏器和组 织吸收后,在体内形成了辐射源。用核 子探测装置可以从体外检测体内同位素 在衰变过程中放出的γ射线,得到放射 性同位素在体内分布密度的图像。
放射性核素成像
由于放射性药物保持着对应稳定 核素或被标记药物的化学性质和生物 学行为,能够正常参与机体的物质代 谢,因此放射性同位素图像不仅反映 了脏器和组织的形态,更重要的是提 供了有关脏器功能及相关的生理、生 化信息。
核医学显像方法简单、灵敏、特异、无创伤 性、安全(病人所受辐射剂量低于一次X摄 片所受剂量)、易于重复、结果准确、可靠, 并能反映脏器的功能和代谢,因此在临床和 基础研究中的应用日益广泛。
核医学仪器
γ照相机
可同时记录脏器内各个部份的射线,以快速形 成一帧器官的静态平面图像
可观察脏器的动态功能及其变化 既是显像仪又是功能仪
生物医学工程 医学成像技术
第四章 放射性核素成像系统
核医学
又称原子(核)医学,是研究同位素及核辐 射的医学应用及理论基础的科学,是核技术 和医学相结合的一门新兴学科,也是人类和 平利用原子能的一个重要方面。
核医学的任务是用核技术诊断、治疗和研究 疾病。
核医学诊断技术包括脏器显像、功能测定和 体外放射免疫分析。
1
11
Teff
T1/ 2
Tb
1.γ照相机
早期使用的同位素成像系统是 同位素闪烁扫描机。它由一套机械 传动机构带动核子探测器移动进行 逐行逐点的扫描,并记录下体内各 部位辐射γ射线的强度,由此形成闪 烁图。它的最大缺点是无法进行动 态观察。
γ相机
目前临床上取而代之的是γ照相机,它可 以摄下所感兴趣的区域中放射性药物浓度的分 布图。形成一幅完整的图像大约只需零点几秒。 如果在一定的时间间隔中摄取一系列的药物分 布图,就可以对脏器的功能进行动态分析。
γ相机结构
相机准直器(Collimator) 闪烁探测器(NaI晶体) 光电倍增管(PMT) 位置电路 数据分析计算机
准直器固 定结构
准直器孔
探头周围铅屏蔽
NaI 晶体 光电倍增管
X+
行地址
预放器阵列
位置变换电路
X-
Y+
Y-
E
能
量
窗
口
A/D
A/D
列地址
计数式 图像帧存
读写控制
处理和显示
素中有一个中子变为质子的结果:
n P Q
(中子) (质子)
(中微子) (能量)
核衰变
衰变
当原子核中有一个质子转变为中子时,放射出一个正电子 反应10 e式:
γ 衰变
A Z
X
YA
Z 1
Q
原子核由高能态向低能态跃迁时,释放出γ光子的现象。
γ射线的波长和能量根据放射性元素的种类而定。
γ照相机
相机准直器
准直器位于晶体之前,是探头中首先和γ射 线相接触的部分。准直器的性能在很大成 度上决定了探头的性能。准直器能够限制 散射光子,允许特定方向γ光子和晶体发生 作用。
闪烁晶体与准直器具有相同的
直径,并紧贴地安装在准直器的背 后。入射到闪烁晶体上的γ射线光子 与闪烁晶体相互作用后能产生可见 光,或者说把入射的γ射线光子转换 成光学图像。